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Abstract001

Smart contract code summarization is crucial002
for efficient maintenance and vulnerability mit-003
igation. While many studies use Large Lan-004
guage Models (LLMs) for summarization, their005
performance still falls short compared to fine-006
tuned models like CodeT5+ and CodeBERT.007
Some approaches combine LLMs with data008
flow analysis but fail to fully capture the hierar-009
chy and control structures of the code, leading010
to information loss and degraded summariza-011
tion quality. We propose SCLA, a multimodal012
LLMs-based method that enhances summa-013
rization by integrating a Function Call Graph014
(FCG) and semantic facts from the code’s con-015
trol flow into a semantically enriched prompt.016
SCLA uses a control flow extraction algorithm017
to derive control flows from semantic nodes in018
the Abstract Syntax Tree (AST) and constructs019
the corresponding FCG. Code semantic facts020
refer to both explicit and implicit information021
within the AST that is relevant to smart con-022
tracts. This method enables LLMs to better cap-023
ture the structural and contextual dependencies024
of the code. We validate the effectiveness of025
SCLA through comprehensive experiments on026
a dataset of 40,000 real-world smart contracts.027
The experiment shows that SCLA significantly028
improves summarization quality, outperform-029
ing the SOTA baselines with improvements of030
26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4,031
METEOR, ROUGE-L, and BLEURT scores,032
respectively.033

1 Introduction034

Smart contracts (Liao et al., 2023) are self-035

executing programs on Ethereum, and the036

blockchain’s immutability complicates vulnerabil-037

ity maintenance (Zhang et al., 2022). Solidity, de-038

signed specifically for smart contract development,039

compiles code into bytecode and ABI for execution040

on the Ethereum Virtual Machine (EVM). Unlike041

general-purpose languages like Java and Python,042

Solidity emphasizes security with strict type safety043

and single-threaded execution. Analyzing Solidity 044

code requires examining syntax, semantics, and 045

state management. Even minor vulnerabilities can 046

result in financial losses (Kushwaha et al., 2022), 047

making smart contract code summarization essen- 048

tial for improving efficiency and reducing secu- 049

rity risks. Smart contract summarization has re- 050

ceived less attention than Java and Python, with 051

traditional methods relying on deep learning and 052

fine-tuning. Yang et al. (Yang et al., 2021) pro- 053

posed MMTrans, integrating deep learning with 054

structure-based traversal (SBT) and Abstract Syn- 055

tax Tree (AST) graphs for code summarization. 056

Lei et al. (Lei et al., 2024) introduced FMCF, a 057

Transformer-based method that fuses multi-scale 058

features to preserve both semantic and syntactic 059

information. Zhao et al. (Zhao et al., 2024) pro- 060

posed SCCLLM, combining context learning with 061

information retrieval to improve summarization. 062

However, fine-tuned models are often limited 063

by the quality and scale of their training data, 064

which adversely affects their performance. Ad- 065

ditionally, these models are prone to knowledge 066

forgetting (De Lange et al., 2022), reducing their 067

adaptability to emerging or evolving code patterns. 068

In contrast, large language models (LLMs) exhibit 069

stronger generalization capabilities through pre- 070

training on large-scale and diverse datasets, often 071

outperforming traditional fine-tuned models. Nev- 072

ertheless, existing LLM-based approaches gener- 073

ally focus on isolated function-level code snippets, 074

neglecting the contextual role that these functions 075

play within the entire smart contract. This limita- 076

tion hinders LLMs’ ability to fully capture the se- 077

mantic context of functions. Ahmed et al. (Ahmed 078

et al., 2024) also highlight that LLMs struggle 079

with implicit semantics, which frequently leads 080

to the omission of critical information. Although 081

LLMs demonstrate superior generalization, fine- 082

tuned models (e.g., CodeBERT (Feng et al., 2020) 083

and CodeT5 (Wang et al., 2021)) still achieve bet- 084
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ter performance in smart contract code summariza-085

tion tasks, particularly with respect to the semantic086

conciseness and descriptive accuracy of generated087

summarization (Wang et al., 2023). Therefore, how088

to effectively leverage the powerful capabilities089

and scalability of LLMs to enhance their perfor-090

mance in smart contract summarization—so that091

the quality of their outputs surpasses that of fine-092

tuned models—remains a valuable and promising093

direction for future research.094

To address the limitations of existing methods095

and generate more secure smart contract code sum-096

marization, we propose SCLA (Smart Contract097

summarization with multimodal LLMs and Seman-098

tic Augmentation). SCLA integrates multimodal099

large language models with control flow analysis100

to enhance scalability and summarization quality.101

By incorporating control flow–based semantic in-102

formation and function call graphs (see Section103

3.1), SCLA improves the security and semantic ac-104

curacy of summaries generated by large language105

models. This approach extracts such information106

through semantic analysis and generates function107

call graphs. In contrast, CP-BCS (Ye et al., 2023)108

improves binary code summarization quality by109

combining control flow graphs with pseudo-code110

representations. Unlike CP-BCS, which focuses on111

low-level binary code, SCLA’s algorithm is specifi-112

cally designed for smart contract code. It integrates113

function call graphs and semantic facts, combined114

with multimodal large language models, achieving115

greater flexibility and scalability—thus better meet-116

ing the semantic accuracy requirements of smart117

contract code. To select appropriate few-shot ex-118

amples for a given code snippet, SCLA employs119

a fine-tuned Sentence-Transformer (Reimers and120

Gurevych, 2020) to retrieve semantically similar121

samples, which are then used to construct task-122

specific prompts. Its core component, SemFlow,123

is responsible for extracting function call graphs124

and semantic details. To accurately capture func-125

tion call relationships within the unique syntactic126

structure of smart contracts, we designed a ded-127

icated extraction algorithm optimized for smart128

contract syntax (see Section 3.3). To avoid over-129

loading large language models, non-control flow130

information is presented separately, while func-131

tion call graphs are provided in a tagged Portable132

Network Graphics (PNG) format. We conducted133

experiments on 14,789 method-comment pairs se-134

lected from a GitHub repository containing 40,000135

smart contracts, demonstrating that the inclusion136

of function call graphs enhances the performance 137

of large language models. 138

Our main contributions can be summarized as 139

follows: 140

• We propose SCLA, the first framework that 141

integrates multimodal LLMs with smart con- 142

tract code summarization using control flow 143

prompts. It extracts function call graphs 144

and associated semantic information from the 145

AST, enhancing the LLM’s understanding of 146

code structure. 147

• We conduct extensive experiments on a 148

dataset with 14,795 method-comment pairs, 149

using BLEU-4, METEOR, ROUGE-L, and 150

BLEURT as evaluation metrics. We per- 151

form a comparative analysis with state-of-the- 152

art approaches, achieving a 37.53 BLEU-4 153

score, 52.54 METEOR score, 56.97 ROUGE- 154

L score, and 63.4 BLEURT score. 155

• We thoroughly evaluated the generalizability 156

of SCLA through extensive experiments on 157

Java and Python datasets, offering valuable 158

insights for future research on control flow- 159

based prompts in other code domains. 160

2 Related Work 161

Smart Contract Summarization 162

Deep learning models have made significant ad- 163

vances in smart contract code summarization. Yang 164

et al. (Yang et al., 2021) proposed MMTrans, which 165

extracts SBT sequences and AST-based graphs 166

to capture global and local semantics using dual 167

encoders and a joint decoder. Transformer mod- 168

els like CodeT5 (Wang et al., 2021) and Code- 169

BERT (Feng et al., 2020) also enhance summariza- 170

tion quality but require extensive fine-tuning and 171

large datasets. LLMs, such as GPT-4o and Gemini- 172

1.5-Pro, excel in few-shot or zero-shot summariza- 173

tion tasks, bypassing fine-tuning. Previous stud- 174

ies (Ahmed and Devanbu, 2023; Ahmed et al., 175

2024) highlight the benefits of few-shot learning. 176

However, LLMs often produce suboptimal summa- 177

rization, lacking conciseness and functional gener- 178

alization. Ahmed et al. (Ahmed et al., 2024) pro- 179

posed ASAP, incorporating data flow and GitHub 180

context. Still, it fails to capture function call rela- 181

tionships and control flow, suggesting the need for 182

improved semantic facts and control flow integra- 183

tion for better summarization. 184
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Sbert

Smart Contract Input (~40K samples)

Output Control Flow & Semantic Fact (~10K samples)

Code Text
Math Library Token Contract

Reference Library Executing Function
Decompose

Contract

............

contract ERC20Interface {
event Transfer(address 
indexed from, address 
indexed to, uint256 value);}
...............

library SafeMath {
  function sub(uint a, uint b) 
internal pure returns (uint) {
    assert(b <= a);
    return a - b;}}..............

function resetBet() external 
onlyOwner {
hashNext = block.number +3;
hashBetSum = 0;}

pragma solidity ^0.4.23;
import "./MintableToken.sol";
import "./BurnableToken.sol";
import "./Blacklisted.sol";

............

SemFlow

Contract Variables

Inner Function

Function Name

Modifiers

............ ............

Input 
Code

LLMs

Control Flow Prompt

Contract name: “TEXT”
Contract_type:“TEXT”
Contract_variables:“TEXT”

Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function_code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”

（...other  omitted...） 
Control_flow_graph:“IMAGE/PNG”

（...above omitted...） 

Output Prompt

0

1

3 54

2

6 7

9

8

Semantic FactControl Flow Graph

Contract Composition

SemFlow

Learning Samples
Output

Semantic
Matching

function balanceOf
(address _owner) 
public view returns (uint256 
balance) {
return balances[_owner];}

onlyOwner；
pubilc；
private；
external；
internal；

string public constant name = 
"Smart Reward Token";   
string public constant symbol 
= "SRT";   uint8 public 
constant decimals = 18; 

balanceOf；
addManyToBlacklist；
removeFromBlacklist；
_burn；
finishMinting；

Sbert Parsing Results
Output

Parsing

function transfer(address _to, uint256 _value) public returns 
(bool) {require(_to != address(0));
    require(_value <= balances[msg.sender]);
    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    emit Transfer(msg.sender, _to, _value);
    return true;}

Output
Code Summarization

Summarization 
Text

Getter for Challenge tokenClaims mappings 
_challengeID .The challengeID to query _voter 
The voter whose claim status to query for the 
provided challengeID,Getter for Challenge 
tokenClaims mappings _challengeID.
The challengeID to query _voter The voter 
whose claim status to query for the provided 
challengeID.

Response

Input Code Summarization:

(a) Semantic Extraction Phase (b)  Prompt Construction Phase (c) LLMs Inference

Common LLMs

Figure 1: Overview of our proposed framework, SCLA, powered by Google’s Gemini-1.5-Pro, performs automated
generation of smart contract code summarization. SCLA extracts control flow semantic facts from smart contract
code and uses Gemini-1.5-Pro to generate code summarization from control flow semantic facts.

3 METHODOLOGY185

3.1 Control Flow Prompt186

In this section, we discuss the control flow prompt187

and the corresponding semantic facts utilized by188

SCLA, as illustrated in Figure 2. These semantic189

facts are carefully integrated into the prompts to en-190

hance the LLMs’ ability to generate more accurate,191

relevant, and comprehensive summarization. The192

appendix Section B shows more detailed informa-193

tion about the control flow prompt.194

Function Call Graph & Inner Function. We195

define the set of inner functions as those invoked196

within the target function, with each element re-197

ferred to as an inner function. The function call198

graph captures the precise sequence of function199

calls, representing the control flow of the target200

code. This graph is used as control flow input201

for the LLMs, along with the set of inner func-202

tions, to provide valuable additional context about203

invoked functions. This approach mitigates misin-204

terpretation based solely on function names, signif-205

icantly enhancing semantic inference. Moreover,206

the function call graph helps the LLMs accurately207

determine the sequence and depth of function calls,208

thereby aiding in the understanding of complex209

functions and their interdependencies.210

Identifiers. Previous studies highlight that iden-211

tifiers play a critical role in helping language mod- 212

els retrieve valuable information for code summa- 213

rization (Ahmed and Devanbu, 2022). Identifiers, 214

including modifiers, local variables, and function 215

names, offer essential context about the code’s op- 216

erations. By understanding an identifier’s role, the 217

language model can better interpret the code. In 218

our approach, we perform a deep traversal of the 219

function’s AST, visiting each AST node to collect 220

identifiers along with their corresponding roles, and 221

incorporate this information into the prompt. 222

Contract Name & Global Member Variables. 223

Incorporating domain-specific information into 224

prompts greatly enhances LLMs’ overall perfor- 225

mance and effectiveness, particularly in specialized 226

tasks such as smart contract analysis. For instance, 227

smart contract names (Kong et al., 2024) often re- 228

flect their functional roles or token names (Chen 229

et al., 2021), providing valuable contextual infor- 230

mation for the LLMs. Additionally, global member 231

variables, such as contract addresses and account 232

balances, assist LLMs in more effectively under- 233

standing contract functions and their interrelations. 234

This significantly reduces the need for LLMs to in- 235

fer complex operations from variable names, lead- 236

ing to more precise descriptions and significantly 237

improved summarization accuracy. 238
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Control flow prompt template 

Contract name: “TEXT”
Contract_type:“TEXT”
Contract_variables:“TEXT”

Please generate a short code comment based on the examples 
learned above and combined with the following information.

The following is the information of the code, learn its 
semantics and structure.

Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function_code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”

example 1: 

（...other n-1 examples omitted...） 

Function_name:“release”
Function_modifiers:“public”
Inner_function_code:“...........”
Function_code:“............”

Contract name: “TokenTimelock”
Contract_type:“contract”
Contract_variables:“address public owner,address public wallet”

Learn the following  n  samples.

Function_call_graph:“image in PNG format”

Function_call_graph: release

balanceOf safeTransfer

Figure 2: An Example of Control Flow Prompt.

3.2 Semantic-based Retrieval239

In this paper, we use the Sentence-Transformer240

(SBERT) model (Reimers and Gurevych, 2020)241

to semantically match the identified code samples242

in the repository that are most similar to the target243

code snippet, which are then used as few-shot learn-244

ing examples in the prompt. We selected SBERT245

because of its superior language understanding ca-246

pabilities compared to the CCGIR (Yang et al.,247

2022) method used in SCCLLM (Zhao et al., 2024).248

SBERT, fine-tuned based on BERT and built upon249

the Transformer architecture, demonstrates excel-250

lent performance in semantic similarity tasks. In251

contrast, CCGIR relies on Code Clone Graphs (Zou252

et al., 2020) (CCG), which only capture structural253

and lexical features, limiting its ability to represent254

deeper semantics. First, we partition the samples255

in the repository into training, test, and validation256

sets (as shown in Table 1) and fine-tune the SBERT257

model using the training set. We begin by vector-258

izing the given sentences S1 (smart contract code)259

and S2,S3 (human-written comments), as described260

by the following formula:261

v1 = Pooling(BERT (S1))

v2 = Pooling(BERT (S2))
(1)262

Sbert is trained with contrastive or triplet loss to 263

bring similar sentences closer and push dissimilar 264

ones apart in the embedding space. Given pos- 265

itive pair (S1, S2) and negative pair (S1, S3), it 266

optimizes this loss: 267

L = max (0, cosine_similarity(v1,v2)

−cosine_similarity(v1,v3) + ∆)
(2) 268

where ∆ is a margin hyperparameter that controls 269

the minimum desired similarity difference, and v1 270

and v2 are the vector representations of sentences 271

S1 and S2. 272

Finally, we compute the cosine similarity be- 273

tween the target code vector and the repository 274

code vectors to identify the most semantically sim- 275

ilar samples. The formula is as follows: 276

cosine_similarity(v1,v2) =
v1 · v2

∥v1∥∥v2∥
(3) 277

For each target sample, we rank the repository 278

samples by cosine similarity in descending order. 279

The top k matches, as specified by the parameter 280

number_top_matches, are selected and stored in a 281

result dictionary, which contains the matched code 282

snippets and their similarity scores. If a file path 283

is provided, the results are serialized and saved in 284

JSON format for further analysis or review. 285

3.3 SCLA Framework 286

Figure 1 illustrates the overall framework of SCLA. 287

We outline the three stages of the SCLA process 288

for generating smart contract code summarization. 289

Semantic Extraction: We split the .sol files 290

based on the "contract node" in the AST of the 291

smart contract code. This method enables us to 292

split the contents of the .sol files into individual 293

smart contracts, thereby avoiding parsing errors. 294

Subsequently, we extract the code and comments 295

of each smart contract using regular expressions, 296

which are then passed to SemFlow for semantic 297

extraction. The function call graphs and seman- 298

tic facts are stored in a repository, indexed by the 299

contract file path and named using UUIDs. 300

Prompt Construction: SCLA uses few-shot 301

learning to enhance LLMs’ code summarization 302

performance. Sentence-Transformer (Reimers and 303

Gurevych, 2020) retrieves the top k semantically 304

similar code samples. The extracted semantic in- 305

formation, including function call graphs, function 306

arguments, function modifiers, and contract meta- 307

data, is integrated into the prompt. 308
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LLMs Inference: The semantically enhanced309

prompt, including the function call graph, is input310

into the LLMs interface to improve understanding311

of the function call sequence, resulting in higher-312

quality code summarization.313

Algorithm 1 Source Data to Function Call Tree
1: Input: Source code f to be parsed by Solparser; initialized empty dictio-

nary T
2: Output: Function call tree T
3: AST ← Solparser.parser(f)
4: T ← {}
5: for each c in AST do
6: for each g in c do
7: for each x in g.calls do
8: n← x.name
9: if n /∈ T [c][g] then
10: T [c][g][n]← {c : c, count : 1}
11: else
12: T [c][g][n].count← T [c][g][n].count + 1
13: end if
14: end for
15: end for
16: end for
17: for each c, g in T do
18: CreateCallTree(c, g, T [c][g], T )
19: end for
20: return T
21: function CREATECALLTREE(p, k, n, T)
22: for each m in n.keys do
23: o← n[m]
24: if m /∈ T [p][k].keys then
25: T [p][k][m]← T [o.c][m]
26: CreateCallTree(k, m, T [o.c][m], T )
27: end if
28: end for
29: end function

3.4 Control Flow Extraction314

We use SemFlow, a component integrated with a315

control flow extraction algorithm, to extract func-316

tion call graphs from the AST as control flow input317

in the prompt." The algorithm in 1 demonstrates318

the entire extraction process. It first uses an AST319

parsing tool to parse the input code into an AST.320

The AST is traversed in a depth-first manner to321

remove irrelevant nodes, such as imports. Function322

nodes with calls are marked in the "FunctionCall"323

field, allowing the construction of a reference tree324

(lines 5-20 of Algorithm 1). The depth of the refer-325

ence tree ranges from 2 to 3 layers, depending on326

the presence of function calls. When a third-level327

call points to a second or third-level node, the ref-328

erence tree is transformed into a complete call tree329

by grafting branch nodes (lines 21-29 of Algorithm330

1). The call tree is then visualized using Graphviz331

and saved to the code sample repository.332

Type Train Validation Test
Number 11032 2758 1000

Avg. tokens in codes 42.44 42.08 41.95
Avg. tokens in comments 26.34 26.16 26.66

Table 1: Statistics of Experimental Dataset.

4 EXPERIMENT 333

In the empirical study, we conducted comparison, 334

ablation, and generalization experiments. First, we 335

used SemFlow to process the raw data and generate 336

semantic facts, data flow graphs, and the semantic 337

sample library. The code snippets were then input 338

into SCLA for summarization and evaluation. In 339

the comparison experiment, we varied the num- 340

ber of few-shot learning samples and compared 341

the evaluation scores with baseline methods. Abla- 342

tion experiments assessed the contribution of dif- 343

ferent semantic components, while generalization 344

experiments extended SCLA to Java and Python 345

code summarization tasks. The results and expert 346

evaluations validate the effectiveness of SCLA in 347

generating smart contract code summarizations. 348

4.1 Experiment Settings 349

All our experiments are performed on a computer 350

equipped with an NVIDIA GeForce RTX 4070Ti 351

GPU (12GB graphic memory), Intel (R) Core (TM) 352

i9-13900K, running Ubuntu 22.04 LTS. 353

4.2 Dataset 354

The raw data for this study, provided by Liu et 355

al. (Liu et al., 2021), includes 40,000 smart con- 356

tracts from Etherscan.io1, created by professional 357

developers and deployed on Ethereum. Building 358

on Yang et al.’s method (Yang et al., 2021), we 359

used AST location data and regular expressions 360

to segment code and extract functions with com- 361

ments. Samples with comments under six char- 362

acters were removed. Manual filtering eliminated 363

low-quality comments, including (1) generic tem- 364

plates; (2) identical comments for different code; 365

(3) incomplete sentences; and (4) ambiguous mean- 366

ings. After cleaning, 14,790 <method, comment> 367

pairs remained. The dataset is split into 11,032 368

training, 2,758 validation, and 1,000 test samples. 369

Average token counts appear in Table 1. 370

4.3 Baseline 371

We compare our proposed SCLA with six state- 372

of-the-art methods, including general code sum- 373

marization models such as CodeT5 (Wang et al., 374

2021), CodeT5+ (Wang et al., 2023), and Code- 375

BERT (Feng et al., 2020), deep learning-based 376

smart contract code summarization methods MM- 377

Tran (Yang et al., 2021) and FMCF (Lei et al., 378

1https://etherscan.io/
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Model # of sample
BLEU-4 METEOR ROUGE-L

p-value
Zero-Shot +CFG +IF Gain(%) Zero-Shot +CFG +IF Gain(%) Zero-Shot +CFG +IF Gain(%)

Llama-3.2-1b-preview 11032 3.03 5.43 +79.21% 19.58 23.97 +22.42 18.88 23.49 +24.42 <0.01
GPT-4o 11032 5.34 7.45 +39.51% 22.32 26.62 +19.27 25.32 32.62 +28.83 <0.01

Gemini-1.0-Pro-Vision 11032 3.01 5.32 +76.74% 16.89 20.73 +22.73 18.46 20.31 +10.02 <0.01
Gemini-1.5-Pro 11032 3.21 5.87 +82.87% 19.89 25.61 +28.76 23.95 27.42 +14.49 <0.01

Claude-3.5-sonnet 11032 3.31 5.32 +60.73% 23.42 28.62 +22.20 25.82 30.12 +16.65 <0.01

Table 2: Performance of different LLMs on smart contract code summarization, measured using BLEU-4, METEOR,
ROUGE-L. p-values are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

2
4

6
8

10

Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(a) Comparison Results on BELU-4
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Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(b) Comparison Results on METEOR
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Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(c) Comparison Results on ROUGE-L

Figure 3: The Comparison of BLEU, METEOR, and ROUGE-L Scores on Our Test Set Under Five Different LLMs,
Using the SCCLLM and the Proposed SCLA for Zero-Shot Summarization Tasks.

2024), and smart contract-specific code summa-379

rization methods based on the latest LLMs, such as380

SCCLLM (Zhao et al., 2024).381

4.4 Performance Metrics382

To evaluate SCLA performance against baselines,383

we adopted various automatic performance met-384

rics, including BLEU-4 (Papineni et al., 2002),385

METEOR (Banerjee and Lavie, 2005), ROUGE-386

L (Lin, 2004), and BLEURT (Sellam et al., 2020).387

These metrics effectively assess the similarity be-388

tween the automatically generated smart contract389

summarization and the real human-generated sum-390

marization. BLEURT, in particular, calculates sim-391

ilarity based on sentence semantics by using a pre-392

trained BERT model, providing a more accurate393

reflection of semantic meaning.394

4.5 Main Results395

We conducted a comprehensive evaluation of the396

Gemini-1.5-Pro-powered SCLA under two distinct397

experimental settings. Gemini-1.5-Pro was se-398

lected due to its significantly higher context token399

capacity compared to Claude-3.5-Sonnet and GPT-400

4o. This advantage is particularly critical in scenar-401

ios where the target function exhibits deep callback402

chains, leading to large function call graphs that403

may exceed the context length limits of Claude-404

3.5-Sonnet and GPT-4o. Moreover, Gemini-1.5-405

Pro offers a fully free API, making it a more cost-406

effective choice in high token consumption environ-407

ments. The SCLA demonstrated substantial perfor-408

mance improvements in smart contract code sum-409

marization tasks under both zero-shot and few-shot410

learning settings. These findings provide valuable 411

insights and contributions to the research commu- 412

nity. The specific results are as follows: 413

Zero-shot Results. To evaluate the impact 414

of function call graphs and internal functions on 415

LLMs-generated code summarization, we con- 416

ducted experiments using GPT-4o, Gemini-1.5-Pro, 417

and Claude-3.5-Sonnet under zero-shot conditions. 418

The experiment had two phases: first, the target 419

code was embedded into the prompt and evaluated 420

with standard metrics; second, the prompt was en- 421

hanced with internal functions and function call 422

graphs, followed by re-evaluation. Table 2 shows 423

that incorporating internal functions and call graphs 424

improved summarization. GPT-4o improved by 425

39.51%, 19.27%, and 28.83%; Gemini-1.5-Pro by 426

82.87%, 28.76%, and 14.49%; and Claude-3.5- 427

Sonnet by 60.73%, 22.20%, and 16.65%. How- 428

ever, Gemini-1.5-Pro underperformed compared 429

to GPT-4o and Claude-3.5-Sonnet. These results 430

validate our hypothesis that function call graphs 431

enhance smart contract summarization. To fur- 432

ther validate the control flow prompt’s effective- 433

ness, we compared SCLA with SCCLLM using 434

five multimodal models on the test set. Results in 435

Figure 3 show SCLA outperforming SCCLLM in 436

BLEU, METEOR, and ROUGE-L scores. This 437

demonstrates that SCLA with the control flow 438

prompt outperforms SCCLLM, confirming the 439

effectiveness of control flow prompts. 440

Few-shot Results. To evaluate the performance 441

of SCLA against SOTA baseline models, we con- 442

ducted a validation experiment. Since SCLA em- 443
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Approach #of training sample #of test sample BLEU-4 METEOR ROUGE-L BLEURT p-values
CodeT5+ 11032 1000 28.95 45.62 49.77 57.79 /
CodeT5 11032 1000 27.24 43.31 49.03 52.61 /

CodeBERT 11032 1000 26.31 39.57 44.52 52.74 /
MMTran 11032 1000 22.12 38.92 40.12 54.73 /
FMCF 11032 1000 29.98 36.67 51.21 51.73 /

SCCLLM (One-Shot) / 1000 19.45 20.12 19.12 36.56 <0.01
SCCLLM (Three-Shot) / 1000 29.73 35.33 49.44 50.91 <0.01
SCCLLM (Five-Shot) / 1000 31.73 48.12 60.44 58.74 <0.01

SCLA (Zero-Shot) / 1000 6.09 25.80 29.45 46.63 <0.01
SCLA (One-Shot) / 1000 25.46 42.78 47.55 57.07 <0.01

SCLA (Three-Shot) / 1000 35.15 51.80 55.89 63.11 <0.01
SCLA (Five-Shot) / 1000 37.53 52.54 56.97 63.44 <0.01

Table 3: The impact of different few-shot learning quantities on SCLA performance with Gemini-1.5-Pro. p-values
are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Type Zero-Shot One-Shot Three-Shot Five-Shot
Avg. tokens in prompt 561.4 1154.8 2242.5 3330.3

Table 4: Number of Tokens Consumed with Different
Numbers of Learning Sample for SCLA.

Approach Prompt Component BLEU-4 METEOR ROUGE-L BLEURT

SCLA

ALL 6.09 25.80 29.45 46.63
-FCG 5.21 27.77 27.94 45.90

-IF 4.42 25.43 26.23 44.56
-Id&MGV 5.62 25.47 29.01 46.32

Table 5: Ablation study. Effect of Semantic Augmenta-
tion on Gemini-1.5-Pro Generated Summarization. FCG
is Function Call Graph, IF is Inner Function, Id&MGV
is Identifiers&Global Member Variables.

ploys few-shot learning, we tested its performance444

under Zero-Shot, One-Shot, Three-Shot, and Five-445

Shot conditions to investigate the number of learn-446

ing samples required for optimal performance.447

The results (see Table 3) indicate that SCLA ini-448

tially lags behind the baseline models in Zero-Shot449

and One-Shot settings. However, starting from450

Three-Shot, SCLA outperforms the baseline mod-451

els across all four evaluation metrics: BLEU-4,452

METEOR, ROUGE-L, and BLEURT. Compared453

to FMCF, SCLA improved by 17.24%, 41.26%,454

9.14%, and 22.00%, and compared to CodeT5+,455

the improvements were 21.42%, 13.55%, 12.30%,456

and 9.21%. Compared to all baseline models,457

SCLA showed average improvements of 26.7%,458

23.2%, 16.7%, and 14.7% in these metrics. Per-459

formance continued to improve under Five-Shot,460

although the gains were modest. We also analyzed461

token consumption to determine the optimal num-462

ber of few-shot samples (see Table 4). The token463

consumption for Five-Shot was 48.51% higher than464

for Three-Shot, but the average improvement in465

generated code summarization metrics was only466

2.20%. Therefore, Three-Shot provides the best467

balance between performance and efficiency.468

4.6 Ablation Study 469

We conducted ablation experiments to quantify the 470

impact of individual semantic facts in SCLA on 471

Gemini-1.5-Pro’s code summarization under Zero- 472

Shot learning. As shown in Table 5, five variants 473

were tested by selectively removing semantic el- 474

ements from the enhanced prompts. The results 475

highlight the importance of inner function ordering, 476

function call graphs, identifiers, and global mem- 477

ber variables. Notably, removing inner functions 478

caused a performance drop of up to 27.42%, while 479

excluding function call graphs led to significant de- 480

clines in BLEU-4 (14.45), ROUGE-L (5.13), and 481

BLEURT (1.57). Eliminating identifiers and global 482

variables also reduced performance across all met- 483

rics. These results confirm that inline functions and 484

call graphs are essential for improving summariza- 485

tion quality. Moreover, global member variables 486

help preserve semantic consistency, and function 487

call graphs offer structural context crucial to 488

summarization accuracy. Removing these com- 489

ponents weakens both coherence and completeness, 490

validating the necessity of each semantic element. 491

0 50 100 150 200 250 300

CodeBERT

CodeT5

CodeT5+

SCCLLM

SCLA

201

215

238

259

262

99

85

62

41

38

Passed Manual Inspection Failed Manual Inspection

Figure 4: Human Evaluation Results of 300 Code Sum-
marizations Generated by SCLA and the Baseline.
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Approach #of Training Sample #of Test Sample
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
CodeBERT 8000 1000 19.91 25.11 34.34 20.56 33.37 33.19

CodeT5 8000 1000 22.45 28.98 41.98 28.82 37.98 39.52
CodeT5+ 8000 1000 28.82 39.79 49.31 34.67 46.98 47.34

SCLA / 1000 34.34 50.66 60.71 37.34 52.61 57.49
Table 6: The performance of our proposed method and the baseline model was evaluated on Java and Python
datasets.

Language Model #of Test Sample BLEU-4 BLEURT p-valuesSCCLLM SCLA Gain (%) SCCLLM SCLA Gain (%)

Java
GPT-4o 1000 28.59 38.43 +34.42 50.34 68.89 +36.85 <0.01

Gemini-1.5-Pro 1000 23.22 31.43 +35.36 56.33 63.67 +13.03 <0.01
Claude-3.5-sonnet 1000 31.05 39.13 +26.02 58.89 70.90 +20.40 <0.01

Python
GPT-4o 1000 22.78 29.56 +29.76 55.90 64.23 +14.90 <0.01

Gemini-1.5-Pro 1000 20.15 26.06 +29.33 51.78 61.03 +17.86 <0.01
Claude-3.5-sonnet 1000 25.45 33.77 +32.69 58.21 73.56 +26.37 <0.01

Overall / / 25.21 33.06 +31.14 55.24 67.05 +21.38 <0.01
Table 7: The performance of SCLA and SCCLLM on the Java and Python tasks, driven by three different LLMs,
was evaluated using BLEU-4 and BLEURT as metrics. To assess the statistical significance of the results, p-values
were calculated using a one-sided pairwise Wilcoxon signed-rank test, with Benjamini-Hochberg (B-H) correction
applied for multiple comparisons.

4.7 Human Evaluation of Summarization492

Generated by SCLA and the Baseline493

To assess the summarization generated by SCLA,494

we randomly selected 300 samples from the smart495

contract code summarization generated by SCLA496

and baseline models for manual evaluation. This497

evaluation focused on similarity, conciseness, and498

completeness, categorizing the summarization as499

usable or unusable. To reduce subjectivity and500

bias, six volunteer evaluators, all Chinese graduate501

students with experience in smart contract devel-502

opment, were recruited and briefed on the research503

and evaluation standards. The results, shown in504

Figure 4, reveal that SCLA generated the fewest un-505

usable summarization, outperforming all baseline506

models. These findings demonstrate that SCLA507

is more likely to generate satisfactory smart con-508

tract code summarization, reducing the chances509

of low-quality outputs.510

4.8 Generalization Study511

To evaluate the generalization ability of SCLA,512

we selected 10,000 samples each from Java and513

Python in the CodeSearchNet (Husain et al., 2019)514

dataset and randomly sampled 1,000 instances per515

language as test sets. Since SCLA’s FCG extraction516

algorithm was originally designed for Solidity, we517

adapted it to accommodate the syntax of Java and518

Python. Using BLEU-4, METEOR, and ROUGE-519

L as evaluation metrics, SCLA achieved improve-520

ments over CodeT5+ of 19%, 12%, and 23% on521

the Java dataset, and 7%, 18%, and 21% on the 522

Python dataset, respectively. Furthermore, lever- 523

aging GPT-4o, Gemini-1.5-Pro, and Claude-3.5- 524

Sonnet, we compared SCLA with SCCLLM across 525

both datasets using BLEU-4 and BLEURT metrics. 526

The results indicate that SCLA consistently outper- 527

forms SCCLLM across all models, with average 528

gains of 31.14 in BLEU-4 and 21.38 in BLEURT. 529

These findings demonstrate that control flow–based 530

prompts exhibit strong generalization to Java and 531

Python, effectively enhancing large language mod- 532

els’ understanding of code structure and improving 533

code summarization quality. 534

5 Conclusion 535

We propose that function call graphs enhance 536

LLMs’ understanding of smart contract code se- 537

mantics, and experiments confirm their positive im- 538

pact on code comprehension. Ablation studies as- 539

sess the contribution of each prompt component to 540

summarization quality. SCLA is a framework that 541

combines LLMs with control flow prompts, out- 542

performing six baseline models. The experiments 543

show that, compared to other baseline models, 544

SCLA significantly improves BLEU-4, METEOR, 545

ROUGE-L, and BLEURT scores with improve- 546

ments of 30.34%, 23.15%, 16.74%, and 14.86%, 547

respectively. We also extended SCLA to Java 548

and Python code, further improving summarization 549

and providing new insights for advancing LLM- 550

generated code summarization. 551
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Limitations552

Our framework enhances Gemini-1.5-Pro’s under-553

standing using function call graphs. However,554

Gemini-1.5-Pro struggles with deep call stacks555

or circular calls. Figure 5 shows that circular556

chains, like transferFrom → removeTokenFrom →557

ownerOf → isApprovedOrOwner → transferFrom,558

confuse the model, leading to misinterpretations559

and incorrect summarization. In contrast, Gemini-560

1.5-Pro handles typical tree structures even with a561

depth of 5. Further research is needed to explore562

the impact of loop calls and depth on-call interpre-563

tation. We have not yet fully resolved this issue,564

but we propose an approach whereby the LLM pro-565

cesses the function call graph in a specified order566

(e.g., top-down) and arranges functions hierarchi-567

cally. In this structure, normal calls are represented568

as higher-level functions invoking lower-level ones,569

while cyclic calls appear as lower-level functions570

invoking higher-level ones. This hierarchical ar-571

rangement helps the LLM avoid misinterpreting572

the position of cyclic calls.573

Another key challenge in using LLMs for smart574

contract code summarization is the potential expo-575

sure of test data during pre-training. Since general-576

purpose LLMs like GPT-4o and Gemini-1.5-Pro577

are not publicly accessible, direct verification of578

this exposure is difficult. Additionally, LLMs’579

memorization capability can produce artificially580

high scores if prior summarizations are retained.581

We also analyzed the effect of few-shot learning582

on SCLA’s performance in Section 3. Our results583

show that SCLA outperforms the baseline with a584

Three-Shot setup, while performance gains plateau585

at five shots, with a 1.5x increase in computational586

cost.587

transferFrom

removeTokenFrom isApproveOrOwnerclearApproval Transfer

addTokenTo ownerOfsub isApproveForAll

add addressrequire

getApproved

Figure 5: An Example of a Function Call Graph in
Which Gemini-1.5-Pro Has Difficulty Understanding
the Call Information.
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A Case Study722

Upon reviewing the results, we found that the723

SCLA prompt includes crucial information for724

effective summarization. Table 8 highlights the725

differences between real-world smart contract ab-726

stracts and Summarization generated by Code-727

BERT, CodeT5, CodeT5+, and SCLA. CodeBERT728

identifies key terms like "transfer," "ownership,"729

and "address," but lacks clarity, with ambiguous730

pronoun references and repetition of the transfer731

concept. CodeT5 captures "onlyOwner" but over-732

looks broader global semantics, rendering the sec-733

ond sentence redundant. CodeT5+ addresses this734

limitation with more precise terminology, such735

as identifying the object as a "data contract." In736

contrast, SCLA’s Summarization aligns more737

closely with real-world Summarization, being738

both more concise and semantically accurate,739

omitting redundancy for a much clearer, more740

refined, and contextually precise structure.741

B Control Flow Prompt742

Learn the following 1 sample.743

Example 1:744

Contract name: KahnAirDrop745

Contract type: contract746

Contract Variables:747
748

1 {"owner": "address public owner;"},749
2 {"wallet": "address public wallet;"},750
3 {"mineth": "uint256 public mineth = 0;"},751
4 {"minsignupeth": "uint256 public752

minsignupeth = 0;"},753
5 {"paused": "bool public paused = false;"},754
6 {"maxSignup": "uint public maxSignup =755

1000;"},756
7 {"allowsSignup": "bool public allowsSignup757

= true;"},758
8 {"bountyaddress": "address[] public759

bountyaddress;"},760
9 {"adminaddress": "address[] public761

adminaddress;"},762
10 {"staffaddress": "address[] public763

staffaddress;"},764
11 {"startTimes": "uint public startTimes;"},765
12 {"endTimes": "uint public endTimes;"},766
13 {"contractbacklist": "bool public767

contractbacklist = false;"},768
14 {"userSignupCount": "uint public769

userSignupCount = 0;"},770
15 {"userClaimAmt": "uint256 public771

userClaimAmt = 0;"},772
16 {"token": "ERC20 public token;"},773
17 {"payStyle": "uint public payStyle = 2;"},774
18 {"paidversion": "bool public paidversion =775

true;"},776
19 {"payoutNow": "uint public payoutNow = 4;"},777
20 {"fixPayAmt": "uint256 public fixPayAmt =778

0;"},779

21 {"bounties": "mapping(address => User) 780
public bounties;"}, 781

22 {"signups": "mapping(address => bool) 782
public signups;"}, 783

23 {"blacklist": "mapping(address => bool) 784
public blacklist;"}, 785

24 {"isProcess": "mapping(address => bool) 786
public isProcess;"}, 787

25 {"admins": "mapping(address => bool) public 788
admins;"}, 789

26 {"staffs": "mapping(address => bool) public 790
staffs;"} 791792

The following is the information on the code, 793

learn its semantics and structure. 794

Function name: ownerUpdateOthers 795

Function modifiers: public 796

Inner function code: 797
798

1 function transferFrom(address from, address 799
to, uint256 value) public 800

2 returns (bool);, 801
3 802
4 function transferFrom(address _from, 803

address _to, uint256 _value) 804
onlyPayloadSize(3 * 32) public returns 805
(bool) { var _allowance = 806
allowed[_from][msg.sender]; balances[_to] 807
= balances[_to].add(_value); 808
balances[_from] = 809
balances[_from].sub(_value); 810
allowed[_from][msg.sender] = 811
_allowance.sub(_value); Transfer(_from, 812
_to, _value); 813

5 return true; 814
6 }, 815
7 816
8 function transferFrom(address _from, 817

address _to, uint256 _value) public 818
hasStartedTrading returns (bool) { 819

9 super.transferFrom(_from, _to, _value); 820
10 return true; 821
11 } 822823

Function Code: 824
825

1 function transferFrom(address _from, address 826
_to, uint256 _value) public 827
hasStartedTrading returns (bool) { 828
super.transferFrom(_from, _to, _value); 829
return true; 830831

function comment: Allows anyone to transfer the 832

tokens once trading has started _from address The 833

address which you want to send tokens from _to 834

address The address which you want to transfer 835

_value uint the amout of tokens to be transferred. 836

Based on the learned samples above and the 837

following information, generate a code summa- 838

rization for the input code 839

Contract name: FinalizableCrowdsale 840

Contract type: contract 841

Contract Variables: 842
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Example
#Input Function Code

function transferDataOwnership (address _addr) onlyOwner public {

data.transferOwnership(_addr);

}

#inner function code

function transferOwnership(address _newOwner) public onlyOwner {

_transferOwnership(_newOwner);

}

Approach Coment BLEU-4 METEOR ROUGE-L
Ground Truth Transfer ownership of data contract to _addr. _addr address. NA NA NA

CodeBERT
Transfer ownership of an address to another.

_addr address The address to transfer to.
51.20 28.00 67.00

CodeT5
Allows the owner to transfer control of the contract to an address.

_addr The address to transfer ownership to.
42.48 26.64 47.62

CodeT5+ Allows the owner to transfer control of data contract to _addr. _addr The address. 60.68 41.67 60.00
SCLA Transfers ownership of the data contract to _addr. 70.77 72.70 75.00

Table 8: An example illustrating the effectiveness of SCLA.

843
1 {"isFinalized": " bool public isFinalized =844

false;"}845846

The following is the information on the code,847

learn its semantics and structure. Function Call848

Graph:849

Function name: vestedTokens850

Function modifiers: private851

Inner function code:852
853

1 function div(uint a, uint b) internal returns854
(uint) {855

2 // assert(b > 0); // Solidity automatically856
throws when dividing by 0857

3 uint c = a / b;858
4 // assert(a == b * c + a % b); // There is859

no case in which this doesn't hold860
5 return c;861
6 }862
7863
8 function mul(uint a, uint b) internal returns864

(uint) {865
9 uint c = a * b;866

10 assert(a == 0 || c / a == b);867
11 return c;868
12 }869
13870
14 function sub(uint a, uint b) internal returns871

(uint) {872
15 assert(b <= a);873
16 return a - b;874
17 }875
18876
19 function calculateVestedTokens(877
20 uint256 tokens,878
21 uint256 time,879
22 uint256 start,880
23 uint256 cliff,881
24 uint256 vesting882
25 ) constant returns (uint256) {883
26 if (time < cliff) return 0;884
27 if (time >= vesting) return tokens;885
28 uint256 vestedTokens = SafeMath.div(886
29 SafeMath.mul(887
30 tokens,888

31 SafeMath.sub(time, start) 889
32 ), 890
33 SafeMath.sub(vesting, start) 891
34 ); 892
35 return vestedTokens; 893
36 } 894895

Input Code: 896
897

1 function vestedTokens(TokenGrant grant, uint64 898
time) private constant returns (uint256) { 899

2 return calculateVestedTokens(grant.value, 900
uint256(time), uint256(grant.start), 901
uint256(grant.cliff),uint256(grant.vesting)); 902

3 } 903904

Function Call Graph:

vestedTokens

calculate
VestedTo
kens

div mul sub

905
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