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Abstract
Increased autonomy of controllers in tasks with uncertainties stemming from the interaction with
the environment can be achieved by incorporation of learning. Examples are control tasks where the
system should follow a reference which depends on measurement data from surrounding systems
as e.g. humans or other control systems. We propose a learning strategy for Gaussian processes
to model, filter and predict references for model predictive control. Constraints in the learning are
included to achieve safety guarantees, enable trackability, and recursive feasibility. An illustra-
tive simulation example for motion compensation shows performance improvements besides the
provided guarantees.
Keywords: machine learning, model predictive control, tracking, Gaussian process

1. Introduction

Often references signals that should be tracked by control are provided by the interaction with other
systems. Examples are coupled chemical reactors in which the reference of one process depends
on the operation of the other (downstream) processes, the cooperative manipulation of objects by
multiple robots or robots and humans, as well as an autonomous car which should follow a leading
vehicle while keeping constant distance. In all these cases, the reference might be obtained via
communication and measurements of the surrounding entities. However, data loss or measurement
noise might occur leading to corrupted references. To hedge against these issues, models of the
expected reference evolution can be incorporated. Besides operating as fall back, models of the
reference allow to predict likely reference evolutions into the future. Especially in advanced control
strategies such as model predictive control, these future reference predictions are highly valuable
for improved performance, recursive feasibility, constrained satisfaction, and stability. One crucial
issue is the question if the reference can actually be followed by the controlled system. Arbi-
trarily changing references might not be trackable either due to system dynamics, for instance in
non-holonomic systems, or due to physical constraints of the actuators or system states. Addition-
ally, noise corrupted references should not be given directly to a controller. They should rather be
filtered or smoothed to prevent erroneous behaviour and allow for trackability. In this work we
want to address these issues, i.e. prediction, trackability, and filtering of references for control via
machine learning. More specific, we want to use a Gaussian process (GP) to model and predict
references based on measurements while ensuring that they are trackable. The learned reference
is then provided to a tracking model predictive control (MPC) scheme, cf. Figure 1. If the model
predictive controller is initially feasible, recursive feasibility with respect to the adjusted reference
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Figure 1: Based on data, denoted by ×, the unknown reference (dashed) is modelled by a GP. The
GP learns a trackable reference (solid) while prediction (t > τ ) and satisfaction of constraints (red)
is achieved. The MPC steers the system to exactly follow the reference (dotted).

can be guaranteed due to the design of the learned reference. With respect to enforcing constraint
satisfaction and reachability this work is related to reference governors. Reference governors can be
viewed as pre-filters that modify a given reference to avoid a constraint violation of the controlled
system, see e.g (Garone et al., 2017) for an overview. Our approach also relates to prediction filters,
cf. (Jöhl et al., 2020) for a comprehensive comparison of prediction filters for motion compensa-
tion. Modification of references in model predictive tracking control is considered in (Limon et al.,
2008, 2012; Ferramosca et al., 2009) to achieve recursive feasibility. In these works, artificial ref-
erences are introduced as additional optimization variables which differ from the original reference
if it is not trackable. In (Matschek et al., 2020b) constrained learning of GPs for reference predic-
tion and modification is introduced. Therein, a constrained hyperparameter optimization is utilized
to obtain Gaussian process reference prediction models, which guarantee recursive feasibility of
a predictive controller. In the present paper, we introduce a modified constrained hyperparameter
optimization for periodic references to achieve trackability despite constraints. The benefit of this
modified optimization is the elimination of nested optimization problems as proposed in Matschek
et al. (2020b). Additionally, a performance comparison of a model predictive controller based on
unfiltered, learned and constraint references is provided.

The main contribution of this work is the connection of model predictive control and con-
strained learning of Gaussian process reference models while providing guarantees. We illustrate
our approach by a motion compensation task in robot assisted surgery. In this example, noisy mea-
surements of goal structure motions due to patient breathing are available. A robotic device should
follow this motion to eliminate relative motions between surgical instruments and the goal structure.
This is achieved by fusing constrained machine learning and model predictive tracking control.

The remainder of this paper is structured as follows: Section 2 outlines the basic principle of GPs
and tracking MPC. Section 3 introduces a constrained hyperparameter optimization that generates
references suitable for tracking MPC. In Section 4 an example for motion compensation is given.
Section 5 concludes this work with a summary and an outlook.

2. Problem formulation

We consider nonlinear, discrete,time systems

x(k + 1) = f(x(k), u(k)), x(0) = x0, (1)

with continuous system dynamics f and initial conditions x0 ∈ Rnx . The state x ∈ Rnx and
the input u ∈ Rnu should satisfy the closed state constraints X ⊆ Rnx and the compact input
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constraint U ⊆ Rnu , respectively. Each state should follow a time dependent reference, which
is a priori unknown and only given in terms of possibly noisy observations D :=

{
(ti, yi) ∈

R+
0 × Rnx | i = 1, 2, . . . , nD

}
, where ti are time stamps and yi are measured reference values at

those times. The overall task is the design of an MPC to track a reference that is modelled based
on these observations. The MPC steers the system to follow the reference while considering future
predictions of both the system states and the time dependent reference. The GP reference model
predicts upcoming reference values while taking additional limitations and constraints into account.
These constraints are formed to guarantee trackability of the reference:

Definition 1 (Constrained Trackability).
A reference xr : N0 → Rnx is said to be trackable for system (1) if it fulfils the state constraints
xr(k) ∈ X and can be followed given the system dynamics ∃ur(k) ∈ U such that xr(k + 1) =
f(xr(k), ur(k)) for all k ∈ N0.

Arbitrarily changing references can lead to infeasibility of the optimal control problem if the
terminal constraints and the reachable set do not overlap, see e.g. (Limon and Alamo, 2015). En-
forcing trackability of the learned references is sufficient to maintain feasibility of optimal control
problems with terminal equality constraints in the nominal case when they are initially feasible. In
this case, trackability ensures the existence of a feasible input independently from the length of the
prediction horizon of the MPC. Extensions from terminal equality to inequality constraints were de-
rived in (Faulwasser and Findeisen, 2011; Faulwasser, 2013) to guarantee convergence of tracking
MPC, which implicitly also assumes trackability to obtain suitable reference inputs. To guarantee
trackability, we propose to use machine learning, i.e. Gaussian processes with a specific learning
algorithm. A brief introduction to GPs as well as to MPC for tracking is given in the following.

2.1. Gaussian Processes as Reference Generators

Gaussian processes are stochastic system identification tools, which recently gained popularity also
in control problems, see e.g. (Ostafew et al., 2016; Kocijan et al., 2004; Berkenkamp and Schoellig,
2015; Klenske et al., 2016; Maiworm et al., 2018; Matschek et al., 2020a; Pöhler et al., 2019). They
are extensions of Gaussian distributions to the function space such that each finite dimensional
subset of this infinite-dimensional distribution builds a joint Gaussian distribution (Rasmussen and
Williams, 2006). GPs can be described by a mean function m : R → R and a symmetric, positive
semi-definite covariance function κ : R× R→ R+

0 . We denote a Gaussian process by

y(t) ∼ GP(m(t), κ(t, t′)).

Here, t, t′ ∈ R are the regressors or inputs to the GP and the output of a GP y(t) at each specific
input t is normal distributed. In this setup, we will use GPs to map from the time domain to the
reference and use multiple uncorrelated GPs for systems with nx > 1. Moreover, we will use the
posterior mean as the learned reference, i.e. xr(k) = m+(Tsk), where Ts is the sampling time.
The goal is to learn posterior mean values m+ which predict suitable references fulfilling state
constraints and ensure trackability. Following along the lines of Matschek et al. (2020b) we want
to predict the reference for current and future times t∗ based on observations which build a training
data set Dt := {t,y} ⊆ D, with

t := [tt,1, . . . , tt,nDt
], y := [yt,1, . . . , yt,nDt

], m(t) := [m(tt,1), . . . ,m(tt,nDt
)].
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Based on a joint probability distribution between training data and unseen test points t∗, the condi-
tional posterior distribution is calculated and the posterior mean m+ : R→ R is given by

m+(t∗) := m(t∗) +K(t∗, t)(K(t, t) + σ2
nI)−1

(
y −m(t)

)
. (2)

Here,K is the covariance matrix whose entries are calculated based on the prior covariance function
κ. Specifically, K(t, t) is of dimension nDt ×nDt and specifies the covariance between the training
data points, while K(t∗, t) (with dimension 1 × nDt) defines the cross correlation between test
and training data. The variable σ2

n represents the variance of the measurement noise. Periodical
references can be represented by the posterior mean of a GP given the following assumption:

Assumption 1 The prior mean function m is constant. The prior covariance function κ is station-
ary and periodic, such that κ(t, t′) = κ(t, t′ + nTp) with n ∈ N0 and period Tp.

These prior mean and covariance function depend on so called hyperparameters θ. Besides,
they depend on the training data Dt. Whenever beneficial, we will denote this dependency by
m+(t∗|Dt, θ). One way to obtain the hyperparameters is the maximization of the logarithmic
marginal likelihood function, which results in the most probable hyperparameters given the hyper-
parameter optimization data Dθ :=

{
(tθ,i, yθ,i) ∈ R+

0 ×Rnx | i = 1, 2, . . . , nDθ
}

= {tθ,yθ} ⊆ D.
In (Matschek et al., 2020b) a constrained optimization of the likelihood is proposed, where the pre-
dicted mean of the GP is constrained to lie inside the state constraints and a reachable set. This way,
trackability of the predicted mean is achieved. In Section 3, an alternative formulation of the con-
strained hyperparameter optimization for periodic references is proposed, eliminating the drawback
of nested optimization problems. The posterior mean m+ evaluated at discrete time instants Tsk
with k ∈ N will be used as the predicted reference for the tracking controller, i.e. xr(k) = m+(Tsk).

2.2. Tracking Model Predictive Control

Model predictive control is an optimization based control strategy which predicts states via a model
of the system. It directly handles constraints during optimization and can be used for nonlinear,
multi-input-multi output systems (Mayne et al., 2009; Rawlings et al., 2017). In tracking MPC, the
control task is to follow a time-dependent reference, cf. (Limon and Alamo, 2015; Matschek et al.,
2019; Berberich et al., 2019). If this reference is known to the controller it can predict and minimise
the tracking error over its prediction horizon. This will in general lead to an improved tracking
performance compared to the case when the future reference evolution is unknown or not used. In
our setup, we use GPs to model, filter and predict upcoming references to make them available to
tracking MPC. Tracking MPC can be formulated via the optimal control problem

minimise
ūk(·)

k+N−1∑
i=k

L (ē(i), w̄(i)) + E (ē(k +N)) . (3a)

subject to ∀i ∈ {k, k + 1, . . . , k +N − 1}

x̄(i+ 1) = f(x̄(i), ūk(i)), x̄(k) = x(k), (3b)

ē(i) = xr(i)− x̄(i), (3c)

w̄(i) = ur(i)− ūk(i), (3d)

x̄(i) ∈ X , ūk(i) ∈ U , (3e)

x̄(k +N) ∈ F(k +N) ⊆ X . (3f)
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Here, the system dynamic model for prediction is incorporated via the constraint (3b), where
predictions are denoted by a bar over the respective variables. The control errors e and w for the
state and input are defined in (3c) and (3d), respectively, where the variable ur describes the ref-
erence input which belongs to state reference xr. The errors e and w are minimised via the cost
functional (3a) consisting of the stage cost L and the terminal cost E. State and input constraints
are incorporated into the minimisation via (3e). It is important to note, that the terminal constraint
set F given in (3f) is time dependent. The terminal ingredients E and F which are normally used to
prove stability for MPC depend on the reference to be tracked. As this reference is time-dependent,
this time-dependency is also visible in the MPC formulation. For a detailed discussion on differ-
ences between setpoint stabilisation and tracking see e.g. (Matschek et al., 2019; Faulwasser and
Findeisen, 2011; Faulwasser, 2013). One trivial choice to obtain a stable closed loop is to use ter-
minal equality constraints x(k + N) = xr(k + N) and no terminal cost. Obviously, the reference
xr must be known at least for N steps into the future to do so. Additionally, it must satisfy the state
constraints xr ∈ X and must be reachable in N steps as otherwise the optimal control problem is
infeasible. Though restrictive, trackability as defined in Definition 1 is sufficient to satisfy these
requirements, i.e. it allows for recursive feasibility given initial feasibility independently from the
prediction horizon. By using constrained Gaussian process learning we guarantee that the reference
is known (via predictions) and trackable. This allows free choice of the MPC prediction horizon, i.e.
short horizons do not lead to infeasibility of the optimal control problem. Though constraint satis-
faction in the nominal case is guaranteed already by the learned reference, MPC allows satisfaction
of the constraints even if additional disturbances, numerical errors or uncertainties appear. This is
of mayor importance since operation close to the boundary of the constraints can be demanded.

3. Constrained Hyperparameter Estimation for Periodic References

The reference xr for the predictive controller is learned based on dataD via a Gaussian process. The
idea is to use a constrained hyperparameter estimation in which the predicted mean, its derivative
and the hyperparameters are constrained to guarantee trackability of the reference. As we consider
periodical references but evaluate those constraints only at discrete time points, a satisfaction of
constraints for all times from a limited number of evaluation points can be concluded if the period
length of the learned reference is an integer multiple of the sampling time. To this end, we constrain
the hyperparameter which reflects the period to be a multiple of the sampling time Ts. This results
in a mixed integer nonlinear program (MINLP). Moreover we constrain the predicted mean to lie
inside the state constraints and its derivative to lie inside constraints reflecting trackability.

We use the one-step reachable tube which is constructed via one-step reachable sets starting at
the current reference value, see e.g. (Blanchini and Miani, 2008). The tube is defined as Tk+1 :=
R1(xr(k)), where R1 defines the set which is reachable in one step starting at xr(k) = m+(Tsk)
which is the predicted reference value. An illustration of the reachable sets is given in Figure 2.
The reference is trackable if xr(k) ∈ (X ∩ Tk) for all k ∈ N. Instead of using these sets directly,
we use the maximum and minimum possible rate of change τ and τ , which are also depicted in
Figure 2. Based on the one-step reachable set, the rates τ and τ can be expressed as functions of
the mean m+. If the change ṁ+(Tsk) of the predicted reference lies inside the set [τ(Tsk), τ(Tsk)]
and m+(Tsk) ∈ X for all k then the system can follow the reference once starting on it.
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Figure 2: The posterior meanm+ (solid grey line) is evaluated at
discrete times to build the reference xr (black dots). The reach-
able sets starting at xr(k) are illustrated by thick grey vertical
lines at each consecutive step k + 1. The slopes of the triangles
spanning the reachable set are τ and τ . They build the constraints
for ṁ+ (black dotted line).

Figure 3: Illustration of
the application example: A
robot assist a physician dur-
ing spine surgery while com-
pensating breathing motions
via GP supported tracking
MPC.

The resulting optimization problem can be written as

θ̂ := arg min
θ

l(θ) (4a)

subject to m+(t∗|Dθ, θ) ∈ X , (4b)

ṁ+(t∗|Dθ, θ) ∈ [τ(t∗), τ(t∗)], (4c)

t∗ = Tsk, ∀k ∈
{

0, . . . , k̄
}
, (4d)

T̃p(θ) = Tsq, with q ∈ N, (4e)

where the cost function l(θ) is the negative logarithmic marginal likelihood

l(θ) := ln(|K(tθ, tθ)|) + y>θ K(tθ, tθ)
−1yθ + nDθ ln(2π).

In contrast to (Matschek et al., 2020b) the estimated period length T̃p, which is a hyperparameter, is
constrained to be an integer multiple of Ts. This allows evaluation of the constraints at discrete times
only. The derivative of the mean is calculated via ṁ+(Tsk) := (m+(Ts(k + 1))−m+(Tsk))T−1

s .
In general, this mixed integer problem is computational challenging despite the low number of
optimization variables and the avoidance of nested optimizations since the training data matrix
inversion scales with O(n3

Dθ
). However, fast execution times are of secondary importance, as we

consider offline learning. Under the assumption of feasibility of (4) we can state the following:

Lemma 1 Given Assumption 1, and k̄ ≥ T̃p/Ts the posterior mean (2) of a GP trained with (4) is
trackable in the sense of Definition 1 for system (1).

Proof Assuming feasibility, problem (4) guarantees m+(kTs) ∈ X for all k ∈ {0, . . . , k̄}. Fur-
thermore, ṁ+(kTs) ∈ [τ(kTs), τ(kTs)] for all k ∈ {0, . . . , k̄}. This implies that m+(kTs) ∈ Tk
and consequently m+(kTs) ∈ X ∩ Tk for all k ∈ {0, . . . , k̄}. Assumption 1 makes it possible to
infer m+(kTs + iT̃p) = m+(kTs) ∈ X with i ∈ N for all k ∈ {0, . . . , k̄}. Since k̄ ≥ T̃p/Ts and
T̃p = qTs the state constraints m+(kTs) ∈ X are fulfilled for all k ∈ N. Similar reasoning applies
to m+(kTs) ∈ Tk, such that m+(kTs) ∈ (X ∩ Tk) for all k ∈ N.
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Figure 4: Constrained Gaussian process reference learning.

4. Application Example

To illustrate the proposed approach we apply the constrained learning and tracking of references
via MPC in a medical robotics task. In robot supported interventions, robots should for example
hold devices in specific positions relative to a goal structure. These goal structures are not necessary
fixed in space but change due to patient motions. Periodic motions can e.g. occur due to breathing.
These motions are often measured via external tracking systems as e.g. stereo cameras. We will
use the proposed learning algorithm for Gaussian processes to learn these motions and follow them
with a surgical instrument held by the robot via tracking MPC. In this example we consider vertical
motions of a goal structure due to breathing which should be compensated by a robot equipped with
a linear motor as a tool. For simplicity of presentation, we approximate the dynamic model of the
tool by a linear one-dimensional integrator for motions in vertical direction. Clinical data D was
used for the motion compensation and is depicted in Figure 4(a) in black solid line. The sampling
time is Ts = 0.05s. From these measurements a training data set Dθ ⊂ D was formed, depicted as
black crosses. The prior meanm = 0 and prior covariance function κ = θ2

1 exp(− 2
θ22

sin(πθ−1
3 (t∗−

ti)
2)) are chosen. The hyperparameter optimization was performed while taking into account the

state constraints X = [−0.35, 20] depicted as light grey shaded area. These state constraints are
also used in the predictive controller. The lower bound of X was introduced to prevent the patient
from harm by a too deeply inserted surgical device held by the robot and is therefore crucial for
safety reasons. The measurements however slightly violate this constraint due to sensor noise at
t = 6.25s. Furthermore, the constraints induced by the reachable tube (depicted as dark grey
shaded area) should be fulfilled. To this end the derivative of the predicted mean is calculated and
shown in Figure 4(b). The feasible set spanned by the bounds τ , τ for the derivative is depicted
as grey area. Given τ , τ , and X a constrained hyperparameter optimization via (4) was performed
resulting in the predicted mean m+

con depicted in blue dashed line in Figure 4(a). The corresponding
derivative ṁ+

con is depicted in Figure 4(b) in blue dashed line. All constraints are satisfied leading
to a trackable reference. In contrast, an unconstrained hyperparameter optimization was performed
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Figure 5: Tracking MPC performance for three different references based on the unfiltered mea-
surement data, an unconstrained GP and a GP with constrained learning.

leading to m+
unc and ṁ+

unc depicted in red dash-dotted line in Figures 4(a) and 4(b). The derivative
ṁ+

unc violates the upper bound of the reachability constraints, cf. Figure 4(b). The unfiltered data
is also not trackable as it violates both the state constraints and the derivative constraints, cf. 4(a)
and 4(b). To show the effect of the trackability, all three references, i.e. the original noisy data, the
unconstrained GP and the constrained GP, are used in the same model predictive controller with a
prediction horizon of N = 10. The tracking errors and the optimal input are depicted in Figure 5.
The largest tracking error occurs when unfiltered data is directly used as reference, see Figure 5(a)
(black solid line). As this reference is not trackable even infeasibility of the optimal control problem
occurred at several times. Furthermore, the control input is very noisy, cf. Figure 5(b), which is
undesirable in many respects (e.g. due to wear and tear or physical limits). A GP learned on the
training data without constraints in the hyperparameter optimization produces a smoother reference.
The tracking errors are significantly smaller but trackability of the reference is not given, such that
input constraints become active and the control error rises at those times, cf. Figure 5 (red dash-
dotted lines). In contrast, the reference generated with constrained GP learning is trackable and
shows the smallest control errors which solely origin from numerics, cf. Figure 5(a), dashed line.

5. Conclusion

As shown, constrained Gaussian process learning based on available data can be used to model, pre-
dict, and filter references, while guaranteeing trackability of the reference. The proposed algorithm
for constrained Gaussian process learning for periodic references reduces computational complex-
ity compared to similar approaches by avoiding nested optimisations. The enforced trackability
ensures recursive feasibility of a model predictive controller that steers the system to follow the
reference. In addition to the derived guarantees, an improvement in performance can be achieved,
as underlined in an application example considering robotic motion compensation. Extensions to
arbitrary references as well as online learning are interesting future fields of research.
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Daniel Limon, Teodoro Alamo, David Muñoz de la Peña, Melanie Zeilinger, Colin Jones, and Mario
Pereira. MPC for tracking periodic reference signals. In Nonlinear Model Predictive Control
Conference (NMPC), pages 490–495. Elsevier, 2012.

9



LEARNING SUPPORTED MPC FOR TRACKING

Michael Maiworm, Christian Wagner, Ruslan Temirov, F Stefan Tautz, and Rolf Findeisen. Two-
degree-of-freedom control combining machine learning and extremum seeking for fast scanning
quantum dot microscopy. In American Control Conference (ACC), pages 4360–4366, 2018.
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