SIMPLICIAL EMBEDDINGS IMPROVE SAMPLE EFFICIENCY IN ACTOR—CRITIC AGENTS

Anonymous authors

 Paper under double-blind review

ABSTRACT

Recent works have proposed accelerating the wall-clock training time of actor-critic methods via the use of large-scale environment parallelization; unfortunately, these can sometimes still require large number of environment interactions to achieve a desired level of performance. Noting that well-structured representations can improve the generalization and sample efficiency of deep reinforcement learning (RL) agents, we propose the use of *simplicial embeddings*: lightweight representation layers that constrain embeddings to simplicial structures. This geometric inductive bias results in sparse and discrete features that stabilize critic bootstrapping and strengthen policy gradients. When applied to FastTD3, FastSAC, and PPO, simplicial embeddings consistently improve sample efficiency and final performance across a variety of continuous- and discrete-control environments, without any loss in runtime speed.

"Order is not imposed from the outside, but emerges from within¹.""

— Ilya Prigogine

1 Introduction

Deep reinforcement learning (deep RL) has delivered impressive progress in continuous control, enabling agile locomotion (Smith et al., 2022; Zhuang et al., 2023; Margolis et al., 2024) and dexterous manipulation (Popov et al., 2017; Akkaya et al., 2019; Luo et al., 2025). Yet a persistent tension remains between *training speed* (wall-clock efficiency) and *sample efficiency* (the number of environment interactions). Some modern agents such as TD-MPC2 (Hansen et al., 2023) and SR-SPR (D'Oro et al., 2022) achieve strong returns with relatively few interactions, but demand substantial compute and engineering complexity. In contrast, recent fast actor–critic variants have scaled throughput with massive parallelization (Li et al., 2023; Singla et al., 2024; Gallici et al., 2025; Seo et al., 2025). While methods such as FastTD3 (Seo et al., 2025) rapidly solve humanoid benchmarks, they require far more interactions to reach comparable performance. Similar limitations have been observed in Parallel Q-Learning (Li et al., 2023) and large-scale actor–critic frameworks such as IMPALA and SEED RL (Espeholt et al., 2018; 2020). This trade-off limits applicability in domains where interactions are expensive and time is constrained, such as robotics.

A natural objection is that, in modern simulators, environment steps are cheap and can be generated in massive parallel batches, so sample efficiency is less important. However, this view overlooks several practical and scientific concerns. First, algorithms that are data-hungry in simulation rarely transfer well to real-world scenarios (Tobin et al., 2017; Akkaya et al., 2019). Second, large-scale parallelization requires substantial compute and energy resources, raising both efficiency and sustainability concerns (Schwartz et al., 2020; Henderson et al., 2020). Third, sample efficiency is closely tied to generalization: agents that exploit structure from fewer trajectories tend to be more robust under distributional shifts (Zhang et al., 2018; Yao et al., 2025). Moreover, in high-dimensional simulators such as IsaacGym, each step can be significantly more expensive, compounding inefficiency as tasks grow harder (Makoviychuk et al., 2021; Rudin et al., 2021). These issues highlight why sample efficiency remains central even in the era of massively parallel deep RL.

¹This perspective resonates with deep RL: stability cannot be forced solely through more compute, heavier regularizers, or larger critics. Instead, inductive biases that shape the geometry of representations can allow order to *emerge from within*, leading to more stable critics and more efficient policies under non-stationarity.

Shaping representations with auxiliary losses (Anand et al., 2019; Laskin et al., 2020; Schwarzer et al., 2021; Castro et al., 2021; Fujimoto et al., 2023) has been shown to improve sample efficiency in deep RL. However, such methods increase algorithmic complexity and add computational overhead through extra forward and backward passes (Fujimoto et al., 2023). Alternatively, architectural components, such as convolutions (Fukushima, 1980; LeCun et al., 1989) and attention (Bahdanau et al., 2016), can be used to induce structure leading to desirable downstream properties.

Discrete and sparse representations have several desirable properties in comparison to their dense and continuous counterparts. Notably, sparse and discrete representations increase robustness to noise (Donoho et al., 2006), training stability by reducing catastrophic interference (Liu et al., 2019), sample efficiency (Fumero et al., 2023), interpretability (Murphy et al., 2012; Lavoie et al., 2023; Wabartha & Pineau, 2024) and improved generative modeling (Lavoie et al., 2025). In this work, we posit that several of those properties are beneficial in the context of reinforcement learning.

While several methods exist for learning discrete representations explicitly (Jang et al., 2017; Maddison et al., 2017; van den Oord et al., 2018), these methods use straight-through estimation (Bengio et al., 2013) which is a biased gradient estimator. Fortunately, discretization may be implicitly induced via Simplicial Embeddings (SEM) (Lavoie et al., 2023), an architectural component that partitions a latent representation into a sequence of L simplices. SEM is fully differentiable, thus avoiding the negative effect of explicit discretization while enacting some of the desirable properties of discrete and sparse representations. Concretely, we show that SEM improves both data efficiency and asymptotic performance across diverse environments such as IsaacGym (Makoviychuk et al., 2021), HumanoidBench (Sferrazza et al., 2024), and the Arcade Learning Environment (Bellemare et al., 2013), while preserving (and often improving) wall-clock speed.

2 Preliminaries

2.1 ACTOR-CRITIC REINFORCEMENT LEARNING

We consider a standard Markov decision process (MDP) defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$, with state space \mathcal{S} , action space \mathcal{A} , transition distribution P(s'|s,a), reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, and discount factor $\gamma \in [0,1)$. The objective is to maximize the expected discounted return

$$J(\pi) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \Big], \tag{1}$$

where the agent follows a policy $\pi(a|s)$. Actor–critic methods maintain both a parameterized policy $\pi_{\theta}(a|s)$ (the actor) and an action-value function $Q_{\phi}(s,a)$ (the critic). The critic is trained to minimize the Bellman error

$$\mathcal{L}_{Q}(\phi) = \mathbb{E}_{(s,a,r,s')\sim\mathcal{D}} \left[\left(Q_{\phi}(s,a) - y \right)^{2} \right], \qquad y = r + \gamma \, \mathbb{E}_{a'\sim\pi_{\theta}(\cdot|s')} \left[Q_{\phi^{-}}(s',a') \right], \tag{2}$$

where ϕ^- denotes target network parameters and \mathcal{D} is a replay buffer. The actor is updated via the policy gradient defined as $\nabla_{\theta}J(\pi_{\theta})=\mathbb{E}_{s\sim\mathcal{D},a\sim\pi_{\theta}}\left[\nabla_{\theta}\log\pi_{\theta}(a|s)\,Q_{\phi}(s,a)\right]$. While this can be effective, bootstrapped training is notoriously fragile. Errors in Q_{ϕ} propagate recursively through the target y, and when the representation used to compute Q_{ϕ} is poorly conditioned, these errors amplify and cause divergence or collapse (Fujimoto et al., 2018).

A recent line of work has sought to reduce the *wall-clock* cost of actor–critic training. FastTD3 (Seo et al., 2025) builds on TD3 (Fujimoto et al., 2018) by leveraging (i) parallel simulation across many environment instances, (ii) large-batch critic updates, and (iii) algorithm design choices like distributional critics (C51) (Bellemare et al., 2017), noise scaling and clipped double Q-learning (CDQ) (Fujimoto et al., 2018). Together, these design choices enable high-throughput training while retaining stable convergence, although FastTD3 (Seo et al., 2025) still remains sample-inefficient.

Policies and critics often rely on latent representations extracted from raw states (Lesort et al., 2018). Formally, an encoder $f_{\psi}: \mathcal{S} \to \mathbb{R}^d$ maps observations s into embeddings $z = f_{\psi}(s)$, which are then consumed by either the critic, the actor, or both depending on the architecture. Some methods share a common encoder across actor and critic (e.g., SAC (Haarnoja et al., 2018), DrQ (Yarats et al., 2021), DrQ-v2 (Yarats et al., 2022)), while others (e.g., DDPG (Lillicrap et al., 2015), FastTD3 (Seo et al., 2025)) maintain separate encoders. Regardless of parameter sharing, these representations play a

central role in learning (Garcin et al., 2025). The critic estimates values $Q_{\phi}(s, a) \equiv Q_{\phi}(f_{\psi}(s), a)$, and the actor conditions its policy $\pi_{\theta}(a|s) \equiv \pi_{\theta}(a|f_{\psi}(s))$ on the chosen embedding. Ideally, z should preserve the Markov property and expose predictive features of the reward r and dynamics P.

Yet the choice and stability of such embeddings is far from guaranteed. When unconstrained, learned representations can introduce severe pathologies that destabilize value learning. For example, if $\|f_{\psi}(s)\| \to \infty$, critics may extrapolate to arbitrarily large Q-values outside the support of the replay buffer, inflating the Bellman error. Formally, if $Q_{\phi}(z,a) = w^{\top}z + b$ with linear heads, then $\|Q_{\phi}\| \to \infty$ as $\|z\| \to \infty$, leading to exploding targets y and divergent gradients. Similarly, if z exhibits strong correlations or degenerate directions, the critic's regression problem becomes ill-conditioned: the covariance matrix $\Sigma = \mathbb{E}[zz^{\top}]$ may approach singularity, amplifying variance in temporal-difference updates. These phenomena are empirically linked to representation collapse, where value estimates drift irrecoverably and policy updates follow unstable gradients (Moalla et al., 2024; Castanyer et al., 2025).

2.2 SIMPLICIAL EMBEDDINGS

Simplicial embeddings (SEM; Lavoie et al., 2023) provide a lightweight inductive bias on representation geometry by constraining latent codes to lie on a product of simplices. Concretely, given encoder outputs $f_{\psi}(s) \in \mathbb{R}^{L \times V}$, the latent vector is partitioned into L groups of size V, and a softmax is applied within each group:

$$\tilde{z}_{\ell,v} = \frac{\exp(z_{\ell,v}/\tau)}{\sum_{v'=1}^{V} \exp(z_{\ell,v'}/\tau)}, \quad \forall \ell \in \{1,\dots,L\}, \ v \in \{1,\dots,V\},$$
(3)

where $\tau>0$ is a temperature parameter controlling the degree of sparsity. The resulting embedding \tilde{z} lies in the product space $\Delta^{V-1}\times\cdots\times\Delta^{V-1}$, i.e., L categorical distributions of dimension V. This transformation ensures boundedness through group-wise normalization, induces sparsity as softmax competition (sharpened at low τ) drives near one-hot encodings, and promotes group structure by partitioning features into modular subspaces akin to mixtures-of-experts (Ceron et al., 2024b). In self-supervised learning and downstream classification, SEM has been shown to stabilize training and improve generalization, particularly in low-label and transfer settings (Lavoie et al., 2023). SEM does not rely on auxiliary losses or reconstruction terms; akin to an activation function, it only modifies the embedding geometry with the group-wise softmax, limiting computational overhead.

3 Non-Stationarity Amplifies Representation Collapse

Several works have shown that non-stationarity can lead to severe degradation of learned representations across different domains (Lyle et al., 2022; Kumar et al., 2021a; Lyle et al., 2025; Castanyer et al., 2025). In supervised learning, label noise and distribution shifts can induce representation collapse, where features lose diversity and neurons become inactive (Li et al., 2022; Sokar et al., 2023; Dohare et al., 2024). Similar observations have been made in deep RL: the constantly changing data distribution, induced by an evolving policy, exacerbates this phenomenon, often resulting in unstable critics and poor generalization (Nauman et al., 2024; Kumar et al., 2021a). These studies suggest that collapse is not an isolated pathology of specific architectures, but a general failure mode that emerges when training signals are non-stationary. In App. B we provide a formal analysis that demonstrates the relationship between non-stationarity and neuron dormancy.

A demonstration on CIFAR-10. We illustrate this phenomenon with a toy experiment on CIFAR-10 (Krizhevsky, 2009). We compare two training regimes: (i) a stationary setting with fixed labels, and (ii) a non-stationary setting where labels are periodically shuffled to mimic the bootstrap dynamics of RL. Let (x,y) be training samples with $y \in \{1,\ldots,K\}$. In the stationary regime, targets are fixed, so the conditional distribution p(y|x) is constant and the empirical risk minimizer θ_t^* remains stable up to stochastic fluctuations. In the non-stationary regime, labels are periodically shuffled so that $y \mapsto \pi_t(y)$, where π_t is a permutation applied every T steps. This induces inflection points in the minimizer, shifting whenever π_t changes. Fig. 1 shows that in the stationary regime, training is stable: losses decrease smoothly, dormant neuron rates remain low, and effective rank increases, indicating robust representation learning (Dohare et al., 2024; Sokar et al., 2023). In contrast, in the non-stationary regime, we observe instability: oscillating losses, rising neuron dormancy, and

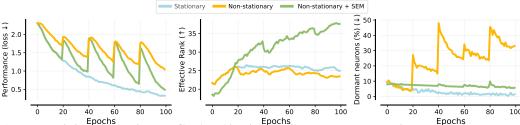


Fig. 1: Training dynamics on CIFAR-10 with stationary vs. non-stationary targets. In the stationary regime (fixed targets), losses decrease smoothly, neuron dormancy and effective rank remains controlled, suggesting stable representation learning. In the non-stationary regime (targets shuffled every 20 epochs), the model exhibits higher variance in losses, increased dormant neuron rates, and reduced effective rank. The addition of SEM mitigates this instability.

collapsing feature rank. Even in this simple supervised setting, instability in the target distribution alone is sufficient to undermine representational integrity.

Stabilizing Representations under Non-Stationarity with SEM Simplicial Embeddings (SEM) can mitigate this effect by projecting features onto a structured space that prevents collapse. The transformation enforces energy preservation; since each block has unit mass, representations cannot vanish and $\operatorname{tr}(\Sigma_t)$ remains bounded away from zero. It also promotes diversity, as intra-block competition spreads information across coordinates, while multiple blocks (L) increase effective rank, counteracting covariance deflation. As shown in Fig. 1, critics trained with SEM retain higher effective rank, larger gradient energy, and lower neuron dormancy even when targets drift.

Takeaways:

- Non-stationarity exacerbates representation collapse, as evidenced by increased neuron dormancy and reduced effective rank.
- Simplicial Embeddings (SEM) introduce a simplex-based geometric prior that sustains feature diversity and prevent feature collapse.

4 Understanding the impact of SEM on Deep RL networks

In actor–critic methods such as FastTD3, the critic is trained against bootstrapped targets $y_t(s,a) = r(s,a) + \gamma Q_{\phi^-}(s',\pi_{\theta}(s'))$. Both the target distribution \mathcal{D}_t (samples (s,a,r,s') from the replay buffer) and the target value y_t evolve as the policy π_{θ} is updated. This continual drift produces a persistent bias term in $b_t = \nabla \mathcal{L}_{t+1}(\theta_t^{\star}) = \mathbb{E}_{(s,a) \sim \mathcal{D}_{t+1}} \left[\left(Q_{\phi}(s,a) - y_{t+1}(s,a) \right) \nabla_{\theta} Q_{\phi}(s,a) \right]$, which is nonzero whenever π_{θ} or \mathcal{D}_t changes. Thus, the critic is never optimizing a fixed objective but is instead forced to chase a moving target.

Representation collapse under such non-stationarity poses a fundamental barrier to stable and efficient deep RL (see App. A for additional contex). Standard actor–critic methods are particularly vulnerable. The critic's representations are trained against drifting targets, and the actor in turn depends on those representations to update its policy. This tight coupling amplifies instability, leading to poor sample efficiency in continuous control tasks. To address this challenge, we evaluate *Simplicial Embeddings (SEM)* as a representation-level regularizer. SEM aims to encourage the hidden features of both actor and critic networks to maintain a well-structured geometric organization, preventing collapse and preserving diversity. By stabilizing the embedding space, SEM provides a principled mechanism for variance reduction and improved sample efficiency.

Setup. Because this section involves a large number of ablations and is computationally expensive, we restrict experiments to five benchmarks from the Humanoid suite (Sferrazza et al., 2024), evaluated on (Seo et al., 2025). We report aggregate performance across the five tasks. and six seeds, with full details provided in the App. E.

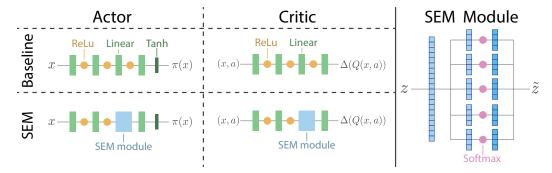


Fig. 2: **Actor–critic network architecture with SEM.** The actor (left) and critic (middle) architectures are modified with a SEM module, which partitions features into groups and applies group-wise softmax (right panel), constraining them to a product of simplices.

Integrating SEM on Actor-Critic Algorithms. We choose FastTD3 (Seo et al., 2025), as our primary testbed. FastTD3 is specifically designed to be a simple and compute-efficient baseline for continuous-control and humanoid benchmarks. Its streamlined architecture yields strong performance while significantly reducing wall-clock training time. At the same time, FastTD3 inherits the critic-driven weaknesses of TD3; its bootstrapped value targets are generated online by the actor, making the critic susceptible to non-stationarity. This coupling amplifies representation collapse, as instabilities in the critic propagate to both value estimates and policy updates. We conduct most of our ablations on FastTD3, while later sections demonstrate that the benefits of SEM also extend to other actor—critic algorithms such SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017).

SEM can be applied to the actor, the critic, or both network streams. We build on prior work showing that the penultimate layer plays a critical role in representation quality (Moalla et al., 2024; Ceron et al., 2024b; Sokar & Castro, 2025), and that regularizing this layer can yield substantial performance gains. Fig. 2 illustrates how SEM is integrated into the actor–critic networks of FastTD3. For the critic, SEM replaces the baseline linear head with a structured projection, regularizing value estimates in the distributional C51 setting. For the actor, SEM is applied at the penultimate layer before the final linear+tanh, ensuring that the policy is conditioned on bounded and sparse features. Across the paper, dashed blue (blue, - -) curves indicate the baseline, while solid green, (green, —) curves represent the interventions added to the baseline.

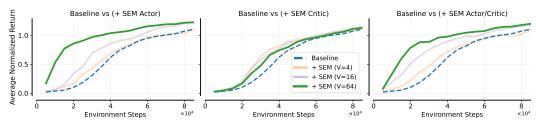


Fig. 3: Average normalized return on 5 HumanoidBench tasks over 6 seeds. Baseline agent (blue, - -) vs. SEM variants applied to actor, critic, or both. Each curve corresponds to an embedding dimension; dim= 64 (green, —) is highlighted. SEM accelerates early learning and improves asymptotic performance, with dim= 64 giving the most stable gains.

Fig. 3 shows clear gains when applying SEM to the actor or to both actor and critic, and more moderate gains when applied only to the critic. Although different SEM dimensions (V) improve sample efficiency and asymptotic performance, V=64 appears most effective. We further explore the relationship between L and V (see sec 4), as this tradeoff was a central focus of the original SEM study (Lavoie et al., 2023). These results echo the non-stationary CIFAR-10 experiment, where SEM prevented feature collapse and stabilized learning (see Fig. 1).

The Effect of SEM on Learning Dynamics in Deep RL. We empirically evaluate the impact of SEM on the stability and efficiency of actor–critic algorithms. Our analysis combines both *learning performance* (returns, losses, TD error, critic disagreement) and *representation quality* (effective rank, feature norms), allowing us to connect sample-efficiency gains to underlying representational

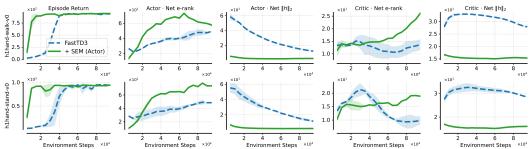


Fig. 4: Learning and representation diagnostics on 2 HumanoidBench tasks. SEM reaches high return earlier, raises actor/critic effective rank, and keeps actor features compact.

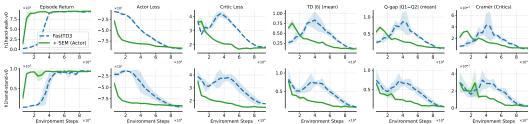


Fig. 5: **Learning dynamics on 2 HumanoidBench tasks.** SEM reaches high return faster, with lower losses, smaller TD error, reduced critic disagreement, and better-calibrated value estimates.

dynamics. This dual perspective highlights not only *whether* SEM improves performance, but also *why* it stabilizes training. A detailed explanation of each metric is provided in App. F.

To understand *why* SEM improves performance, we turn to representation-level diagnostics. Fig. 4 shows that SEM increases the effective rank of actor features, and bounds actor feature norms. Late in training, SEM also lifts the critic effective rank, a signs of more expressive and robust value learning. High effective rank is a proxy for avoiding representational collapse (Moalla et al., 2024). In the RL literature, representation collapse under drift has been empirically associated with capacity loss (Lyle et al., 2021), deterioration of feature rank (Kumar et al., 2021b), and implicit under-parameterization (Kumar et al., 2021a). In supervised and self-supervised settings, techniques like orthogonality regularization and rank-preserving weight regularizers are used to prevent feature collapse (He et al., 2024). These representational patterns align with our formal analysis, showing that SEM prevents covariance deflation and sustains gradient energy, thereby preventing feature collapse and boosting performance.

As shown in Fig. 5, SEM improves optimization stability over the baseline. Agents with SEM achieve higher returns earlier and maintain smaller, more stable TD errors, reduced critic disagreement, and lower critic-distribution discrepancy. Such effects are crucial, as instability in bootstrapped critics is a primary failure mode of actor–critic methods (Fujimoto et al., 2019; Kumar et al., 2021a). By constraining representation geometry, SEM produces better-conditioned features that yield more calibrated value estimates, echoing similar findings in representation regularization for deep RL (Anand et al., 2019; Laskin et al., 2020; Schwarzer et al., 2021). These results indicate that SEM not only accelerates learning but also yields more calibrated value estimates, mitigating instability in bootstrapped critics.

In Fig. 6, we focus our lens on the SEM module itself and examine how it shapes representations and action behavior. As training proceeds, the SEM layer's activations become markedly sparser (higher Gini (Hurley & Rickard, 2009; Zonoobi et al., 2011)) and more sharply peaked (lower simplex entropy), while the overall action variance from the policy also declines. This trend is consistent with SEM's design, where the block-wise softmax promotes competition and selective activation. As a result, the module imposes structured, energy-preserving constraints on its layer, encouraging more decisive feature usage and reducing noise in the downstream policy mapping.

Interestingly, this pattern also resonates with prior work in RL and representation learning. Hernandez-Garcia & Sutton (2019) show that enforcing sparsity in representations can improve robustness and mitigate interference in Q-learning settings. Moreover, recent studies on sparse ar-

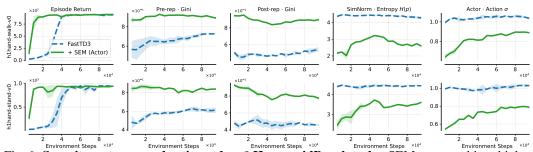


Fig. 6: **Sparsity, entropy, and action std on** 2 **HumanoidBench tasks.** SEM agents achieve higher returns with sparser features, lower entropy, and more stable action scales.

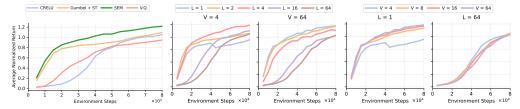


Fig. 7: **Aggregated average return on 5 HumanoidBench tasks.** We constrain the encoder's output of the actor. (left) SEM outperforms alternative methods to impart structure on the encoder's output. (middle) Effect of varying L. Small L generally leads to better return given enough representation capacity. (right) Effect of varying V. Large V generally leads to better returns.

chitectures in deep RL such find that appropriately structured sparsity can enhance training stability and efficiency (Graesser et al., 2022; Ceron et al., 2024b;a; Ma et al., 2025).

Comparing SEM to other Regularization Methods To contextualize the benefits of simplicial embeddings, we compare SEM to alternative methods to induce structure on the encoder's output. We compare SEM to commonly used methods for learning discrete explicit representations: Gumbel + straight-through (Jang et al., 2017; Maddison et al., 2017) and Vector Quantization (van den Oord et al., 2018). We also compare SEM to C-RELU (Abbas et al., 2023) which have been shown to improve the representation's stability. We present the results in Fig. 7 (left) and find SEM to be more efficient and to lead to higher return than alternative methods. We conjecture that such improvement over Gumbel + ST and Vector quantization can be attributed to the fact that SEM does not necessitate the use of the straight-through estimator.

Analyzing SEM Parameters in Deep RL Lavoie et al. (2023) highlighted the effect of the simplex dimensionality V and number of simplices L, which jointly control sparsity and capacity of the representation. Investigating these parameters in deep RL is essential to understand how SEM balances representation capacity and stability under non-stationary training, and whether the same tradeoffs observed in self-supervised representation learning extend to RL. We study the effect of varying V and L in Fig. 7 (middle and right, respectively). We find that increasing V generally improves performance, but only up to a certain point. On the other hand, we find that providing too much free capacity by increasing L deteriorates the returns, suggesting that restricting the representation capacity is crucial.

FastTD3 Design Choices and Simplicial Embeddings. FastTD3 extends TD3 with several design choices that improve throughput and stability, including parallel simulation, large-batch training, and distributional critics (Seo et al., 2025). These modifications enable actor—critic learning to scale efficiently in wall-clock time, but they do not address the geometry of the learned representations. In this section, we analyze how SEM complements FastTD3 by regularizing representation space and evaluate its effectiveness across the algorithmic design choices. In Fig. 8, we observe that SEM outperforms the baseline even when the agent is trained with reduced data availability (fewer environments, smaller replay buffers, or smaller batch sizes). Comparable gains also appear when algorithmic design choices such as CDQ and C51 are removed. These results demonstrate the robustness of SEM across both data-limited and simplified agent settings.

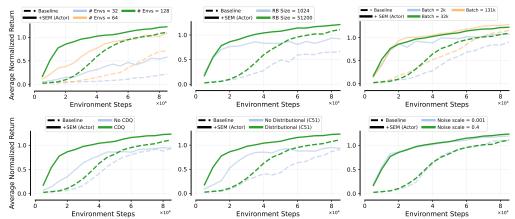


Fig. 8: Effect of core design choices on FastTD3 with and without SEM. SEM (solid green) consistently improves sample efficiency and asymptotic return across all settings, showing robustness to both hyperparameter variation and architectural design choices.

5 EMPIRICAL EVALUATION

We further evaluate the effectiveness and generality of SEM across a diverse set of deep RL algorithms and environments. Our study spans both off-policy and on-policy methods, including FastTD3, FastTD3-SimBaV2, FastSAC (Seo et al., 2025), and PPO (Schulman et al., 2017). Experiments are conducted on challenging humanoid benchmarks (28-h1hand tasks), (Sferrazza et al., 2024), IsaacLab (Mittal et al., 2023), IsaacGym suite (Makoviychuk et al., 2021), MTBench (Joshi et al., 2025), and the Atari-10 suite (Aitchison et al., 2023), covering both continuous-control and pixel-based settings. Following prior work (Seo et al., 2025; Castanyer et al., 2025), we evaluate continuous-control tasks with six seeds and Atari results with three seeds, and aggregate performance across environments is reported. Full environment details and hyperparameter configurations are provided in App. G.

Fast Actor-Critic Algorithms. We first evaluate SEM on the HumanoidBench benchmark using three recent fast actor-critic baselines: FastTD3, FastTD3-SimBaV2, and FastSAC (Seo et al., 2025). These algorithms represent compute-efficient variants of TD3 and SAC, designed to scale with parallel simulation while maintaining strong performance on high-dimensional humanoid control. FastTD3-SimBaV2 incorporates hyperspherical normalization and reward scaling to accelerate critic training and stabilize optimization (Lee et al., 2025); and FastSAC adapts the entropy-regularized SAC framework with similar throughput-oriented design choices, achieving high parallel efficiency while preserving training stability.

Across all three baselines, integrating SEM into the actor consistently accelerates early learning and improves asymptotic return. As shown in Fig. 9, SEM agents not only converge faster than their respective baselines, but also maintain lower variance across seeds. These results demonstrate that SEM provides complementary benefits to fast actor–critic methods, enhancing both stability and sample efficiency without modifying their underlying optimization procedures (see App. H for per-task learning curves). We also evaluate FastTD3 on 12-h1, 12-g1 tasks and 10-IsaacGym tasks, where a similar pattern is observed, as shown in App. I.

Proximal Policy Optimization Algorithm. To evaluate the generality of SEM beyond off-policy methods, we integrate it into PPO (Schulman et al., 2017), a popular on-policy method, using the CleanRL implementation (Huang et al., 2022). We evaluate SEM on two distinct benchmarks, Isaac-Gym for continuous control and the ALE (Bellemare et al., 2013) for pixel-based discrete control in Atari games. In both domains, SEM improves PPO by accelerating convergence and increasing final returns. The per-environment learning curves are shown in Fig. 18. Aggregate results are summarized in Fig. 10, with the left panel showing performance gains on the Atari-10 suite and the middle panel showing improvements on the IsaacGym tasks. These results demonstrate that SEM's benefits are not limited to TD3-style critics but extend to policy-gradient methods and vision-based RL, underscoring its broad applicability.

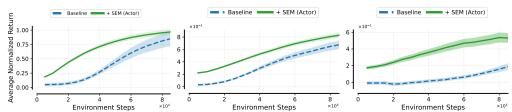


Fig. 9: **SEM on fast actor–critic algorithms.** Average normalized return on HumanoidBench with FastTD3 (left), FastTD3–SimBa (middle), and FastSAC (right). SEM consistently improves sample efficiency and yields higher final performance across all algorithms.

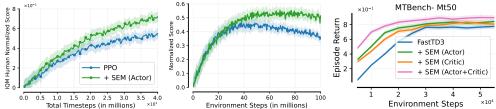


Fig. 10: Performance of PPO with and without SEM across tasks. **Left:** PPO on the Atari-10 suite (pixel-based). **Center:** PPO in IsaacGym. **Right:** MTBench MT50 (robotics tasks) comparing FastTD3. Applied SEM accelerates learning and improves return over the baseliens.

Multitask Deep RL. Recent work by Joshi et al. (2025) introduced a large-scale benchmark for multi-task reinforcement learning (MTRL) in robotics. Implemented in IsaacGym, this benchmark comprises over seventy robotic control problems spanning both manipulation and locomotion, with subsets such as MT50 focused on manipulation. We compare FastTD3 (Seo et al., 2025) to its SEM-augmented variants (+SEM). As shown in Fig. 10 (*right*), +SEM improves sample efficiency, achieving faster learning and higher returns within the same training budget.

6 DISCUSSION

Our results demonstrate that geometric priors on representation space can substantially improve the efficiency of deep RL agents. By constraining features to a product of simplices, SEM yields bounded and sparse embeddings that avoid feature collapse and neuron dormancy under non-stationarity. This lightweight inductive bias requires no auxiliary losses, adds effectively zero computational cost (see Table 2), and consistently improves sample efficiency and asymptotic return across various actor–critic methods and a diverse set of benchmarks.

Unlike existing model-based approaches in RL which use discrete state-embeddings (Hansen et al., 2023; Hafner et al., 2020; 2023; Scannell et al., 2025), SEM does not require auxiliary objectives or additional networks. Surprisingly, we find that the benefits of SEM are most pronounced when applied to the actor's penultimate layer, where feature geometry most directly shapes policy gradients. Our analyses indicate that SEM alleviates several optimization difficulties in deep RL (Moalla et al., 2024; Juliani & Ash, 2024). By preserving effective rank, bounding feature norms, and reducing critic disagreement, SEM provides more reliable gradients and stabilizes the bootstrapped targets that often undermine critic training. These effects highlight representation geometry as a simple but powerful lever for stabilizing learning under non-stationarity.

Limitations and Future Work. SEM is not a universal remedy. In tasks with extreme distribution shift or very sparse rewards, feature collapse and critic drift may still occur, and SEM introduces hyperparameters (L, V, τ) that require light tuning to balance sparsity and capacity. Moreover, our experiments focus on continuous control and Atari; its impact on large-scale vision or language-conditioned RL remains untested. Future work should investigate adaptive schedules for (L, V, τ) , and integration in more general-purpose algorithms such as MR.Q (Fujimoto et al., 2025), which combine multiple objectives and scale across domains. Another direction is to examine whether SEM benefits value-based algorithms, and to explore both its potential for scaling network architectures (Ceron et al., 2024a) and its interaction with architectural priors (e.g., MoEs, Residual Nets) (Ceron et al., 2024b; Castanyer et al., 2025; Kooi et al., 2025).

ETHICS STATEMENT This paper presents work whose goal is to advance the field of Machine Learning, and reinforcement

learning in particular. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our results in the Appendix.

LLM USE

LLMs were used to assist paper editing and to write the code for plotting experiments.

REFERENCES

- Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity in continual deep reinforcement learning. In *Conference on lifelong learning agents*, pp. 620–636. PMLR, 2023.
- Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the arcade learning environment down to five games. In *International Conference on Machine Learning*, pp. 421–438. PMLR, 2023.
- Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik's cube with a robot hand. *arXiv preprint arXiv:1910.07113*, 2019.
- Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon Hjelm. Unsupervised state representation learning in atari. *Advances in neural information processing systems*, 32, 2019.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate, 2016. URL https://arxiv.org/abs/1409.0473.
- Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: an evaluation platform for general agents. *J. Artif. Int. Res.*, 47(1):253–279, May 2013. ISSN 1076-9757.
- Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In *International conference on machine learning*, pp. 449–458. PMLR, 2017.
- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308.3432.
- Roger Creus Castanyer, Johan Obando-Ceron, Lu Li, Pierre-Luc Bacon, Glen Berseth, Aaron Courville, and Pablo Samuel Castro. Stable gradients for stable learning at scale in deep reinforcement learning. arXiv preprint arXiv:2506.15544, 2025.
- Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved representations via sampling-based state similarity for markov decision processes. *Advances in Neural Information Processing Systems*, 34:30113–30126, 2021.
- Johan Samir Obando Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep reinforcement learning, a pruned network is a good network. In *International Conference on Machine Learning*, pp. 38495–38519. PMLR, 2024a.

- Johan Samir Obando Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nicolaus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock parameter scaling for deep rl. In *International Conference on Machine Learning*, pp. 38520–38540. PMLR, 2024b.
 - Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for distributional reinforcement learning. In *International conference on machine learning*, pp. 1096– 1105. PMLR, 2018a.
 - Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement learning with quantile regression. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018b.
 - Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mahmood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026): 768–774, 2024.
 - D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. *IEEE Transactions on Information Theory*, 52(1):6–18, 2006. doi: 10.1109/TIT.2005.860430.
 - Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In *Deep Reinforcement Learning Workshop NeurIPS* 2022, 2022.
 - Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In *International conference on machine learning*, pp. 1407–1416. PMLR, 2018.
 - Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable and efficient deep-rl with accelerated central inference. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=rkgvXlrKwH.
 - Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actorcritic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.
 - Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In *International Conference on Machine Learning*, pp. 2052–2062, 2019.
 - Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger. For sale: State-action representation learning for deep reinforcement learning. *Advances in neural information processing systems*, 36:61573–61624, 2023.
 - Scott Fujimoto, Pierluca D'Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards general-purpose model-free reinforcement learning. In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025. URL https://openreview.net/forum?id=R1hIXdST22.
 - Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, 36:193–202, 1980.
 - Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, and Francesco Locatello. Leveraging sparse and shared feature activations for disentangled representation learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=IHR83ufYPy.
 - Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus Foerster, and Mario Martin. Simplifying deep temporal difference learning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=7IzeL0kflu.

- Samuel Garcin, Trevor McInroe, Pablo Samuel Castro, Christopher G. Lucas, David Abel, Prakash Panangaden, and Stefano V Albrecht. Studying the interplay between the actor and critic representations in reinforcement learning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=tErHYBGlWc.
- Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in deep reinforcement learning. In *International Conference on Machine Learning*, pp. 7766–7792. PMLR, 2022.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pp. 1861–1870. Pmlr, 2018.
- Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models. In *International Conference on Learning Representations*, 2020.
- Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models. *arXiv preprint arXiv:2301.04104*, 2023.
- Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous control. *arXiv preprint arXiv:2310.16828*, 2023.
- Junlin He, Jinxiao Du, and Wei Ma. Preventing dimensional collapse in self-supervised learning via orthogonality regularization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=Y3FjKSsfmy.
- Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. Towards the systematic reporting of the energy and carbon footprints of machine learning. *Journal of Machine Learning Research*, 21(248):1–43, 2020.
- J Fernando Hernandez-Garcia and Richard S Sutton. Learning sparse representations incrementally in deep reinforcement learning. *arXiv* preprint arXiv:1912.04002, 2019.
- Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, and JoÃGo GM AraÚjo. Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.
- Niall Hurley and Scott Rickard. Comparing measures of sparsity. *IEEE Transactions on Information Theory*, 55(10):4723–4741, 2009.
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017. URL https://arxiv.org/abs/1611.01144.
- Vira Joshi, Zifan Xu, Bo Liu, Peter Stone, and Amy Zhang. Benchmarking massively parallelized multi-task reinforcement learning for robotics tasks. *arXiv preprint arXiv:2507.23172*, 2025.
- Arthur Juliani and Jordan T. Ash. A study of plasticity loss in on-policy deep reinforcement learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=MsUf8kpKTF.
- Jacob E. Kooi, Zhao Yang, and Vincent François-Lavet. Hadamax encoding: Elevating performance in model-free atari, 2025. URL https://arxiv.org/abs/2505.15345.
- Alex Krizhevsky. Learning multiple layers of features from tiny images. https://www.cs. toronto.edu/kriz/learning-features-2009-TR. pdf, 2009.
- Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits data-efficient deep reinforcement learning. In *International Conference on Learning Representations*, 2021a. URL https://openreview.net/forum?id=09bnihsFfXU.
- Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine. DR3: Value-based deep reinforcement learning requires explicit regularization. In *Deep RL Workshop NeurIPS 2021*, 2021b. URL https://openreview.net/forum?id=LYwOCfpsQ-A.

- Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for reinforcement learning. In *International conference on machine learning*, pp. 5639–5650. PMLR, 2020.
 - Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji Kawaguchi, and Aaron Courville. Simplicial embeddings in self-supervised learning and downstream classification. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Samuel Lavoie, Michael Noukhovitch, and Aaron Courville. Compositional discrete latent code for high fidelity, productive diffusion models, 2025. URL https://arxiv.org/abs/2507.12318.
 - Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.
 - Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical normalization for scalable deep reinforcement learning. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=kfYxyvCYQ4.
 - Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State representation learning for control: An overview. *Neural Networks*, 108:379–392, 2018.
 - Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu. Selective-supervised contrastive learning with noisy labels. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 316–325, 2022.
 - Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel *q*-learning: Scaling off-policy reinforcement learning under massively parallel simulation. In *International Conference on Machine Learning*, pp. 19440–19459. PMLR, 2023.
 - Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv* preprint arXiv:1509.02971, 2015.
 - Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse representations for control in reinforcement learning. In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence*, AAAI'19/IAAI'19/EAAI'19. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014384. URL https://doi.org/10.1609/aaai.v33i01.33014384.
 - Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation via human-in-the-loop reinforcement learning. *Science Robotics*, 10(105):eads5033, 2025. doi: 10.1126/scirobotics.ads5033. URL https://www.science.org/doi/abs/10.1126/scirobotics.ads5033.
 - Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement learning. In *Deep RL Workshop NeurIPS 2021*, 2021. URL https://openreview.net/forum?id=5G7fT_tJTt.
 - Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics and generalization in deep reinforcement learning. In *International conference on machine learning*, pp. 14560–14581. PMLR, 2022.
 - Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens, and Will Dabney. Disentangling the causes of plasticity loss in neural networks. In *Conference on Lifelong Learning Agents*, pp. 750–783. PMLR, 2025.

- Guozheng Ma, Lu Li, Zilin Wang, Li Shen, Pierre-Luc Bacon, and Dacheng Tao. Network sparsity unlocks the scaling potential of deep reinforcement learning. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id= mlomgOskaa.
- Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables, 2017. URL https://arxiv.org/abs/1611.00712.
- Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu based physics simulation for robot learning. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.
- Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via reinforcement learning. *The International Journal of Robotics Research*, 43(4):572–587, 2024.
- Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, et al. Orbit: A unified simulation framework for interactive robot learning environments. *IEEE Robotics and Automation Letters*, 8(6):3740–3747, 2023.
- Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No representation, no trust: Connecting representation, collapse, and trust issues in PPO. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=Wy9UgrMwD0.
- Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective and interpretable semantic models using non-negative sparse embedding. In Martin Kay and Christian Boitet (eds.), *Proceedings of COLING 2012*, pp. 1933–1950, Mumbai, India, December 2012. The COLING 2012 Organizing Committee. URL https://aclanthology.org/C12-1118/.
- Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzciński, Mateusz Ostaszewski, and Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of reinforcement learning. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 37342–37364, 2024.
- Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement learning for dexterous manipulation, 2017. URL https://arxiv.org/abs/1704.03073.
- Yi Ren, Samuel Lavoie, Mikhail Galkin, Danica J. Sutherland, and Aaron Courville. Improving compositional generalization using iterated learning and simplicial embeddings, 2023. URL https://arxiv.org/abs/2310.18777.
- Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using massively parallel deep reinforcement learning. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?id=wK2fDDJ5VcF.
- Aidan Scannell, Mohammadreza Nakhaeinezhadfard, Kalle Kujanpää, Yi Zhao, Kevin Sebastian Luck, Arno Solin, and Joni Pajarinen. Discrete codebook world models for continuous control. In *The Thirteenth International Conference on Learning Representations*, 2025.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. *Communications of the ACM*, 63(12):54–63, 2020.
- Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-efficient reinforcement learning with self-predictive representations. *arXiv* preprint *arXiv*:2007.05929, 2020.

- Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-efficient reinforcement learning with self-predictive representations. In *The Nineth International Conference on Learning Representations (ICLR)*, 2021.
 - Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. *arXiv* preprint arXiv:2505.22642, 2025.
 - Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. *arXiv* preprint arXiv:2403.10506, 2024.
 - Jayesh Singla, Ananye Agarwal, and Deepak Pathak. Sapg: Split and aggregate policy gradients. In *International Conference on Machine Learning*, pp. 45759–45772. PMLR, 2024.
 - Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes with model-free reinforcement learning, 2022. URL https://arxiv.org/abs/2208.07860.
 - Ghada Sokar and Pablo Samuel Castro. Mind the gap! the challenges of scale in pixel-based deep reinforcement learning. *arXiv* preprint arXiv:2505.17749, 2025.
 - Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in deep reinforcement learning. In *International Conference on Machine Learning*, pp. 32145–32168. PMLR, 2023.
 - Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE, 2017.
 - Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning, 2018. URL https://arxiv.org/abs/1711.00937.
 - Maxime Wabartha and Joelle Pineau. Piecewise linear parametrization of policies: Towards interpretable deep reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=hOMVq57Ce0.
 - Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Harnessing structures for value-based planning and reinforcement learning. *arXiv preprint arXiv:1909.12255*, 2019.
 - Qingmao Yao, Zhichao Lei, Tianyuan Chen, Ziyue Yuan, Xuefan Chen, Jianxiang Liu, Faguo Wu, and Xiao Zhang. Offline RL with smooth OOD generalization in convex hull and its neighborhood. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=eY5JNJE56i.
 - Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.
 - Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Improved data-augmented reinforcement learning. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=_SJ-_yyes8.
 - Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with limited data. *Advances in neural information processing systems*, 34:25476–25488, 2021.
 - Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep reinforcement learning. *arXiv preprint arXiv:1804.06893*, 2018.
 - Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Sören Schwertfeger, Chelsea Finn, and Hang Zhao. Robot parkour learning. In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.net/forum?id=uo937r5eTE.

APPENDIX CONTENTS

A RELATED WORK

Stability in Deep RL A longstanding challenge in reinforcement learning is the stability of value-based updates in actor–critic methods. One major source of instability is overestimation bias, which accumulates when bootstrapped critics reinforce overly optimistic targets. Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) mitigates this issue with clipped double Q-learning and delayed policy updates, producing more reliable critics and improving control performance. Another direction seeks to stabilize targets by modeling full return distributions rather than point estimates. Distributional RL methods such as C51 (Bellemare et al., 2017), QR-DQN (Dabney et al., 2018b), and IQN (Dabney et al., 2018a) show that capturing the shape of the return distribution reduces variance and provides richer learning signals.

More recently, architectural choices have been used to enhance critic stability. SimBa (Lee et al., 2025) biases networks toward simpler and well-conditioned representations through input normalization, linear residual paths, and feature normalization, helping large models avoid divergence. Training regimens also play a role: SR-SPR (D'Oro et al., 2022) demonstrates that periodic network resets counteract bootstrapping drift, allowing agents to sustain extremely high replay ratios without collapse. FastTD3 (Seo et al., 2025) integrates several of these lessons, combining parallel simulation, large-batch updates, and distributional critics to achieve strong stability at high throughput. Our approach is complementary to these efforts. Rather than modifying update schedules or ensemble targets, we constrain the geometry of latent representations, aiming to reduce critic variance and stabilize bootstrapped updates through structured embeddings.

Sample-Efficient RL Beyond stability, a parallel line of work targets sample efficiency, with progress spanning both representation-driven methods and algorithmic or model-based improvements. Representation learning has emerged as a powerful way to extract more information per interaction. CURL (Laskin et al., 2020) applies contrastive learning to enforce invariances in encoders trained jointly with the control objective, significantly narrowing the gap between pixel- and state-based agents. SPR (Schwarzer et al., 2020) extends this idea with self-predictive latent dynamics, ensuring temporal consistency and yielding state-of-the-art data efficiency on Atari. Building on SPR, SR-SPR (D'Oro et al., 2022) adds scheduled resets that prevent drift and enable aggressive replay-ratio scaling. Other works inject architectural biases: SimBa (Lee et al., 2025) improves generalization by embedding simplicity constraints into network layers, while For SALE (Fujimoto et al., 2023) enriches the representation space with state–action embeddings, producing TD7, which substantially outperforms TD3 in continuous control. Outside of RL, simplicial embeddings (Lavoie et al., 2023) show that constraining features to products of probability simplices induces sparse, group-structured representations that generalize effectively in supervised and self-supervised settings and leads to a compositional representation (Ren et al., 2023; Lavoie et al., 2025). We draw inspiration from this idea and adapt it to reinforcement learning, inserting simplicial modules into fast actor–critic pipelines.

Algorithmic and model-based approaches provide another path to efficiency. Soft Actor-Critic (SAC) (Haarnoja et al., 2018) introduces maximum-entropy RL, balancing reward and exploration to achieve robust and data-efficient learning in continuous control. Model-based algorithms further improve efficiency by planning with learned dynamics. TD-MPC2 (Hansen et al., 2023) demonstrates that latent-space model predictive control scales effectively across diverse domains, achieving state-of-the-art performance with a single set of hyperparameters. EfficientZero (Ye et al., 2021) combines MuZero-style search with learned latent dynamics, reaching human-level Atari performance with orders of magnitude fewer environment steps. Our method differs from these approaches by focusing on representation geometry: rather than auxiliary losses, ensembles, or world models, we show that a single simplicial bottleneck can consistently improve the sample efficiency of fast actor-critic algorithms while preserving their hallmark wall-clock advantages.

Structured representation in RL Constraining the encoder's output is common in RL. C-ReLU has been shown to improve training and plasticity (Abbas et al., 2023). Feature normalization with L2 regularization of the features also improves training scalability and enables larger scale training of RL models. Closer to our work, DreamerV2 (Hafner et al., 2020) and DreamerV3 (Hafner et al., 2023) encode the observation into a one-hot discrete representation work. Scannell et al. (2025) also learn discrete latent space via a learned codebook and gumbel softmax with straight-through esti-

mator. (Wabartha & Pineau, 2024) also propose to learn discrete encoding of the state for policy learning and show interpretable representations. However, methods with explicit discretization necessitate the use of a biased gradient estimator to propagate the learning signal inside the encoder. Similar to our work, Hansen et al. (2023) constrain the encoder's output into SEM. In this work, we find that SEM is a crucial component for improving sample efficiency and performance in RL and study that component in details and connect the improved performance to the improved training stability coming from the sparse and structured representation endowed by SEM.

B FORMAL ANALYSIS

Theorem 1. Non-stationarity increases neuron dormancy.

Proof. Let \mathcal{D}_t be the data distribution at iteration t and consider a critic $f_{\theta}(x) = W h_{\phi}(x)$, trained by minimizing the (mean) squared error to targets $y_t(x)$:

$$\mathcal{L}_t(\theta) = \mathbb{E}_{x \sim \mathcal{D}_t} \left[\left(f_{\theta}(x) - y_t(x) \right)^2 \right]. \tag{4}$$

Define the minimizer $\theta_t^{\star} \in \arg\min_{\theta} \mathcal{L}_t(\theta)$ and tracking error $e_t = \theta_t - \theta_t^{\star}$. A first-order expansion of SGD around θ_t^{\star} gives

$$e_{t+1} \approx (I - \alpha H_t) e_t - \alpha b_t, \quad H_t = \nabla^2 \mathcal{L}_t(\theta_t^*), \ b_t = \nabla \mathcal{L}_{t+1}(\theta_t^*),$$
 (5)

where $b_t = 0$ if $\mathcal{D}_{t+1} = \mathcal{D}_t$, but $b_t \neq 0$ under drift. This shows that the optimizer must continually track a moving minimizer, which destabilizes learned features. Let $z = h_{\phi}(x) \in \mathbb{R}^d$ with covariance

$$\Sigma_t = \operatorname{Cov}_{x \sim \mathcal{D}_t}(z) = \mathbb{E}[zz^\top] - \mathbb{E}[z]\mathbb{E}[z]^\top, \quad \operatorname{srank}(\Sigma_t) = \frac{\|\Sigma_t\|_F^2}{\|\Sigma_t\|_2^2}.$$
 (6)

In the stationary case, $\Sigma_t \to \Sigma$ with a large stable rank, preserving feature diversity. Under non-stationarity, the drift term in equation 5 induces oscillations in Σ_t and systematic *covariance deflation* (drop in srank), a hallmark of collapse. When representations collapse (covariance deflation; equation 6), feature energy shrinks. For a linear head,

$$\mathbb{E}\left[\|\nabla_W \mathcal{L}_t\|_F^2\right] \le 4 \,\mathbb{E}[\delta_t^2] \,\operatorname{tr}(\Sigma_t), \qquad \delta_t = f_\theta(x) - y_t(x), \tag{7}$$

so smaller $tr(\Sigma_t)$ directly yields smaller gradients and slower learning. With ReLU features $z = \sigma(a)$, the backprop signal through unit j is gated:

$$\frac{\partial \mathcal{L}_t}{\partial a_j} = \mathbf{1}\{a_j > 0\} \left\langle \nabla_z \mathcal{L}_t, e_j \right\rangle \quad \Rightarrow \quad \mathbb{E}\left[\left\| \frac{\partial \mathcal{L}_t}{\partial a_j} \right\|^2 \right] \le p_{j,t} \, \mathbb{E}\left[\|\nabla_z \mathcal{L}_t\|_2^2 \right], \tag{8}$$

where $p_{j,t} = \Pr(a_j > 0)$ and e_j is the *j*-th basis vector. Non-stationary drift (equation 5) reduces $p_{j,t}$ and $\operatorname{Var}(z_j)$; together with lower $\operatorname{tr}(\Sigma_t)$, this shrinks per-unit updates and increases neuron dormancy (Sokar et al., 2023).

C BENCHMARKS

C.0.1 ISAAC GYM

For our experiments, we used the original Isaac Gym benchmark, which provides pre-built standalone environments and runs entirely on the GPU via a PhysX backend. This setup enables both physics simulation and neural network policy training on the GPU, offering high-throughput evaluation. Although Isaac Gym is deprecated, we used it to ensure reproducibility, specifically running the PPO algorithm from CleanRL on tasks spanning locomotion, robotic hands, and cube stacking (See Figure 11). To reproduce this task, we follow the PPO hyperparameters from CleanRL for Isaac, as presented in Table 3.

Fig. 11: **Environment Visualizations.** We evaluate SEM across three benchmark suites such as Isaac Gym, HumanoidBench, and Atari. The first two cover state-based locomotion/manipulation; Atari introduces pixel-based games of varying complexity.

C.0.2 HUMANOIDBENCH

In our experiments, we used the Humanoid Benchmark, a suite of tasks for evaluating humanoid robot control across locomotion and manipulation, implemented on the MuJoCo physics engine. We focused on three robot configurations: the Unitree H1 without hands (26 DoF), the Unitree H1 with hands (76 DoF), and the Unitree G1 with three-finger hands (44 DoF). The benchmark defines 27 core tasks, and additionally, sit, balance, and bookshelf are each implemented in both simple and hard variants, while insert is implemented in small and normal configurations. This brings the total to 31 tasks. Our evaluations covered locomotion challenges, including walking, running, crawling, stair climbing, and balancing, and whole-body manipulation tasks such as opening doors, lifting packages, operating kitchen objects, and performing insertions. Together, these tasks provided a diverse and rigorous testing ground for our study of humanoid control (See Figure 11). To reproduce this task, we follow the fastTD3 hyperparameters (Seo et al., 2025), as presented in Table 4.

C.0.3 ATARI

We conducted experiments in pixel-based reinforcement learning using the Atari-10 benchmark, a smaller subset of the Atari suite often reduced to 10–26 games. For our setup, we ran 27 Atari games across different difficulty levels, training with PPO from CleanRL as the baseline algorithm (See Figure 11).

C.0.4 MTBENCH

In our experiments, we used the Multi-Task Benchmark for Robotics, an open-source suite built on the GPU-accelerated Isaac Gym simulator. Specifically, we worked with the 50 manipulation tasks adapted from Meta-World, where a single-armed robot interacts with one or two objects through actions such as pushing, picking, and placing. Each task provides parametric variations in object initialization and target positions, adding diversity and complexity. For evaluation, we adopted the MT50 setting, which encompasses the full set of 50 tasks.

D DEEP RL NETWORK ARCHITECTURES

D.0.1 MLP

We modified the FastTD3 architecture, specifically in the actor—critic design, where both networks are implemented as multilayer perceptrons (MLPs). The critic receives concatenated observation—action inputs, while the actor processes only the observations. In both cases, the inputs first pass through two linear layers with ReLU activations. At this point, we introduced the SEM mechanism, which can be enabled or disabled, and applied selectively to the actor, the critic, or both. For the critic, if SEM is not used, the representation is processed by a sequence of Linear→ReLU→Linear layers, with the final linear layer outputting dimension num_atoms. If SEM is enabled, the sequence becomes SEM→Linear, again producing an output of size num_atoms. For the actor, the representation without SEM follows a Linear→ReLU→Linear→Tanh sequence, while with SEM it follows SEM→Linear→Tanh, where the final Tanh ensures bounded continuous actions. In Table 1, we present the fixed hyper-parameters used across all environments. Other hyperparameters, such as num_atoms or num_env,

Table 1: Default hyper-parameters setting for actor-critic MLP

Hyper-parameter	Value
Critic Hidden Dim	1024
Actor Hidden Dim	512
Critic Learning Rate	3e-4
Actor Learning Rate	3e-4

varied depending on the environment, in which case we adopted the values proposed by (Seo et al., 2025).

D.0.2 CNN

For our pixel-based experiments, we modified the PPO implementation from CleanRL, which follows an actor-critic design. The shared backbone consists of three convolutional layers, each followed by a ReLU activation, producing a flattened representation that is then processed by a two-layer MLP with ReLU activations. This representation is used by both the actor and the critic. In our intervention, we introduced the SEM block into the actor: when enabled, the representation passes through the SEM block before a final linear layer; when disabled, it follows a Linear-Relu-linear sequence. The critic remains unchanged, while the actor architecture is varied depending on the use of SEM. We adopted the PPO hyperparameters for Atari from CleanRL (Huang et al., 2022), as summarized in Table 5.

E ABLATION SETUP

Given our constrained computational budget, we performed experiments on a subset of HumanoidBench, consisting of five robotics tasks. These tasks are part of the benchmark evaluated with FastTD3 (Seo et al., 2025) and correspond to hlhand-{walk, stand, run, stair, slide}-v0. All ablation experiments were conducted on this subset using six random seeds.

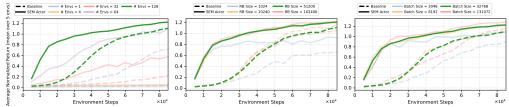


Fig. 12: **Effect of core hyperparameters.** SEM Actor compared to the baseline across (left) number of parallel environments, (middle) replay buffer size, and (right) batch size. SEM consistently scales better and achieves higher returns.

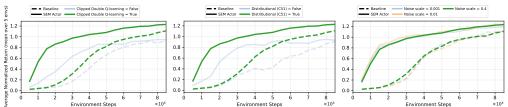


Fig. 13: **Robustness to design choices.** SEM Actor vs. baseline across (left) clipped double Q-learning, (middle) distributional critic (C51), and (right) exploration noise scale. SEM remains robust, while the baseline is more sensitive.

F METRICS

To better understand the dynamics of training and the quality of learned representations, we report a diverse set of metrics beyond standard returns. These measures capture complementary aspects of learning, including representation diversity, network expressivity, parameter stability, gradient behavior and sampling efficiency. Results of these analyses are provided in section 4.

F.1 FEATURE RANK

This metric assesses the quality of learned representations in deep RL by identifying the smallest subspace that retains 99% of the variance, thereby enhancing interpretability, efficiency, and stability. A higher feature rank indicates more diverse representations. The computation follows the approximate rank from (Yang et al., 2019; Moalla et al., 2024):

$$\sum_{i=1}^{k} \frac{\sigma_i^2}{\sum_{j=1}^{n} \sigma_j^2} \ge \tau,$$

where σ_i are the singular values of the feature matrix, n is the total number of singular values, and τ is the variance threshold (e.g., 99%). The feature rank k is the smallest number of principal components required to preserve at least τ of the total variance.

F.2 DORMANT NEURONS

This metric quantifies the proportion of neurons with near-zero activations, which limits the network's expressivity. It serves to detect inefficiencies in learning, as a high proportion of dormant neurons implies that many units are inactive or rarely contribute to the output. The computation follows (Sokar et al., 2023):

$$\frac{\sum_{i=1}^{N} \mathbf{1}(|a_i| < \epsilon)}{N} \times 100,$$

where N is the total number of neurons, a_i is the activation of neuron i, ϵ is a small threshold (e.g., 10^{-5}), and 1 is the indicator function.

F.3 WEIGHT NORM

This metric measures the magnitude of neural network weights, providing insight into model complexity, stability, and overfitting risk. Large weight norms indicate parameters with high magnitudes, which may hinder generalization. The metric is computed as in (Moalla et al., 2024; Lyle et al., 2021):

$$\|\theta\|_2 = \sqrt{\sum_i \theta_i^2},$$

where θ_i are the weights of a given layer.

F.4 GINI SPARSITY

The Gini metric is used to quantify the sparsity of neural representations. A high Gini value indicates a sparse representation, where only a few neurons are strongly active while most remain near zero; this often improves interpretability, makes more efficient use of network capacity, and can help reduce overfitting. In contrast, a low Gini value corresponds to dense representations, where many neurons are active simultaneously, allowing the network to capture richer information but often at the cost of reduced interpretability and potentially noisier features. In practice, we observed a direct relationship between the Gini metric and the return when using SEM, with better performance associated with higher Gini values. The Gini value is computed using the following equation.

$$G = 1 + \frac{1}{n} - \frac{2}{n \sum_{i=1}^{n} v_i} \sum_{i=1}^{n} (n+1-i) v_{(i)}$$

where where

$$v = (|x_1|, |x_2|, \dots, |x_n|)$$

It is the vector of all activations, taken in absolute value and stacked into one vector. The Gini metric has been explored in the papers (Hurley & Rickard, 2009; Zonoobi et al., 2011).

F.5 CRAMER DISTANCE

The Cramér distance is defined as the squared L_2 distance between the cumulative distribution functions (CDFs) of two probability distributions. When the distributions are similar, their CDFs overlap closely and the Cramér distance approaches zero. Conversely, when the distributions differ, the CDFs diverge and the distance increases. In practice, a lower Cramér distance indicates that the learned distribution is closer to the target distribution, which is desirable. Empirical results also suggest a correlation between lower Cramér distance and improved returns. This measure is computed using the following equation:

$$D_{\text{Cram\'er}}^2(p_1, p_2) = \sum_{j=1}^n \left(F_{p_1}(z_j) - F_{p_2}(z_j) \right)^2 \Delta z$$

where p_1 and p_2 are probability distributions, and F_{p_1}, F_{p_2} denote their corresponding cumulative distribution functions (CDFs).

F.6 ENTROPY

This metric measures the average entropy of the representations. High entropy indicates that the representation is more dispersed, less concentrated, and carries more uncertainty. Low entropy corresponds to a more concrete representation, with higher sparsity. In practice, we observe a relationship where lower entropy is associated with better returns and a higher Gini measure. This metric is defined by the following equation.

$$p_{i,j} = \frac{p_{i,j}}{\sum_k p_{i,k} + \varepsilon}$$
 entropy
$$= \frac{1}{B} \sum_{i=1}^B \left(-\sum_j p_{i,j} \log(p_{i,j} + \varepsilon) \right)$$

where B is the batch size, and p is the non-negative representation normalized to form a probability distribution.

G HYPERPARAMETERS

Table 2: Wall-clock training time (hh:mm) for the **actor** on the H1-hand humanoid benchmark under default settings. We compare FastTD3 and FastTD3+SEM; lower is better.

	Actor	
Game	FastTD3	FastTD3+SEM
h1hand-walk	2:31 h	2:42 h
h1hand-stand	2:29 h	2:20 h
h1hand-run	2:46 h	2:34 h
h1hand-stair	4:09 h	4:13 h
h1hand-slide	5:35 h	5:24 h

Table 3: Default hyperparameter settings for the PPO agent on Isaac Gym.

Hyper-parameter	Value
Adom'a (c)	1e-5
Adam's (ϵ)	
Adam's learning rate	2.6e-3
Dense Activation Function	Tanh
Dense Width	256
Discount Factor	0.99
Number of Dense Layers	3
Number of environments	4096

Table 4: Default hyperparameter settings for the fastTD3 agent on the humanoid bench.

Hyper-parameter	Value
Critic Hidden Dim	1024
Actor Hidden Dim	512
Critic Learning Rate	3e-4
Actor Learning Rate	3e-4
Discount Factor	0.99
Dense Activation Function	ReLU
Number of Dense Layers	4
Number of environments	128
Number of atoms	101

Table 5: Default hyperparameter settings for the PPO agent on Atari.

Hyper-parameter	Value
Adam's (ϵ)	1e-5
Adam's learning rate	2.5e-4
Conv. Activation Function	ReLU
Convolutional Width	32,64,64
Dense Activation Function	ReLU
Dense Width	512
Normalization	None
Discount Factor	0.99
Number of Convolutional Layers	3
Number of Dense Layers	2
Reward Clipping	True
Weight Decay	0

H LEARNING CURVES FOR EACH GAME

To complement the aggregate results reported in the main text (see section 4 and section 5), we provide full learning curves for each environment in the benchmark. These plots illustrate training dynamics across seeds and highlight differences in sample efficiency and stability between +SEM and its corresponding baseline (FastTD3/FastTD3-SimbaV2/FastSAC). The set of robotics tasks follows those used in the FastTD3 benchmark (Seo et al., 2025).

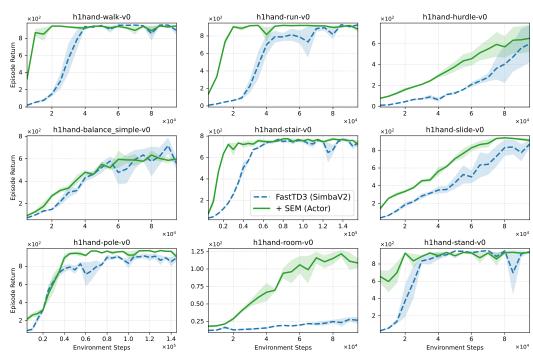


Fig. 14: Learning curves on 9 h1hand tasks. FastTD3+SimbaV2 (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) consistently accelerates learning and achieves higher or comparable final returns on most tasks.

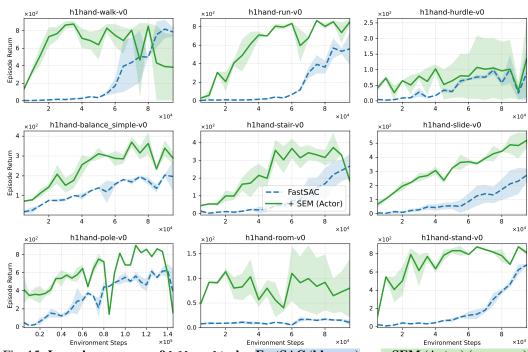


Fig. 15: Learning curves on 9 h1hand tasks. FastSAC (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) generally accelerates learning and achieves higher final returns on most tasks.

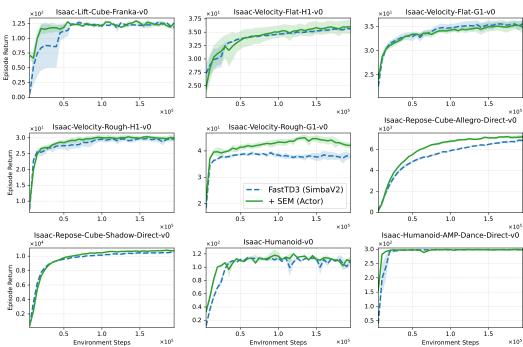


Fig. 16: Learning curves on 9 IsaacGym tasks. FastSAC (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) generally accelerates learning.

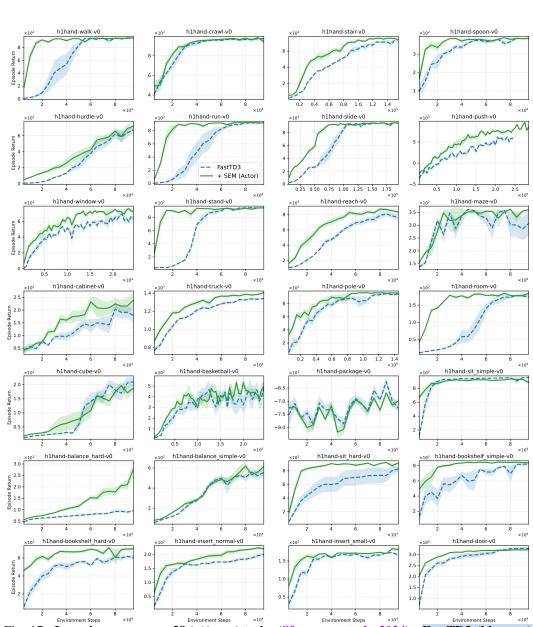


Fig. 17: Learning curves on 28 h1hand tasks (Sferrazza et al., 2024). FastTD3 (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) typically achieves faster learning and equal or higher final return on most tasks.

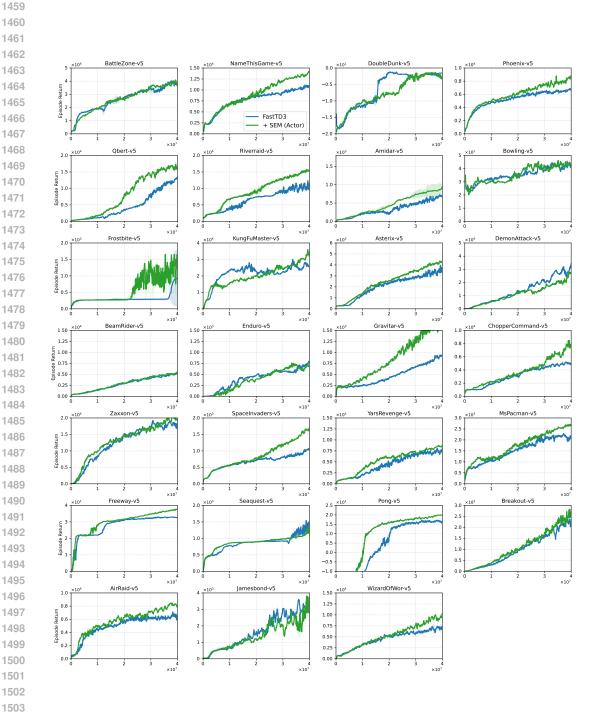


Fig. 18: Learning curves on Atari game (Aitchison et al., 2023). PPO (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 3 seeds. SEM (Actor) typically achieves faster learning and equal or higher final return on most tasks.

I ADDITIONAL EXPERIMENTS ON HUMANOIDBENCH

We evaluate +SEM beyond the tasks proposed in FastTD3 by considering additional environments from the Humanoid benchmark (Sferrazza et al., 2024). These experiments assess the scalability of SEM across different robot morphologies and task sets. We include environments featuring the H1 robot without hands and the Unitree G1 with three-finger hands.

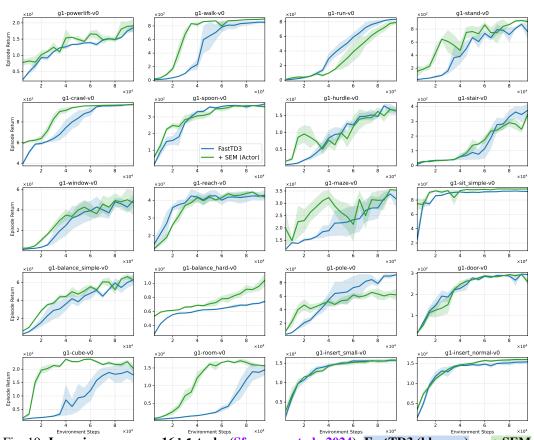


Fig. 19: Learning curves on 16 h1 tasks (Sferrazza et al., 2024). FastTD3 (blue, --) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) typically achieves faster learning and equal or higher final return on most tasks.

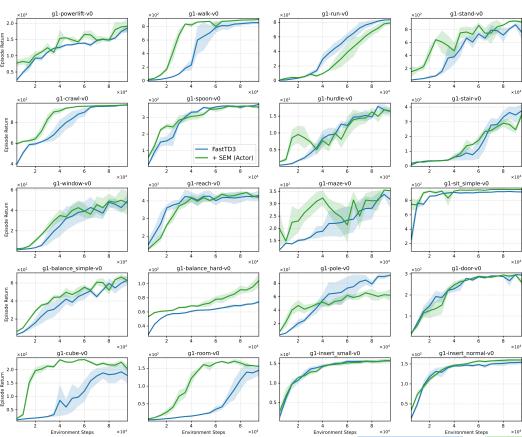


Fig. 20: Learning curves on 20 g1 tasks (Sferrazza et al., 2024). FastTD3 (blue, - -) vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently scaled per subplot for readability. SEM (Actor) typically achieves faster learning and equal or higher final return on most tasks.