
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INFLUENCING HUMANS TO CONFORM TO PREFER-
ENCE MODELS FOR RLHF

Anonymous authors

Paper under double-blind review

ABSTRACT

Designing a reinforcement learning from human feedback (RLHF) algorithm for
learning from preferences requires assuming a preference model, sometimes im-
plicitly. A preference model that poorly describes how humans generate prefer-
ences risks learning a poor approximation of the human’s unobservable reward
function. In this paper, we conduct three human studies to assess whether one
can influence the expression of real human preferences to more closely conform
to a desired preference model. Importantly, our approach does not seek to alter
the human’s unobserved reward function. Rather, we change how humans use
this reward function to generate preferences, such that they better match whatever
preference model is assumed by a particular RLHF algorithm. We introduce three
interventions: showing humans the quantities that underlie a preference model,
which is normally unobservable information derived from the reward function;
training people to follow a specific preference model; and modifying the prefer-
ence elicitation question. All intervention types show significant effects, provid-
ing practical tools to improve preference data quality and the resultant alignment
of learned reward functions. Overall we establish a novel research direction in
model alignment: training humans and designing interfaces to increase human
conformance with the assumptions of the algorithm that will learn from their in-
put.

1 INTRODUCTION

Q: How can we reduce the mismatch 
between these two?

preferences 
sampled

preference 
dataset

reward learning

A: By designing interfaces to influence the
human’s towards

Figure 1: Our proposed method of influencing human preferences.

Aligning agent behavior
with human preferences is
a central goal of rein-
forcement learning from
human feedback (RLHF).
This process generally as-
sumes a model of human
preferences, which defines
a probability distribution
over a human’s rankings of
pairs of trajectory segments
based on their reward func-
tion, which the RLHF algo-
rithm cannot observe.

Prior work has explored different choices for this preference model and provided evidence that the
more aligned the RLHF algorithm’s preference model is with how humans generate preferences, the
more aligned the resulting reward function is (Knox et al., 2022). An unsuitably specified preference
model may fundamentally limit the alignment of the learned reward function. Most work assumes
that human preferences arise probabilistically from partial return, the sum of rewards over a trajec-
tory segment. By this assumption, humans presented with two trajectory segments tend to prefer
the one that accrues greater reward, as measured by their reward function (Christiano et al., 2017;
Ouyang et al., 2022). Other work has challenged whether partial return is a sufficiently descriptive
model of human preferences and proposed alternative models of human preference (Knox et al.,
2022; Kim et al., 2023). We instead take a prescriptive approach to learning from human prefer-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ences. Specifically, we propose designing training and preference elicitation interfaces to influence
humans to better conform to a chosen preference model. We test influencing humans towards the
partial return preference model or regret preference model, which is based on each segment’s devi-
ation from optimality (Knox et al., 2022). See Figure 1 for a visual summary of our interventions.

We introduce three methods and evaluate the ability of each to influence humans towards these two
different preference models. First, in the Privileged experiment we present subjects with calcula-
tions of regret or partial return for each segment during preference elicitation, thus providing the
information needed to exactly follow the target preference model. This first intervention is merely
a proof of concept, since it requiress knowledge of the reward function. In contrast, the next two
methods can be deployed in practice. Second, in the Trained experiment we train humans to follow
a specific preference model. Third, in the Question experiment we change only the question asked
during preference elicitation. The first two methods result in significantly more conformance with
either target preference model. The third method also increases conformance with either preference
model, but significant effects are only observed when targeting the partial return preference model.

At a high level, we contribute a straightforward approach to improving model alignment: training
humans and designing interfaces to increase human conformance with the assumptions of the al-
gorithm that learns from their input. Our experiments yield guidance for RLHF practitioners and
lay groundwork for future research at the intersection of interface design and learning from human
input, RLHF especially. The code for all computational experiments and interfaces for collecting
preferences, as well as the collected datasets of human preferences, are attached with this submission
and will be made public upon publication.

2 RELATED WORK

2.1 LEARNING FROM HUMAN PREFERENCES

Extensive research has explored learning from human preferences for RLHF. This research includes
RLHF approaches that explicitly learn a reward function (Christiano et al., 2017; Ibarz et al., 2018;
Sadigh et al., 2017; Lee et al., 2021a;b; Ziegler et al., 2019; Ouyang et al., 2022; OpenAI, 2022;
Bıyık et al., 2022; Wang et al., 2022; Bai et al., 2022; Glaese et al., 2022; Knox et al., 2022; Touvron
et al., 2023; Ethayarajh et al., 2024) and other approaches that directly learn a policy or advantage
function from human preferences (Rafailov et al., 2024; Knox et al., 2024; Hejna et al., 2023).
All algorithms in the works cited above assume one of the two models of human preference that
this paper focuses on. Our investigation of how to increase human conformance with the assumed
preference model is compatible with and strengthens this past research.

2.2 MODELING HUMAN PREFERENCES

Other research has sought agent alignment by developing preference models that better model hu-
man preferences, such as by assuming that human preferences arise from a segment’s regret (Knox
et al., 2022) or weighted sum of non-Markovian rewards (Kim et al., 2023), instead of a segment’s
sum of Markovian rewards as is commonly assumed. However, improving the preference model still
results in some gap between the preference model and actual human preferences, which are subject
to difficult-to-model confounding factors and individual differences. Our research seeks to close this
gap for whatever preference model is chosen.

Further, even if we had a perfect descriptive model of how all humans generate preferences, we
may want preferences to be generated by a different preference model that permits more tractable
algorithms, greater sample efficiency, or some theoretical guarantees. The methods we introduce
can also help in these settings.

3 PRELIMINARIES: PREFERENCE MODEL CHOICES

When influencing human preferences, we analyze two preference models: partial return and regret.
In this section, we explain the assumptions encoded in each preference model and how each can be
used in RLHF.
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Consider a Markov decision process (MDP) that represents the task environment using a tuple (S, A,
T , �, D0, r). S and A are the sets of possible states and actions, respectively. T : S⇥A ! p(·|s, a)
is a transition function; � is the discount factor; and D0 is the distribution of start states. Unless
stated otherwise, we assume tasks are undiscounted (� = 1) and have terminal states, after which
only 0 reward can be received. r is a reward function, r : S ⇥A⇥ S ! R, where rt is a function of
st, at, and st+1 at time t. An MDP\r is an MDP without a reward function.

Let r refer to the ground-truth reward function for some MDP, r̂ refer to a learned approximation
of r, and r̃ refer to any reward function (including r or r̂). A policy (⇡ : S ⇥ A ! [0, 1]) specifies
the probability of an action given a state. Q⇡

r̃ and V ⇡
r̃ refer respectively to the state-action value

function and state value function for a policy, ⇡, under r̃, and are defined as follows: V ⇡
r̃ (s) ,

E⇡[
P1

t=0 r̃(st, at, st+1)|s0 = s] and Q⇡
r̃ (s, a) , E⇡[r̃(s, a, s0) + V ⇡

r̃ (s0)].

An optimal policy ⇡⇤
r̃ is any policy where V

⇡⇤
r̃

r̃ (s) � V ⇡
r̃ (s) at every state s for every policy ⇡. We

write shorthand for Q⇡⇤
r̃

r̃ and V
⇡⇤
r̃

r̃ as Q⇤
r̃ and V ⇤

r̃ , respectively.

3.1 REWARD LEARNING FROM PAIRWISE PREFERENCES

RLHF typically learns a reward function by minimizing the cross-entropy loss—i.e., maximizing the
likelihood—of observed human preference labels (Christiano et al., 2017; Ibarz et al., 2018; Wang
et al., 2022; Bıyık et al., 2021; Sadigh et al., 2017; Lee et al., 2021a;b; Ziegler et al., 2019; Ouyang
et al., 2022; Bai et al., 2022; Glaese et al., 2022; OpenAI, 2022; Touvron et al., 2023; Hejna III &
Sadigh, 2023).

Segments Let � denote a segment starting at state s�0 . Its length |�| is the number of transitions
within the segment. A segment includes |�| + 1 states and |�| actions: (s�0 , a

�
0 , s

�
1 , a

�
1 , ..., s

�
|�|).

In this problem setting, segments lack any reward information. As shorthand, we define �t ,
(s�t , a

�
t , s

�
t+1). Additionally, we denote the partial return of a segment � as ⌃� r̃ for some r̃, where

r̃�t , r̃(s�t , a
�
t , s

�
t+1) and ⌃� r̃ , P|�|�1

t=0 r̃�t .

Preference datasets We denote a preference dataset as D�, which comprises samples of pref-
erences over pairs of segments. Each sample is represented as (�1,�2, µ). Vector µ = hµ1, µ2i
represents the preference; specifically, if �1 is preferred over �2, denoted �1 � �2, µ = h1, 0i. µ is
h0, 1i if �1 � �2 and is h0.5, 0.5i for �1 ⇠ �2 (no preference). For a sample (�1,�2, µ), we assume
that the two segments have equal lengths (i.e., |�1| = |�2|) and the same start state (i.e., s�1

0 = s�2
0 ).

Loss function When learning a reward function from a preference dataset, D�, preference labels
are typically assumed to be generated by a preference model P based on an unobservable ground-
truth reward function r. We learn r̂, an approximation of r, by minimizing this cross-entropy loss:

loss(r̂, D�) = �
X

(�1,�2,µ)2D�

µ1 logP (�1 � �2|r̂) + µ2 logP (�1 � �2|r̂) (1)

If �1 � �2, the sample’s likelihood is P (�1 � �2|r̂) and its loss is therefore �logP (�1 � �2|r̂).
If �1 � �2, its likelihood is 1 � P (�1 � �2|r̂). This loss is under-specified until the preference
model P (�1 � �2|r̂) is defined. Learning approximations of r from preferences can be summarized
as “minimize Equation 1”.

Preference models A preference model determines the likelihood of one trajectory segment being
preferred over another, P (�1 � �2|r̃).

3.2 PREFERENCE MODELS: PARTIAL RETURN AND REGRET

Here we describe the two preference models that are most commonly used when learning from
human preferences. Figure 2 illustrates an example of how these two models differ. In Section 5 we
detail our proposed training procedures and preference elicitation interfaces that influence human
preferences to conform to either choice of preference model. We focus on two preference models
that differ solely in the segment statistic they use to evaluate the desirability of a trajectory segment.
We do not address other aspects of modeling human preferences, such as different assumptions
about human irrationality, risk aversion, or uncertainty. However, the interventions proposed in this
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paper, which aim to influence humans towards a chosen preference model, may be generalizable to
influencing humans to conform to preference models that incorporate these additional factors.

Figure 2: On each step, the yellow vehi-
cle receives reward as the sum of reward
components: �1 for every time it moves;
+1 for collecting a coin; and +50 for
reaching the red goal marker, which ends
the episode. The partial return preference
model favors the left trajectory, while re-
gret favors the right.

Partial return The most common preference model
(e.g., Christiano et al. (2017)) posits that human prefer-
ences are generated by a Boltzmann distribution over the
partial returns of the two segments, expressed here as a
logistic function:

P⌃r (�1 � �2|r̃) = logistic
⇣
⌃�1 r̃ � ⌃�2 r̃

⌘
. (2)

Regret An alternative model of human preferences is
based on regret (Knox et al., 2022). This model suggests
that human preferences arise from the deviations of each
segment from optimal decision-making, characterized by
the regret of each transition within the segment. In this pa-
per, we only focus on segments with deterministic transi-
tions, although the regret preference model equally accom-
modates segments with stochastic transitions. For a sin-
gle deterministic transition (st, at, st+1), regretd(�t|r̃) ,
V ⇤
r̃ (s

�
t )� [r̃t + V ⇤

r̃ (s
�
t+1)]. For a full segment,

regretd(�|r̃) ,
|�|�1X

t=0

regretd(�t|r̃)

= V ⇤
r̃ (s

�
0 )� (⌃� r̃ + V ⇤

r̃ (s
�
|�|)),

(3)

with the right-hand expression arising from cancelling out intermediate state values. Equation 3 only
applies to deterministic transitions; Knox et al. (2022) provide the general formulation of regret. The
default version of the regret preference model is the Boltzmann distribution over the negated regret:

Pregret(�1 � �2|r̃) = logistic
⇣
regretd(�2|r̃)� regretd(�1|r̃)

⌘
.

See Appendix B for further explanation of regret, of partial return, and of how these preference
models differ. We refer to the regret and partial return of a segment as types of segment statistics.

Knox et al. (2022) demonstrated that the regret preference model better fits a dataset of human pref-
erences, leading to more human-aligned learned reward functions. Knox et al. (2024) showed that
the predominant method for fine-tuning large language models by RLHF can be derived from either
preference model, but the derivation from the regret preference model avoids arbitrarily setting the
discount factor � = 0. From the regret preference model, Hejna et al. (2023) derive constrastive pref-
erence learning (CPL), which learns a policy directly from human preferences and thereby avoids
the challenge during learning of modeling optimal value functions for each time it is updated.

Nonetheless, using the partial return preference model remains appealing, given the greater sim-
plicity of learning a reward function with it and the amount of research that has been built upon it.
Therefore our goal is to assess whether it is possible to influence humans to adopt a given preference
model, whether regret or partial return.

In the descriptions above of the two preference models, both are defined narrowly to assume that hu-
mans follow the Boltzmann distribution. This assumption is ubiquitous in RLHF but has limitations,
which Zhu et al. (2024) overview. Both partial return and regret can, however, inform probability
distributions other than the Bolzmann distribution. Therefore, in our evaluations (Section 5) we
additionally test whether humans conform to the noiseless version of a preference model, which de-
terministically prefers the segment with the more desirable statistic (e.g., higher partial return for the
noiseless partial return preference model or lower regret for the noiseless regret preference model).

4 EXPERIMENTAL TASK AND PREFERENCE ELICITATION PROCEDURE

To empirically investigate our methodology for influencing human preferences, we collected pref-
erence datasets labeled by human subjects with IRB approval. This section provides an overview of
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Figure 4: The baseline preference elicitation interface shown to humans annotators. Two of our three
experiments—the Privileged experiment and the Question experiment—-involve changes to this interface.

the user interface elements shared by each experiment introduced in Section 5. See Appendix C for
further details.

Figure 3: The delivery task shown to human
subjects for gathering preferences. The yel-
low vehicle is the agent, and its objective is
to maximize its score. Score maximization
requires reaching the red inverted teardrop.

Subject training Subjects first learn about the general
grid-world delivery domain, for which task instantiations
are created by a map of objects and terrain. The sub-
jects specifically are taught about the reward function and
how objects and terrain affect the agent’s transitions. As
part of this teaching, subjects control the agent on domain
maps designed to teach one or two concepts at a time.

Preference elicitation interface After teaching subjects
to understand the domain and delivery task, we elicit their
preferences. Figure 4 illustrates a baseline version of the
preference elicitation interface. In this work, we exclude
preferences labeled “can’t tell.” After preference elicita-
tion, a survey tests the subject’s task comprehension and
attentiveness, as detailed in Appendix C.4.

5 EXPERIMENTAL EVALUATION
OF THREE METHODS OF INFLUENCE

Aiming to decrease the gap between an RLHF algorithm’s
assumed preference model and how a preference dataset
is actually generated by humans, we conduct three random-assignment experiments for collecting
human preferences. Each experiment represents a type of intervention and has three conditions that
each result in a preference dataset: a control condition, an intervention condition that influences sub-
jects to follow the regret preference model (Pregret), and an intervention condition that influences
subjects to follow the partial return preference model (P⌃r ). Thus, the ability of each type of inter-
vention to influence the human towards a preference model is tested with two different preference
models.

• Privileged experiment (Section 5.1) - The intervention of this experiment is to display
information about each segment’s regret or partial return under the ground-truth reward
function during preference elicitation. We refer to this information as privileged because it
relies upon the ground-truth reward function, which in practical settings is unknown by the
code underlying the preference elicitation interface.

• Trained experiment (Section 5.2) - The intervention of this experiment is to train subjects
to give preferences based upon either partial return or regret. Training includes how to
calculate a segment’s regret or partial return.

5
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• Question experiment (Section 5.3) - The intervention of this experiment changes the ques-
tion that is asked during preference elicitation (see Figure 4) to one designed to encourage
adherence to one of the preference models.

In all experiments, the ground-truth reward function remains the same and is taught to subjects
before preference elicitation to enable our analysis, but it is unavailable to the reward learning al-
gorithm, which relies solely on the generated preference dataset. Only the Privileged experiment
leverages the ground-truth reward function in its preference elicitation interface design.

5.1 PRIVILEGED EXPERIMENT

We first study whether providing subjects with privileged information about a preference model dur-
ing preference elicitation influences their preferences towards that model. Presenting this privileged
information serves as a probe into how susceptible to influence human preferences are.

When presented with two segments for preference labeling, subjects in all three conditions are asked
“Which shows better behavior?”. This question was later refined for the other experiments to the
baseline question in Figure 4. Each subject labeled preferences between 35 to 50 segment pairs. Af-
ter data filtering (see Appendix C), our datasets come from from 64 subjects in the P⌃r -Privileged
condition (video walk-through of the interface), 65 subjects in the Pregret-Privileged condition
(video walk-through), and 50 subjects in the Privileged-Control condition (video walk-through).
We refer to each condition’s resultant preference dataset by the condition’s name.

Intervention details: subject training In the P⌃r -Privileged condition, subjects are shown each
segment’s partial return during preference elicitation. Likewise, subjects in the Pregret-Privileged
condition are shown each segment’s regret. Examples can be found in Figure 16 of the Appendix.
Note that we do not explicitly instruct subjects to use the displayed segment statistics when labeling
preferences. Rather, it is merely made visible. In the third condition, Privileged-Control, subjects
are not shown any information during preference elicitation other than the visualization of the two
segments that all subjects in these experiments see. See Appendix D for further details. Conditions
differ only as discussed above.

Hypothesis 1: Presenting each segment’s statistic—whether partial return or regret—will influence
the human to give preferences according to this statistic.

Figure 5: For the Privileged experiment, mean
cross-entropy loss over each condition’s prefer-
ence dataset with respect to the target preference
model. If the loss is lower for an intervention’s
dataset than for the Privileged-Control dataset,
then the former is better predicted by the target
preference model. Performing a Mann-Whitney
U test results in p < 0.01 for both conditions.

To test this hypothesis, we compare how well the
target preference model—i.e., the preference model
the intervention aims to influence human preferences
towards—predicts the resultant dataset of prefer-
ences for the corresponding condition and for the
control condition. Specifically, the preference model
is given the ground-truth reward function, scaled by
a constant positive factor. Given a target preference
model, we compare the mean cross entropy (i.e.,
negative log likelihood) of each condition’s prefer-
ence dataset. Noting that all positive scalings of the
reward function order policies equivalently and also
only affect the Boltzmann distribution as a temper-
ature parameter would, we choose the scaling con-
stant that results in the lowest cross entropy during a
grid search.

The cross entropy losses plotted in Figure 5 support
Hypothesis 1. In particular, for both intervention
conditions, presenting privileged information about
the target preference model results in a dataset with a
higher likelihood than that of the Privileged-Control
dataset. Because samples in each condition are unpaired, we perform a Mann-Whitney U test com-
paring the likelihood of samples in the Privileged-Control dataset to those in the intervention con-
dition’s dataset. Both interventions result in a statistically significant effect (p < 0.01). Appendix
H provides plots of the cross-entropy loss for all reward scaling parameters for each experiment,
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Figure 6: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Privileged experiment. Each preference dataset is randomly
partitioned into equal-sized training sets 10 times, using 10 different random seeds to control partitioning.
We learn a reward function using the given preference model for each training set, and plot the percent of
partitions—or equivalently training sets—in which the learned reward function induces near-optimal behavior.
Note this percentage is across all partitions across all 10 seeds. To visually test for Hypothesis 2, observe the
gap between the colored (i.e., red and blue) lines and the gray line.

and more details on the statistical test. Additionally, Appendix H provides an explanation of how
we disentangle the effects of learning more about the ground-truth reward function versus the tar-
get preference model, addressing concerns that the proposed interventions may merely teach human
subjects more about the ground-truth reward function rather than the target preference model.

We remove the assumption that humans give preferences according to the Boltzmann distribution—
used in the above likelihood test—by computing the accuracy for a noiseless version of each pref-
erence model. A Fisher’s exact test also finds significant effects for both interventions (p < 0.01),
supporting Hypothesis 1. See Appendix I for details about our accuracy testing.

Hypothesis 2: Presenting each segment’s statistic leads to learning more aligned reward functions
with the preference model corresponding to this statistic.

For each condition’s dataset, we learn a reward function r̂ by minimizing Equation 1 when assuming
Pregret or P⌃r . In all experiments, regret is approximated via the algorithm proposed by Knox et al.
(2022), employing successor features to efficiently compute differentiable estimates of the value
functions in Equation 3. Value iteration (Sutton & Barto, 2018) then computes the approximately
optimal Q⇤

r̂ function, and we then derive the maximum-entropy optimal policy from Q⇤
r̂ , which

uniformly randomly selects among all optimal actions. We assess the mean return of the resulting
policy relative to the ground-truth reward function r over the initial state distribution D0.

We normalize the mean return of a policy ⇡, V ⇡
r , using the formula (V ⇡

r � V U
r )/V ⇤

r . Note that V ⇤
r

denotes the expected return of an optimal policy and V U
r denotes the expected return of a uniformly

random policy, both computed over D0. A normalized mean return greater than 0 is better than V U
r ,

while a value of 1 corresponds to optimal performance. We consider a normalized return above 0.9
to signify near-optimal performance.

For each dataset, we randomly assign human preferences to different numbers of same-sized parti-
tions. Each partition is used as a training set, and we evaluate with 10 different random seeds that
control how preferences are partitioned. Results are shown in Figure 6, with reward learning de-
tails outlined in Appendix J for all experiments. Appendix J additionally presents results comparing
performance of the resultant policy to that of a uniformly random policy (V U

r ).

Figure 6 supports Hypothesis 2. Learning with the partial return preference model from the P⌃r -
Privileged dataset results in reward functions that induce near-optimal behavior more often than
when learning from the Privileged-Control dataset for all partition sizes, except for the largest parti-
tion size where performance is matched. A comparable pattern is observed when learning from the
Pregret-Privileged dataset with the regret preference model.

5.2 TRAINED EXPERIMENT

In real-world practice, RLHF practitioners do not have access to the ground-truth reward function
during preference elicitation. Therefore, in this experiment and the next, we focus on interventions
to improve preference model alignment that are feasible in practice. In the TRAINED EXPERIMENT,
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we evaluate training humans to follow either the partial return or regret preference models during
preference elicitation. All experimental details are the same as those of the PRIVILEGED experiment
unless otherwise noted.

This experiment consists of three conditions. In the P⌃r -Trained and Pregret-Trained intervention
conditions, subjects are taught to follow the corresponding preference model. In the Trained-Control
condition, subjects are not taught about any specific preference model and are trained identically
as all subjects in the PRIVILEGED experiment. The conditions differ only by how subjects are
trained. Subjects are randomly assigned to a condition until each condition has data from 10 subjects.
Unlike in the PRIVILEGED experiment, if a subject’s preference data is removed because of poor task
comprehension or inattentiveness (see Appendix C.4), their slot is reopened for random assignment,
including their exact set of segment pairs to be labeled with preferences. With this replacement
strategy, we gather preferences between the same set of segment pairs for each condition, which
produces paired data. We discuss this design choice in Appendix H. A video walk-through of the
interface used for the P⌃r -Trained condition is available here, for the Pregret-Trained condition
here, and for the Trained-Control condition here.

Intervention details: subject training During training, subjects in the intervention conditions
learn about the domain’s dynamics and reward function, as well as the segment statistic specific
to their condition (partial return or regret). They are shown the segment statistic while interacting
with the delivery domain and taught how to compute it. We then provide subjects with a detailed
example of how to use the taught segment statistic to generate preferences, have them practice
with feedback, and finally ask them to label preferences over segment pairs from the delivery task.
Subjects label preferences for 50 segment pairs with the elicitation question changed based on the
condition. Further details on the training protocol are provided in Appendix E.

Figure 7: For the Trained experiment, mean
cross-entropy loss over each condition’s prefer-
ence dataset with respect to the target preference
model. Lower is better. Performing a Wilcoxon
paired signed-rank test results in p < 0.01 for
both conditions.

Hypothesis 1: Training a human to follow a specific
preference model will influence the human to give
preferences according to that model.

We follow the procedure outlined in Section 5.1 to
evaluate evaluate Hypothesis 1 with results shown
in Figure 7. Hypothesis 1 is supported; the inter-
vention condition datasets are more likely under the
respective target preference model than the control
condition. Because samples are paired, we perform
a Wilcoxon paired signed-rank test comparing the
likelihood of samples in the control dataset to those
in the dataset from training humans to follow a pref-
erence model, finding a statistically significant dif-
ference at p < 0.01 that further supports Hypothe-
sis 1. See Appendix H for details. Additionally, we
find that the accuracy over both the P⌃r -Trained and
Pregret-Trained datasets is notably higher than the
accuracy over the Trained-Control dataset given the
noiseless version of the respective target preference
model. These results, detailed in Appendix I, additionally support Hypothesis 1 with statistical
significance at p < 0.01.

Hypothesis 2: Training humans to follow a specific preference model leads to learning more aligned
reward functions with that preference model.

Figure 8 illustrates partial support for Hypothesis 2. Learning from the Pregret-Trained dataset
results in reward functions that induce near-optimal performance more often than learning from the
Trained-Control dataset when using the regret preference model for learning. But, learning from
the P⌃r -Trained dataset when using the partial return preference model leads to comparatively poor
performance. See Appendix J.6 for a discussion on this result.

For larger training sets, learning a reward function with the partial return preference model using
the Pregret-Trained dataset instead of the other condition’s datasets results in reward functions that
induce near-optimal behavior more often; influencing preferences towards Pregret appears to be
generally beneficial for reward learning in this task.
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Figure 8: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Trained experiment. See Figure 6 for more details on how
this figure was generated.

Additionally, in Appendix E, we provide results indicating that subjects generally agreed with how
the taught preference model generated preferences, but find no statistically significant correlation
between subjects’ ability to compute the relevant segment statistics and their adherence to the target
preference model during preference elicitation.

5.3 QUESTION EXPERIMENT

For some domains, it may be difficult or time consuming to teach humans about a specific prefer-
ence model. Concepts such as the partial return of a trajectory segment may be difficult for humans
to comprehend in other environments, for example when eliciting preferences over large language
model outputs. Instead, we change only the wording of the question asked during preference elici-
tation, investigating how to align human preferences with specific preference model without relying
on their explicit understanding of the preference model.

Figure 9: For the Question experiment, mean
cross-entropy loss over each condition’s prefer-
ence dataset with respect to the target preference
model. Lower is better. Performing a Wilcoxon
paired signed-rank test results in significance for
only the Pregret-Question condition (p < 0.01).

This experiment consists of three conditions;
the P⌃r -Question and Pregret-Question conditions,
where we change the preference elicitation instruc-
tion in favor of the partial return preference model
and regret preference model, respectively, and the
Question-Control condition where we use a prefer-
ence elicitation question that does not seek to influ-
ence human preferences towards any specific prefer-
ence model. Subjects’ training matches that of the
previous experiment’s control condition, and each
condition differs only in the wording of the ques-
tion we ask when eliciting preferences from sub-
jects. We collect data from 9 subjects per condition
who are assigned to conditions via random assign-
ment. We replace the data of subjects that are re-
moved due to poor task comprehension or inatten-
tiveness. A video walk-through of the interface used
for the P⌃r -Question condition is available here,
for the Pregret-Question condition here, and for the
Question-Control condition here. Appendix F contains further details.

Intervention details: Preference elicitation questions The subjects in each condition see the
corresponding question below:

• Question-Control - “Which path do you prefer?”, chosen to reduce influence
• P⌃r -Question - “Which path has better immediate outcomes?”, chosen to focus subjects

only on the reward within a segment
• Pregret-Question - “Which path reflects better decision-making?”, chosen to reflect regret’s

measurement of a segment’s deviation from optimality
Hypothesis 1: Changing the preference elicitation question in favor of a specific preference model
will influence the human to give preferences according to that model.

9

https://youtu.be/G1eUejdyUYw
https://youtu.be/d5S-jSKMO5s
https://youtu.be/f1NUlUtx5_U


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results are shown in Figure 9, supporting Hypothesis 1 with a relatively small effect size. The loss
for the P⌃r -Question dataset under the partial return preference model is lower than the loss for
the Question-Control dataset, indicating a small shift in subject’s preferences towards the partial
return preference model. A Wilcoxon paired signed-rank test between the likelihoods of these two
datasets indicates a statistically significant difference at p < 0.05. The Pregret-Question dataset’s
loss under the regret preference model is also lower than, but close to, that of the Question-Control’s
dataset with no statistically significant difference. We observe a similar pattern when looking at
the accuracy of the noiseless target preference model over the P⌃r -Question and Pregret-Question
datasets with similar significance. See Appendix H and I for more details.

Hypothesis 2: Changing the preference elicitation question in favor of a specific preference model
leads to learning more aligned reward functions with that preference model.

Figure 10 provides evidence in support of Hypothesis 2. Modifying the preference elicitation ques-
tion to steer human preferences towards a specific preference model results in a dataset that in-
duces near-optimal behavior more often—when learned from using the target preference model—
compared to the control condition dataset. Broadly speaking, this suggests that the question we
ask subjects when labeling preferences can effect the performance of the resulting learned reward
function.

Figure 10: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Question experiment. See Figure 6 for more details on how
this figure was generated.

6 CONCLUSION

The choice of preference model used by an RLHF algorithm introduces a source of misalignment
between how humans are assumed to generate preferences and how they actually generate prefer-
ences, potentially limiting the alignment of the learned reward function. Even if we could perfectly
model all human preferences, we may wish that preferences are generated by a different model that
is computationally efficient for RLHF or provides certain theoretical guarantees. To this end, we
propose influencing human preferences towards a chosen preference model through user-interface
design—a novel direction for RLHF research.

We first establish that humans can be significantly influenced towards a specific preference model
when privileged information about that model is shown during preference elicitation. We then in-
troduce two practical interventions; training subjects to follow a preference model in the Trained
experiment—which significantly influences them towards that specific model—-and changing the
preference elicitation question in the Question experiment—which can significantly influence hu-
mans towards the partial return preference model and moderately towards the regret preference
model. All three interventions result in learning more aligned reward functions.

Our findings suggest that human training and preference elicitation interfaces should be viewed as
essential tools for improving alignment in RLHF. Appendix A highlights the potential practicality of
our approach; the Trained and Question interventions demonstrate important potential for real-world
application. Notably, the Question experiment offers a viable path forward by influencing human
preferences towards a specific preference model without requiring knowledge of the ground-truth
reward function, while the Trained experiment establishes a foundation for extending this method-
ology to real-world domains.
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