
Under review as a conference paper at ICLR 2024

ITPNET: TOWARDS INSTANTANEOUS TRAJECTORY
PREDICTION FOR AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Trajectory prediction of moving traffic agents is crucial for the safety of au-
tonomous vehicles, whereas previous approaches usually rely on sufficiently long-
tracked locations (e.g., 2 seconds) to predict the future locations of the agents.
However, in many real-world scenarios, it is not realistic to collect adequate ob-
servations for moving agents, leading to the collapse of most prediction mod-
els. For instance, when a moving car suddenly appears and is very close to an
autonomous vehicle because of the obstruction, it is quite necessary for the au-
tonomous vehicle to quickly and accurately predict the trajectories of the car with
limited tracked trajectories. In light of this, we focus on investigating the task of
instantaneous trajectory prediction, i.e., two tracked locations are available during
inference. To this end, we put forward a general and plug-and-play instantaneous
trajectory prediction approach, called ITPNet. At its heart, we propose a back-
ward forecasting mechanism to reversely predict the latent feature representations
of unobserved historical trajectories of the agent based on its two observed loca-
tions and then leverage them as complementary information for future trajectory
prediction. Moreover, due to the inevitable existence of noise and redundancy
in the predicted latent feature representations, we further devise a Noise Redun-
dancy Reduction Former (NRRFormer) module, which attempts to filter out noise
and redundancy from a sequence of unobserved trajectories and integrate the fil-
tered features and the observed features into a compact query representation for
future trajectory predictions. In essence, ITPNet can be naturally compatible with
existing trajectory prediction models, enabling them to gracefully handle the case
of instantaneous trajectory prediction. Extensive experiments on the Argoverse
and nuScenes datasets demonstrate ITPNet outperforms the baselines by a large
margin and shows its efficacy with different trajectory prediction models.

1 INTRODUCTION

Predicting the future trajectories of dynamic traffic agents is a critical task for autonomous driving,
which can be beneficial to the downstream planning module of autonomous vehicles. In recent years,
many trajectory prediction methods have been proposed in computer vision and machine learning
communities (Wang et al., 2023; Park et al., 2023; Zhou et al., 2023; Zhu et al., 2023; Chen et al.,
2021; Gu et al., 2022; Xu et al., 2022; Wang et al., 2022a; Meng et al., 2022). Among these methods,
they usually need to collect sufficiently long tracked trajectories (typically, 2 to 3 seconds) of an
agent, in order to accurately predict its future trajectories. Recent advances have shown promising
performance in trajectory prediction by learning from these adequate observations.

However, when facing real-world self-driving scenarios, it is often difficult to have sufficient obser-
vations for accurate trajectory prediction. For instance, due to the obstruction, a moving car might
suddenly appear and be very close to the autonomous vehicle. At this moment, the autonomous
vehicle does not have enough time to collect adequate tracked trajectories of the car to accurately
predict the car’s future trajectories. Such a case will cause the collapse of the aforementioned pre-
diction models due to the lack of information. To verify this point, we perform a typical trajectory
prediction method, HiVT (Zhou et al., 2022), with different settings on the Argoverse dataset (Chang
et al., 2019). As shown in the left part of Figure 1(a), if we use 20 tracked locations as the inputs
of the prediction model during both training and test phases as in (Zhou et al., 2022), the prediction
results are 0.698 and 1.053 in terms of minADE@6 and minFDE@6, respectively. However, if we
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Figure 1: (a) Results of HiVT (Zhou et al., 2022) in terms of minADE@6 and minFDE@6 on the
validation set of Argoverse (Chang et al., 2019) with different tracked locations as inputs during
training and testing. The value in the horizontal axis denotes the number of tracked locations.
(b) Future predictions (shown in green) when utilizing different lengths of predicted unobserved
trajectories. The observed trajectories are shown in orange, the predicted unobserved trajectories
are shown in brown, the ground-truth unobserved trajectories are shown in blue, and the ground-
truth future trajectories are shown in red.

set only 2 tracked locations as the inputs of the model during testing, the model will degrade sharply,
no matter if the number of tracked locations is 2 or 20 during the training phase. Thus, it is essential
to study the trajectory prediction task, when tracked trajectories are very limited.

In light of this, we focus on studying the task of instantaneously predicting future trajectories of
moving agents, under the assumption of only 2 trajectory points available. Recently, Sun et al.
(2022a) proposes a trajectory prediction method based on momentary observations. However, this
method mainly focuses on the trajectory prediction of pedestrians, which has not been explored
for other moving agents. In addition, the input of their model is the RGB image which usually
contains abundant context and semantic information. Thus, it is much easier for the model to predict
future trajectories using RGB images, compared to only several discrete trajectory points. Moreover,
Monti et al. (2022) design a knowledge distillation mechanism for trajectory prediction based on
limited observed locations and achieves promising results. Since the method needs to pre-train
a teacher model, and learns a student model distilling knowledge from the teacher model, which
largely increases the computational complexities.

To this end, we propose a general and principled approach, called ITPNet, for instantaneous trajec-
tory prediction by only two observed trajectory locations. The key to the success of ITPNet is to
train a predictor to backwardly predict the latent feature representations of unobserved historical tra-
jectories of the agent based on its two observed trajectories. The additional information contained in
the predicted unobserved trajectory features assists observed trajectory features in better predicting
future trajectories. Nevertheless, we find that as we increase the number of backwardly predicted
unobserved trajectory locations, the model’s performance initially improves but subsequently dete-
riorates, as illustrated in Table 3. We analyze two primary factors that impede the utilization of more
unobserved trajectory features: One is the noise brought by inaccurate prediction of the unobserved
trajectory features. The other is a negative impact on the trajectory prediction due to the intrinsic re-
dundant information. Let’s consider a scenario where a vehicle travels straightly for a while and then
suddenly executes a turn. In such a case, a longer historical trajectory may erroneously boost the
model’s confidence in the vehicle continuing straight in the future, as depicted in the upper portion
of Figure 1(b). Conversely, a shorter unobserved historical trajectory with less redundancy tends to
yield more accurate predictions because it maintains lower confidence in the vehicle’s persistence
in a straight trajectory and, instead, maintains higher confidence in the vehicle’s persistence in a
turning trajectory, as shown in the lower portion of Figure 1(b). Thus, how to remove noisy and
redundant information from the predicted features of the unobserved trajectories becomes the key to
success in instantaneous trajectory prediction.

In view of this, we devise a Noise Redundancy Reduction Former (NRRFormer) module and in-
tegrate it into our framework. NRRFormer can filter out noise and redundancy from a sequence
of predicted unobserved latent features, and effectively fuse the filtered unobserved latent features
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with the observed features by a compact query embedding to acquire the most useful information
for future trajectory prediction. It is worth noting that our ITPNet is actually plug-and-play, and is
compatible with existing trajectory prediction models, making them the kinds that can gracefully
deal with the instantaneous trajectory prediction problem.

Our main contributions are summarized as following: 1) We propose a backward forecasting mech-
anism to reconstruct unobserved historical trajectory information for instantaneous trajectory pre-
diction, mitigating the issue of lack of information due to only two observed locations. 2) We
devise a Noise Redundancy Reduction Former (NRRFormer), which can remove noise and redun-
dancy among the predicted unobserved feature representations to further improve the prediction
performance. 3) We perform extensive experiments on two widely used benchmark datasets, and
demonstrate our ITPNet can outperform the baselines in a large margin. Moreover, we show the
efficacy of ITPNet, combined with different trajectory prediction models.

2 RELATED WORKS

2.1 TRAJECTORY PREDICTION WITH SUFFICIENT OBSERVATION

In recent years, many trajectory prediction approaches have been proposed (Girgis et al., 2021;
Gilles et al., 2022; Makansi et al., 2021; Casas et al., 2020a; Sun et al., 2022b; Cheng et al., 2023;
Bae et al., 2023; Bae & Jeon, 2023; Choi et al., 2023). In the early stage of trajectory prediction,
studies such as (Alahi et al., 2016; Gupta et al., 2018) usually rely solely on observation points
and adopt simple social pooling methods to capture interactions between agents. To capture the
map information, including occupancy or semantic information, (Bansal et al., 2018; Phan-Minh
et al., 2020; Mohamed et al., 2020) propose to use Convolutional Neural Networks (CNN) to en-
code map images. In addition, (Gao et al., 2020; Liang et al., 2020) incorporate the information
of lanes and traffic lights on the map in the form of vectors. Recently, numerous methods have
been proposed to fully exploit the interaction information between nearby agents, including implicit
modeling by graph neural networks (Casas et al., 2020a; Li et al., 2019; Salzmann et al., 2020;
Casas et al., 2020b) and attention mechanisms (Nayakanti et al., 2022; Liu et al., 2021; Ngiam et al.,
2022; Li et al., 2020), and explicit modeling (Sun et al., 2022b). To handle the uncertainty of road
agents, researchers propose to generate multi-modal trajectories using various approaches, including
GAN-based methods (Kosaraju et al., 2019; Sadeghian et al., 2019; Gupta et al., 2018), VAE-based
methods (Lee et al., 2017; 2022), flow-based methods (Zhang et al., 2022; Liang et al., 2022), and
diffusion models (Gu et al., 2022; Mao et al., 2023; Jiang et al., 2023). Among them, one typical ap-
proach is to establish a mapping between future trajectories and latent variables, producing multiple
plausible trajectories by sampling the latent variable. In addition, goal-based methods have become
popular recently (Zhao et al., 2021; Gu et al., 2021; Zeng et al., 2021; Wang et al., 2022b; Mangalam
et al., 2021; Aydemir et al., 2023), which first generates multi-modal goals by sampling (Zhao et al.,
2021) or learning (Wang et al., 2022b), and then predict future trajectories conditioned on the goals.

Although these methods have shown promising performance in trajectory prediction, they usually
learn depending on sufficiently long-tracked trajectories. As aforementioned, these methods degrade
severely or even collapse when the number of tracked trajectories is limited. Different from these
works, we attempt to address the task of instantaneously predicting the future trajectories of moving
agents, under the condition that only two trajectory locations are observable.

2.2 TRAJECTORY PREDICTION WITH INSTANTANEOUS OBSERVATION

Predicting the future trajectories of a moving agent by its limited tracked trajectory points remains
a challenging problem. Recently, Sun et al. (2022a) proposes an approach to integrate the velocity
of agents, social and scene contexts information, and designs a momentary observation feature Ex-
tractor (MOE) for pedestrian trajectory prediction. The input of MOE contains image frames from
videos which usually contain abundant semantic information. Thus, it is much easier to predict
future trajectories using image frames than that using several discrete trajectory points. Moreover,
since this method is mainly designed for predicting trajectories for pedestrians, what is the perfor-
mance on other moving agents, e.g., cars, is worth to be further verified. Monti et al. (2022) proposes
a knowledge distillation approach using few observations as input, with the goal of lowering the in-
fluence of noise introduced by the machine perception side (i.e., incorrect detection and tracking).
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Figure 2: Overview of our ITPNet framework. ITPNet mainly consists of two modules: 1) We
propose a backward forecasting mechanism that attempts to reconstruct the latent feature represen-
tations Vunobs of previous unobserved trajectories Xunobs by the two observed trajectories locations
Xobs. 2) We devise a Noise Redundancy Reduction Former to filter out noise and redundancy in
the predicted latent feature representations V̂unobs, and both the resulting filtered features and the
observation features Vobs are integrated into a compact query embedding Q. Finally, the query
embedding is sent to the decoder to instantaneously predict future trajectories {X̂k}.

As we know, knowledge distillation-based approaches generally need to pre-train a teacher model,
and then distill knowledge from the teacher model to help the student model learn, which makes this
kind of method computationally expensive.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

We denote a sequence of observed states for a target vehicle as Xobs = {x1, x2}, where xi ∈ R2

is the i-th location of the agent. Moreover, we also denote the sequence of previous unobserved
locations of the agent as Xunobs = {x−N+1, x−N+2, · · · , x0}, where N is the total number of un-
observed locations. The ground-truth future trajectories are denoted as Xgt = {x3, x4, ..., x2+M},
where M is the length of ground-truth future trajectory. Our goal is to predict future possible K tra-
jectories {X̂k}k∈[0,K−1] = {(x̂k3 , x̂k4 , ..., x̂k2+M )}k∈[0,K−1], as in multi-model trajectory prediction
methods (Gupta et al., 2018; Kosaraju et al., 2019; Lee et al., 2022). Differently, we attempt to lever-
age merely two observed locations Xobs for instantaneous trajectory prediction during inference, in
contrast to previous methods utilizing sufficient tracked locations (typically, 20 observed locations
on the Argoverse dataset (Chang et al., 2019)).

3.2 OVERALL FRAMEWORK

Figure 2 illustrates an overview of our proposed framework. We first feed the observed trajectories
Xobs into a backbone (e.g., HiVT (Zhou et al., 2022)) to obtain the latent feature representations
Vobs = {v1, v2}. Based on this representation Vobs, we then attempt to backwardly predict the la-
tent feature representations V̂unobs = {v̂−N+1, v̂−N+2, ..., v̂0} of unobserved historical trajectories
Xunobs. Considering that the predicted unobserved feature representations V̂unobs inevitably con-
tain redundant and noisy information as mentioned above, we design a Noise Redundancy Reduction
Former (NRRFormer) module to filter out this information from a predicted feature sequence. Sub-
sequently, the filtered features are combined with the observed features to generate a compact query
embedding Q. The query embedding Q is then sent to the decoder for future trajectory predictions.
Since the backbone in our framework is arbitrary, our method is plug-and-play, and is compatible
with existing trajectory prediction models, enabling them to gracefully adapt to the scenario of only

4



Under review as a conference paper at ICLR 2024

two observed locations. Next, we mainly introduce the backward forecasting and the NRRFormer
in detail.

3.3 BACKWARD FORECASTING

When given only two tracked trajectories Xobs, one major issue we face is the lack of information,
making existing trajectory prediction approaches degraded sharply. To alleviate this problem, we
propose to backwardly predict the latent feature representations of previous unobserved trajectories,
and then leverage them as additional information for future trajectory prediction.

First, we can obtain the latent feature representations Vobs of the tracked trajectories Xobs via a
backbone Φ:

Vobs = {v1, v2} = Φ(Xobs;ϕ), (1)
where vi ∈ Rd is the latent feature representation of the i-th location of the agent, and d is the
dimension of the feature. The backbone Φ is parameterized by ϕ, and can be an arbitrary trajectory
prediction model, e.g., HiVT (Zhou et al., 2022) and LaneGCN (Liang et al., 2020) used in this
paper. It is worth noting that our method is plug-and-play, since any trajectory prediction model can
serve as the backbone.

After that, we attempt to backwardly predict the latent feature representations V̂unobs on the basis of
Vobs, addressing the issue of the lack of information. To this end, we introduce two self-supervised
tasks: the first one is the reconstruction of the latent feature representations, and the loss function is
designed as:

Lrec = J (Vunobs; V̂unobs), (2)
where Vunobs =Φ(Xunobs;ϕ) is the ground-truth latent feature representations of previous unob-
served trajectories, and can be taken as a self-supervised signal, and J is a function to measure the
distance between Vunobs and V̂unobs. V̂unobs are the predicted features, obtained by:

V̂unobs = Ψ(Vobs;ψ), (3)

where Ψ is a network parameterized by ψ. In this paper, we make use of a LSTM (Hochreiter &
Schmidhuber, 1997) to predict the V̂unobs on the basis of Vobs,

v̂unobsi−1 = Ψ(Vobs, v̂unobsi ;ψ), i = 1, 0, ...,−N + 2, (4)

where v̂unobsi is the ith predicted unobserved latent feature representations of V̂unobs, and v̂unobs1 =
Mean(Vobs). In order to reconstruct the latent feature representations, we use the smooth L1 loss
(Girshick, 2015) to optimize the Lrec as:

Lrec =

0∑
i=−N+1

δ(vunobsi − v̂unobsi ), (5)

where δ is defined as:

δ(v) =

{
0.5v2 if ||v|| < 1

||v|| − 0.5 otherwise,
(6)

where ||v|| denotes the l1 norm of v.

To further enhance the representation ability of the unobserved latent feature representations, we
devise another self-supervised task. Specifically, we regard the feature pair {vunobsi , v̂unobsi } as the
positive sample pair, i = −N + 1, · · · , 0, and take {vunobsi , v̂unobsj } as the negative sample pair,
i ̸= j. After that, we present another self-supervised loss:

Lcts =

0∑
i=−N+1

∑
j ̸=i

max(0, δ(vunobsi −v̂unobsi )−δ(vunobsi −v̂unobsj )+∆), (7)

where ∆ is a margin. It is worth noting that the first loss Lrec in (5) targets at reconstructing the latent
feature representation vi as accurately as possible, while the second loss Lcts in (7) aims to minimize
the discrepancy between the predicted unobserved feature representations and the corresponding
ground-truth feature representations at each timestep, while it enlarges a margin ∆ between the
predicted unobserved and non-corresponding ground-truth feature representations. This can further
assist in better reconstructing unobserved trajectories.
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3.4 NOISE REDUNDANCY REDUCTION FORMER

Our Noise Redundancy Reduction Former (NRRFormer) module that is parameterized by Θ con-
tains L Noise Redundancy Reduction Blocks (NRRBlocks). Each NRRBlock attempts to filter
out noise and redundancy in the predicted latent feature representations V̂unobs

l , and integrate the
resulting filtered feature representations and observed feature representations Vobs into a query em-
bedding Ql+1, l = 0, 1, · · · , L− 1.

Self Attention

Self Attention

Feed Forward

Ql

lQ

lQ

Figure 3: Structure of Noise Redun-
dancy Reduction Block.

As shown in the Figure 3, The lth layer of NRRBlock
takes as input the query embedding Ql and the unob-
served feature representations V̂unobs

l through a self-
attention mechanism:

Qunobs
l , V̂unobs

l+1 = SelfAtt(Ql||V̂unobs
l ; θl,1), (8)

where || denotes the concatenation operation, the self-
attention module is parameterized by θl,1. Q0 is a random
initialized tensor, V̂unobs

0 = V̂unobs, and the Qunobs
l

represents the output query embedding. It is worth not-
ing that the length of the query, denoted as C, is smaller
than the length of V̂unobs

l , denoted asN , so that informa-
tion in V̂unobs

l is forced to condense and collate into the
compact query embedding Qunobs

l , thereby filtering out
redundancy and noise to extract the meaningful informa-
tion. After that, we utilize another self-attention module to integrate information of Vobs into the
query embedding:

Qunobs,obs
l ,Vobs∗ = SelfAtt(Qunobs

l ||Vobs; θl,2), (9)

where the self-attention module is parameterized by θl,2, Qunobs,obs
l represents the query embedding

after integrating both the filtered unobserved trajectory features and the observed trajectory features.
Through this self-attention operation, the information of V obs can be effectively distilled into Q,
while enabling it to fuse with V unobs, thereby facilitating the exchange of complementary informa-
tion between them. Note that we assume the observed trajectory features Vobs do not contain noise
or redundancy, because the features are obtained by encoding Xobs. Therefore, the Equation (9)
only integrates the information of Vobs into the query Q through self-attention, but not input the
Vobs∗ into the next NRRBlock. At the end of the NRRBlock, we employ a feed forward layer to
produce the query representation for the next layer,

Ql+1 = FeedForward(Qunobs,obs
l ; θl,3), (10)

where the feed forward layer is parameterized by θl,3. We utilize L NRRBlocks to denoise and
reduce redundancy in the unobserved trajectory features while effectively fusing the observed tra-
jectory features. Finally we utilize QL for future trajectory prediction:

{X̂k}k∈[0,K−1]=Ω(QL;ω), (11)

where Ω represents the decoder module parameterized by ω. The decoder module can be the same
structure as in previous trajectory prediction models (Zhou et al., 2022; Liang et al., 2020), enabling
our method to be generalizable.

3.5 OPTIMIZATION AND INFERENCE

We adopt the commonly used winner-takes-all strategy (Zhao et al., 2021) on the obtained K multi-
modal trajectories {X̂k}k∈[0,K−1], which regresses the trajectory closest to the ground truth, denoted
as Lreg . In order to help the downstream planner make better decisions, a classification loss Lcls

is also adopted to score each trajectory. Here, we adopt the same Lreg and Lcls as those in the
corresponding backbones (see Appendix A.5 for details of Lreg and Lcls). Finally, the total loss
function can be expressed as:

L = Lreg + Lcls + αLrec + βLcts, (12)
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where α and β are three trade-off hyper-parameters. We provide the pseudo-code of our training
procedure in Appendix A.1.

For inference, when only 2 observed trajectory points of a target vehicle are collected, we first
extract the latent feature representations based on the backbone Φ, and then apply our backward
forecasting mechanism to predict the latent feature representations of previous N unobserved loca-
tions of the target agent by the networks Ψ. After that, the NRRFormer Θ = {θl,1, θl,2, θl,3}Ll=1
filters out the noise and redundancy in the unobserved latent feature representations and integrates
the filtered features and observed latent feature representations into query embedding. Finally, the
query embedding are fed into the decoder network Ω for instantaneous trajectory prediction.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method for the instantaneous trajectory prediction tasks on two widely used bench-
mark datasets, Argoverse (Chang et al., 2019) and NuScene (Caesar et al., 2020).

Argoverse Datasets: This dataset contains a total of 324,557 scenes, which are split into 205,492
training scenes, 39,472 validation scenes, and 78,143 testing scenes. The observation duration for
both the training and validation sets is 5 seconds with a sampling frequency of 10Hz. In contrast to
previous approaches taking the first 2 seconds (i.e., 20 locations) as the observed trajectory and the
last 3 seconds as the future ground-truth trajectory, we only utilize 2 observed locations, and predict
the future trajectory of the last 3 seconds in our experiments.

NuScene Datasets The dataset consists of 32,186 training, 8,560 validation, and 9,041 test samples.
Each sample is a sequence of x-y coordinates with a duration of 8 seconds and a sample frequency of
2Hz. Previous approaches usually take the first 2 seconds (i.e., 5 locations) as the observed trajectory
and the last 6 seconds as the future ground-truth trajectory. However, we leverage only 2 observed
locations to predict the future trajectory of the last 6 seconds in the experiments.

4.2 IMPLEMENTATION DETAILS

We perform the experiments using two different backbone models, HiVT (Zhou et al., 2022) and
LaneGCN (Liang et al., 2020). Specifically, we utilize the temporal encoder in HiVT and the Ac-
torNet in LaneGCN to extract the latent feature representations, respectively. We set the feature
dimensions d to 64 and 128 when using HiVT and LaneGCN as the backbone, respectively. The
hidden size of the LSTM for predicting unobserved latent feature representations is set to d. The
NRRFormer consists of three NRRBlocks. In our experiments, the predicted unobserved length N
is set to 10 for the Argoverse dataset and 4 for the nuScenes dataset, and correspondingly, we set the
query embedding length to C = 4 for the Argoverse dataset and C = 2 for the nuScenes dataset. In
addition, we set the trade-off hyper-parameters α and β to 0.1 and 0.1.

4.3 BASELINES AND EVALUATION METRICS

We first compare with two most related works: MOE (Sun et al., 2022a) and Distill (Monti et al.,
2022). Since we use HiVT (Zhou et al., 2022) and LaneGCN (Liang et al., 2020) as our backbone,
respectively, we also compare our method with them. When using HiVT as the backbone, we denote
our method as ITPNet+HiVT. When using LaneGCN as the backbone, we denote our method as
ITPNet+LaneGCN. To evaluate these methods, we employ three popular evaluation metrics (Zhao
et al., 2021; Gu et al., 2021; Wang et al., 2022b), minADE@K, minFDE@K, and minMR@K,
whereK represents the number of the generated trajectories. we setK to 1 and 6 in our experiments.

4.4 RESULT AND ANALYSIS

Performance on Instantaneous Trajectory Prediction: To demonstrate the effectiveness of our
method for instantaneous trajectory prediction, we compare our method with the state-of-the-art
baselines. The results are listed in Table 1. Based on Table 1, ITPNet+LaneGCN and ITPNet+HiVT
significantly outperforms LaneGCN and HiVT, respectively. This illustrates current state-of-the-art
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Table 1: minADE@K, minFDE@K, and MR@K of different methods on Argoverse and nuScenes,
respectively.

Dataset Methods K=1 K=6
minADE minFDE minMR minADE minFDE minMR

Argoverse

LaneGCN (Liang et al., 2020) 4.204 8.647 0.861 1.126 1.821 0.278
HiVT (Zhou et al., 2022) 4.158 8.368 0.846 1.085 1.712 0.249
MOE (Sun et al., 2022a) 3.312 6.840 0.794 0.939 1.413 0.177

Distill (Monti et al., 2022) 3.251 6.638 0.771 0.968 1.502 0.185
ITPNet+LaneGCN 2.922 5.627 0.765 0.894 1.425 0.173

ITPNet+HiVT 2.631 5.703 0.757 0.819 1.218 0.141

nuScenes

LaneGCN (Liang et al., 2020) 6.125 14.300 0.935 1.878 3.497 0.630
HiVT (Zhou et al., 2022) 6.564 13.745 0.914 1.772 2.836 0.505
MOE (Sun et al., 2022a) 5.705 12.619 0.913 1.712 2.813 0.494

Distill (Monti et al., 2022) 5.950 12.606 0.911 1.759 2.861 0.483
ITPNet+LaneGCN 5.739 13.555 0.919 1.679 3.146 0.580

ITPNet+HiVT 5.514 12.584 0.909 1.503 2.628 0.483

Table 2: Ablation study of our method for Lrank, Lrec and Lcts on the Argoverse dataset.

Lrec Lctx NRRFormer K=1 K=6
minADE minFDE minMR minADE minFDE minMR

4.158 8.368 0.846 1.085 1.712 0.249
✓ 2.646 5.790 0.763 0.841 1.285 0.154
✓ ✓ 2.615 5.733 0.761 0.832 1.262 0.149
✓ ✓ ✓ 2.631 5.703 0.757 0.819 1.218 0.141

trajectory prediction approaches cannot well handle the case of instantaneous observed trajectories.
However, when plugging our framework into these two models, respectively, the performance is
significantly improved. This shows our method is effective for instantaneous trajectory prediction,
and is compatible with different trajectory prediction models. Moreover, our methods achieve better
performance than MOE and Distill, which indicates the effectiveness of our methods once more.

Ablation Study: We conduct ablation studies on the Argoverse dataset, and we employ HiVT (Zhou
et al., 2022) as the backbone. Table 2 shows the results. When the Lrec is applied to the loss
function, our method significantly improves the performance. This indicates the effectiveness of our
proposed backward forecast mechanism for predicting the latent feature representations of previous
unobserved trajectories. The loss Lcts further boosts the performance of the model, demonstrating
the self-supervised task is meaningful. Moreover, our method can further improve the performance
when integrating our NRRFormer, underscoring the effectiveness of our NRRFormer in filtering out
noise and redundancy from the predicted unobserved latent features.

Analysis of Different LengthsN : We investigate the influence of different lengthsN of unobserved
trajectories on instantaneous trajectory prediction. We use HiVT as the backbone on the Argoverse
dataset. The results are listed in Table 3. Note that when NRRFormer is not used, we directly
concatenate the predicted unobserved features with observed features for future trajectory prediction.
As N increases, the performance of the model is gradually improved. This reveals that predicting
more latent feature representations can introduce more useful information, and thus be beneficial
to trajectory prediction. However, when N exceeds a certain value (N > 3), the performance
deteriorates. This is attributed to the introduction of noise and redundancy when predicting a longer
feature sequence. When applying our NRRFormer, we perform our method directly using a bigger
value of N (e.g., N = 10), without tuning it carefully. Our method with NRRFormer achieves the
best results in Table 3. We believe if we tune N carefully, the performance of our method can be
further improved. This further indicates the superiority of our NRRFormer.

Qualitative Results: We perform a visualization of the predicted multi-modal trajectories generated
by MOE, Distill, HiVT, and our proposed method ITPNet+HiVT respectively on Argoverse dataset
with only 2 observed locations. The results are shown in Figure 4. We observe that our method
exhibits diversity and more accurate trajectory prediction than other baselines in the scenario of
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Table 3: Analysis of backward forecasting with different N and effectiveness of NRRFormer on
Argoverse.

NRRFormer N K=1 K=6
minADE minFDE minMR minADE minFDE minMR

✗ 4.019 8.108 0.829 1.068 1.678 0.241
✗ 1 3.458 7.112 0.801 0.969 1.494 0.193
✗ 2 2.898 6.024 0.777 0.872 1.329 0.160
✗ 3 2.615 5.733 0.761 0.832 1.262 0.149
✗ 4 2.632 5.803 0.762 0.845 1.291 0.154
✗ 6 2.709 5.895 0.769 0.867 1.302 0.161
✗ 8 3.045 6.231 0.789 0.903 1.410 0.181
✗ 10 3.394 6.956 0.801 0.967 1.522 0.196
✓ 10 2.631 5.703 0.757 0.819 1.218 0.141

(a) MOE (b) Distill (c) HiVT (d) ITPNet+HiVT

Figure 4: Qualitative results of a) MOE, b) Distill, c) HiVT, d) ITPNet+HiVT on Argoverse. The
tracked trajectories are shown in red, the ground-truth trajectories are shown in black, and the pre-
dicted multi-modal trajectories are shown in green.
turning and going straight. This suggests that our method can handle different driving scenarios and
can achieve improved predictions with only 2 tracked locations.

5 CONCLUSION

In this paper, we investigated a challenging problem of instantaneous trajectory prediction with very
few tracked locations. We proposed a plug-and-play approach that backwardly predicted the latent
feature representations of unobserved locations, to mitigate the issue of the lack of information.
Considering the noise and redundancy in unobserved feature representations, we designed the NR-
RFormer to remove them and integrate the resulting filtered features and observed trajectory features
into a compact query embedding for future trajectory prediction. Extensive experimental results
demonstrated that the proposed method can be effective for instantaneous trajectory prediction, and
can be compatible with different trajectory prediction models.
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A APPENDIX

A.1 TRAINING ALGORITHM OF ITPNET

We present the pesudo code of training ITPNet in Algorithm 1

Algorithm 1: Training Procedure of ITPNet

Input: input trajectory X = {Xobs,Xunobs}, ground-truth trajectory Xgt, query embedding
Q, layers L of NRRFormer, trade-off hyper-parameters: α, and β.

Output: Network parameters: ϕ, ψ, {θl,1, θl,2, θl,3}Ll=1, and ω.
Initialize: Randomly initialize ϕ, ψ, {θl,1, θl,2, θl,3}Ll=1, ω, and Q.
while not converges do

Compute latent feature representations Vobs = Φ(Xobs;ϕ) and Vunobs = Φ(Xunobs;ϕ);
Backward forecast V̂unobs by V̂unobs = Ψ(Vobs;ψ);
Compute Lrec,Lcts by Eq. (5) and (7), respectively;
Employ NRRFormer to filter out redundancy and noise in predicted unobserved latent

feature representations and integrate the resulting filtered feature representations and
observed feature representations into Q, by
V̂unobs

0 = V̂unobs;
for l = 0...L− 1 do

Qunobs
l , V̂unobs

l+1 = SelfAtt(Ql||V̂unobs
l ; θl,1) ;

Qunobs,obs
l ,Vobs∗ = SelfAtt(Qunobs

l ||Vobs; θl,2);
Ql+1 = FeedForward(Qunobs,obs

l ; θl,3);
end
Predict trajectory {X̂k}k∈[0,K−1] = Ω(QL;ω);
Compute Lreg,Lcls through {X̂k}k∈[0,K−1];
Calculate the total loss L by L = Lreg + Lcls + αLrec + βLcts;

Update model parameters ϕ, ψ, {θl,1, θl,2, θl,3}L−1
l=0 , ω and query embedding Q by

minimizing L.
end

A.2 RESULTS WITH DIFFERENT LENGTHS OF OBSERVATIONS

To further demonstrate the effectiveness of our method, we perform HiVT and LaneGCN with dif-
ferent lengths of observed locations T . Table 4 reports the results. One interesting point is that our
ITPNet+LaneGCN with T = 2 achieves comparable performance to LaneGCN with T = 5 when
K = 1 on the nuScenes dataset. This means that our method can averagely save 1.5 seconds for tra-
jectory prediction, compared to LaneGCN. If a car has a driving speed of 70 kilometers per hour on
an urban road, our method can save around 30 meters to observe the agent for trajectory prediction,
compared to LaneGCN.

A.3 CONVERGENCE ANALYSIS

We study the convergence of our method on Argoverse and nuScenes. The curves of the total loss of
our method are shown in Figure 5. we can see the loss decreases as the training steps, and it finally
levels off.

A.4 FAILURE CASES OF ITPNET

We provide failure cases of ITPNet+HiVT on Argoverse dataset, as shown in Figure 6. The model
fails (1) when the future intention of the agents suddenly changes (a, d); (2) the future behavior is
complex and hard to perceive from observed trajectories, such as overtaking; (3) the agent does not
follow the traffic rules, such as turning left from the lane for right turns (c).
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Table 4: minADE@K, minFDE@K, and MR@K of methods with different observed locations (T )
on Argoverse and nuScenes, respectively.

Dataset Method T K=1 K=6
minADE minFDE minMR minADE minFDE minMR

Argoverse

HiVT (Zhou et al., 2022)

3 2.958 6.601 0.816 0.930 1.502 0.190
4 2.777 5.895 0.766 0.852 1.287 0.152
5 2.510 5.523 0.747 0.809 1.203 0.137

20 2.032 4.579 0.691 0.698 1.053 0.107
ITPNet+HiVT 2 2.631 5.703 0.757 0.819 1.218 0.141

LaneGCN (Liang et al., 2020)

3 3.512 7.607 0.837 1.007 1.642 0.234
4 3.093 6.805 0.817 0.941 1.520 0.202
5 2.817 6.401 0.804 0.878 1.417 0.171

20 2.248 5.209 0.746 0.788 1.191 0.129
ITPNet+LaneGCN 2 2.922 5.627 0.765 0.894 1.425 0.173

nuScenes

HiVT (Zhou et al., 2022)

2 6.564 13.745 0.914 1.772 2.836 0.505
3 5.182 11.887 0.908 1.455 2.564 0.445
4 5.159 11.836 0.903 1.442 2.567 0.442
5 5.002 11.520 0.899 1.431 2.559 0.419

ITPNet+HiVT 2 5.514 12.584 0.909 1.503 2.628 0.483

LaneGCN (Liang et al., 2020)

2 6.125 14.300 0.935 1.878 3.497 0.630
3 5.853 13.845 0.941 1.697 3.160 0.592
4 5.708 13.492 0.933 1.653 3.060 0.569
5 5.663 13.427 0.934 1.647 3.052 0.573

ITPNet+LaneGCN 2 5.739 13.555 0.919 1.679 3.146 0.580
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Figure 5: Convergence analysis of our method. Left for Argoverse and right for nuScenes.

A.5 DETAILS ABOUT Lreg AND Lcls OF BACKBONES

HiVT parameterizes the distribution of future trajectories as a mixture model where each mixture
component is a Laplace distribution. The regression loss Lreg is defined as:

Lreg =

M+2∑
i=3

log
1

2b
exp(−|x̂i − µi|

b
), (13)

where b is a learnable scale parameter of Laplace distribution, x̂i is the predicted future trajectory
closest to the ground-truth future trajectory and µi is the ground-truth future trajectory. The Lcls is
defined as cross-entropy loss to optimize the mixing coefficients,

Lcls = −
K∑

k=1

πk log π̂k, (14)

where πk and π̂k are the probability of the kth trajectory to be selected, and πk = 1 if and only if
X̂k is the predicted future trajectory closest to the ground-truth future trajectory.
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(a) (b) (c) (d)

Figure 6: Failure case of ITPNet+HiVT on Argoverse. The observed trajectories are shown in
red, the ground-truth trajectories are shown in black, and the predicted multi-modal trajectories are
shown in green.

LaneGCN employ smooth L1 loss as Lreg, which is defined as,

Lreg =

M+2∑
i=3

δ(x̂i − xi), (15)

where the definition of δ is same as Equation (6). The LaneGCN employs max-margin loss as Lcls,
which is defined as,

Lcls =
1

K − 1

∑
k ̸=k′

max(0, πk + ϵ− πk′
), (16)

where the kth predicted future trajectory is the closest one to the ground-truth future trajectory. This
max-margin loss pushes the closest one away from others at least by a margin ϵ.

A.6 IMPLMENTATIONS OF BASELINES

MOE. To have a fair comparison, we extend the HiVT backbones used in this paper to MOE. We
use the A-A Interaction and A-L Interaction in HiVT to as the In-patch Aggregation in MOE and
replace the Global interaction in HiVT to replace the Cross-patch Aggregation in MOE. In addition,
followed by MOE, we employ the soft-pretraining with masked trajectory complement and Context
restoration tasks.

Distill. We also utilize HiVT as the backbone of Distill for fair comparison. In addition, followed by
Distill we distill knowledge from the output of the encoder (output of Global Interaction in HiVT)
and decoder (output of last hidden layer).
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