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ABSTRACT

Recent works have proposed accelerating the wall-clock training time of actor-
critic methods via the use of large-scale environment parallelization; unfortu-
nately, these can sometimes still require large number of environment interactions
to achieve a desired level of performance. Noting that well-structured representa-
tions can improve the generalization and sample efficiency of deep reinforcement
learning (RL) agents, we propose the use of simplicial embeddings: lightweight
representation layers that constrain embeddings to simplicial structures. This ge-
ometric inductive bias results in sparse and discrete features that stabilize critic
bootstrapping and strengthen policy gradients. When applied to FastTD3, Fast-
SAC, and PPO, simplicial embeddings consistently improve sample efficiency
and final performance across a variety of continuous- and discrete-control envi-
ronments, without any loss in runtime speed.
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“Order is not imposed from the outside, but emerges from within'.
— Ilya Prigogine

1 INTRODUCTION

Deep reinforcement learning (deep RL) has delivered impressive progress in continuous control,
enabling agile locomotion (Smith et al., 2022; Zhuang et al., 2023; Margolis et al., 2024) and dex-
terous manipulation (Popov et al., 2017; Akkaya et al., 2019; Luo et al., 2025). Yet a persistent
tension remains between training speed (wall-clock efficiency) and sample efficiency (the number
of environment interactions). Some modern agents such as TD-MPC2 (Hansen et al., 2023) and SR-
SPR (D’Oro et al., 2022) achieve strong returns with relatively few interactions, but demand substan-
tial compute and engineering complexity. In contrast, recent fast actor—critic variants have scaled
throughput with massive parallelization (Li et al., 2023; Singla et al., 2024; Gallici et al., 2025; Seo
etal., 2025). While methods such as FastTD3 (Seo et al., 2025) rapidly solve humanoid benchmarks,
they require far more interactions to reach comparable performance. Similar limitations have been
observed in Parallel Q-Learning (Li et al., 2023) and large-scale actor—critic frameworks such as
IMPALA and SEED RL (Espeholt et al., 2018; 2020). This trade-off limits applicability in domains
where interactions are expensive and time is constrained, such as robotics.

A natural objection is that, in modern simulators, environment steps are cheap and can be generated
in massive parallel batches, so sample efficiency is less important. However, this view overlooks
several practical and scientific concerns. First, algorithms that are data-hungry in simulation rarely
transfer well to real-world scenarios (Tobin et al., 2017; Akkaya et al., 2019). Second, large-scale
parallelization requires substantial compute and energy resources, raising both efficiency and sus-
tainability concerns (Schwartz et al., 2020; Henderson et al., 2020). Third, sample efficiency is
closely tied to generalization: agents that exploit structure from fewer trajectories tend to be more ro-
bust under distributional shifts (Zhang et al., 2018; Yao et al., 2025). Moreover, in high-dimensional
simulators such as IsaacGym, each step can be significantly more expensive, compounding ineffi-
ciency as tasks grow harder (Makoviychuk et al., 2021; Rudin et al., 2021). These issues highlight
why sample efficiency remains central even in the era of massively parallel deep RL.

!"This perspective resonates with deep RL: stability cannot be forced solely through more compute, heavier
regularizers, or larger critics. Instead, inductive biases that shape the geometry of representations can allow
order to emerge from within, leading to more stable critics and more efficient policies under non-stationarity.
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Shaping representations with auxiliary losses (Anand et al., 2019; Laskin et al., 2020; Schwarzer
et al., 2021; Castro et al., 2021; Fujimoto et al., 2023) has been shown to improve sample efficiency
in deep RL. However, such methods increase algorithmic complexity and add computational over-
head through extra forward and backward passes (Fujimoto et al., 2023). Alternatively, architectural
components, such as convolutions (Fukushima, 1980; LeCun et al., 1989) and attention (Bahdanau
et al., 2016), can be used to induce structure leading to desirable downstream properties.

Discrete and sparse representations have several desirable properties in comparison to their dense
and continuous counterparts. Notably, sparse and discrete representations increase robustness to
noise (Donoho et al., 20006), training stability by reducing catastrophic interference (Liu et al., 2019),
sample efficiency (Fumero et al., 2023), interpretability (Murphy et al., 2012; Lavoie et al., 2023;
Wabartha & Pineau, 2024) and improved generative modeling (Lavoie et al., 2025). In this work,
we posit that several of those properties are beneficial in the context of reinforcement learning.

While several methods exist for learning discrete representations explicitly (Jang et al., 2017; Mad-
dison et al., 2017; van den Oord et al., 2018), these methods use straight-through estimation (Bengio
et al., 2013) which is a biased gradient estimator. Fortunately, discretization may be implicitly
induced via Simplicial Embeddings (SEM) (Lavoie et al., 2023), an architectural component that
partitions a latent representation into a sequence of L simplices. SEM is fully differentiable, thus
avoiding the negative effect of explicit discretization while enacting some of the desirable properties
of discrete and sparse representations. Concretely, we show that SEM improves both data efficiency
and asymptotic performance across diverse environments such as IsaacGym (Makoviychuk et al.,
2021), HumanoidBench (Sferrazza et al., 2024), and the Arcade Learning Environment (Bellemare
et al., 2013), while preserving (and often improving) wall-clock speed.

2 PRELIMINARIES

2.1 ACTOR-CRITIC REINFORCEMENT LEARNING

We consider a standard Markov decision process (MDP) defined by the tuple M = (S, A, P,r,7),
with state space S, action space A, transition distribution P(s’|s, a), reward functionr : Sx A — R,
and discount factor v € [0, 1). The objective is to maximize the expected discounted return

J(m) :Eﬁ[ifytr(st,at)}, (1
t=0

where the agent follows a policy 7(als). Actor—critic methods maintain both a parameterized pol-
icy mg(als) (the actor) and an action-value function Q4 (s, a) (the critic). The critic is trained to
minimize the Bellman error

£Q<¢) = E(s,a,r,s/)N’D |:(Q¢(Sa a) - y>2i| ) y=r+ 'VEa/Nwe(-\s’) [Q¢* (SI7 alﬂa (2)

where ¢~ denotes target network parameters and D is a replay buffer. The actor is updated via
the policy gradient defined as Vo.J () = Esp,anr, [Vo log To(als) Qg (s, a)]. While this can be
effective, bootstrapped training is notoriously fragile. Errors in ()4 propagate recursively through
the target y, and when the representation used to compute () is poorly conditioned, these errors
amplify and cause divergence or collapse (Fujimoto et al., 2018).

A recent line of work has sought to reduce the wall-clock cost of actor—critic training. FastTD3 (Seo
et al., 2025) builds on TD3 (Fujimoto et al., 2018) by leveraging (i) parallel simulation across many
environment instances, (ii) large-batch critic updates, and (iii) algorithm design choices like distri-
butional critics (C51) (Bellemare et al., 2017), noise scaling and clipped double Q-learning (CDQ)
(Fujimoto et al., 2018). Together, these design choices enable high-throughput training while retain-
ing stable convergence, although FastTD3 (Seo et al., 2025) still remains sample-inefficient.

Policies and critics often rely on latent representations extracted from raw states (Lesort et al., 2018).
Formally, an encoder fy, : S — R maps observations s into embeddings z = f(s), which are then
consumed by either the critic, the actor, or both depending on the architecture. Some methods share a
common encoder across actor and critic (e.g., SAC (Haarnoja et al., 2018), DrQ (Yarats et al., 2021),
DrQ-v2 (Yarats et al., 2022)), while others (e.g., DDPG (Lillicrap et al., 2015), FastTD3 (Seo et al.,
2025)) maintain separate encoders. Regardless of parameter sharing, these representations play a
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central role in learning (Garcin et al., 2025). The critic estimates values Q4(s, a) = Q¢ (fy(s),a),
and the actor conditions its policy mg(als) = mg(a|fy(s)) on the chosen embedding. Ideally, =
should preserve the Markov property and expose predictive features of the reward r and dynamics P.

Yet the choice and stability of such embeddings is far from guaranteed. When unconstrained, learned
representations can introduce severe pathologies that destabilize value learning. For example, if
I f(s)]| — oo, critics may extrapolate to arbitrarily large Q-values outside the support of the re-
play buffer, inflating the Bellman error. Formally, if Q4(z,a) = w' z + b with linear heads, then
|Qsl| = oo as ||z|| = oo, leading to exploding targets y and divergent gradients. Similarly, if
z exhibits strong correlations or degenerate directions, the critic’s regression problem becomes ill-
conditioned: the covariance matrix ¥ = E[zz ] may approach singularity, amplifying variance
in temporal-difference updates. These phenomena are empirically linked to representation collapse,
where value estimates drift irrecoverably and policy updates follow unstable gradients (Moalla et al.,
2024; Castanyer et al., 2025).

2.2  SIMPLICIAL EMBEDDINGS

Simplicial embeddings (SEM; Lavoie et al., 2023) provide a lightweight inductive bias on repre-
sentation geometry by constraining latent codes to lie on a product of simplices. Concretely, given
encoder outputs fy,(s) € REXV, the latent vector is partitioned into L groups of size V, and a
softmax is applied within each group:

. exp(z¢.4/7)

Zow = —v , We{l,...,L},ve{l,...,V}, 3)

2= €XP(2,0 /)

where 7 > 0 is a temperature parameter controlling the degree of sparsity. The resulting embedding
Z lies in the product space AV =1 x- .. x AV =1 ie., L categorical distributions of dimension V. This
transformation ensures boundedness through group-wise normalization, induces sparsity as softmax
competition (sharpened at low 7) drives near one-hot encodings, and promotes group structure by
partitioning features into modular subspaces akin to mixtures-of-experts (Ceron et al., 2024b). In
self-supervised learning and downstream classification, SEM has been shown to stabilize training
and improve generalization, particularly in low-label and transfer settings (Lavoie et al., 2023).
SEM does not rely on auxiliary losses or reconstruction terms; akin to an activation function, it only
modifies the embedding geometry with the group-wise softmax, limiting computational overhead.

3 NON-STATIONARITY AMPLIFIES REPRESENTATION COLLAPSE

Several works have shown that non-stationarity can lead to severe degradation of learned represen-
tations across different domains (Lyle et al., 2022; Kumar et al., 2021a; Lyle et al., 2025; Castanyer
et al., 2025). In supervised learning, label noise and distribution shifts can induce representation
collapse, where features lose diversity and neurons become inactive (Li et al., 2022; Sokar et al.,
2023; Dohare et al., 2024). Similar observations have been made in deep RL: the constantly chang-
ing data distribution, induced by an evolving policy, exacerbates this phenomenon, often resulting in
unstable critics and poor generalization (Nauman et al., 2024; Kumar et al., 2021a). These studies
suggest that collapse is not an isolated pathology of specific architectures, but a general failure mode
that emerges when training signals are non-stationary. In App. B we provide a formal analysis that
demonstrates the relationship between non-stationarity and neuron dormancy.

A demonstration on CIFAR-10. We illustrate this phenomenon with a toy experiment on CIFAR-
10 (Krizhevsky, 2009). We compare two training regimes: (i) a stationary setting with fixed labels,
and (ii) a non-stationary setting where labels are periodically shuffled to mimic the bootstrap dynam-
ics of RL. Let (x, y) be training samples with y € {1, ..., K}. In the stationary regime, targets are
fixed, so the conditional distribution p(y|x) is constant and the empirical risk minimizer ; remains
stable up to stochastic fluctuations. In the non-stationary regime, labels are periodically shuffled so
that y — 7;(y), where 7 is a permutation applied every T steps. This induces inflection points in
the minimizer, shifting whenever m, changes. Fig. 1 shows that in the stationary regime, training
is stable: losses decrease smoothly, dormant neuron rates remain low, and effective rank increases,
indicating robust representation learning (Dohare et al., 2024; Sokar et al., 2023). In contrast, in
the non-stationary regime, we observe instability: oscillating losses, rising neuron dormancy, and
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Fig. 1: Training dynamics on CIFAR-10 with stationary vs. non-stationary targets. In the
stationary regime (fixed targets), losses decrease smoothly, neuron dormancy and effective rank
remains controlled, suggesting stable representation learning. In the (targets
shuffled every 20 epochs), the model exhibits higher variance in losses, increased dormant neuron
rates, and reduced effective rank. The addition of SEM mitigates this instability.

collapsing feature rank. Even in this simple supervised setting, instability in the target distribution
alone is sufficient to undermine representational integrity.

Stabilizing Representations under Non-Stationarity with SEM  Simplicial Embeddings (SEM)
can mitigate this effect by projecting features onto a structured space that prevents collapse. The
transformation enforces energy preservation; since each block has unit mass, representations can-
not vanish and tr(3;) remains bounded away from zero. It also promotes diversity, as intra-block
competition spreads information across coordinates, while multiple blocks (L) increase effective
rank, counteracting covariance deflation. As shown in Fig. 1, critics trained with SEM retain higher
effective rank, larger gradient energy, and lower neuron dormancy even when targets drift.

Takeaways:

» Non-stationarity exacerbates representation collapse, as evidenced by increased neuron
dormancy and reduced effective rank.

 Simplicial Embeddings (SEM) introduce a simplex-based geometric prior that sustains
feature diversity and prevent feature collapse.

4 UNDERSTANDING THE IMPACT OF SEM ON DEEP RL NETWORKS

In actor—critic methods such as FastTD3, the critic is trained against bootstrapped targets y;(s, a) =
r(s,a) +vQu-(s',mo(s")). Both the target distribution D; (samples (s, a,r, s") from the replay
buffer) and the target value y, evolve as the policy 7y is updated. This continual drift produces

a persistent bias term in by = VL 1(0F) = E(s,a)NDt+1{(Q¢(Sv a) — ytH(s,a)) VoQs(s, a)},
which is nonzero whenever 7y or D, changes. Thus, the critic is never optimizing a fixed objective
but is instead forced to chase a moving target.

Representation collapse under such non-stationarity poses a fundamental barrier to stable and ef-
ficient deep RL (see App. A for additional contex). Standard actor—critic methods are particularly
vulnerable. The critic’s representations are trained against drifting targets, and the actor in turn
depends on those representations to update its policy. This tight coupling amplifies instability, lead-
ing to poor sample efficiency in continuous control tasks. To address this challenge, we evaluate
Simplicial Embeddings (SEM) as a representation-level regularizer. SEM aims to encourage the hid-
den features of both actor and critic networks to maintain a well-structured geometric organization,
preventing collapse and preserving diversity. By stabilizing the embedding space, SEM provides a
principled mechanism for variance reduction and improved sample efficiency.

Setup. Because this section involves a large number of ablations and is computationally expen-
sive, we restrict experiments to five benchmarks from the Humanoid suite (Sferrazza et al., 2024),
evaluated on (Seo et al., 2025). We report aggregate performance across the five tasks. and six seeds,
with full details provided in the App. E.
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Fig. 2: Actor—critic network architecture with SEM. The actor (left) and critic (middle) architec-
tures are modified with a SEM module, which partitions features into groups and applies group-wise
softmax (right panel), constraining them to a product of simplices.

Integrating SEM on Actor-Critic Algorithms. We choose FastTD3 (Seo et al., 2025), as our
primary testbed. FastTD3 is specifically designed to be a simple and compute-efficient baseline
for continuous-control and humanoid benchmarks. Its streamlined architecture yields strong perfor-
mance while significantly reducing wall-clock training time. At the same time, FastTD3 inherits the
critic-driven weaknesses of TD3; its bootstrapped value targets are generated online by the actor,
making the critic susceptible to non-stationarity. This coupling amplifies representation collapse, as
instabilities in the critic propagate to both value estimates and policy updates. We conduct most of
our ablations on FastTD3, while later sections demonstrate that the benefits of SEM also extend to
other actor—critic algorithms such SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017).

SEM can be applied to the actor, the critic, or both network streams. We build on prior work showing
that the penultimate layer plays a critical role in representation quality (Moalla et al., 2024; Ceron
et al., 2024b; Sokar & Castro, 2025), and that regularizing this layer can yield substantial perfor-
mance gains. Fig. 2 illustrates how SEM is integrated into the actor—critic networks of FastTD3.
For the critic, SEM replaces the baseline linear head with a structured projection, regularizing value
estimates in the distributional C51 setting. For the actor, SEM is applied at the penultimate layer
before the final linear+tanh, ensuring that the policy is conditioned on bounded and sparse features.
Across the paper, dashed blue (blue, - -) curves indicate the baseline, while solid green, (green, —)
curves represent the interventions added to the baseline.

Baseline vs (+ SEM Actor) Baseline vs (+ SEM Critic) Baseline vs (+ SEM Actor/Critic)

== | Baseline
+ SEM (V=4)
+ SEM (V=16)

m— + SEM (V=64)

Average Normalized Return

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Environment Steps x10* Environment Steps x10° Environment Steps x10*

Fig. 3: Average normalized return on 5 HumanoidBench tasks over 6 seeds. Baseline agent
(blue, - -) vs. SEM variants applied to actor, critic, or both. Each curve corresponds to an embed-
ding dimension; dim= 64 (green, —) is highlighted. SEM accelerates early learning and improves
asymptotic performance, with dim= 64 giving the most stable gains.

Fig. 3 shows clear gains when applying SEM to the actor or to both actor and critic, and more
moderate gains when applied only to the critic. Although different SEM dimensions (V') improve
sample efficiency and asymptotic performance, V' = 64 appears most effective. We further explore
the relationship between L and V (see sec 4), as this tradeoff was a central focus of the original SEM
study (Lavoie et al., 2023). These results echo the non-stationary CIFAR-10 experiment, where SEM
prevented feature collapse and stabilized learning (see Fig. 1).

The Effect of SEM on Learning Dynamics in Deep RL. We empirically evaluate the impact of
SEM on the stability and efficiency of actor—critic algorithms. Our analysis combines both learning
performance (returns, losses, TD error, critic disagreement) and representation quality (effective
rank, feature norms), allowing us to connect sample-efficiency gains to underlying representational
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Fig. 4: Learning and representation diagnostics on 2 HumanoidBench tasks. SEM reaches high
return earlier, raises actor/critic effective rank, and keeps actor features compact.
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Fig. 5: Learning dynamics on 2 HumanoidBench tasks. SEM reaches high return faster, with
lower losses, smaller TD error, reduced critic disagreement, and better-calibrated value estimates.

dynamics. This dual perspective highlights not only whether SEM improves performance, but also
why it stabilizes training. A detailed explanation of each metric is provided in App. F.

To understand why SEM improves performance, we turn to representation-level diagnostics. Fig. 4
shows that SEM increases the effective rank of actor features, and bounds actor feature norms.
Late in training, SEM also lifts the critic effective rank, a signs of more expressive and robust
value learning. High effective rank is a proxy for avoiding representational collapse (Moalla et al.,
2024). In the RL literature, representation collapse under drift has been empirically associated with
capacity loss (Lyle et al., 2021), deterioration of feature rank (Kumar et al., 2021b), and implicit
under-parameterization (Kumar et al., 2021a). In supervised and self-supervised settings, techniques
like orthogonality regularization and rank-preserving weight regularizers are used to prevent feature
collapse (He et al., 2024). These representational patterns align with our formal analysis, showing
that SEM prevents covariance deflation and sustains gradient energy, thereby preventing feature
collapse and boosting performance.

As shown in Fig. 5, SEM improves optimization stability over the baseline. Agents with SEM
achieve higher returns earlier and maintain smaller, more stable TD errors, reduced critic disagree-
ment, and lower critic-distribution discrepancy. Such effects are crucial, as instability in boot-
strapped critics is a primary failure mode of actor—critic methods (Fujimoto et al., 2019; Kumar
et al., 2021a). By constraining representation geometry, SEM produces better-conditioned features
that yield more calibrated value estimates, echoing similar findings in representation regularization
for deep RL (Anand et al., 2019; Laskin et al., 2020; Schwarzer et al., 2021). These results indicate
that SEM not only accelerates learning but also yields more calibrated value estimates, mitigating
instability in bootstrapped critics.

In Fig. 6, we focus our lens on the SEM module itself and examine how it shapes representations and
action behavior. As training proceeds, the SEM layer’s activations become markedly sparser (higher
Gini (Hurley & Rickard, 2009; Zonoobi et al., 2011)) and more sharply peaked (lower simplex
entropy), while the overall action variance from the policy also declines. This trend is consistent
with SEM’s design, where the block-wise softmax promotes competition and selective activation.
As a result, the module imposes structured, energy-preserving constraints on its layer, encouraging
more decisive feature usage and reducing noise in the downstream policy mapping.

Interestingly, this pattern also resonates with prior work in RL and representation learning.
Hernandez-Garcia & Sutton (2019) show that enforcing sparsity in representations can improve
robustness and mitigate interference in Q-learning settings. Moreover, recent studies on sparse ar-
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Fig. 7: Aggregated average return on 5 HumanoidBench tasks. We constrain the encoder’s out-
put of the actor. (left) SEM outperforms alternative methods to impart structure on the encoder’s
output. (middle) Effect of varying L. Small L generally leads to better return given enough repre-
sentation capacity. (right) Effect of varying V. Large V' generally leads to better returns.

chitectures in deep RL such find that appropriately structured sparsity can enhance training stability
and efficiency (Graesser et al., 2022; Ceron et al., 2024b;a; Ma et al., 2025).

Comparing SEM to other Regularization Methods To contextualize the benefits of simplicial
embeddings, we compare SEM to alternative methods to induce structure on the encoder’s output.
We compare SEM to commonly used methods for learning discrete explicit representations: Gumbel
+ straight-through (Jang et al., 2017; Maddison et al., 2017) and Vector Quantization (van den Oord
et al., 2018). We also compare SEM to C-RELU (Abbas et al., 2023) which have been shown to
improve the representation’s stability. We present the results in Fig. 7 (left) and find SEM to be more
efficient and to lead to higher return than alternative methods. We conjecture that such improvement
over Gumbel + ST and Vector quantization can be attributed to the fact that SEM does not necessitate
the use of the straight-through estimator.

Analyzing SEM Parameters in Deep RL  Lavoie et al. (2023) highlighted the effect of the sim-
plex dimensionality V' and number of simplices L, which jointly control sparsity and capacity of
the representation. Investigating these parameters in deep RL is essential to understand how SEM
balances representation capacity and stability under non-stationary training, and whether the same
tradeoffs observed in self-supervised representation learning extend to RL. We study the effect of
varying V' and L in Fig. 7 (middle and right, respectively). We find that increasing V' generally
improves performance, but only up to a certain point. On the other hand, we find that providing too
much free capacity by increasing L deteriorates the returns, suggesting that restricting the represen-
tation capacity is crucial.

FastTD3 Design Choices and Simplicial Embeddings. FastTD3 extends TD3 with several de-
sign choices that improve throughput and stability, including parallel simulation, large-batch train-
ing, and distributional critics (Seo et al., 2025). These modifications enable actor—critic learning to
scale efficiently in wall-clock time, but they do not address the geometry of the learned representa-
tions. In this section, we analyze how SEM complements FastTD3 by regularizing representation
space and evaluate its effectiveness across the algorithmic design choices. In Fig. 8, we observe
that SEM outperforms the baseline even when the agent is trained with reduced data availability
(fewer environments, smaller replay buffers, or smaller batch sizes). Comparable gains also appear
when algorithmic design choices such as CDQ and C51 are removed. These results demonstrate the
robustness of SEM across both data-limited and simplified agent settings.
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Fig. 8: Effect of core design choices on FastTD3 with and without SEM. SEM (solid green) con-
sistently improves sample efficiency and asymptotic return across all settings, showing robustness
to both hyperparameter variation and architectural design choices.

5 EMPIRICAL EVALUATION

We further evaluate the effectiveness and generality of SEM across a diverse set of deep RL al-
gorithms and environments. Our study spans both off-policy and on-policy methods, including
FastTD3, FastTD3-SimBaV2, FastSAC (Seo et al., 2025), and PPO (Schulman et al., 2017). Ex-
periments are conducted on challenging humanoid benchmarks (28-hlhand tasks), (Sferrazza
et al., 2024), IsaacLab (Mittal et al., 2023), IsaacGym suite (Makoviychuk et al., 2021), MTBench
(Joshi et al., 2025), and the Atari-10 suite (Aitchison et al., 2023), covering both continuous-control
and pixel-based settings. Following prior work (Seo et al., 2025; Castanyer et al., 2025), we evalu-
ate continuous-control tasks with six seeds and Atari results with three seeds, and aggregate perfor-
mance across environments is reported. Full environment details and hyperparameter configurations
are provided in App. G.

Fast Actor—Critic Algorithms. We first evaluate SEM on the HumanoidBench benchmark us-
ing three recent fast actor—critic baselines: FastTD3, FastTD3-SimBaV2, and FastSAC (Seo et al.,
2025). These algorithms represent compute—efficient variants of TD3 and SAC, designed to scale
with parallel simulation while maintaining strong performance on high—dimensional humanoid con-
trol. FastTD3-SimBaV2 incorporates hyperspherical normalization and reward scaling to acceler-
ate critic training and stabilize optimization (Lee et al., 2025); and FastSAC adapts the entropy—
regularized SAC framework with similar throughput—oriented design choices, achieving high paral-
lel efficiency while preserving training stability.

Across all three baselines, integrating SEM into the actor consistently accelerates early learning
and improves asymptotic return. As shown in Fig. 9, SEM agents not only converge faster than
their respective baselines, but also maintain lower variance across seeds. These results demonstrate
that SEM provides complementary benefits to fast actor—critic methods, enhancing both stability
and sample efficiency without modifying their underlying optimization procedures (see App. H for
per-task learning curves). We also evaluate FastTD3 on 12-h1, 12-gl tasks and 10-IsaacGym
tasks, where a similar pattern is observed, as shown in App. L.

Proximal Policy Optimization Algorithm. To evaluate the generality of SEM beyond off-policy
methods, we integrate it into PPO (Schulman et al., 2017), a popular on-policy method, using the
CleanRL implementation (Huang et al., 2022). We evaluate SEM on two distinct benchmarks, Isaac-
Gym for continuous control and the ALE (Bellemare et al., 2013) for pixel-based discrete control
in Atari games. In both domains, SEM improves PPO by accelerating convergence and increas-
ing final returns. The per-environment learning curves are shown in Fig. 18. Aggregate results are
summarized in Fig. 10, with the left panel showing performance gains on the Atari-10 suite and the
middle panel showing improvements on the IsaacGym tasks. These results demonstrate that SEM’s
benefits are not limited to TD3-style critics but extend to policy-gradient methods and vision-based
RL, underscoring its broad applicability.
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Fig. 9: SEM on fast actor—critic algorithms. Average normalized return on HumanoidBench with
FastTD3 (left), FastTD3—-SimBa (middle), and FastSAC (right). SEM consistently improves sample
efficiency and yields higher final performance across all algorithms.
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Fig. 10: Performance of PPO with and without SEM across tasks. Left: PPO on the Atari-10 suite
(pixel-based). Center: PPO in IsaacGym. Right: MTBench MT50 (robotics tasks) comparing
FastTD3. Applied SEM accelerates learning and improves return over the baseliens.

Multitask Deep RL. Recent work by Joshi et al. (2025) introduced a large-scale benchmark for
multi-task reinforcement learning (MTRL) in robotics. Implemented in IsaacGym, this benchmark
comprises over seventy robotic control problems spanning both manipulation and locomotion, with
subsets such as MT50 focused on manipulation. We compare FastTD3 (Seo et al., 2025) to its
SEM-augmented variants (+SEM). As shown in Fig. 10 (right), +SEM improves sample efficiency,
achieving faster learning and higher returns within the same training budget.

6 DISCUSSION

Our results demonstrate that geometric priors on representation space can substantially improve
the efficiency of deep RL agents. By constraining features to a product of simplices, SEM yields
bounded and sparse embeddings that avoid feature collapse and neuron dormancy under non-
stationarity. This lightweight inductive bias requires no auxiliary losses, adds effectively zero com-
putational cost (see Table 2), and consistently improves sample efficiency and asymptotic return
across various actor—critic methods and a diverse set of benchmarks.

Unlike existing model-based approaches in RL which use discrete state-embeddings (Hansen et al.,
2023; Hafner et al., 2020; 2023; Scannell et al., 2025), SEM does not require auxiliary objectives or
additional networks. Surprisingly, we find that the benefits of SEM are most pronounced when ap-
plied to the actor’s penultimate layer, where feature geometry most directly shapes policy gradients.
Our analyses indicate that SEM alleviates several optimization difficulties in deep RL (Moalla et al.,
2024; Juliani & Ash, 2024). By preserving effective rank, bounding feature norms, and reducing
critic disagreement, SEM provides more reliable gradients and stabilizes the bootstrapped targets
that often undermine critic training. These effects highlight representation geometry as a simple but
powerful lever for stabilizing learning under non-stationarity.

Limitations and Future Work. SEM is not a universal remedy. In tasks with extreme distribution
shift or very sparse rewards, feature collapse and critic drift may still occur, and SEM introduces
hyperparameters (L, V, 7) that require light tuning to balance sparsity and capacity. Moreover, our
experiments focus on continuous control and Atari; its impact on large-scale vision or language-
conditioned RL remains untested. Future work should investigate adaptive schedules for (L, V, 7),
and integration in more general-purpose algorithms such as MR.Q (Fujimoto et al., 2025), which
combine multiple objectives and scale across domains. Another direction is to examine whether
SEM benefits value-based algorithms, and to explore both its potential for scaling network architec-
tures (Ceron et al., 2024a) and its interaction with architectural priors (e.g., MoEs, Residual Nets)
(Ceron et al., 2024b; Castanyer et al., 2025; Kooi et al., 2025).
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A RELATED WORK

Stability in Deep RL A longstanding challenge in reinforcement learning is the stability of value-
based updates in actor—critic methods. One major source of instability is overestimation bias, which
accumulates when bootstrapped critics reinforce overly optimistic targets. Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018) mitigates this issue with clipped double Q-learning and delayed pol-
icy updates, producing more reliable critics and improving control performance. Another direction
seeks to stabilize targets by modeling full return distributions rather than point estimates. Distri-
butional RL methods such as C51 (Bellemare et al., 2017), QR-DQN (Dabney et al., 2018b), and
IQN (Dabney et al., 2018a) show that capturing the shape of the return distribution reduces variance
and provides richer learning signals.

More recently, architectural choices have been used to enhance critic stability. SimBa (Lee et al.,
2025) biases networks toward simpler and well-conditioned representations through input normal-
ization, linear residual paths, and feature normalization, helping large models avoid divergence.
Training regimens also play a role: SR-SPR (D’Oro et al., 2022) demonstrates that periodic network
resets counteract bootstrapping drift, allowing agents to sustain extremely high replay ratios without
collapse. FastTD3 (Seo et al., 2025) integrates several of these lessons, combining parallel simu-
lation, large-batch updates, and distributional critics to achieve strong stability at high throughput.
Our approach is complementary to these efforts. Rather than modifying update schedules or ensem-
ble targets, we constrain the geometry of latent representations, aiming to reduce critic variance and
stabilize bootstrapped updates through structured embeddings.

Sample-Efficient RL Beyond stability, a parallel line of work targets sample efficiency, with
progress spanning both representation-driven methods and algorithmic or model-based improve-
ments. Representation learning has emerged as a powerful way to extract more information per
interaction. CURL (Laskin et al., 2020) applies contrastive learning to enforce invariances in en-
coders trained jointly with the control objective, significantly narrowing the gap between pixel- and
state-based agents. SPR (Schwarzer et al., 2020) extends this idea with self-predictive latent dynam-
ics, ensuring temporal consistency and yielding state-of-the-art data efficiency on Atari. Building
on SPR, SR-SPR (D’Oro et al., 2022) adds scheduled resets that prevent drift and enable aggressive
replay-ratio scaling. Other works inject architectural biases: SimBa (Lee et al., 2025) improves
generalization by embedding simplicity constraints into network layers, while For SALE (Fujimoto
et al., 2023) enriches the representation space with state—action embeddings, producing TD7, which
substantially outperforms TD3 in continuous control. Outside of RL, simplicial embeddings (Lavoie
et al., 2023) show that constraining features to products of probability simplices induces sparse,
group-structured representations that generalize effectively in supervised and self-supervised set-
tings and leads to a compositional representation (Ren et al., 2023; Lavoie et al., 2025). We draw
inspiration from this idea and adapt it to reinforcement learning, inserting simplicial modules into
fast actor—critic pipelines.

Algorithmic and model-based approaches provide another path to efficiency. Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) introduces maximum-entropy RL, balancing reward and exploration to
achieve robust and data-efficient learning in continuous control. Model-based algorithms further im-
prove efficiency by planning with learned dynamics. TD-MPC2 (Hansen et al., 2023) demonstrates
that latent-space model predictive control scales effectively across diverse domains, achieving state-
of-the-art performance with a single set of hyperparameters. EfficientZero (Ye et al., 2021) combines
MuZero-style search with learned latent dynamics, reaching human-level Atari performance with or-
ders of magnitude fewer environment steps. Our method differs from these approaches by focusing
on representation geometry: rather than auxiliary losses, ensembles, or world models, we show
that a single simplicial bottleneck can consistently improve the sample efficiency of fast actor—critic
algorithms while preserving their hallmark wall-clock advantages.

Structured representation in RL  Constraining the encoder’s output is common in RL. C-ReLU
has been shown to improve training and plasticity (Abbas et al., 2023). Feature normalization with
L2 regularization of the features also improves training scalability and enables larger scale training
of RL models. Closer to our work, DreamerV2 (Hafner et al., 2020) and DreamerV3 (Hafner et al.,
2023) encode the observation into a one-hot discrete representation work. Scannell et al. (2025) also
learn discrete latent space via a learned codebook and gumbel softmax with straight-through esti-
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mator. (Wabartha & Pineau, 2024) also propose to learn discrete encoding of the state for policy
learning and show interpretable representations. However, methods with explicit discretization ne-
cessitate the use of a biased gradient estimator to propagate the learning signal inside the encoder.
Similar to our work, Hansen et al. (2023) constrain the encoder’s output into SEM. In this work,
we find that SEM is a crucial component for improving sample efficiency and performance in RL
and study that component in details and connect the improved performance to the improved training
stability coming from the sparse and structured representation endowed by SEM.

B FORMAL ANALYSIS

Theorem 1. Non-stationarity increases neuron dormancy.

Proof. Let D, be the data distribution at iteration ¢ and consider a critic fo(x) = W hg(z), trained
by minimizing the (mean) squared error to targets y;(x):

£4(0) = Eanp, [ (folw) = ni(@))”] . @

Define the minimizer 6} € arg ming £:(0) and tracking error e; = 6; — 0. A first-order expansion
of SGD around 6} gives

€41 ~ (I — OéHt) €t — O(bt, Ht = V2£t(9:), bt = V£t+1(9;”), (5)

where b, = 0if D1 = Dy, but by # 0 under drift. This shows that the optimizer must continually
track a moving minimizer, which destabilizes learned features. Let z = hy(x) € R? with covariance

_ I=d%
1213

¥y = Covyep, (2) = B[22 ] — E[2]E[2] T, srank(X;) (6)

In the stationary case, ¥; — X with a large stable rank, preserving feature diversity. Under non-
stationarity, the drift term in equation 5 induces oscillations in ¥ and systematic covariance defla-
tion (drop in srank), a hallmark of collapse. When representations collapse (covariance deflation;
equation 6), feature energy shrinks. For a linear head,

E[IVwLE] < 4E[6F] tr(Se), & = folz) — pu(a), )

so smaller tr(3;) directly yields smaller gradients and slower learning. With ReLU features z =
o(a), the backprop signal through unit j is gated:

0L,

0Lt 1oy >0} (VLiey) = EUB‘
aaj !

2
] <piE[IIV.L43] 3

where p;; = Pr(a; > 0) and e; is the j-th basis vector. Non-stationary drift (equation 5) reduces
pj+ and Var(z;); together with lower tr(X;), this shrinks per-unit updates and increases neuron
dormancy (Sokar et al., 2023).

O

C BENCHMARKS

C.0.1 IsAACc GYM

For our experiments, we used the original Isaac Gym benchmark, which provides pre-built stand-
alone environments and runs entirely on the GPU via a PhysX backend. This setup enables both
physics simulation and neural network policy training on the GPU, offering high-throughput evalu-
ation. Although Isaac Gym is deprecated, we used it to ensure reproducibility, specifically running
the PPO algorithm from CleanRL on tasks spanning locomotion, robotic hands, and cube stacking
(See Figure 11). To reproduce this task, we follow the PPO hyperparameters from CleanRL for
Isaac, as presented in Table 3.
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Fig. 11: Environment Visualizations. We evaluate SEM across three benchmark suites such as
Isaac Gym, HumanoidBench, and Atari. The first two cover state-based locomotion/manipulation;
Atari introduces pixel-based games of varying complexity.

C.0.2 HUMANOIDBENCH

In our experiments, we used the Humanoid Benchmark, a suite of tasks for evaluating humanoid
robot control across locomotion and manipulation, implemented on the MuJoCo physics engine.
We focused on three robot configurations: the Unitree H1 without hands (26 DoF), the Unitree H1
with hands (76 DoF), and the Unitree G1 with three-finger hands (44 DoF). The benchmark defines
27 core tasks, and additionally, sit, balance, and bookshelf are each implemented in both simple and
hard variants, while insert is implemented in small and normal configurations. This brings the total
to 31 tasks. Our evaluations covered locomotion challenges, including walking, running, crawling,
stair climbing, and balancing, and whole-body manipulation tasks such as opening doors, lifting
packages, operating kitchen objects, and performing insertions. Together, these tasks provided a
diverse and rigorous testing ground for our study of humanoid control (See Figure 11). To reproduce
this task, we follow the fastTD3 hyperparameters (Seo et al., 2025), as presented in Table 4.

C.0.3 ATARI

We conducted experiments in pixel-based reinforcement learning using the Atari-10 benchmark, a
smaller subset of the Atari suite often reduced to 10-26 games. For our setup, we ran 27 Atari
games across different difficulty levels, training with PPO from CleanRL as the baseline algorithm
(See Figure 11).

C.0.4 MTBENCH

In our experiments, we used the Multi-Task Benchmark for Robotics, an open-source suite built on
the GPU-accelerated Isaac Gym simulator. Specifically, we worked with the 50 manipulation tasks
adapted from Meta-World, where a single-armed robot interacts with one or two objects through
actions such as pushing, picking, and placing. Each task provides parametric variations in object
initialization and target positions, adding diversity and complexity. For evaluation, we adopted the
MTS50 setting, which encompasses the full set of 50 tasks.

D DEEP RL NETWORK ARCHITECTURES

D.0.1 MLP

We modified the FastTD3 architecture, specifically in the actor—critic design, where both net-
works are implemented as multilayer perceptrons (MLPs). The critic receives concatenated ob-
servation—action inputs, while the actor processes only the observations. In both cases, the
inputs first pass through two linear layers with ReLU activations. At this point, we intro-
duced the SEM mechanism, which can be enabled or disabled, and applied selectively to the
actor, the critic, or both. For the critic, if SEM is not used, the representation is processed
by a sequence of Linear-+ReLU-Linear layers, with the final linear layer outputting di-
mension num_atoms. If SEM is enabled, the sequence becomes SEM-~Linear, again pro-
ducing an output of size num_atoms. For the actor, the representation without SEM follows
a Linear-RelLU-Linear-Tanh sequence, while with SEM it follows SEM~Linear-Tanh,
where the final Tanh ensures bounded continuous actions. In Table 1, we present the fixed hyper-
parameters used across all environments. Other hyperparameters, such as num_atoms or num_eny,

20



Under review as a conference paper at ICLR 2026

Table 1: Default hyper-parameters setting for actor-critic MLP

Hyper-parameter  Value
Critic Hidden Dim 1024
Actor Hidden Dim 512
Critic Learning Rate  3e-4
Actor Learning Rate  3e-4

varied depending on the environment, in which case we adopted the values proposed by (Seo et al.,
2025).

D.0.2 CNN

For our pixel-based experiments, we modified the PPO implementation from CleanRL, which fol-
lows an actor—critic design. The shared backbone consists of three convolutional layers, each
followed by a ReLU activation, producing a flattened representation that is then processed by a
two-layer MLP with ReLU activations. This representation is used by both the actor and the
critic. In our intervention, we introduced the SEM block into the actor: when enabled, the rep-
resentation passes through the SEM block before a final linear layer; when disabled, it follows a
Linear-ReLU-Linear sequence. The critic remains unchanged, while the actor architecture is
varied depending on the use of SEM. We adopted the PPO hyperparameters for Atari from CleanRL
(Huang et al., 2022), as summarized in Table 5.

E ABLATION SETUP

Given our constrained computational budget, we performed experiments on a subset of Hu-
manoidBench, consisting of five robotics tasks. These tasks are part of the benchmark evaluated
with FastTD3 (Seo et al., 2025) and correspond to hlhand-{walk, stand, run, stair,
slide}-vO0. All ablation experiments were conducted on this subset using six random seeds.
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Flg 12: Effect of core hyperparameters. SEM Actor compared to the baseline across (left) number
of parallel environments, (middle) replay buffer size, and (right) batch size. SEM consistently scales
better and achieves higher returns.
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Flg 13: Robustness to design choices. SEM Actor vs. basellne across (left) clipped double Q-

learning, (middle) distributional critic (C51), and (right) exploration noise scale.

robust, while the baseline is more sensitive.
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F METRICS

To better understand the dynamics of training and the quality of learned representations, we report
a diverse set of metrics beyond standard returns. These measures capture complementary aspects
of learning, including representation diversity, network expressivity, parameter stability, gradient
behavior and sampling efficiency. Results of these analyses are provided in section 4.

F.1 FEATURE RANK

This metric assesses the quality of learned representations in deep RL by identifying the smallest
subspace that retains 99% of the variance, thereby enhancing interpretability, efficiency, and sta-
bility. A higher feature rank indicates more diverse representations. The computation follows the
approximate rank from (Yang et al., 2019; Moalla et al., 2024):

where o; are the singular values of the feature matrix, n is the total number of singular values,
and 7 is the variance threshold (e.g., 99%). The feature rank £ is the smallest number of principal
components required to preserve at least 7 of the total variance.

F.2 DORMANT NEURONS

This metric quantifies the proportion of neurons with near-zero activations, which limits the net-
work’s expressivity. It serves to detect inefficiencies in learning, as a high proportion of dormant
neurons implies that many units are inactive or rarely contribute to the output. The computation
follows (Sokar et al., 2023):

N
> im1 Lail <€)
N

where NV is the total number of neurons, a; is the activation of neuron ¢, € is a small threshold (e.g.,
107?), and 1 is the indicator function.

x 100,

F.3 WEIGHT NORM

This metric measures the magnitude of neural network weights, providing insight into model com-
plexity, stability, and overfitting risk. Large weight norms indicate parameters with high magnitudes,
which may hinder generalization. The metric is computed as in (Moalla et al., 2024; Lyle et al.,

2021):
Il = /> 62,

where 0; are the weights of a given layer.

F.4 GINI SPARSITY

The Gini metric is used to quantify the sparsity of neural representations. A high Gini value indicates
a sparse representation, where only a few neurons are strongly active while most remain near zero;
this often improves interpretability, makes more efficient use of network capacity, and can help
reduce overfitting. In contrast, a low Gini value corresponds to dense representations, where many
neurons are active simultaneously, allowing the network to capture richer information but often
at the cost of reduced interpretability and potentially noisier features. In practice, we observed a
direct relationship between the Gini metric and the return when using SEM, with better performance
associated with higher Gini values. The Gini value is computed using the following equation.

1 2 -
G =1+-— Z(Tl"r‘l—i)v(i)

- ——
n n Zi:l Ui i=1
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where where
v= (|$1|, |l‘2|, ) ‘an

It is the vector of all activations, taken in absolute value and stacked into one vector. The Gini metric
has been explored in the papers (Hurley & Rickard, 2009; Zonoobi et al., 2011).

F.5 CRAMER DISTANCE

The Cramér distance is defined as the squared L, distance between the cumulative distribution
functions (CDFs) of two probability distributions. When the distributions are similar, their CDFs
overlap closely and the Cramér distance approaches zero. Conversely, when the distributions differ,
the CDFs diverge and the distance increases. In practice, a lower Cramér distance indicates that
the learned distribution is closer to the target distribution, which is desirable. Empirical results
also suggest a correlation between lower Cramér distance and improved returns. This measure is
computed using the following equation:

n

D amer(P1:p2) = Z (Fp1 (zj) — Fp, (zj)>2 Az

j=1

where p; and p, are probability distributions, and F}, , [},, denote their corresponding cumulative
distribution functions (CDFs).

F.6 ENTROPY

This metric measures the average entropy of the representations. High entropy indicates that the
representation is more dispersed, less concentrated, and carries more uncertainty. Low entropy
corresponds to a more concrete representation, with higher sparsity. In practice, we observe a re-
lationship where lower entropy is associated with better returns and a higher Gini measure. This
metric is defined by the following equation.

Di,j

Pig = Dok Dik e

B
1
entropy = B g - E pijlog(pi,; +¢)
i=1 j

where B is the batch size, and p is the non-negative representation normalized to form a probability
distribution.

G HYPERPARAMETERS

Table 2: Wall-clock training time (hh:mm) for the actor on the H1-hand humanoid benchmark under
default settings. We compare FastTD3 and FastTD3+SEM; lower is better.

Actor
Game FastTD3  FastTD3+SEM
hlhand-walk 2:31h 2:42h
h1lhand-stand 2:29 h 2:20h
hlhand-run 2:46 h 2:34 h
hlhand-stair 4:09 h 4:13h
hlhand-slide 5:35h 5:24 h
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Table 3: Default hyperparameter settings for the PPO agent on Isaac Gym.

Hyper-parameter Value
Adam’s (¢) le-5
Adam’s learning rate 2.6e-3
Dense Activation Function Tanh
Dense Width 256
Discount Factor 0.99
Number of Dense Layers 3
Number of environments 4096

Table 4: Default hyperparameter settings for the fastTD3 agent on the humanoid bench.

Hyper-parameter Value
Critic Hidden Dim 1024
Actor Hidden Dim 512
Critic Learning Rate 3e-4
Actor Learning Rate 3e-4
Discount Factor 0.99

Dense Activation Function ReLU
Number of Dense Layers 4
Number of environments 128
Number of atoms 101

Table 5: Default hyperparameter settings for the PPO agent on Atari.

Hyper-parameter Value
Adam’s (¢) le-5
Adam’s learning rate 2.5¢e-4
Conv. Activation Function ReLLU
Convolutional Width 32,64,64
Dense Activation Function ReLU
Dense Width 512
Normalization None
Discount Factor 0.99
Number of Convolutional Layers 3
Number of Dense Layers 2
Reward Clipping True
Weight Decay 0

H LEARNING CURVES FOR EACH GAME

To complement the aggregate results reported in the main text (see section 4 and section 5), we
provide full learning curves for each environment in the benchmark. These plots illustrate training
dynamics across seeds and highlight differences in sample efficiency and stability between +SEM
and its corresponding baseline (FastTD3/FastTD3-SimbaV2/FastSAC). The set of robotics tasks
follows those used in the FastTD3 benchmark (Seo et al., 2025).
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per subplot for readability. SEM (Actor) consistently accelerates learning and achieves higher or
comparable final returns on most tasks.
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for readability. SEM (Actor) generally accelerates learning.
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Fig. 17: Learning curves on 28 hlhand tasks (Sferrazza et al., 2024). FastTD3 (blue, - -)
vs. + SEM (Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are

independently scaled per subplot for readability. SEM (Actor) typically achieves faster learning and
equal or higher final return on most tasks.
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Fig. 18: Learning curves on Atari game (Aitchison et al., 2023). PPO (blue, - -) vs. + SEM
(Actor) (green, —). Curves show the mean episode return across 3 seeds. SEM (Actor) typically

achieves faster learning and equal or higher final return on most tasks.
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I ADDITIONAL EXPERIMENTS ON HUMANOIDBENCH

We evaluate +SEM beyond the tasks proposed in FastTD3 by considering additional environments
from the Humanoid benchmark (Sferrazza et al., 2024). These experiments assess the scalability of
SEM across different robot morphologies and task sets. We include environments featuring the H1
robot without hands and the Unitree G1 with three-finger hands.
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Fig. 19: Learning curves on 16 h1 tasks (Sferrazza et al., 2024). FastTD3 (blue, - -) vs. + SEM
(Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently

scaled per subplot for readability. SEM (Actor) typically achieves faster learning and equal or higher
final return on most tasks.
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Fig. 20: Learning curves on 20 g1 tasks (Sferrazza et al., 2024). FastTD3 (blue, - -) vs. + SEM
(Actor) (green, —). Curves show the mean episode return across 6 seeds. Axes are independently

scaled per subplot for readability. SEM (Actor) typically achieves faster learning and equal or higher
final return on most tasks.
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