SCLA: Automated Smart Contract Summarization via LLMs and Control
Flow Prompt

Anonymous ACL submission

Abstract

Smart contract code summarization is crucial
for efficient maintenance and vulnerability mit-
igation. While many studies use Large Lan-
guage Models (LLMs) for summarization, their
performance still falls short compared to fine-
tuned models like CodeT5+ and CodeBERT.
Some approaches combine LLMs with data
flow analysis but fail to fully capture the hierar-
chy and control structures of the code, leading
to information loss and degraded summariza-
tion quality. We propose SCLA, a multimodal
LLMs-based method that enhances summa-
rization by integrating a Function Call Graph
(FCG) and semantic facts from the code’s con-
trol flow into a semantically enriched prompt.
SCLA uses a control flow extraction algorithm
to derive control flows from semantic nodes in
the Abstract Syntax Tree (AST) and constructs
the corresponding FCG. Code semantic facts
refer to both explicit and implicit information
within the AST that is relevant to smart con-
tracts. This method enables LLMs to better cap-
ture the structural and contextual dependencies
of the code. We validate the effectiveness of
SCLA through comprehensive experiments on
a dataset of 40,000 real-world smart contracts.
The experiment shows that SCLA significantly
improves summarization quality, outperform-
ing the SOTA baselines with improvements of
26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4,
METEOR, ROUGE-L, and BLEURT scores,
respectively.

1 Introduction

Smart contracts (Liao et al., 2023) are self-
executing programs on Ethereum, and the
blockchain’s immutability complicates vulnerabil-
ity maintenance (Zhang et al., 2022). Solidity, de-
signed specifically for smart contract development,
compiles code into bytecode and ABI for execution
on the Ethereum Virtual Machine (EVM). Unlike
general-purpose languages like Java and Python,
Solidity emphasizes security with strict type safety

and single-threaded execution. Analyzing Solidity
code requires examining syntax, semantics, and
state management. Even minor vulnerabilities can
result in financial losses (Kushwaha et al., 2022),
making smart contract code summarization essen-
tial for improving efficiency and reducing secu-
rity risks. Smart contract summarization has re-
ceived less attention than Java and Python, with
traditional methods relying on deep learning and
fine-tuning. Yang et al. (Yang et al., 2021) pro-
posed MMTrans, integrating deep learning with
structure-based traversal (SBT) and Abstract Syn-
tax Tree (AST) graphs for code summarization.
Lei et al. (Lei et al., 2024) introduced FMCEF, a
Transformer-based method that fuses multi-scale
features to preserve both semantic and syntactic
information. Zhao et al. (Zhao et al., 2024) pro-
posed SCCLLM, combining context learning with
information retrieval to improve summarization.
However, fine-tuned models are often limited
by the quality and scale of their training data,
which adversely affects their performance. Ad-
ditionally, these models are prone to knowledge
forgetting (De Lange et al., 2022), reducing their
adaptability to emerging or evolving code patterns.
In contrast, large language models (LLMs) exhibit
stronger generalization capabilities through pre-
training on large-scale and diverse datasets, often
outperforming traditional fine-tuned models. Nev-
ertheless, existing LLM-based approaches gener-
ally focus on isolated function-level code snippets,
neglecting the contextual role that these functions
play within the entire smart contract. This limita-
tion hinders LLLMs’ ability to fully capture the se-
mantic context of functions. Ahmed et al. (Ahmed
et al., 2024) also highlight that LLMs struggle
with implicit semantics, which frequently leads
to the omission of critical information. Although
LLMs demonstrate superior generalization, fine-
tuned models (e.g., CodeBERT (Feng et al., 2020)
and CodeT5 (Wang et al., 2021)) still achieve bet-

ter performance in smart contract code summariza-
tion tasks, particularly with respect to the semantic
conciseness and descriptive accuracy of generated
summarization (Wang et al., 2023). Therefore, how
to effectively leverage the powerful capabilities
and scalability of LLMs to enhance their perfor-
mance in smart contract summarization—so that
the quality of their outputs surpasses that of fine-
tuned models—remains a valuable and promising
direction for future research.

To address the limitations of existing methods
and generate more secure smart contract code sum-
marization, we propose SCLA (Smart Contract
summarization with multimodal LLMs and Seman-
tic Augmentation). SCLA integrates multimodal
large language models with control flow analysis
to enhance scalability and summarization quality.
By incorporating control flow—based semantic in-
formation and function call graphs (see Section
3.1), SCLA improves the security and semantic ac-
curacy of summaries generated by large language
models. This approach extracts such information
through semantic analysis and generates function
call graphs. In contrast, CP-BCS (Ye et al., 2023)
improves binary code summarization quality by
combining control flow graphs with pseudo-code
representations. Unlike CP-BCS, which focuses on
low-level binary code, SCLA’s algorithm is specifi-
cally designed for smart contract code. It integrates
function call graphs and semantic facts, combined
with multimodal large language models, achieving
greater flexibility and scalability—thus better meet-
ing the semantic accuracy requirements of smart
contract code. To select appropriate few-shot ex-
amples for a given code snippet, SCLA employs
a fine-tuned Sentence-Transformer (Reimers and
Gurevych, 2020) to retrieve semantically similar
samples, which are then used to construct task-
specific prompts. Its core component, SemFlow,
is responsible for extracting function call graphs
and semantic details. To accurately capture func-
tion call relationships within the unique syntactic
structure of smart contracts, we designed a ded-
icated extraction algorithm optimized for smart
contract syntax (see Section 3.3). To avoid over-
loading large language models, non-control flow
information is presented separately, while func-
tion call graphs are provided in a tagged Portable
Network Graphics (PNG) format. We conducted
experiments on 14,789 method-comment pairs se-
lected from a GitHub repository containing 40,000
smart contracts, demonstrating that the inclusion

of function call graphs enhances the performance
of large language models.

Our main contributions can be summarized as
follows:

* We propose SCLA, the first framework that
integrates multimodal LLMs with smart con-
tract code summarization using control flow
prompts. It extracts function call graphs
and associated semantic information from the
AST, enhancing the LLM’s understanding of
code structure.

* We conduct extensive experiments on a
dataset with 14,795 method-comment pairs,
using BLEU-4, METEOR, ROUGE-L, and
BLEURT as evaluation metrics. We per-
form a comparative analysis with state-of-the-
art approaches, achieving a 37.53 BLEU-4
score, 52.54 METEOR score, 56.97 ROUGE-
L score, and 63.4 BLEURT score.

* We thoroughly evaluated the generalizability
of SCLA through extensive experiments on
Java and Python datasets, offering valuable
insights for future research on control flow-
based prompts in other code domains.

2 Related Work

Smart Contract Summarization

Deep learning models have made significant ad-
vances in smart contract code summarization. Yang
et al. (Yang et al., 2021) proposed MMTrans, which
extracts SBT sequences and AST-based graphs
to capture global and local semantics using dual
encoders and a joint decoder. Transformer mod-
els like CodeT5 (Wang et al., 2021) and Code-
BERT (Feng et al., 2020) also enhance summariza-
tion quality but require extensive fine-tuning and
large datasets. LLMs, such as GPT-40 and Gemini-
1.5-Pro, excel in few-shot or zero-shot summariza-
tion tasks, bypassing fine-tuning. Previous stud-
ies (Ahmed and Devanbu, 2023; Ahmed et al.,
2024) highlight the benefits of few-shot learning.
However, LLMs often produce suboptimal summa-
rization, lacking conciseness and functional gener-
alization. Ahmed et al. (Ahmed et al., 2024) pro-
posed ASAP, incorporating data flow and GitHub
context. Still, it fails to capture function call rela-
tionships and control flow, suggesting the need for
improved semantic facts and control flow integra-
tion for better summarization.

P, Smart Contract Input (~40K samples) ----------- N i

-=+ Contract Composition ==~

Token Contract

...other omitted...)

----- Common LLMs ----.

I

Control

°
©
o

Response

Output ' Text i

i

N e N e i |

. ! |

------- Outout Control Flow & Semantic Fact (~10K samples) - -- -~ Seman.tlc Parsing | i
,-- Control Flow Graph -~ ,----- Semantic Fact ------- N Matching i]

| '

Output
-~~ Code Summarization =~~~

, Summarization

3 Output

SemFlow

Function Name

Contract Variables

(a) Semantic Extraction Phase

(b) Prompt Construction Phase

° Input Code Summarization:

Geter for Challenge tokenClaims mappings

_challengelD .The chal e
The voter wh
provided chal

\/

“"| function transfer(address _to, uint256 _value) public returns
(bool) {require(_to != address(0));
require(_value <= balances[msg.sender]);
balances{msg.sender] = balances[msg sender].sub(_value);
balances|_to] = balances[_to].add(_value):
emit Transfer(msg.sender, _to, _value);
return true; }

tokenClaims mappings _challengelD.
The challengelD to query _voter The voter
Jaim status to query for the provided

(¢) LLMs Inference

Figure 1: Overview of our proposed framework, SCLA, powered by Google’s Gemini-1.5-Pro, performs automated
generation of smart contract code summarization. SCLA extracts control flow semantic facts from smart contract
code and uses Gemini-1.5-Pro to generate code summarization from control flow semantic facts.

3 METHODOLOGY

3.1 Control Flow Prompt

In this section, we discuss the control flow prompt
and the corresponding semantic facts utilized by
SCLA, as illustrated in Figure 2. These semantic
facts are carefully integrated into the prompts to en-
hance the LLMs’ ability to generate more accurate,
relevant, and comprehensive summarization. The
appendix Section B shows more detailed informa-
tion about the control flow prompt.

Function Call Graph & Inner Function. We
define the set of inner functions as those invoked
within the target function, with each element re-
ferred to as an inner function. The function call
graph captures the precise sequence of function
calls, representing the control flow of the target
code. This graph is used as control flow input
for the LLMs, along with the set of inner func-
tions, to provide valuable additional context about
invoked functions. This approach mitigates misin-
terpretation based solely on function names, signif-
icantly enhancing semantic inference. Moreover,
the function call graph helps the LLMs accurately
determine the sequence and depth of function calls,
thereby aiding in the understanding of complex
functions and their interdependencies.

Identifiers. Previous studies highlight that iden-

tifiers play a critical role in helping language mod-
els retrieve valuable information for code summa-
rization (Ahmed and Devanbu, 2022). Identifiers,
including modifiers, local variables, and function
names, offer essential context about the code’s op-
erations. By understanding an identifier’s role, the
language model can better interpret the code. In
our approach, we perform a deep traversal of the
function’s AST, visiting each AST node to collect
identifiers along with their corresponding roles, and
incorporate this information into the prompt.

Contract Name & Global Member Variables.
Incorporating domain-specific information into
prompts greatly enhances LLMs’ overall perfor-
mance and effectiveness, particularly in specialized
tasks such as smart contract analysis. For instance,
smart contract names (Kong et al., 2024) often re-
flect their functional roles or token names (Chen
et al., 2021), providing valuable contextual infor-
mation for the LLMs. Additionally, global member
variables, such as contract addresses and account
balances, assist LLMs in more effectively under-
standing contract functions and their interrelations.
This significantly reduces the need for LLMs to in-
fer complex operations from variable names, lead-
ing to more precise descriptions and significantly
improved summarization accuracy.

Control flow prompt template

Learn the following n samples.
example 1:

The following is the information of the code, learn its
semantics and structure.
Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function_code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”
Function_call_graph:“image in PNG format”

(...other n-1 examples omitted...)

Please generate a short code comment based on the examples
learned above and combined with the following information.

Function _name:“release”
Function_modifiers:“public”
Inner_function_code:“........... .

balanceOf

Figure 2: An Example of Control Flow Prompt.

Function_code:“............ .

Function_call_graph:

safeTransfer

3.2 Semantic-based Retrieval

In this paper, we use the Sentence-Transformer
(SBERT) model (Reimers and Gurevych, 2020)
to semantically match the identified code samples
in the repository that are most similar to the target
code snippet, which are then used as few-shot learn-
ing examples in the prompt. We selected SBERT
because of its superior language understanding ca-
pabilities compared to the CCGIR (Yang et al.,
2022) method used in SCCLLM (Zhao et al., 2024).
SBERT, fine-tuned based on BERT and built upon
the Transformer architecture, demonstrates excel-
lent performance in semantic similarity tasks. In
contrast, CCGIR relies on Code Clone Graphs (Zou
et al., 2020) (CCG), which only capture structural
and lexical features, limiting its ability to represent
deeper semantics. First, we partition the samples
in the repository into training, test, and validation
sets (as shown in Table 1) and fine-tune the SBERT
model using the training set. We begin by vector-
izing the given sentences S (smart contract code)
and 55,53 (human-written comments), as described
by the following formula:

vy = Pooling(BERT'(S1))

vy = Pooling(BERT'(S2)) W

Sbert is trained with contrastive or triplet loss to
bring similar sentences closer and push dissimilar
ones apart in the embedding space. Given pos-
itive pair (S1,.S52) and negative pair (S, S3), it
optimizes this loss:

L = max (0, cosine_similarity(vy, v2) 2

—cosine_similarity(vi,vs) + A)

where A is a margin hyperparameter that controls
the minimum desired similarity difference, and v
and vy are the vector representations of sentences
Sl and SQ.

Finally, we compute the cosine similarity be-
tween the target code vector and the repository
code vectors to identify the most semantically sim-
ilar samples. The formula is as follows:

cosine_similarity(vy, va) = V2 3)
[vallllvzll

For each target sample, we rank the repository
samples by cosine similarity in descending order.
The top k& matches, as specified by the parameter
number_top_matches, are selected and stored in a
result dictionary, which contains the matched code
snippets and their similarity scores. If a file path
is provided, the results are serialized and saved in
JSON format for further analysis or review.

3.3 SCLA Framework

Figure 1 illustrates the overall framework of SCLA.
We outline the three stages of the SCLA process
for generating smart contract code summarization.

Semantic Extraction: We split the .sol files
based on the "contract node" in the AST of the
smart contract code. This method enables us to
split the contents of the .sol files into individual
smart contracts, thereby avoiding parsing errors.
Subsequently, we extract the code and comments
of each smart contract using regular expressions,
which are then passed to SemFlow for semantic
extraction. The function call graphs and seman-
tic facts are stored in a repository, indexed by the
contract file path and named using UUIDs.

Prompt Construction: SCLA uses few-shot
learning to enhance LLMs’ code summarization
performance. Sentence-Transformer (Reimers and
Gurevych, 2020) retrieves the top k& semantically
similar code samples. The extracted semantic in-
formation, including function call graphs, function
arguments, function modifiers, and contract meta-
data, is integrated into the prompt.

LLMs Inference: The semantically enhanced
prompt, including the function call graph, is input
into the LLMs interface to improve understanding
of the function call sequence, resulting in higher-
quality code summarization.

Algorithm 1 Source Data to Function Call Tree

1: Input: Source code f to be parsed by Solparser; initialized empty dictio-
nary T'
. Output: Function call tree T’
AST <« Solparser.parser(f)
T+ {}
. for each cin AST do
for each g in c do
for each x in g.calls do
n <— x.name
if n ¢ T[c][g] then
Tlcllg][n] « {c: ¢,count : 1}
else
12: T'[c][g][n].count +— T'[c][g][n].count 4 1
13: end if
14: end for
15: endfor
16: end for
17: for each ¢, g in T do
18: CreateCallTree(c, g, T'[c][g], T)
19: end for
20: return T
21: function CREATECALLTREE(p, k, n, T)
22: for each m in n.keys do

—o0RRUNRE WY

23: 0 < n[m]

24 if m ¢ T[p][k].keys then

25: T[p][k][m] < T[o.c][m]

26: CreateCallTree(k, m, T'[o.c][m], T)
27: end if

28: end for

29: end function

3.4 Control Flow Extraction

We use SemFlow, a component integrated with a
control flow extraction algorithm, to extract func-
tion call graphs from the AST as control flow input
in the prompt." The algorithm in 1 demonstrates
the entire extraction process. It first uses an AST
parsing tool to parse the input code into an AST.
The AST is traversed in a depth-first manner to
remove irrelevant nodes, such as imports. Function
nodes with calls are marked in the "FunctionCall"
field, allowing the construction of a reference tree
(lines 5-20 of Algorithm 1). The depth of the refer-
ence tree ranges from 2 to 3 layers, depending on
the presence of function calls. When a third-level
call points to a second or third-level node, the ref-
erence tree is transformed into a complete call tree
by grafting branch nodes (lines 21-29 of Algorithm
1). The call tree is then visualized using Graphviz
and saved to the code sample repository.

Type Train | Validation | Test

Number 11032 2758 1000

Avg. tokens in codes 42.44 42.08 41.95
Avg. tokens in comments | 26.34 26.16 26.66

Table 1: Statistics of Experimental Dataset.

4 EXPERIMENT

In the empirical study, we conducted comparison,
ablation, and generalization experiments. First, we
used SemFlow to process the raw data and generate
semantic facts, data flow graphs, and the semantic
sample library. The code snippets were then input
into SCLA for summarization and evaluation. In
the comparison experiment, we varied the num-
ber of few-shot learning samples and compared
the evaluation scores with baseline methods. Abla-
tion experiments assessed the contribution of dif-
ferent semantic components, while generalization
experiments extended SCLA to Java and Python
code summarization tasks. The results and expert
evaluations validate the effectiveness of SCLA in
generating smart contract code summarizations.

4.1 Experiment Settings

All our experiments are performed on a computer
equipped with an NVIDIA GeForce RTX 4070Ti
GPU (12GB graphic memory), Intel (R) Core (TM)
19-13900K, running Ubuntu 22.04 LTS.

4.2 Dataset

The raw data for this study, provided by Liu et
al. (Liu et al., 2021), includes 40,000 smart con-
tracts from Etherscan.io!, created by professional
developers and deployed on Ethereum. Building
on Yang et al.’s method (Yang et al., 2021), we
used AST location data and regular expressions
to segment code and extract functions with com-
ments. Samples with comments under six char-
acters were removed. Manual filtering eliminated
low-quality comments, including (1) generic tem-
plates; (2) identical comments for different code;
(3) incomplete sentences; and (4) ambiguous mean-
ings. After cleaning, 14,790 <method, comment>
pairs remained. The dataset is split into 11,032
training, 2,758 validation, and 1,000 test samples.
Average token counts appear in Table 1.

4.3 Baseline

We compare our proposed SCLA with six state-
of-the-art methods, including general code sum-
marization models such as CodeT5 (Wang et al.,
2021), CodeT5+ (Wang et al., 2023), and Code-
BERT (Feng et al., 2020), deep learning-based
smart contract code summarization methods MM-
Tran (Yang et al., 2021) and FMCF (Lei et al.,

"https://etherscan.io/

https://etherscan.io/

BLEU-4 METEOR ROUGE-L
Model #of - p-value
Zero-Shot | +CFG +IF | Gain(%) | Zero-Shot | +CFG +IF | Gain(%) | Zero-Shot | +CFG +IF | Gain(%)

Llama-3.2-1b-preview 11032 3.03 5.43 +79.21% 19.58 23.97 +22.42 18.88 23.49 +24.42 <0.01
GPT-40 11032 5.34 7.45 +39.51% 2232 26.62 +19.27 25.32 32.62 +28.83 <0.01
Gemini-1.0-Pro-Vision 11032 3.01 5.32 +76.74% 16.89 20.73 +22.73 18.46 20.31 +10.02 <0.01
Gemini-1.5-Pro 11032 3.21 5.87 +82.87% 19.89 25.61 +28.76 23.95 27.42 +14.49 <0.01
Claude-3.5-sonnet 11032 3.31 532 +60.73% 23.42 28.62 +22.20 25.82 30.12 +16.65 <0.01

Table 2: Performance of different LLMs on smart contract code summarization, measured using BLEU-4, METEOR,
ROUGE-L. p-values are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

GPT4-0

Gemini-1.0-Pro-Vision

scia Gemini-1.0-Pro-Vision
ssss

Llama-3.2-1b-preview

Gemini-1.5-Pro Gemini-1.5-Pro

Claude-3.5-sonnet

(a) Comparison Results on BELU-4 (b) Comparison Results on METEOR (c) Comparison Results on ROUGE-L

Claude-3.5-sonnet

Claude-3.5-sonnet

Figure 3: The Comparison of BLEU, METEOR, and ROUGE-L Scores on Our Test Set Under Five Different LLMs,
Using the SCCLLM and the Proposed SCLA for Zero-Shot Summarization Tasks.

2024), and smart contract-specific code summa-
rization methods based on the latest LLMs, such as
SCCLLM (Zhao et al., 2024).

4.4 Performance Metrics

To evaluate SCLA performance against baselines,
we adopted various automatic performance met-
rics, including BLEU-4 (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004), and BLEURT (Sellam et al., 2020).
These metrics effectively assess the similarity be-
tween the automatically generated smart contract
summarization and the real human-generated sum-
marization. BLEURT, in particular, calculates sim-
ilarity based on sentence semantics by using a pre-
trained BERT model, providing a more accurate
reflection of semantic meaning.

4.5 Main Results

We conducted a comprehensive evaluation of the
Gemini-1.5-Pro-powered SCLA under two distinct
experimental settings. Gemini-1.5-Pro was se-
lected due to its significantly higher context token
capacity compared to Claude-3.5-Sonnet and GPT-
4o0. This advantage is particularly critical in scenar-
ios where the target function exhibits deep callback
chains, leading to large function call graphs that
may exceed the context length limits of Claude-
3.5-Sonnet and GPT-40. Moreover, Gemini-1.5-
Pro offers a fully free API, making it a more cost-
effective choice in high token consumption environ-
ments. The SCLA demonstrated substantial perfor-
mance improvements in smart contract code sum-
marization tasks under both zero-shot and few-shot

learning settings. These findings provide valuable
insights and contributions to the research commu-
nity. The specific results are as follows:

Zero-shot Results. To evaluate the impact
of function call graphs and internal functions on
LLMs-generated code summarization, we con-
ducted experiments using GPT-40, Gemini-1.5-Pro,
and Claude-3.5-Sonnet under zero-shot conditions.
The experiment had two phases: first, the target
code was embedded into the prompt and evaluated
with standard metrics; second, the prompt was en-
hanced with internal functions and function call
graphs, followed by re-evaluation. Table 2 shows
that incorporating internal functions and call graphs
improved summarization. GPT-4o0 improved by
39.51%, 19.27%, and 28.83%; Gemini-1.5-Pro by
82.87%, 28.76%, and 14.49%; and Claude-3.5-
Sonnet by 60.73%, 22.20%, and 16.65%. How-
ever, Gemini-1.5-Pro underperformed compared
to GPT-40 and Claude-3.5-Sonnet. These results
validate our hypothesis that function call graphs
enhance smart contract summarization. To fur-
ther validate the control flow prompt’s effective-
ness, we compared SCLA with SCCLLM using
five multimodal models on the test set. Results in
Figure 3 show SCLA outperforming SCCLLM in
BLEU, METEOR, and ROUGE-L scores. This
demonstrates that SCLA with the control flow
prompt outperforms SCCLLM, confirming the
effectiveness of control flow prompts.

Few-shot Results. To evaluate the performance
of SCLA against SOTA baseline models, we con-
ducted a validation experiment. Since SCLA em-

Approach #of training sample | #of test sample | BLEU-4 | METEOR | ROUGE-L | BLEURT | p-values
CodeT5+ 11032 1000 28.95 45.62 49.77 57.79 /
CodeT5 11032 1000 27.24 4331 49.03 52.61 /
CodeBERT 11032 1000 26.31 39.57 44.52 52.74 /
MMTran 11032 1000 22.12 38.92 40.12 54.73 /
FMCF 11032 1000 29.98 36.67 51.21 51.73 /
SCCLLM (One-Shot) / 1000 19.45 20.12 19.12 36.56 <0.01
SCCLLM (Three-Shot) / 1000 29.73 35.33 49.44 50.91 <0.01
SCCLLM (Five-Shot) / 1000 31.73 48.12 60.44 58.74 <0.01
SCLA (Zero-Shot) / 1000 6.09 25.80 29.45 46.63 <0.01
SCLA (One-Shot) / 1000 25.46 42.78 47.55 57.07 <0.01
SCLA (Three-Shot) / 1000 35.15 51.80 55.89 63.11 <0.01
SCLA (Five-Shot) / ‘ 1000 37.53 52.54 56.97 63.44 <0.01

Table 3: The impact of different few-shot learning quantities on SCLA performance with Gemini-1.5-Pro. p-values
are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Type Zero-Shot One-Shot Three-Shot Five-Shot
Avg. tokens in prompt 561.4 1154.8 22425 3330.3

Table 4: Number of Tokens Consumed with Different
Numbers of Learning Sample for SCLA.

Approach Prompt Component BLEU-4 METEOR ROUGE-L BLEURT

ALL 6.09 25.80 29.45 46.63

. -FCG 5.21 27.77 27.94 45.90
SCLA -IF 4.42 25.43 26.23 44.56
-Id&MGV 5.62 25.47 29.01 46.32

Table 5: Ablation study. Effect of Semantic Augmenta-
tion on Gemini-1.5-Pro Generated Summarization. FCG
is Function Call Graph, IF is Inner Function, [d&MGV
is Identifiers&Global Member Variables.

ploys few-shot learning, we tested its performance
under Zero-Shot, One-Shot, Three-Shot, and Five-
Shot conditions to investigate the number of learn-
ing samples required for optimal performance.
The results (see Table 3) indicate that SCLA ini-
tially lags behind the baseline models in Zero-Shot
and One-Shot settings. However, starting from
Three-Shot, SCLA outperforms the baseline mod-
els across all four evaluation metrics: BLEU-4,
METEOR, ROUGE-L, and BLEURT. Compared
to FMCEF, SCLA improved by 17.24%, 41.26%,
9.14%, and 22.00%, and compared to CodeT5+,
the improvements were 21.42%, 13.55%, 12.30%,
and 9.21%. Compared to all baseline models,
SCLA showed average improvements of 26.7 %,
23.2%,16.7 %, and 14.7 % in these metrics. Per-
formance continued to improve under Five-Shot,
although the gains were modest. We also analyzed
token consumption to determine the optimal num-
ber of few-shot samples (see Table 4). The token
consumption for Five-Shot was 48.51% higher than
for Three-Shot, but the average improvement in
generated code summarization metrics was only
2.20%. Therefore, Three-Shot provides the best
balance between performance and efficiency.

4.6 Ablation Study

We conducted ablation experiments to quantify the
impact of individual semantic facts in SCLA on
Gemini-1.5-Pro’s code summarization under Zero-
Shot learning. As shown in Table 5, five variants
were tested by selectively removing semantic el-
ements from the enhanced prompts. The results
highlight the importance of inner function ordering,
function call graphs, identifiers, and global mem-
ber variables. Notably, removing inner functions
caused a performance drop of up to 27.42%, while
excluding function call graphs led to significant de-
clines in BLEU-4 (14.45), ROUGE-L (5.13), and
BLEURT (1.57). Eliminating identifiers and global
variables also reduced performance across all met-
rics. These results confirm that inline functions and
call graphs are essential for improving summariza-
tion quality. Moreover, global member variables
help preserve semantic consistency, and function
call graphs offer structural context crucial to
summarization accuracy. Removing these com-
ponents weakens both coherence and completeness,
validating the necessity of each semantic element.

Passed Manual Inspection Failed Manual Inspection

SCLA 262 38
SCCLLM : : : : 259} 41
CodeT5+ : : : 1238 | 62
CodeT5 215 85
CodeBERT | 201 | 99

0 50 100 150 200 250 300

Figure 4: Human Evaluation Results of 300 Code Sum-
marizations Generated by SCLA and the Baseline.

Approach | #of Training Sample | #of Test Sample Java Python
BLEU-4 | METEOR | ROUGE-L | BLEU-4 | METEOR | ROUGE-L
CodeBERT 8000 1000 19.91 25.11 34.34 20.56 33.37 33.19
CodeT5 8000 1000 22.45 28.98 41.98 28.82 37.98 39.52
CodeT5+ 8000 1000 28.82 39.79 49.31 34.67 46.98 47.34
SCLA / 1000 34.34 50.66 60.71 37.34 52.61 57.49
Table 6: The performance of our proposed method and the baseline model was evaluated on Java and Python
datasets.
BLEU-4 BLEURT
Language Model ol Test Sample oG AT TSCLA | Gain (%) | SCCLLM | SCLA | Gain (%) | P-Yalues
GPT-40 1000 28.59 38.43 +34.42 50.34 68.89 +36.85 <0.01
Java Gemini-1.5-Pro 1000 23.22 31.43 +35.36 56.33 63.67 +13.03 <0.01
Claude-3.5-sonnet 1000 31.05 39.13 +26.02 58.89 70.90 +20.40 <0.01
GPT-40 1000 22.78 29.56 +29.76 55.90 64.23 +14.90 <0.01
Python Gemini-1.5-Pro 1000 20.15 26.06 +29.33 51.78 61.03 +17.86 <0.01
Claude-3.5-sonnet 1000 25.45 33.77 +32.69 58.21 73.56 +26.37 <0.01
Overall / / 25.21 33.06 +31.14 55.24 67.05 +21.38 <0.01

Table 7: The performance of SCLA and SCCLLM on the Java and Python tasks, driven by three different LLMs,
was evaluated using BLEU-4 and BLEURT as metrics. To assess the statistical significance of the results, p-values
were calculated using a one-sided pairwise Wilcoxon signed-rank test, with Benjamini-Hochberg (B-H) correction

applied for multiple comparisons.

4.7 Human Evaluation of Summarization
Generated by SCLA and the Baseline

To assess the summarization generated by SCLA,
we randomly selected 300 samples from the smart
contract code summarization generated by SCLA
and baseline models for manual evaluation. This
evaluation focused on similarity, conciseness, and
completeness, categorizing the summarization as
usable or unusable. To reduce subjectivity and
bias, six volunteer evaluators, all Chinese graduate
students with experience in smart contract devel-
opment, were recruited and briefed on the research
and evaluation standards. The results, shown in
Figure 4, reveal that SCLA generated the fewest un-
usable summarization, outperforming all baseline
models. These findings demonstrate that SCLA
is more likely to generate satisfactory smart con-
tract code summarization, reducing the chances
of low-quality outputs.

4.8 Generalization Study

To evaluate the generalization ability of SCLA,
we selected 10,000 samples each from Java and
Python in the CodeSearchNet (Husain et al., 2019)
dataset and randomly sampled 1,000 instances per
language as test sets. Since SCLA’s FCG extraction
algorithm was originally designed for Solidity, we
adapted it to accommodate the syntax of Java and
Python. Using BLEU-4, METEOR, and ROUGE-
L as evaluation metrics, SCLA achieved improve-
ments over CodeT5+ of 19%, 12%, and 23% on

the Java dataset, and 7%, 18%, and 21% on the
Python dataset, respectively. Furthermore, lever-
aging GPT-40, Gemini-1.5-Pro, and Claude-3.5-
Sonnet, we compared SCLA with SCCLLM across
both datasets using BLEU-4 and BLEURT metrics.
The results indicate that SCLA consistently outper-
forms SCCLLM across all models, with average
gains of 31.14 in BLEU-4 and 21.38 in BLEURT.
These findings demonstrate that control flow—based
prompts exhibit strong generalization to Java and
Python, effectively enhancing large language mod-
els’ understanding of code structure and improving
code summarization quality.

5 Conclusion

We propose that function call graphs enhance
LLMs’ understanding of smart contract code se-
mantics, and experiments confirm their positive im-
pact on code comprehension. Ablation studies as-
sess the contribution of each prompt component to
summarization quality. SCLA is a framework that
combines LLMs with control flow prompts, out-
performing six baseline models. The experiments
show that, compared to other baseline models,
SCLA significantly improves BLEU-4, METEOR,
ROUGE-L, and BLEURT scores with improve-
ments of 30.34%, 23.15%, 16.74%, and 14.86%,
respectively. We also extended SCLA to Java
and Python code, further improving summarization
and providing new insights for advancing LLM-
generated code summarization.

Limitations

Our framework enhances Gemini-1.5-Pro’s under-
standing using function call graphs. However,
Gemini-1.5-Pro struggles with deep call stacks
or circular calls. Figure 5 shows that circular
chains, like transferFrom — removeTokenFrom —
ownerOf — isApprovedOrOwner — transferFrom,
confuse the model, leading to misinterpretations
and incorrect summarization. In contrast, Gemini-
1.5-Pro handles typical tree structures even with a
depth of 5. Further research is needed to explore
the impact of loop calls and depth on-call interpre-
tation. We have not yet fully resolved this issue,
but we propose an approach whereby the LLM pro-
cesses the function call graph in a specified order
(e.g., top-down) and arranges functions hierarchi-
cally. In this structure, normal calls are represented
as higher-level functions invoking lower-level ones,
while cyclic calls appear as lower-level functions
invoking higher-level ones. This hierarchical ar-
rangement helps the LLM avoid misinterpreting
the position of cyclic calls.

Another key challenge in using LLMs for smart
contract code summarization is the potential expo-
sure of test data during pre-training. Since general-
purpose LLMs like GPT-40 and Gemini-1.5-Pro
are not publicly accessible, direct verification of
this exposure is difficult. Additionally, LLMs’
memorization capability can produce artificially
high scores if prior summarizations are retained.
We also analyzed the effect of few-shot learning
on SCLA’s performance in Section 3. Our results
show that SCLA outperforms the baseline with a
Three-Shot setup, while performance gains plateau
at five shots, with a 1.5x increase in computational
cost.

removeTokenFrom .‘ clearApproval I isApproveOrOwner @

addTokenTo @ ‘ isApproveForAll

Figure 5: An Example of a Function Call Graph in
Which Gemini-1.5-Pro Has Difficulty Understanding
the Call Information.

References

Toufique Ahmed and Premkumar Devanbu. 2022. Mul-
tilingual training for software engineering. In Pro-
ceedings of the 44th International Conference on
Software Engineering, pages 1443—-1455.

Toufique Ahmed and Premkumar Devanbu. 2023.
Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1-5.

Toufique Ahmed, Kunal Suresh Pai, Premkumar De-
vanbu, and Earl Barr. 2024. Automatic semantic
augmentation of language model prompts (for code
summarization). In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, pages 1-13.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65-72.

Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan
Huang, and Zibin Zheng. 2021. Understanding code
reuse in smart contracts. In Proceedings of the 2021
IEEE International Conference on Software Analysis,
Evolution and Reengineering, pages 470-479. IEEE.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ale§ Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2022. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, pages 3366-3385.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Dechao Kong, Xiaoqi Li, and Wenkai Li. 2024. Char-
acterizing the solana nft ecosystem. In Companion
Proceedings of the ACM on Web Conference, pages
766-769.

Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh,
Manjit Kaur, and Heung-No Lee. 2022. System-
atic review of security vulnerabilities in ethereum
blockchain smart contract. IEEE Access, pages 6605—
6621.

Gang Lei, Donghua Zhang, Jianmao Xiao, Guodong
Fan, Yuanlong Cao, and Zhiyong Feng. 2024. Fmcf:

A fusing multiple code features approach based
on transformer for solidity smart contracts source
code summarization. Applied Soft Computing, page
112238.

Zeqin Liao, Sicheng Hao, Yuhong Nan, and Zibin
Zheng. 2023. Smartstate: Detecting state-reverting
vulnerabilities in smart contracts via fine-grained
state-dependency analysis. In Proceedings of the
32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 980—-991.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qin-
ming He, and Shouling Ji. 2021. Smart contract
vulnerability detection: From pure neural network to
interpretable graph feature and expert pattern fusion.
In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, pages 2751—
2759.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 4512-4525.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881-7892.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023. CodeT5+: Open code
large language models for code understanding and
generation. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing,
pages 1069-1088.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the Conference

on Empirical Methods in Natural Language Process-
ing, pages 8696-8708.

Guang Yang, Ke Liu, Xiang Chen, Yanlin Zhou, Chi
Yu, and Hao Lin. 2022. Ccgir: Information retrieval-
based code comment generation method for smart
contracts. Knowledge-based systems, 237:107858.

Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu,
Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang. 2021.
A multi-modal transformer-based code summariza-
tion approach for smart contracts. In Proceedings
of the IEEE/ACM 29th International Conference on
Program Comprehension, pages 1-12.

10

Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang,
Yangkai Du, Peiyu Liu, Shouling Ji, and Wenhai
Wang. 2023. CP-BCS: Binary code summarization
guided by control flow graph and pseudo code. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
14740-14752, Singapore.

Shenhui Zhang, Wenkai Li, Xiaoqi Li, and Boyi Liu.
2022. Authros: Secure data sharing among robot
operating systems based on ethereum. In Proceed-
ings of the IEEE 22nd International Conference on
Software Quality, Reliability and Security, pages 147—
156. IEEE.

Junjie Zhao, Xiang Chen, Guang Yang, and Yiheng
Shen. 2024. Automatic smart contract comment
generation via large language models and in-context
learning. 168.

Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020.
Ccgraph: a pdg-based code clone detector with ap-
proximate graph matching. In Proceedings of the
35th IEEE/ACM international conference on auto-
mated software engineering, pages 931-942.

10

12

5

16

17
18

19
20

A Case Study 2

Upon reviewing the results, we found that the
SCLA prompt includes crucial information for
effective summarization. Table 8 highlights the
differences between real-world smart contract ab-*
stracts and Summarization generated by Code-,;
BERT, CodeT5, CodeT5+, and SCLA. CodeBERT
identifies key terms like "transfer," "ownership,"”
and "address," but lacks clarity, with ambiguous
pronoun references and repetition of the transfer
concept. CodeT5 captures "onlyOwner" but over-
looks broader global semantics, rendering the sec-
ond sentence redundant. CodeT5+ addresses this
limitation with more precise terminology, such
as identifying the object as a "data contract." In
contrast, SCLA’s Summarization aligns more
closely with real-world Summarization, being ,
both more concise and semantically accurate, °
omitting redundancy for a much clearer, more
refined, and contextually precise structure.

non

B Control Flow Prompt

Learn the following 1 sample.

Example 1:

Contract name: KahnAirDrop

Contract type: contract 5
Contract Variables: .

{"owner”: "address public owner;"},
{"wallet”: "address public wallet;"},
{"mineth”: "uint256 public mineth = 0;"},
{"minsignupeth”: "uint256 public
minsignupeth = 0;"},

{"paused”: "bool public paused = false;"},

{"maxSignup”: "uint public maxSignup =
1000;"3},

{"allowsSignup”: "bool public allowsSignup
= true;"},

{"bountyaddress”: "address[] public
bountyaddress;"},

{"adminaddress”: "address[] public
adminaddress; "},

{"staffaddress”: "address[] public
staffaddress; "},

{"startTimes": "uint public startTimes;"},
{"endTimes"”: "uint public endTimes;"},
{"contractbacklist”: "bool public
contractbacklist = false;"},
{"userSignupCount”: "uint public
userSignupCount = 0;"},

{"userClaimAmt”: "uint256 public
userClaimAmt = 0;"},

{"token": "ERC20 public token;"},
{"payStyle”: "uint public payStyle = 2;"},
{"paidversion”: "bool public paidversion =
true;"},

{"payoutNow"”: "uint public payoutNow = 4;"},
{"fixPayAmt": "uint256 public fixPayAmt =
0;"3,

11

{"bounties”: "mapping(address => User)
public bounties;"},

{"signups"”: "mapping(address => bool)
public signups;"},
{"blacklist”: "mapping(address
public blacklist;"},
{"isProcess": "mapping(address
public isProcess;"},
{"admins": "mapping(address =>
admins; "},

{"staffs": "mapping(address =>
staffs;"}

=> bool)
=> bool)
bool) public

bool) public

The following is the information on the code,
learn its semantics and structure.

Function name: ownerUpdateOthers

Function modifiers: public

Inner function code:

function transferFrom(address from, address
to, uint256 value) public
returns (bool);,

function transferFrom(address _from,
address _to, uint256 _value)
onlyPayloadSize(3 * 32) public returns
(bool) { var _allowance =
allowed[_from][msg.sender];
= balances[_to].add(_value);
balances[_from] =
balances[_from].sub(_value);
allowed[_from][msg.sender] =
_allowance.sub(_value); Transfer(_from,
_to, _value);

return true;

}’

balances[_to]

function transferFrom(address _from,
address _to, uint256 _value) public
hasStartedTrading returns (bool) {
super.transferFrom(_from, _to, _value);
return true;

}

Function Code:

function transferFrom(address _from, address
_to, uint256 _value) public
hasStartedTrading returns (bool) {
super.transferFrom(_from, _to, _value);
return true;

function comment: Allows anyone to transfer the
tokens once trading has started _from address The
address which you want to send tokens from _to
address The address which you want to transfer
_value uint the amout of tokens to be transferred.

Based on the learned samples above and the
following information, generate a code summa-
rization for the input code

Contract name: FinalizableCrowdsale
Contract type: contract
Contract Variables:

Example

#Input Function Code
function transferDataOwnership (address _addr) onlyOwner public {
data.transferOwnership(_addr);
}
#inner function code
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);

}
Approach Coment BLEU-4 METEOR ROUGE-L
Ground Truth Transfer ownership of data contract to _addr. _addr address. NA NA NA
CodeBERT of an to another. 5120 2800 67.00
_addr address to transfer to.
Allows the owner to control of the contract to an .
CodeT5 . 42.48 26.64 47.62
_addr The address to transfer ownership to.
CodeT5+ Allows the owner to control of to _addr. . 60.68 41.67 60.00
SCLA Transfers ownership of the data contract to _addr. 70.77 72.70 75.00

Table 8: An example illustrating the effectiveness of SCLA.

SafeMath.sub(time, start)

1 | {"isFinalized”: " bool public isFinalized =))
false;"} 3 SafeMath.sub(vesting, start)
W
The following is the information on the code,> return vestedTokens;
learn its semantics and structure. Function Call* |
Graph: Input Code:

Function name: vestedTokens : -
function vestedTokens(TokenGrant grant, uint64

Function modifiers: private time) private constant returns (uint256) {
Inner function code: return calculateVestedTokens(grant.value,
uint256(time), uint256(grant.start),

)

I | function div(uint a, uint b) internal returns uint256(grant.cliff),uint256(grant.vesting));
(uint) { 3}

2 // assert(b > @); // Solidity automatically
throws when dividing by © Function Call Graph:

3 uint ¢ = a / b;

4 // assert(a ==b x c + a % b); // There is
no case in which this doesn't hold

5 return c;

o1}

calculate
VestedTo
kens

8 | function mul(uint a, uint b) internal returns
(uint) {

9 uint ¢ = a * b;

10 assert(a == 0 || c / a == b);

11 return c;

2|}

14 | function sub(uint a, uint b) internal returns
(uint) {

15 assert(b <= a);

16 return a - b;

17 |}

19 | function calculateVestedTokens(

20 uint256 tokens,

21 uint256 time,

22 uint256 start,

23 uint256 cliff,

24 uint256 vesting

25 |) constant returns (uint256) {

26 if (time < cliff) return 0;

27 if (time >= vesting) return tokens;
28 uint256 vestedTokens = SafeMath.div(
29 SafeMath.mul(

30 tokens,

12

	Introduction
	Related Work
	METHODOLOGY
	Control Flow Prompt
	Semantic-based Retrieval
	SCLA Framework
	Control Flow Extraction

	EXPERIMENT
	Experiment Settings
	Dataset
	Baseline
	Performance Metrics
	Main Results
	Ablation Study
	Human Evaluation of Summarization Generated by SCLA and the Baseline
	Generalization Study

	Conclusion
	Case Study
	Control Flow Prompt

