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ABSTRACT

Methane is a powerful greenhouse gas that contributes significantly to global
warming. Accurate detection of methane emissions is the key to taking timely
action and minimizing their impact on climate change. We present AttMetNet, a
novel attention-enhanced deep learning framework for methane plume detection
with Sentinel-2 satellite imagery. The major challenge in developing a methane
detection model is to accurately identify methane plumes from Sentinel-2’s B11
and B12 bands while suppressing false positives caused by background variabil-
ity and diverse land cover types. Traditional detection methods typically de-
pend on the differences or ratios between these bands when comparing the scenes
with and without plumes. However, these methods often require verification by
a domain expert because they generate numerous false positives. Recent deep
learning methods make some improvements using CNN-based architectures, but
lack mechanisms to prioritize methane-specific features. AttMetNet introduces
a methane-aware architecture that fuses the Normalized Difference Methane In-
dex (NDMI) with an attention-enhanced U-Net. By jointly exploiting NDMI’s
plume-sensitive cues and attention-driven feature selection, AttMetNet selectively
amplifies methane absorption features while suppressing background noise. This
integration establishes a first-of-its-kind architecture tailored for robust methane
plume detection in real satellite imagery. Additionally, we employ focal loss to
address the severe class imbalance arising from both limited positive plume sam-
ples and sparse plume pixels within imagery. Furthermore, AttMetNet is trained
on the real methane plume dataset, making it more robust to practical scenarios.
Extensive experiments show that AttMetNet surpasses recent methods in methane
plume detection with a lower false positive rate, better precision recall balance,
and higher IoU.

1 INTRODUCTION

Methane is a potent greenhouse gas, accounting for approximately 20% of global warming since
the industrial revolution Kirschke et al. (2013). Methane emissions originate from diverse anthro-
pogenic sources, including agriculture, livestock, landfills, and the fossil fuel industry Saunois et al.
(2019). Although methane has a relatively short atmospheric lifetime compared to carbon dioxide,
it has a much higher global warming potential over a 20-year period US EPA (2016). Therefore,
mitigating methane emissions offers a fast and effective strategy to slow climate change. Recent
advancements in remote sensing technologies and multispectral imaging have enabled the identifi-
cation of methane emission hotspots, facilitating timely and targeted mitigation efforts.

Methane exhibits strong absorption features in the shortwave infrared (SWIR) region of the electro-
magnetic spectrum, specifically between wavelengths of 1600–1850 nm and 2100–2500 nm Růžička
et al. (2023). To capture data beyond the visible spectrum, several satellites equipped with multispec-
tral sensors have been developed, enabling the detection of methane signatures in these SWIR bands.
Among these, Sentinel-2 is a widely used satellite that captures imagery across 13 spectral bands
spanning the visible, near-infrared (NIR), and SWIR regions. In particular, Bands 11 and 12 (B11
and B12) of Sentinel-2 cover the relevant SWIR ranges and can be utilized to extract methane ab-
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sorption signals from observed scenes. In this paper, we propose AttMetNet, an attention-enhanced
deep neural network designed to detect methane plumes using Sentinel-2 satellite imagery.

We formulate the methane detection task from two perspectives. Our model first determines whether
an input image contains a methane plume and then generates a plume mask capturing the shape of
the actual methane plume. Thus, our work involves both classification and segmentation tasks. The
input to the model is a 12-channel raw Sentinel-2 image and the output is a single-channel plume
mask. A scene is classified as containing a plume if the predicted mask’s contiguous region of
positive pixels exceeds a defined threshold.

However, the methane detection task in satellite imagery presents several significant challenges.
First, the small and irregular shapes of methane plumes and the presence of noise in satellite images
make the detection task complicated. Diverse land cover types and spectral overlap with surface
artifacts (such as water vapor and CO2) further increase complexity. Second, plume pixels can
range from covering large areas to only a tiny fraction of satellite imagery, resulting in strong class
imbalance. Moreover, the scarcity of labeled training data poses a major limitation, as methane
plume events are rare and publicly available annotated datasets are limited. This leads to reliance on
synthetic data that causes models not to generalize well to real-world scenarios.

To address these challenges, we propose AttMetNet, the first architecture that integrates the Nor-
malized Difference Methane Index (NDMI) Webber & Kerekes (2020) with attention-based feature
selection in a unified deep learning pipeline, significantly improving detection performance. The
NDMI channel acts as a methane-sensitive input, guiding the network’s attention toward plume re-
gions and suppressing irrelevant background patterns. Simultaneously, attention gates dynamically
prioritize spatial features relevant to plumes, enabling more precise localization of irregular methane
emissions.

A key novelty of our framework lies in its integration of NDMI as an additional input channel along
with the 12-band Sentinel-2 data. In remote sensing, spectral indices are mathematical functions of
reflectance values at different wavelengths that enhance the detection of specific surface properties
by highlighting features of interest and suppressing confounding factors. For methane detection,
Sentinel-2’s B12 band overlaps with the methane absorption region, while B11 band provides a
nearby background reference. Therefore, subtracting B11 reflectance from B12 reflectance and
normalizing the result creates NDMI, a spectral approximation of the presence of methane. Although
NDMI alone is sensitive to contextual errors, we show that its incorporation into a deep learning
pipeline for methane detection is novel and effective.

The second challenge is the severe class imbalance, as plume pixels often occupy a small proportion
of satellite imagery. To minimize model bias, we employ focal loss, which assigns greater weight to
hard-to-classify or rare examples while down-weighting well-classified ones. Despite the scarcity
of real plume data, we intentionally rely on real-world data to train AttMetNet. We use the most
up-to-date multispectral dataset of recorded methane plumes. This enables the model to generalize
effectively to real satellite observations without reliance on synthetic augmentation, making it more
robust and deployable in complex real-world scenarios.

Early works Varon et al. (2021); Ehret et al. (2022); Irakulis-Loitxate et al. (2022) were based on
temporal differences and ratios between the B12 and B11 bands of Sentinel-2. These methods
compare a scene with and without a methane plume to detect its presence. However, these methods
remain highly sensitive to background context as methane absorption features can overlap with
other gases (e.g., water vapor) or surface materials. This can cause numerous false positives that
often require domain experts to verify for correct detections.

In recent works, deep learning methods have been explored to address these challenges. Most of
the deep learning models Vaughan et al. (2024); Růžička et al. (2023); Rouet-Leduc et al. (2023)
are based on the U-Net architecture and use different satellite datasets. U-Net treats all input data
equally, which is good for general segmentation tasks, but it lacks mechanisms to prioritize methane-
relevant features. Moreover, many works use synthetic datasets of simulated plumes due to the
scarce real methane emission events Groshenry et al. (2022); Rouet-Leduc et al. (2023); Rouet-
Leduc & Hulbert (2024). Models trained on such data may struggle to generalize actual methane
emissions, leading to low reliability in practical applications.

Our contributions are summarized as follows:
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• We present AttMetNet, the first methane plume detection framework that jointly integrates
NDMI with an attention-enhanced U-Net, introducing a methane-aware design that se-
lectively amplifies plume-relevant features while suppressing background noise.

• We systematically evaluate the impact of incorporating NDMI as an additional input chan-
nel and show that its integration sharpens the location of methane features and significantly
improves the detection accuracy across models.

• We address the significant class imbalance inherent in methane plume segmentation
through focal loss, demonstrating its effectiveness in handling both limited positive samples
and sparse plume pixels to enhance model sensitivity to subtle methane emission patterns.

• We train and evaluate on a curated dataset of real methane plume events, providing evidence
of model performance under real-world imaging conditions.

2 RELATED WORKS

Table 1: Comparison of related works on methane plume detection.

Reference Satellite Sensor Dataset Model
Kumar et al. (2020) AVIRIS-NG Hyperspectral Real Mask-RCNN
Groshenry et al. (2022) PRISMA Hyperspectral Synthetic U-net
Rouet-Leduc et al. (2023) Sentinel-2 Multispectral Synthetic U-net
Kumar et al. (2023) AVIRIS-NG Hyperspectral Real Detection

Transformer (DETR)
Růžička et al. (2023) AVIRIS-NG Hyperspectral Real U-net
Vaughan et al. (2024) Sentinel-2 Multispectral Real U-net
Rouet-Leduc & Hulbert (2024) Sentinel-2 Multispectral Synthetic U-net with

ViT encoder
Si et al. (2024) PRISMA, Hyperspectral Synthetic Mask-RCNN

EnMAP
Our work (AttMetNet) Sentinel-2 Multispectral Real U-net with

attention gates

Methane detection from satellite imagery often uses physics-based and statistical approaches that
rely on the absorption features of methane in specific infrared bands, such as Sentinel-2’s B11 and
B12. A widely used technique is the Multi-Band–Multi-Pass (MBMP) retrieval method Varon et al.
(2021). This method works by comparing the B11 and B12 reflectance values of the same location
taken at different times: one when a methane plume is present and another when it is not. By
analyzing the reflectance value differences across two time-frames, the method can highlight areas
where methane is likely present. However, MBMP depends on finding a suitable “clean” reference
image without a plume, which can be difficult if emissions are persistent or frequent. The method
can also produce errors due to ground surface or weather conditions which often requires domain
experts to check the validity of methane plumes. Extensions like linear background projections of
previous observations Ehret et al. (2022) or ratio-based approaches Irakulis-Loitxate et al. (2022)
have been developed to address some of these challenges, but they still struggle in areas with rapidly
changing landscapes or complex backgrounds. Matched filter methods Frankenberg et al. (2016);
Duren et al. (2019); Cusworth et al. (2021); Thompson et al. (2016); Guanter et al. (2021); Irakulis-
Loitxate et al. (2021) offer faster detection and directly estimate methane enhancements, but their
performance drops in environments like water bodies or dark surfaces where background signals are
more difficult to separate from methane plumes.

Recently, deep learning methods were used to surpass the results and shortcomings of traditional
detection methods. Especially the CNN-based U-net architecture Ronneberger et al. (2015) has been
widely applied in different research works. Groshenry et al. was the first to use U-net to generate
methane concentration maps and plume masks of PRISMA satellite scenes Groshenry et al. (2022).
Methanet proposed in Jongaramrungruang et al. (2022) used CNN for emission rate estimation of
methane plumes. Joyce et al. developed a framework to generate both plume mask and emission rate
from PRISMA satellite images Joyce et al. (2023). The models in the aforementioned works focus
on hyperspectral satellite data and use synthetic plumes for training. Rouet-Leduc et al. employed
a U-net model trained on simulated Gaussian plumes superimposed onto Sentinel-2 multispectral
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Conv 1×1
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Figure 1: Architecture of AttMetNet. NDMI is first computed from channel 11 (B11 band) and
channel 12 (B12 band) of raw 12-channel Sentinel-2 data. Then it is concatenated with the original
12 spectral channels to form a 13-channel input, which is fed into the Attention U-Net model.

imagery Rouet-Leduc et al. (2023). The usage of synthetic dataset limits generalization to real-
world conditions due to the lack of true variability in the training data. To address this, Vaughan
et al. (2024) introduces CH4Net, a U-net model trained on real Sentinel-2 plume events. But due
to scarcity of recorded Sentinel-2 plume events, the dataset is significantly small. HyperSTARCOP
and MultiSTARCOP models introduced in Růžička et al. (2023) leverage U-net architecture on
AVIRIS-NG dataset consisting of hyperspectral images of real methane plumes. Some approaches
using the Mask R-CNN model require extensive preprocessing of the input data to extract methane-
specific features before segmentation can be performed Kumar et al. (2020); Si et al. (2024). Very
few transformer-based models Kumar et al. (2023); Rouet-Leduc & Hulbert (2024) have also been
explored, but their effectiveness is restricted by the scarcity of high-quality, annotated real plume
data required for training.

Table 1 provides a concise summary of existing work on methane detection. In this work, we
introduce the use of attention gates in the U-Net model for methane detection. It enables the model to
focus more effectively on plume-related regions within a scene. Furthermore, utilizing real datasets
enhances the model’s robustness for real-world methane detection.

3 METHODOLOGY

AttMetNet is a methane-aware detection framework that integrates spectral-domain knowledge with
attention-based feature learning. We introduce the Normalized Difference Methane Index (NDMI)
as an additional input channel, enhancing methane-specific spectral signatures while suppressing
background noise (see Section 3.1). The network processes the combined multispectral input with
attention mechanisms that dynamically prioritize spatial features critical for localizing small, irreg-
ular methane plumes (see Section 3.2). To further improve sensitivity to sparse plume pixels, we
incorporate focal loss, which effectively mitigates class imbalance and enhances detection of subtle
methane emission patterns (see Section 3.3).

3.1 NORMALIZED DIFFERENCE METHANE INDEX

In remote sensing, spectral indices are commonly used for the detection of specific surface features.
The Normalized Difference Vegetation Index (NDVI) utilizes red and near-infrared bands to assess
vegetation health and biomass Rouse et al. (1973). Spectral indices are mathematical functions that
take reflectance values at specific wavelengths as input and reduce the influence of unrelated surface
elements such as soil, water, or uneven terrain, in order to highlight a particular feature of interest.

Methane shows high absorption in certain spectral bands, specifically in the Shortwave Infrared
(SWIR) region, which can be leveraged to isolate plume regions from the background. Webber and
Kerekes introduced the Normalized Difference Methane Index (NDMI), a spectral index designed
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to enhance methane plume detection in multispectral satellite imagery Webber & Kerekes (2020).
For Sentinel-2 bands, NDMI is calculated using B11 (1565 nm to 1655 nm) and B12 (2100 nm
to 2280 nm). Methane exhibits higher absorption in B12 compared to B11, while the B11 band
provides a background estimation due to its similar wavelength range. Subtracting B11 from B12
reduces background noise captured by the B11 band while preserving methane-specific features in
the B12 band, thus amplifying the spectral signature of methane. NDMI is computed as follows:

NDMI =
B12 − B11
B12 + B11

(1)

NDMI is computed for each pixel in the Sentinel-2 imagery and added as an additional channel
to the original 12 spectral bands, resulting in a 13-channel input. While the NDMI channel is not
immune to background artifacts, it provides a good approximation of methane features for a deep
learning model to learn to distinguish methane plumes from background noise. Unlike the Multi-
Band–Multi-Pass (MBMP) method Varon et al. (2021), which requires satellite images of the same
scene acquired at different times to compare plume and non-plume conditions, NDMI offers a one-
shot, computationally simple feature extraction. This helps the model focus more effectively on
methane features without adding extra computational or data acquisition overhead.

3.2 MODEL ARCHITECTURE

The core of our methane plume detection framework is built upon a U-Net architecture Ronneberger
et al. (2015). To further enhance the model’s ability to focus on methane plume regions, we integrate
attention gates into the skip connections, inspired by the work of Oktay et al. Oktay et al. (2018).
The framework is illustrated in Figure 1.

AttMetNet is a U-Net-based architecture designed to segment methane plumes from Sentinel-2 im-
agery. The input is a 128 × 128 image with 13 channels (12 spectral bands plus NDMI). The
encoder consists of four convolutional blocks, each containing two sequences of 3×3 convolutions,
ReLU activations, and batch normalization, followed by a 2 × 2 max-pooling layer. Each block
doubles the number of feature maps (64 → 128 → 256 → 512) while halving spatial dimensions
(128 → 64 → 32 → 16). The bottleneck block outputs 1024 feature maps at 8 × 8 resolution,
capturing high-level semantics. The decoder reconstructs a high-resolution segmentation mask by
progressively upsampling the encoded features (1024 → 512 → 256 → 128 → 64) using 2×2 trans-
posed convolutions. At each stage, decoder features are fused with corresponding encoder features
via skip connections enhanced by attention gates.

3.3 LOSS FUNCTION

Conv 1×1

Conv 1×1

Conv 1×1ReLU Sigmoid
Output

g

x

Figure 2: Structure of attention gate. Here, g is the gating signal
and x is the encoder feature through the skip connection.

The attention mechanism selec-
tively filters encoder features
before fusion. Each attention
gate takes the upsampled de-
coder features of the previous
layer (the gating signal) and the
corresponding encoder features
through the skip connection as
input. Both inputs are first re-
duced by 1 × 1 convolutions, combined through ReLU and another 1 × 1 convolution, and passed
through a sigmoid to produce attention weights. These weights act as soft masks, highlighting
plume-relevant regions while suppressing background noise.

The weighted encoder features are then fused with decoder features, followed by two 3×3 convolu-
tions with ReLU and batch normalization. A final 1×1 convolution with sigmoid activation outputs
the 128× 128 binary mask (Figure 2).

After attention-based fusion, concatenated features are refined by two 3×3 convolutions with ReLU
and batch normalization. The final 1×1 convolution with sigmoid activation generates the 128×128
binary mask.

Existing methane plume datasets present a high class imbalance, where positive plume instances are
scarce compared to abundant non-plume samples, and plume pixels themselves occupy only small,
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irregular regions within a scene. These factors make segmentation difficult when using standard
cross-entropy loss, which treats all pixels equally.

To mitigate this, we employ Focal Loss Lin et al. (2018), which extends cross-entropy by introducing
a modulating factor that reduces the contribution of well-classified examples and shifts focus toward
harder ones:

Focal Loss = −αt(1− pt)
γ log(pt) (2)

where pt is the predicted probability for the true class, αt is a weighting factor to give more impor-
tance to the positive class, and γ is a focusing parameter that prioritizes hard-to-classify examples.

By emphasizing difficult examples and reducing the influence of easy negatives, focal loss enhances
the model’s ability to detect subtle and irregular plume patterns, leading to improved segmentation
performance in highly imbalanced scenarios.

4 EXPERIMENTS AND RESULTS

4.1 DATASET

Due to the limited availability of recorded methane plume events, real-world datasets are typically
scarce and small in scale. To address this, we construct our dataset using the International Methane
Emissions Observatory (IMEO)’s Eye on Methane platform1 , which provides GeoJSON files con-
taining plume metadata such as capture time, location (latitude and longitude), plume mask geom-
etry, and other relevant information from six satellite sensors. From this resource, we select 1,656
plume events detected by the Sentinel-2 multispectral sensor. Using these metadata, we retrieve
the corresponding L2A reflectance data via the Sentinel Hub API2 , ensuring temporal and spatial
alignment with the detected events. All spectral bands are resampled to 20 m resolution to match
bands 11 and 12.

To complement the positive samples, we collect 4,458 negative samples (scenes without plumes),
drawn both from regions near known plume sites and from unrelated locations. This design enables
the dataset to support both targeted and generalized plume detection tasks. In total, the dataset
consists of 6,114 images.

For training, each image is cropped into 128 × 128 pixel patches, corresponding to an area of
approximately 6.55 km2 at Sentinel-2’s 20 m resolution. Random cropping is applied during training
and validation to mitigate overfitting, while center cropping is used for testing. We further compute
the Normalized Difference Methane Index (NDMI) from bands 11 and 12 and include it as a 13th
input channel. To enhance robustness, we apply additional data augmentation techniques during
training, including random rotations and Gaussian noise.

4.2 EXPERIMENT SETUP

Baselines To evaluate our framework, we compare it against several baseline methods:
MBMP Varon et al. (2021), CH4Net Vaughan et al. (2024), U-Net with Convolutional Block
Attention Module (CBAM) Woo et al. (2018), MultiResUnet Ibtehaz & Rahman (2020), and UN-
etFormer Wang et al. (2022a). MBMP and CH4Net are specifically designed for methane detection,
making them natural benchmarks for our task. CBAM has been successfully applied to various re-
mote sensing tasks Li et al. (2020); Wang et al. (2022b); Cai et al. (2023), and we include it to
evaluate its effectiveness in detecting methane. MultiResUnet is known for its ability to capture
multiscale spatial features. It is included as baseline to assess whether enhanced spatial feature
learning improves methane detection. Finally, UNetFormer, a UNet-like transformer architecture
particularly designed for remote sensing segmentation, is included to examine the performance of
data-intensive transformer models on limited multispectral datasets.

All baselines were initially trained on 12-channel Sentinel-2 data using standard binary cross-
entropy loss. To evaluate the contributions of NDMI and focal loss, we also trained an extended

1https://methanedata.unep.org
2https://www.sentinel-hub.com
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Table 2: Comparison of AttMetNet with baselines. The best performance is highlighted in bold.

Method
Scene-level metrics Pixel-level metrics

Accuracy Balanced Precision Recall F1 score FPR FNR mIoU Balanced
accuracy accuracy

MBMP Varon et al. (2021) 0.53 0.57 0.60 0.35 0.47 0.64 0.19 0.50 0.59
CH4Net Vaughan et al. (2024) 0.77 0.69 0.89 0.41 0.56 0.03 0.60 0.62 0.62
CBAM U-net Woo et al. (2018) 0.85 0.85 0.78 0.82 0.80 0.12 0.17 0.63 0.68
CBAM U-net+ 0.74 0.64 0.97 0.29 0.45 0.004 0.71 0.58 0.55
MultiResUnet Ibtehaz & Rahman (2020) 0.84 0.81 0.80 0.73 0.73 0.10 0.26 0.64 0.70
MultiResUnet+ 0.86 0.85 0.80 0.82 0.81 0.11 0.18 0.65 0.72
UNetFormer Wang et al. (2022a) 0.87 0.85 0.83 0.80 0.81 0.09 0.19 0.65 0.70
UNetFormer+ 0.83 0.80 0.83 0.67 0.74 0.07 0.32 0.61 0.66
AttMetNet (Ours) 0.89 0.88 0.83 0.86 0.85 0.09 0.12 0.66 0.75

Table 3: Performance comparison of AttMetNet with different loss functions.

Loss function
Scene-level metrics Pixel-level metrics

Accuracy Balanced Precision Recall F1 score FPR FNR mIoU Balanced
accuracy accuracy

BCE loss 0.81 0.74 0.87 0.54 0.67 0.04 0.46 0.66 0.67
Weighted BCE loss 0.87 0.85 0.84 0.80 0.82 0.07 0.20 0.65 0.73
Focal loss 0.89 0.88 0.83 0.86 0.85 0.09 0.12 0.66 0.75

version of the baselines (CBAM U-Net+, MultiResUnet+, UNetFormer+) using 13-channel input
data, where NDMI is included as an additional channel, and focal loss replaces the BCE loss.

Evaluation Metric To evaluate the performance of our methane plume segmentation model, we use
two categories of metrics: scene-level and pixel-level Vaughan et al. (2024). Scene-level metrics
evaluate the model’s performance on the classification task, determining whether a methane plume
is present in a scene. Pixel-level metrics assess the segmentation task, measuring how accurately
the predicted plume mask matches the ground truth mask. These metrics together measure the
model’s ability to detect methane plumes and maintain a balance between foreground (plume) and
background predictions. Below, we detail each category and its components.

• Scene-level metrics: An image is labeled as containing a plume if the predicted mask
includes a contiguous region larger than 90 pixels. The 90 pixel threshold is based on the
smallest plume size contained in the training dataset. Based on this binary decision, we
evaluate the model using accuracy, balanced accuracy, precision, recall, false positive rate
(FPR), and false negative rate (FNR).

• Pixel-level metrics: Predicted plume masks are compared to ground truth using metrics
such as mean intersection over union (mIoU) and pixel-wise balanced accuracy.

Training Configuration Our training set comprises 1,336 positive and 4,058 negative samples. For
each epoch, we randomly sample twice the number of negative samples compared to positive sam-
ples, resulting in an effective training set of 1,336 positive and 2,672 negative samples. This ap-
proach helps prevent overfitting and ensures robustness to varying satellite terrain conditions. The
test and validation sets contain 160 positive and 200 negative samples each, yielding an approximate
80–10–10 split for training, validation, and testing.

For training AttMetNet, we use a learning rate of 0.0001 while keeping other parameters at their de-
fault values. A plateau learning rate scheduler is employed with a decay factor of 0.5 and a patience
of 7 epochs, and the model is trained for 100 epochs in total. Due to the severe class imbalance
in our dataset, we use the focal loss function (Section 3.3). The positive class weighting factor α
is set to 0.75, and the focusing parameter γ is set to 2. These hyperparameters were determined
experimentally.

4.3 COMPARISON WITH BASELINES

Table 2 presents a comparative analysis of our model’s performance against baseline models across
scene and pixel-level metrics. The traditional MBMP method underperforms due to its statistical
design being prone to high signal-to-noise ratio and false positives, lacking adaptability to diverse
land cover types. CH4Net, specifically designed for methane detection, achieves the highest preci-
sion and lowest false positive rate but suffers from extremely low recall, missing substantial methane
emissions, which is problematic for comprehensive environmental monitoring.
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Among deep learning baselines, CBAM U-Net shows balanced scene-level performance but strug-
gles with pixel-level localization, while MultiResUnet exhibits solid pixel-level metrics but lower
scene-level accuracy due to confusion between methane signatures and background patterns. UNet-
Former achieves well-balanced performance with the second-highest F1 score but still lacks optimal
precision-recall balance.

The enhanced baseline variants (+ models) reveal insights about architectural capacity under lim-
ited data conditions. MultiResUnet+ shows significant improvement when augmented with NDMI
and focal loss, demonstrating effective utilization of our proposed components. However, CBAM
U-Net+ and UNetFormer+ show minimal improvements, suggesting that with our limited training
dataset of 1,336 positive samples, deeper architectures may struggle to effectively leverage addi-
tional spectral information due to overfitting or insufficient training data.

RGB Ground truth
Heatmap

with
NDMI

Heatmap
without
NDMI

Figure 3: Comparison of Grad-CAM
heatmaps illustrating AttMetNet activation
with and without NDMI. Adding NDMI as a
13th channel results in more focused and ac-
curate localization of target regions, as indi-
cated by the closer correspondence between
the heatmaps and ground truth.

AttMetNet achieves the best overall performance
with superior F1 score and mIoU while maintain-
ing the lowest false negative rate. Our attention-
enhanced architecture strikes an optimal balance be-
tween model complexity and data efficiency, ef-
fectively capturing methane signatures from limited
real-world examples while ensuring computational
efficiency suitable for practical satellite monitoring
applications.

4.4 ABLATION STUDY

We ablate two key design choices in AttMetNet: (i)
inclusion of NDMI as an input channel, and (ii) se-
lection of the loss function for training under severe
class imbalance.

4.4.1 EFFECT
OF NDMI (GRAD-CAM ANALYSIS)

To assess how NDMI guides spatial attention, we
employ Grad-CAM Selvaraju et al. (2020) on two
AttMetNet variants: 12-channel without NDMI and
13-channel with NDMI. Figure 3 shows that the
NDMI-enabled model exhibits compact, localized
activations aligned with ground-truth masks, while
the 12-channel model produces diffuse activations
extending beyond plume boundaries. This confirms
NDMI provides methane-relevant cues that sharpen
spatial focus and reduce false positives.

4.4.2 EFFECT OF FOCAL LOSS

Given extreme class imbalance in methane segmentation, we adopt Focal Loss Lin et al. (2018)
which down-weights easy examples and concentrates learning on hard cases. Table 3 shows BCE
yields high precision but low recall due to majority class bias. Weighted BCE improves precision-
recall trade-off through class rebalancing. Focal loss achieves the best overall performance with
highest balanced accuracy and F1 while maintaining strong recall, providing an effective solution
for severe class imbalance.

4.5 CASE STUDIES

Figure 4 presents qualitative comparisons of segmentation results from our test set across diverse
geographical regions including Turkmenistan, Algeria, USA, and Yemen. AttMetNet consistently
produces masks closely aligned with ground truth in boundary delineation and spatial positioning
across varying plume characteristics and environmental conditions. UNetFormer shows moderate
performance but tends to produce fragmented masks, while MultiResUnet performs well on larger
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4: Comparison of different model predictions for methane plumes in different geographical
regions. (a) Turkmenistan (38.5602°, 54.2129°) on 7 July 2024 (b) Algeria (28.6373°, 7.6165°) on
3 January 2024 (c) Algeria (31.7779°, 5.9951°) on 27 July 2023 (d) USA (32.1068°, -103.7154°)
on 19 February 2024 (e) USA (32.3635°, -101.3277°) on 4 September 2023 (f) Yemen (15.5641°,
45.7987°) on 2 January 2023 (g) Turkmenistan (39.4614°, 53.7766°) on 1 December 2024.

plumes but struggles with smaller formations. CBAM U-net reliably detects plume presence but ex-
hibits geometric inconsistencies, and CH4Net shows the most inconsistent performance, completely
missing plumes in multiple scenes. These representative test samples demonstrate AttMetNet’s su-
perior consistency and accuracy across diverse geographical and atmospheric conditions.

5 CONCLUSION

We introduced AttMetNet, a novel deep learning framework for methane plume detection using
Sentinel-2 satellite imagery. Built on a U-Net backbone enhanced with attention gates, AttMetNet
focuses on methane-relevant spectral features while suppressing background artifacts. The integra-
tion of the Normalized Difference Methane Index (NDMI) as an auxiliary input channel further
enhances attention to plume regions, while focal loss addresses the severe class imbalance inherent
in methane plume segmentation where plume pixels constitute only a small fraction of total imagery.

Experiments on a real-world dataset from the International Methane Emissions Observatory (IMEO)
demonstrate that AttMetNet outperforms both traditional methods and recent deep learning ap-
proaches across multiple metrics, including balanced accuracy, F1 score, and mIoU. The combina-
tion of attention mechanisms, NDMI integration, and focal loss effectively handles the challenging
class imbalance while detecting methane plumes in complex environments.

Future work will extend this framework toward quantification and prediction of methane emissions,
building upon the robust detection capabilities established in this study to enable comprehensive
emission monitoring and assessment.
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Martyn P Chipperfield, Rocı́o Barrio Guilló, Chris Wilson, and Hartmut Boesch. Using a deep
neural network to detect methane point sources and quantify emissions from prisma hyperspectral
satellite images. Atmospheric Measurement Techniques, 16(10):2627–2640, 2023.

Stefanie Kirschke, Philippe Bousquet, Philippe Ciais, Marielle Saunois, Josep G Canadell, Edward J
Dlugokencky, Peter Bergamaschi, Daniel Bergmann, Donald R Blake, Lori Bruhwiler, et al. Three
decades of global methane sources and sinks. Nature geoscience, 6(10):813–823, 2013.

Satish Kumar, Carlos Torres, Oytun Ulutan, Alana Ayasse, Dar Roberts, and BS Manjunath. Deep
remote sensing methods for methane detection in overhead hyperspectral imagery. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1776–1785, 2020.

10

https://doi.org/10.1080/01431161.2023.2257860
https://doi.org/10.1080/01431161.2023.2257860


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Satish Kumar, Ivan Arevalo, ASM Iftekhar, and BS Manjunath. Methanemapper: Spectral absorp-
tion aware hyperspectral transformer for methane detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17609–17618, 2023.

Haifeng Li, Kaijian Qiu, Li Chen, Xiaoming Mei, Liang Hong, and Chao Tao. Scattnet: Semantic
segmentation network with spatial and channel attention mechanism for high-resolution remote
sensing images. IEEE Geoscience and Remote Sensing Letters, 18(5):905–909, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection, 2018. URL https://arxiv.org/abs/1708.02002.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Bertrand Rouet-Leduc and Claudia Hulbert. Automatic detection of methane emissions in multi-
spectral satellite imagery using a vision transformer. Nature Communications, 15(1):1–9, 2024.

Bertrand Rouet-Leduc, Thomas Kerdreux, Alexandre Tuel, and Claudia Hulbert. Autonomous de-
tection of methane emissions in multispectral satellite data using deep learning. arXiv preprint
arXiv:2308.11003, 2023.

John W. Rouse, Richard H. Haas, John A. Schell, and Donald W. Deering. Monitoring the vernal
advancement and retrogradation (green wave effect) of natural vegetation. Technical report, Texas
A&M University, Remote Sensing Center, 1973. Seminal report introducing the Normalized
Difference Vegetation Index (NDVI) using Landsat ERTS-1 data.
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