
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERPRETABLE TABLE QUESTION ANSWERING VIA
PLANS OF ATOMIC TABLE TRANSFORMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interpretability for Table Question Answering (Table QA) is critical, particularly
in high-stakes domains like finance or healthcare. While recent Large Language
Models (LLMs) have improved the accuracy of Table QA models, their explana-
tions for how answers are derived may not be transparent, hindering user ability
to trust, explain, and debug predicted answers, especially on complex queries. We
introduce Plan-of-SQLs (POS), a novel method specifically crafted to enhance
interpretability by decomposing a query into simpler sub-queries that are sequen-
tially translated into SQL commands to generate the final answer. Unlike existing
approaches, POS offers full transparency in Table QA by ensuring that every trans-
formation of the table is traceable, allowing users to follow the reasoning process
step-by-step. Via subjective and objective evaluations, we show that POS explana-
tions significantly improve interpretability, enabling both human and LLM judges
to predict model responses with 93.00% and 85.25% accuracy, respectively. POS
explanations also consistently rank highest in clarity, coherence, and helpfulness
compared to state-of-the-art Table QA methods such as Chain-of-Table (Wang
et al., 2023) and DATER (Ye et al., 2023). Furthermore, POS demonstrates high
accuracy on Table QA benchmarks (78.31% on TabFact and 54.80% on WikiTQ
with GPT3.5), outperforming methods that rely solely on LLMs or programs for
table transformations, while remaining competitive with hybrid approaches that
often trade off interpretability for accuracy.

1 INTRODUCTION

Table QA models enable users to quickly retrieve the desired information from large and complex
tables. Recently, LLMs have revolutionized the landscape of Table QA literature with state-of-the-
art performance on a wide range of Table QA benchmarks. These models are highly accurate and
sometimes are deemed interpretable (Ye et al., 2023; Cheng et al., 2023; Wang et al., 2023; Nahid
& Rafiei, 2024) but the researchers provide no data to support the claims of interpretability.
Answers from Table QA models can be explained via intermediate tables and operations, offering a
step-by-step walk-through of the reasoning process. For example, Chain-of-Table (CoTable) (Wang
et al., 2023) progressively transforms the input table, through several function calls (predicted by
LLMs), into a simplified table to be presented to the LLM to ask for the final answer—Fig. 1(c).
However, there are two main challenges with the interpretability of current LLM-based Table QA
models. First, the reasoning becomes increasingly uninterpretable as query complexity grows—e.g.,
when a table contain numerous rows and columns or when the question involves multiple conditions.
In Fig. 1(c), CoTable decides to select five rows using a function call of f_select_row(2, 3, 4, 5, 9).
Yet, there is no explanation for why these rows are chosen. Second, the final step, where the answer
is generated, still relies on the black-box reasoning of a model—leaving users uninformed as to why
the final answer was arrived at—an issue commonly observed in many works (Jiang et al., 2023;
Wang et al., 2023; Ye et al., 2023; Nahid & Rafiei, 2024; Abhyankar et al., 2024; Wu & Feng,
2024). This introduces another layer of opacity in the reasoning process of Table QA models.
To address these interpretability challenges, we propose Plan-of-SQLs (POS)—a novel method that
breaks down the original query into simple natural language sub-queries, which are easily converted
into SQL commands and understandable by humans. For example, steps like Select rows where
or Select column are translated into SQL commands that are executed sequentially. This approach
ensures that each transformation is explicitly rational, thus preventing the model from arbitrarily

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Hybrid

Plan-of-SQLs

(c)

SELECT *
FROM table_sql
ORDER BY opponents ASC;

SELECT CASE
 WHEN COUNT(*) = 4 THEN
'TRUE'
 ELSE 'FALSE'
END AS result
FROM table_sql;

Order the table by 'opponents' in ascending order →
Select rows where 'opponents' is 0 →
Use a `CASE` statement to return TRUE if the number of rows is equal to 4, otherwise return FALSE.

f_select_row(2,3,4,5,9) →
f_select_column(game,wc_pts,opponents) →
f_sort_column(opponents) →
simple_query()

SELECT *
FROM table_sql
WHERE opponents = 0;

Text-to-SQL
SELECT CASE
 WHEN COUNT(*) = 4
THEN 'TRUE'
 ELSE 'FALSE'
END AS result
FROM table_sql
WHERE opponents = 0;

(d)

f_select_row(2,3,4,5,9)

f_select_column(game,wc_pts,opponents)
f_sort_column(opponents) simple_query()

End-to-end

(a)

[Q] True or False? The wildcats kept the
opposing team scoreless in 4 games.

game opponent result wc_pts opponents

1 ole miss loss 7 14

2 cincinnati win 20 0

3 xavier win 20 7

4 georgia win 26 0

5 vanderbilt win 14 0

6 michigan win 7 6

7 alabama loss 0 13

8 w virginia win 15 6

9 evansville win 36 0

10 tennessee loss 6 13

Table T: wildcats football team

[GT] True

game opponent result wc_pts opponents

1 ole miss loss 7 14

2 cincinnati win 20 0

3 xavier win 20 7

4 georgia win 26 0

5 vanderbilt win 14 0

6 michigan win 7 6

7 alabama loss 0 13

8 w virginia win 15 6

9 evansville win 36 0

10 tennessee loss 6 13

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

3 xavier win 20 7

7 alabama loss 0 13

10 tennessee loss 6 13

1 ole miss loss 7 14

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

game opponent result wc_pts opponents

1 ole miss loss 7 14

2 cincinnati win 20 0

3 xavier win 20 7

4 georgia win 26 0

5 vanderbilt win 14 0

6 michigan win 7 6

7 alabama loss 0 13

8 w virginia win 15 6

9 evansville win 36 0

10 tennessee loss 6 13

game opponent result wc_pts opponents

2 cincinnati win 20 0

3 xavier win 20 7

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

game wc_pts opponents

2 20 0

3 20 7

4 26 0

5 14 0

9 36 0

game wc_pts opponents

2 20 0

4 26 0

5 14 0

9 36 0

3 20 7

True

True

True

True

(b)

Figure 1: Different approaches to Table QA correctly answering the question as True. (a) End-
to-End: Relies entirely on an LLM to answer the question directly, leaving no room for users to
understand the prediction. (b) Text-to-SQL: Generates a SQL command to solve the query, requiring
domain expertise to comprehend and becoming unintelligible when the query becomes complex. (c)
CoTable: Performs planning with atomic functions and executes sequentially to arrive at the final
answer. However, function arguments are not justified, and the final answer again depends on the
LLM’s opaque reasoning. In contrast, (d) Plan-of-SQLs or POS (our proposal): Plans in natural
language, making each step simple and understandable. Each step is then converted into a SQL
command, sequentially transforming the input table end-to-end to produce the final answer.

selecting irrelevant data as seen in Fig. 1(c). Furthermore, our method directly addresses the opacity
in the final step of existing Table QA models as shown in Fig. 1(a) & (c) by generating the final
answer through the same transparent, SQL-based process like Text-to-SQL (Rajkumar et al., 2022)
in Fig. 1(b). Yet, our method improves on Text-to-SQL that requires domain expertise to compre-
hend SQLs and often produces unexecutable programs for complex queries (Shi et al., 2020).
To investigate the interpretability of POS, we conduct both subjective and objective experiments. We
present the judges (humans and LLMs) with explanations from both our method and those generated
by state-of-the-art QA models, such as Text-to-SQL (Rajkumar et al., 2022), DATER (Ye et al.,
2023), and CoTable (Wang et al., 2023)—studying which explanations are preferred or effective for
the judges in predicting model responses. We also evaluate POS’s Table QA accuracy on the two
standard benchmarks: TabFact (Chen et al., 2020) and WikiTQ (Pasupat & Liang, 2015). Our main
contributions are summarized as follows:

• We introduce POS (Fig. 2)—a Table QA method specifically designed for interpretability, decom-
posing complex queries into atomic natural-language sub-queries, which are then translated into
SQL commands to sequentially transform input table into final answer.

• Via subjective and objective evaluations using humans and LLM judges (Tab. 1 & 2), we show
that POS explanations (i) significantly improve judges’ accuracy in predicting model behavior up
to 93.00% and and (ii) receive the best rankings in terms of clarity, coherence, and helpfulness in
understanding model’s reasoning process. Ours is also the first work showing strong correlations
between human and LLM judges in evaluating Explainable AI (XAI) methods.

• In Tab. 3, our POS achieves 78.31% accuracy on TabFact and 54.8% on WikiTQ with GPT3.5,
outperforming other program-based approaches and those using LLM only. Furthermore, our
method achieves competitive performance when compared to state-of-the-art Table QA models
that employ hybrid approaches—combinations of program-based and LLM reasoning. These hy-
brid models, while powerful, often sacrifice on interpretability, as they still rely on the black-box
reasoning of LLMs for table transformations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 DECOMPOSING COMPLEX INPUT QUERIES IN TABLE QA

LLM-based Table QA models have improved performance by decomposing complex input queries
into sub-problems (Ye et al., 2023; Nahid & Rafiei, 2024) or step-by-step reasoning (Wang et al.,
2023; Wu & Feng, 2024; Abhyankar et al., 2024). This breakdown effectively addresses the com-
positionality gap, a challenge where models can solve all sub-problems but struggle to combine
them into a coherent solution (Press et al., 2023). However, these methods often rely on complex
table transformations—i.e., selecting a sub-table from the input table based on complex reasoning
steps (Ye et al., 2023; Nahid & Rafiei, 2024; Wu & Feng, 2024; Abhyankar et al., 2024), which are
prone to errors regarding which table entries to select (refer to Appendix F for examples of halluci-
nation in sub-table selections). For example, DATER (Ye et al., 2023) in Fig. 12 selects a sub-table
from the original table based on the statement. However, the inclusion of row 3 is illogical and
does not contribute to a valid answer. Our approach mitigates this issue by leveraging a sequence
of simple program-based table transformations. Each transformation is constrained to be easily ex-
ecutable and atomic, such as a simple Select rows where opponents is 0 in Fig. 1(d)—clause with
only one condition and one variable, ensuring clarity and mitigating the hallucination problem.
Closest to our work is CoTable (Wang et al., 2023), which uses predefined atomic functions, like
(Chen et al., 2020; Nan et al., 2022; Mouravieff et al., 2024), to transform intermediate tables.
However, it still relies on the black-box reasoning of the model, particularly when adding new
columns, generating function arguments, or generating the final answer— Fig. 1(c). Meanwhile, our
method leverages atomic natural-language steps that are both human-comprehensible and easily
convertible into SQLs. The SQL commands are then sequentially applied to the tables, ensuring
transparency throughout table transformations and answer generation.

2.2 PROGRAM-AIDED TABLE TRANSFORMATIONS

Program-aided table transformations play a crucial role in processing tabular queries. Using lan-
guages like SQL (Nahid & Rafiei, 2024; Ye et al., 2023; Cheng et al., 2023) or Python (Cheng et al.,
2023; Chen et al., 2020) offers two main advantages over LLMs. First, they enable transparent,
rule-based transformations, offering greater traceability and interpretability compared to the opaque
generation of LLMs. Second, they are designed for efficient handling of large-scale, complex data
operations, making them more reliable and cost-effective than LLM-based methods (i.e., inputting
the whole large tables into LLMs is inefficient and erroneous (Chen, 2023; Wang et al., 2023)).
Our work joins a growing body of literature that harnesses program-aid table transformations for Ta-
ble QA but using SQL commands exclusively, much like Text-to-SQL (Rajkumar et al., 2022). To
our knowledge, only two methods in Table QA literature—LPA (Chen et al., 2020) using Python-
Pandas and Text-to-SQL—address Table QA queries using program-based operations end-to-end.
Yet, since Text-to-SQL generates a single SQL command for the entire task, it requires a highly
powerful Text-to-SQL converter and is prone to hallucinations (Shi et al., 2020). Meanwhile, LPA
constructs a single Python-Pandas program to represent the entire query, which can lead to com-
plexity and potential errors due to the challenges of synthesizing accurate programs in one step.
By breaking down queries into multiple SQL commands, we eliminate the need for powerful Text-
to-SQL models while also achieving superior performance (see Tab. 3—decomposing queries into
simple SQL operations significantly improves accuracy over Text-to-SQL and LPA on TabFact).

2.3 INTERPRETABILITY FOR TABLE QA

Interpretability is a critical aspect of Table QA models, especially when they are applied in high-
stakes applications. However, existing Table QA models often only provide limited explanations,
typically confined to indicating row indices or column names involved in the reasoning process—
Fig. 1(c), offering surface-level reasoning without deeper context (Wang et al., 2023; Ye et al., 2023).
This leaves users with high-level overviews rather than detailed insights into how specific data points
contribute to the final answer.
In contrast, our method (POS) advances interpretability in Table QA by providing natural-language,
step-by-step explanations that are directly tied to programmatic operations, as shown in Fig. 1(d).
Each step corresponds to a simple SQL command that is both human-understandable and machine-
executable. POS also presents attribution maps over intermediate tables, indicating exactly which

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

NL Atomic
Planner

[Q] True or False? The wildcats kept the
opposing team scoreless in 4 games.

game opponent result wc_pts opponents

1 ole miss loss 7 14

2 cincinnati win 20 0

3 xavier win 20 7

4 georgia win 26 0

5 vanderbilt win 14 0

6 michigan win 7 6

7 alabama loss 0 13

8 w virginia win 15 6

9 evansville win 36 0

10 tennessee loss 6 13

Table T: wildcats football team

[GT] True ➢ S1. Order the table by 'opponents' in ascending order.
➢ S2. Select rows where 'opponents' is 0.
➢ S3. Use a `CASE` statement to return TRUE if the

number of rows is equal to 4, otherwise return FALSE.
1

Step-to-SQL

result
True

SQL Engine
SQL

2

3

4

Ste
p

Table T1

Table T2

Table T3

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

… … … … …

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

Figure 2: Illustration of Plan-of-SQLs (POS). 1 The NL Atomic Planner takes (T,Q) as input and
generates a step-by-step plan in natural language to answer Q. 2 Step-to-SQL takes (T, S1) as
input and converts S1 to SQL to sort the table (transform T → T1). 3 Step-to-SQL takes (T1, S2)
as input and converts S2 to SQL to select relevant rows (transform T1 → T2). 4 Step-to-SQL
takes (T2, S3) as input and converts S3 to return the final answer (transform T2 → T3).

cells are used for the final prediction. This design allows users to follow the reasoning process at a
deeper level. Finally, unlike prior work that relies on the black-box reasoning of LLMs to generate
the final answer (Ye et al., 2023; Wang et al., 2023; Nahid & Rafiei, 2024), our approach generates
the answer through a simple, transparent SQL command.
In evaluating interpretability, we join a long line of works testing machine explanations on human
users (Adebayo et al., 2020; Nguyen et al., 2021; Kim et al., 2022; Taesiri et al., 2022; Colin et al.,
2022; Chen et al., 2023; Nguyen et al., 2024a;b). Yet, to the best of our knowledge, this is the first
work to test explanations on human and LLM judges in the context of LLM-based Table QA.

3 POS: INTERPRETABLE TABLE QA

Problem Formulation. In Table QA, each sample can be represented as a triplet (T,Q,A), where
T is a table, Q is a natural language question or statement about the table, and A is the answer. The
goal of Table QA is to predict the answer A given the query Q and the table T . To achieve this, our
method decomposes Q into smaller sub-queries (atomic steps), followed by converting them into
SQL commands, and applying these commands sequentially to the table to arrive at the answer A.

Grounded Table QA. Our method processes Table QA queries entirely through SQL commands,
with table transformations executed offline and no access to external knowledge bases1. Thus, we
assume that all information necessary to answer the query is contained within the original table,
following the definition of grounded QA as termed in the literature (Lei et al., 2018).
However, we observe that grounded QA is not established in popular Table QA benchmarks—i.e.,
the ground-truth is not always present in the input table. For instance, 18.9% of queries in WikiTQ
are insufficiently expressive using SQL to provide the correct answer and require external knowledge
(Shi et al., 2020). This problem contributes to the performance gap between our SQL-based method
vs. hybrid approaches on WikiTQ (see Tab. 3). We wish to clarify that our method is designed with
a focus on interpretability rather than accuracy alone.

Atomicity. In POS, we define an atomic step as a simple, minimal operation that can be directly
translated into a single SQL command. Specifically, an atomic SQL command (i) contains at most
one condition in the WHERE clause; (ii) uses at most one variable or column in that condition. By
restricting each step to be atomic in this way, we ensure that the SQL commands are straightforward
and less prone to errors during Step-to-SQL translation and execution. This also allows us to better
explain the reasoning process of a model to users. Examples of atomic steps in Appendix I.1.

1For unexecutable samples, we fallback to end-to-end QA, similar to (Cheng et al., 2023; Kong et al., 2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 GENERATING NATURAL-LANGUAGE ATOMIC PLANS

We perform planning in natural language, which aligns closely with LLM capabilities (Huang et al.,
2022). This also makes the planning process more interpretable to humans, as each step is expressed
in clear, understandable terms rather than function calls, whose motivations and arguments are not
explained to users. We study the importance of natural-language planning in Appendix C.

In Fig. 2– 1 , the Natural-Language (NL) Atomic Planner takes (T,Q) as input and converts Q
into a plan of sub-queries, referred to as atomic steps. The generated plan outlines the sequence of
operations needed to arrive at the answer A. Below is the prompt we use for planning on TabFact:

Prompt to Generate Natural-Language Atomic Plans

[In-context Planning Examples]

[Input Table]

[Statement]

Let’s develop a step-by-step plan to verify if the given Statement is TRUE or FALSE on the given Table! You
MUST carefully analyze the Statement and comprehend it before writing the plan!

Plan Steps: Each step in your plan should be very atomic and straightforward, ensuring they can be easily
executed or converted into SQL. You MUST make sure all conditions are checked properly in the steps.

Step order: The order of steps is crucial! You must ensure the orders support the correct information retrieval
and verification! The next step will be executed on the output table of the previous step.

For comparative or superlative Statements, you should order the table accordingly before selecting rows. This
ensures that the desired comparative or superlative data is correctly retrieved.

Plan:

3.2 EXECUTING ATOMIC PLANS WITH SQL COMMANDS

After generating a natural-language plan in Sec. 3.1, the next step is to operationalize it by converting
each atomic step into an executable SQL. This translation is fundamental to POS, bridging the gap
between high-level natural language reasoning and reliable, transparent table transformations.

3.2.1 STEP-TO-SQL: CONVERTING ATOMIC STEPS TO SQL COMMANDS

Leveraging the versatile capabilities of LLMs as Text-to-SQL converters (Hong et al., 2024), we
translate each step into its corresponding SQL query. By ensuring that each step is atomic and
straightforward (Sec. 3.1), we mitigate the need for complex Text-to-SQL translations. The conver-
sion process involves crafting a prompt for the LLM that includes the current state of the table, the
specific natural-language step to be performed, and any constraints to guide the LLM in generating
executable SQL commands. We prompt Step-to-SQL to convert a NL step into SQL as follows:

Prompt to Convert Natural-Language Steps to SQLs

[In-context Step-to-SQL Examples]

[Input Table]

Write a SQL command that: [natural_language_step]
Constraints for your SQL:

1. If using SELECT COUNT(*), SUM, MAX, AVG, you MUST use AS to name the new column. If
adding new columns, they should be different than existing columns.

2. Your SQL command MUST be compatible and executable by Python sqlite3 and Pandas.

3.2.2 SEQUENTIAL EXECUTION OF SQL COMMANDS

Once each step is translated into SQL, we execute it using a lightweight SQL engine called
sqlite3 (Muddana & Vinayakam, 2024). The execution proceeds sequentially: the output of
one SQL command becomes the input for the next, effectively chaining together the transformations
specified by the generated plan (Fig. 2– 2 – 3 – 4). In contrast to end-to-end and hybrid QA meth-
ods that rely on the black-box reasoning of LLMs for final-answer generation— Fig. 1(a) & (c), POS
maintains transparency throughout by SQLs only. We provide all details of prompt engineering for
POS in Appendix H.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(e)

Select rows where 'opponents' is 0
SELECT *
FROM table_sql
WHERE opponents = 0;

(a) (b)

rows=[0, 1,2,3]

cols=[opponents]

(d)

(c)

(e)

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

3 xavier win 20 7

7 alabama loss 0 13

10 tennessee loss 6 13

1 ole miss loss 7 14

idx game opponent result wc_pts opponents

0 2 cincinnati win 20 0

1 4 georgia win 26 0

2 5 vanderbilt win 14 0

3 9 evansville win 36 0

4 6 michigan win 7 6

5 8 w virginia win 15 6

6 3 xavier win 20 7

7 7 alabama loss 0 13

8 10 tennessee loss 6 13

9 1 ole miss loss 7 14

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

3 xavier win 20 7

7 alabama loss 0 13

10 tennessee loss 6 13

1 ole miss loss 7 14

idx game opponent result wc_pts opponents

0 2 cincinnati win 20 0

1 4 georgia win 26 0

2 5 vanderbilt win 14 0

3 9 evansville win 36 0

(d)

Figure 3: Generating attributions maps for POS. Column idx is added to track row attribution.

3.3 GENERATING EXPLANATIONS FOR LLM-BASED TABLE QA MODELS

Despite the importance of interpretability, there has been a noticeable gap in the visualization of
explanations for LLM-based Table QA. Previous works have largely focused on improving accuracy
and efficiency without providing insights into the reasoning processes (Wu & Feng, 2024; Kong
et al., 2024). Motivated by that, we propose a pipeline to generate explanations for Table QA models
by leveraging the intermediate information given during the execution of operations. Our approach
highlights relevant parts of the intermediate tables to create attribution maps (Montavon et al., 2018),
which illustrate how different input features contribute to the prediction.

3.3.1 ATTRIBUTION MAPS

During the execution of each SQL command, we perform the following steps:

• Adding the tracking index column: Before executing an SQL, we add a tracking index column
to the current table. This column contains the original row indices from the initial table– Fig. 3(a).

• Executing the SQL command: An SQL command is executed on the table with the tracking
index column, producing a modified table– Fig. 3(b).

• Identifying selected rows: After execution, we use the tracking index column to identify which
rows have been selected or filtered by the SQL command– Fig. 3(c).

• Identifying selected columns: We parse the SQL command to extract the columns involved in
the operation– Fig. 3(d) (more details in Appendix E).

• Visualizing an attribution map: The previous steps allow us to generate an attribution map for
the initial table– Fig. 3(e). The index column is also drop here.

Since both rows and columns can be attributed within an operation, POS offers a distinct advantage
over previous works (Ye et al., 2023; Wang et al., 2023)—accurately attributing responsible cells for
each transformation. For example, when a SQL command includes a condition that requires a cell
to match a specific value or range (e.g., WHERE opponents = 0), we can determine which cells
in the opponents column satisfy this condition and are thus responsible for the answer– Fig. 3(e).

3.3.2 CHAIN-OF-HIGHLIGHTED-TABLE EXPLANATIONS

At each stage of the table transformation process, we visualize attribution maps over the interme-
diate tables, emphasizing the data selected or filtered in the current operation. Rows and columns
containing relevant data for the operation are yellow-highlighted, while cells matching the specific
condition at this step are green-highlighted. Using the information obtained from the plan execu-
tion and attribution maps, we combine the three components: (1) intermediate tables; (2) attribution
maps; and (3) step description ; to make an explanation shown to users. We present the explanation
in a chain of highlighted intermediate tables for Table QA models, helping users visually follow
the sequence of transformations and understand how each step contributes to the final answer. Please
refer to Appendix A for explanations from Text-to-SQL, DATER, CoTable, and POS.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We use two widely-used Table QA benchmarks: TabFact (Chen et al., 2020) and WikiTQ (Pasupat
& Liang, 2015) in our experiments.
TabFact is a fact verification dataset where each statement on a table should be labeled with either
TRUE or FALSE (see Fig. 1). We use the cleaned TabFact dataset provided by Wang et al. (2023)
and evaluate model binary classification accuracy on the test-small set of 2,024 samples.
WikiTQ involves complex question answering, where the task is to answer a question written by
human annotators by retrieving or inferring information from an input table. We use the dataset and
evaluation scripts provided by Ye et al. (2023) and evaluate model denotation accuracy (whether the
predicted answer is equal to the ground-truth answer) on the standard test set of 4,344 samples.

4.1 EVALUATING EXPLANATION METHODS FOR TABLE QA

We follow the two evaluation settings proposed by Doshi-Velez & Kim (2017), assessing XAI meth-
ods both subjectively and objectively, using human users and LLMs (we refer to both as XAI judges).

Subjective evaluation: XAI judges are presented with explanations generated only from samples
where all methods either produce correct or incorrect results then asked to rank them based on
perceived quality; a.k.a. Preference task (Ramaswamy et al., 2023; Yang et al., 2024). By using
relative rankings, we directly compare the methods in terms of clarity, coherence, and helpfulness
in understanding the model’s reasoning (see the task setup in Appendix G).

Objective evaluation: XAI judges are provided with an explanation and an input then tasked with
accurately predicting the model’s output, regardless of the ground-truth—the Forward Simulation
task (Doshi-Velez & Kim, 2017; Hase & Bansal, 2020; Chen et al., 2022) (see Appendix G for
LLM-as-a-Judge setup and Appendix K for human study setup).

Baselines We select Text-to-SQL (Rajkumar et al., 2022), DATER (Ye et al., 2023),and
CoTable (Wang et al., 2023) as baseline XAI methods w.r.t their state-of-the-art performance in
Table QA, interpretability, and reproducibility. We present baseline details in Appendix A.

Visualizations For our experiments, we use the TabFact (Chen et al., 2020) dataset, running each
method across the entire test set of 2,024 samples with gpt-3.5-turbo-16k-0613. We vi-
sualize the explanations for the executable samples by utilizing the intermediate information from
each method. In total, we generate 1,340 visualizations for Text-to-SQL, 2,024 for DATER, 2,024
for CoTable, and 1,952 for POS.

4.1.1 EVALUATING EXPLANATIONS WITH HUMAN USERS

Motivation Human judges are the gold standard for assessing explanations, as they are the ones
ultimately interacting with AI models via explanation interfaces (Doshi-Velez & Kim, 2017). We
aim to study how explanations help humans in predicting model behaviors in Forward Simulation.

Human Judges We recruit 32 volunteers for our study on forward simulation, all of whom are
computer science undergraduate, master’s, or Ph.D. students. In each session, a user can choose one
of the four explanation methods and is asked to complete 10 samples. Each user can complete as
many sessions as they wish. In total, we gather 800 responses, with each method receiving around
200 responses. Please refer to Appendix K for the complete flow of our human study interface.

4.1.2 EVALUATING EXPLANATIONS WITH LLM-AS-A-JUDGE

Motivation The use of LLMs trained on human-alignment data (Ouyang et al., 2022) as judges has
been garnering attention due to their strong correlation with human judgments. In two-alternative
forced choice (2AFC) tasks, models like GPT-4 achieve strong agreement with humans (Dubois
et al., 2024; Zheng et al., 2023). Further, LLM-powered judges like G-Eval (Liu et al., 2023)
also demonstrate strong correlations with humans in natural-language generation evaluation met-
rics. This evidence makes LLMs promising, scalable judges for evaluating explanation quality,
particularly in tasks like Table QA, where the information is still text-based but structured. In this
work, we leverage LLM judges for both Preference and Forward Simulation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Forward Simulation accuracy (%) of LLM and human judges for XAI methods.
XAI method Text-to-SQL DATER CoTable POS (Ours)
GPT-4o-mini 65.67 73.57 76.53 81.61

GPT-4o 73.73 78.21 79.55 85.25
GPT-4 75.15 80.04 79.99 84.89
Human 83.68 86.50 84.29 93.00

LLM Judges Motivated by previous works showing the effectiveness of OpenAI’s GPT models
as reliable judges (Zheng et al., 2023; Liu et al., 2023; Dubois et al., 2024), we utilize 3 OpenAI’s
models: gpt-4-turbo-2024-04-09, gpt-4o, and gpt-4o-mini to judge Table QA expla-
nations. Please refer to Appendix G for detailed setup of LLM-as-a-Judge experiments.

4.1.3 EXPERIMENTAL RESULTS

POS explanations are most effective in forward simulation Tab. 1 shows that POS explana-
tions significantly boost both human and LLM judges’ accuracy in predicting the model’s output.
Specifically, human judges achieve 93.00% with POS explanations, outperforming other methods
such as DATER (86.50%) and CoTable (84.29%). Similarly, across all LLM judges, POS consis-
tently yields the highest accuracy, with improvements ranging from 5% – 6% over the next best
XAI method. This consistent superiority suggests that POS explanations provide more informative
insights into the model’s reasoning process, thereby facilitating better effectiveness.

Text-to-SQL explanations are least effective in forward simulation Text-to-SQL consistently
results in the lowest accuracy among both human and LLM judges. Human judges achieve an
accuracy of 83.68% with Text-to-SQL explanations, which is notably lower than their performance
with POS (93.00%). Similarly, LLM judges show the poorest performance with Text-to-SQL, with
accuracy ranging from 65.67% to 75.15%. This suggests that while Text-to-SQL provides a precise
logical sequence in the form of SQL queries, its technical nature and requirement for expertise make
it less effective for the task.

Human judges outperform LLMs in forward simulation Tab. 1 also reveals that human judges
surpass LLMs in accurately predicting the model’s outputs across all explanations. For instance,
with POS explanations, humans achieve an accuracy of 93.00%, while the highest accuracy among
LLM judges is 85.25% from gpt-4o. This performance gap indicates that humans possess a supe-
rior ability to interpret explanations and contextual nuances that LLMs might overlook.

POS explanations are considered best-quality by LLM judges In Tab. 2, POS explanations con-
sistently receive the best rankings across all LLM judges. Specifically, our proposed explanations
achieve average rankings of 1.55, 1.01, and 1.33 from GPT-4o-mini, GPT-4o, and GPT-4 re-
spectively, substantially outperforming CoTable, DATER, and Text-to-SQL. This shows that POS
explanations are perceived by the judges as providing the best clarity, coherence, and helpfulness in
understanding the model’s reasoning process (see qualitative definitions in Appendix G).

Preference rankings strongly correlate with Forward Simulation accuracy Using Tab. 1
& Tab. 2, we perform a correlation analysis between Preference rankings vs. Forward Simula-
tion accuracy to investigate if better qualitative assessments correlate with improved quantitative
measures. Surprisingly, we find a strong positive correlations across explanation methods.
Since lower rankings in Preference indicate better explanations, we invert the rankings for corre-
lation analysis to align higher accuracy with better preference. For GPT-4o-mini, we observe
a Pearson correlation coefficient of r=0.9685 (p-value: 0.0315), indicating a significant positive
relationship. Similar positive correlations are found for GPT-4o (r=0.9333, p-value: 0.0667)
and GPT-4 (r=0.8047, p-value: 0.1953). The overall correlation coefficient across all models is

Table 2: Relative rankings for XAI methods given by LLM XAI judges. Lower values indicate
better rankings (1 = best, 4 = worst). For fair comparisons, we perform Preference Ranking on
n=707 samples where all four methods are executable and either all generate correct answers or all
generate incorrect answers.

XAI method Text-to-SQL DATER CoTable POS (Ours)
GPT-4o-mini 3.95 2.75 1.75 1.55

GPT-4o 3.60 3.35 2.04 1.01
GPT-4 3.33 3.36 1.98 1.33

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

r=0.7865 (p-value: 0.0024), confirming a robust positive correlation. These findings suggest that
the perceived quality of explanations—as measured by preference rankings—is predictive of their
effectiveness in helping judges accurately predict the model’s outputs.

Table 3: Accuracy (%) for TabFact and WikiTQ using GPT3.5 (gpt-3.5-turbo-16k-0613).
“Breakdown” indicates whether queries are decomposed into sub-problems (Fig. 2– 1). “Trans-
formed by” refers to whether intermediate tables are transformed by an LLM or a program (Fig. 2–
2 – 3). “Answered by” specifies whether the final answer is generated by an LLM or a pro-

gram(Fig. 2– 4). LLM-only approaches provide the final answer without table transformations.

Method Accuracy (%) Breakdown Tables
transformed by

Final answer
byTabFact WikiTQ

End-to-End QA 70.45 51.84 ✗ - LLM
Few-Shot QA 71.54 52.56 ✗ - LLM
Chain-of-Thought (Wei et al., 2022) 65.37 53.48 ✗ - LLM
Binder (Cheng et al., 2023) 79.17 56.74 ✓ LLM + Program Program
Dater (Ye et al., 2023) 78.01 52.81 ✓ Program LLM
CoTable (Wang et al., 2023) 80.20 59.90 ✓ Program LLM
TableSQLify (Nahid & Rafiei, 2024) 79.50 64.70 ✗ Program LLM
Text-to-SQL (Rajkumar et al., 2022) 64.71 52.90 ✗ Program Program
LPA (Chen et al., 2020) 68.90 - ✓ Program Program
POS (Ours) 78.31 54.80 ✓ Program Program

4.2 EVALUATING TABLE QA PERFORMANCE

Baselines We compare POS with several baseline methods, categorizing them into three groups
based on how table transformation and answer generation are performed: LLM-only, program-
only, and hybrid approaches. We present details for baselines in Appendix B. Unless otherwise
noted, the LLM used in our experiments is gpt-3.5-turbo-16k-0613, with a temp value set
to 0 and top-p value of 1 for sampling.

Results POS achieves 78.31% accuracy on TabFact and 54.8% on WikiTQ, outperforming LLM-
only methods, such as End-to-End QA, Few-Shot QA, and Chain-of-Thought. In addition, POS
demonstrates significant improvements over program-only methods. For instance, on TabFact, our
method improves accuracy by +13.6 pts over Text-to-SQL and +9.41 pts over LPA.
POS performs competitively to hybrid approaches on TabFact. However, on WikiTQ, our perfor-
mance still lags behind the state-of-the-art. This is primarily because our method processes Table
QA queries entirely through SQL commands, with table transformations executed offline and no
access to external knowledge bases (see Sec. 3). We present an ablation study for POS on three key
components: Atomicity, Natural-Language Planning, and Step-to-SQL Conversion in Appendix C.

5 CONCLUSION AND DISCUSSION

Limitations First, in Tab. 3, we observe that a subset of samples cannot be processed end-to-end
with our method (9.8% for TabFact and 27.8% for WikiTQ using gpt-3.5-turbo-16k-0613).
In such cases, we fallback to an end-to-end question-answering approach, directly querying LLMs
for the final answer, similar to (Cheng et al., 2023; Kong et al., 2024). Second, POS relies on exact
matches between the query and the input table. Although we have incorporated soft-matching tech-
niques using SQL’s LIKE function, certain cases—such as a query with “thomas børn” and a table
entry with “thomas born”—still result in failure to identify the relevant information (see Fig. 18).

Discussion We introduce Plan-of-SQLs (POS), a novel approach specifically designed to improve
the interpretability of Table QA models. Our findings highlight two key advantages of POS. First, it
addresses a common limitation in current Table QA literature—the lack of transparency—by making
every transformation step understandable. Second, POS improves human ability to predict model
behaviors, as shown by the high accuracy in Forward Simulation, which suggests that explanations
provided by POS are not just intuitive but also actionable. Notably, we observe that most of the
POS’s errors are due to the poor planning capabilities of LLMs, rather than issues with Step-to-SQL
translation (see an error analysis in Appendix J). We expect that as LLMs continue improving in
planning, POS will become more accurate in QA while retaining its current level of interpretability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chandan K Reddy. H-star: Llm-driven hybrid
sql-text adaptive reasoning on tables. arXiv preprint arXiv:2407.05952, 2024.

Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests for model expla-
nations. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, pp. 700–712, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Chacha Chen, Shi Feng, Amit Sharma, and Chenhao Tan. Machine explanations and human under-
standing. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 1–1, 2023.

Valerie Chen, Nari Johnson, Nicholay Topin, Gregory Plumb, and Ameet Talwalkar. Use-case-
grounded simulations for explanation evaluation. Advances in neural information processing
systems, 35:1764–1775, 2022.

Wenhu Chen. Large language models are few (1)-shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pp. 1120–1130, 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact : A large-scale dataset for table-based fact verification. In In-
ternational Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding lan-
guage models in symbolic languages. ICLR, 2023.

Julien Colin, Thomas Fel, Rémi Cadène, and Thomas Serre. What i cannot predict, i do not under-
stand: A human-centered evaluation framework for explainability methods. Advances in neural
information processing systems, 35:2832–2845, 2022.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Yann Dubois, Percy Liang, and Tatsunori Hashimoto. Length-controlled alpacaeval: A simple
debiasing of automatic evaluators. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=CybBmzWBX0.

Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations help
users predict model behavior? In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5540–5552, 2020.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt: A
general framework for large language model to reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 9237–9251, 2023.

Sunnie SY Kim, Nicole Meister, Vikram V Ramaswamy, Ruth Fong, and Olga Russakovsky. Hive:
Evaluating the human interpretability of visual explanations. In European Conference on Com-
puter Vision, pp. 280–298. Springer, 2022.

10

https://openreview.net/forum?id=CybBmzWBX0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Chuan Lei, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Opentab: Advancing large language models
as open-domain table reasoners. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=Qa0ULgosc9.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg. Tvqa: Localized, compositional video ques-
tion answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 1369–1379, 2018.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 2511–2522, 2023.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and un-
derstanding deep neural networks. Digital signal processing, 73:1–15, 2018.

Raphaël Mouravieff, Benjamin Piwowarski, and Sylvain Lamprier. Learning relational decomposi-
tion of queries for question answering from tables. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10471–10485.
Association for Computational Linguistics, 2024.

A Lakshmi Muddana and Sandhya Vinayakam. Sqlite3. In Python for Data Science, pp. 201–216.
Springer, 2024.

Md Nahid and Davood Rafiei. Tabsqlify: Enhancing reasoning capabilities of llms through table
decomposition. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 5725–5737, 2024.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, et al. Fetaqa: Free-form table question
answering. Transactions of the Association for Computational Linguistics, 10:35–49, 2022.

Giang Nguyen, Daeyoung Kim, and Anh Nguyen. The effectiveness of feature attribution methods
and its correlation with automatic evaluation scores. Advances in Neural Information Processing
Systems, 34:26422–26436, 2021.

Giang Nguyen, Valerie Chen, Mohammad Reza Taesiri, and Anh Nguyen. PCNN: Probable-class
nearest-neighbor explanations improve fine-grained image classification accuracy for AIs and
humans. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=OcFjqiJ98b.

Giang Nguyen, Mohammad Reza Taesiri, Sunnie S. Y. Kim, and Anh Nguyen. Allowing humans
to interactively guide machines where to look does not always improve human-ai team’s classi-
fication accuracy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 8169–8175, June 2024b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

11

https://openreview.net/forum?id=Qa0ULgosc9
https://openreview.net/forum?id=OcFjqiJ98b
https://openreview.net/forum?id=OcFjqiJ98b

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vikram V Ramaswamy, Sunnie SY Kim, Ruth Fong, and Olga Russakovsky. Overlooked fac-
tors in concept-based explanations: Dataset choice, concept learnability, and human capability.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10932–10941, 2023.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal Daumé III, and Lillian Lee. On the potential of
lexico-logical alignments for semantic parsing to sql queries. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 1849–1864, 2020.

Mohammad Reza Taesiri, Giang Nguyen, and Anh Nguyen. Visual correspondence-based expla-
nations improve ai robustness and human-ai team accuracy. Advances in Neural Information
Processing Systems, 35:34287–34301, 2022.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. In The Twelfth International Conference on
Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zirui Wu and Yansong Feng. Protrix: Building models for planning and reasoning over tables with
sentence context. arXiv preprint arXiv:2403.02177, 2024.

Yuqing Yang, Boris Joukovsky, José Oramas Mogrovejo, Tinne Tuytelaars, and Nikos Deligiannis.
Snippet: A framework for subjective evaluation of visual explanations applied to deepfake de-
tection. ACM Transactions on Multimedia Computing, Communications and Applications, 20(8):
1–29, 2024.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 174–184, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A BASELINE XAI METHODS FOR TABLE QA

In this section, we present visual explanations for Table QA models, which help bridge the gap
between model behavior and human understanding. Each visualization provides insights into how
the model interprets the input table, highlighting the key information used in its reasoning process.
We showcase four different methods for explaining Table QA predictions: Text-to-SQL, DATER,
CoTable, and POS (ours). Each method offers a unique approach to visualizing explanations.

• Text-to-SQL (Rajkumar et al., 2022) directly converts a natural language query into SQL, which
outputs the answer. While it provides a clear, logical sequence, interpreting SQL requires exper-
tise, limiting accessibility for non-experts (see in Fig. 4).

• DATER (Ye et al., 2023) explanations contain Subtable Selection, contextual information (i.e.,
the support information that was fact-checked on the input table), and attribution maps that reveal
which input features influence the prediction (see in Fig. 5).

• CoTable (Wang et al., 2023) presents abstract functions, intermediate tables, and attribution maps,
showing table transformations step-by-step (see in Fig. 6).

Statement: the wildcats kept the opposing team scoreless in four games

Input Table: 1947 kentucky wildcats football team

game date opponent result wildcats_points opponents record

1 9999-09-20 ole miss loss 7 14 0 - 1

2 9999-09-27 cincinnati win 20 0 1 - 1

3 9999-10-04 xavier win 20 7 2 - 1

4 9999-10-11 9 georgia win 26 0 3 - 1 , 20

5 9999-10-18 10 vanderbilt win 14 0 4 - 1 , 14

6 9999-10-25 michigan state win 7 6 5 - 1 , 13

7 9999-11-01 18 alabama loss 0 13 5 - 2

8 9999-11-08 west virginia win 15 6 6 - 2

9 9999-11-15 evansville win 36 0 7 - 2

10 9999-11-22 tennessee loss 6 13 7 - 3

SQL Command:

SELECT
 CASE
 WHEN COUNT(*) = 4 THEN 'TRUE'
 ELSE 'FALSE'
 END
FROM table_sql
WHERE opponents = 0;

Figure 4: Text-to-SQL explanations provide only the SQL command, which is intuitive for domain
experts.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Statement: the wildcats kept the opposing team scoreless in four games in the table: the wildcats kept the
opposing team scoreless in 4 games.

Input Table: 1947 kentucky wildcats football team

Step 1: Select Rows (row 4, row 5, row 3, row 2, row 9) and Select Columns (opponents, wildcats points, game)

game date opponent result wildcats points opponents record

1 sept 20 ole miss loss 7 14 0 - 1

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

6 oct 25 michigan state win 7 6 5 - 1 , 13

7 nov 1 18 alabama loss 0 13 5 - 2

8 nov 8 west virginia win 15 6 6 - 2

9 nov 15 evansville win 36 0 7 - 2

10 nov 22 tennessee loss 6 13 7 - 3

Sub-table Selection

opponents wildcats points game

0 20 2

7 20 3

0 26 4

0 14 5

0 36 9

Contextual information: the wildcats kept the opposing team scoreless in 4 games.

Prompting LLM for the final answer... >>>

Prediction: TRUE

Figure 5: DATER explanations contain Sub-table Selection (S), contextual information (C), and
highlights (H) that reveal which input features influence the prediction. In DATER, the cells used to
construct the Sub-table Selection are yellow-highlighted. Additionally, the contextual information
has been fact-checked using SQL commands against the input table.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Statement: the wildcats kept the opposing team scoreless in four games

Input Table: 1947 kentucky wildcats football team

Step 1: f_select_row(row 1, row 2, row 3, row 4, row 8)

game date opponent result wildcats points opponents record

1 sept 20 ole miss loss 7 14 0 - 1

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

6 oct 25 michigan state win 7 6 5 - 1 , 13

7 nov 1 18 alabama loss 0 13 5 - 2

8 nov 8 west virginia win 15 6 6 - 2

9 nov 15 evansville win 36 0 7 - 2

10 nov 22 tennessee loss 6 13 7 - 3

Step 2: f_select_column(game, wildcats points, opponents)

game date opponent result wildcats points opponents record

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

9 nov 15 evansville win 36 0 7 - 2

Step 3: f_sort_column(opponents)

game wildcats points opponents

2 20 0

3 20 7

4 26 0

5 14 0

9 36 0

Step 4: simple_query()

game wildcats points opponents

2 20 0

4 26 0

5 14 0

9 36 0

3 20 7

Prompting LLM for the final answer... >>>

Prediction: TRUE

Figure 6: CoTable explanations present intermediate tables (T) and highlights (H), showing key
steps in data transformation. In CoTable, intermediate tables and attributions (Nguyen et al., 2021)
are provided. Additionally, the steps are presented through function names and their arguments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Statement: the wildcats kept the opposing team scoreless in four games

Input Table: 1947 kentucky wildcats football team

Step 1: Order the table by 'opponents' in ascending order.

game date opponent result wildcats_points opponents record

1 9999-09-20 ole miss loss 7 14 0 - 1

2 9999-09-27 cincinnati win 20 0 1 - 1

3 9999-10-04 xavier win 20 7 2 - 1

4 9999-10-11 9 georgia win 26 0 3 - 1 , 20

5 9999-10-18 10 vanderbilt win 14 0 4 - 1 , 14

6 9999-10-25 michigan state win 7 6 5 - 1 , 13

7 9999-11-01 18 alabama loss 0 13 5 - 2

8 9999-11-08 west virginia win 15 6 6 - 2

9 9999-11-15 evansville win 36 0 7 - 2

10 9999-11-22 tennessee loss 6 13 7 - 3

Step 2: Select rows where 'opponents' is 0.

game date opponent result wildcats_points opponents record

2 9999-09-27 cincinnati win 20 0 1 - 1

4 9999-10-11 9 georgia win 26 0 3 - 1 , 20

5 9999-10-18 10 vanderbilt win 14 0 4 - 1 , 14

9 9999-11-15 evansville win 36 0 7 - 2

6 9999-10-25 michigan state win 7 6 5 - 1 , 13

8 9999-11-08 west virginia win 15 6 6 - 2

3 9999-10-04 xavier win 20 7 2 - 1

7 9999-11-01 18 alabama loss 0 13 5 - 2

10 9999-11-22 tennessee loss 6 13 7 - 3

1 9999-09-20 ole miss loss 7 14 0 - 1

Step 3: Use a `CASE` statement to return TRUE if the number of rows is equal to 4, otherwise return FALSE.

game date opponent result wildcats_points opponents record

2 9999-09-27 cincinnati win 20 0 1 - 1

4 9999-10-11 9 georgia win 26 0 3 - 1 , 20

5 9999-10-18 10 vanderbilt win 14 0 4 - 1 , 14

9 9999-11-15 evansville win 36 0 7 - 2

verification_result

TRUE

Prediction: TRUE

Figure 7: POS (ours) explanation contains input Table T, input query Q, and prediction P, interme-
diate Table T, highlights H. The green-highlighted cells indicate where the information in the table
matches the conditions specified in the natural language steps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B LLM-ONLY, PROGRAM-ONLY, & HYBRID APPROACHES FOR TABLE QA

LLM-only. These approaches rely solely on LLMs to generate answers without explicitly per-
forming table transformations. End-to-End QA prompts the LLM to generate answers directly from
the input table and question. Similarly, Few-Shot QA (Brown et al., 2020) includes few-shot ex-
amples (T,Q,A) as the context to aid the LLM. In contrast, Chain-of-Thought (Wei et al., 2022)
prompts the LLM to explain its reasoning process step-by-step before delivering the final answer.

Program-only. Program-based approaches generate explicit programs to perform table transfor-
mation and answer the question. Latent Program Algorithm (LPA) (Chen et al., 2020) frames Tab-
Fact verification as a program synthesis task, converting input queries into sequential operations
(e.g., min, max, count, filter) executed via Python-Pandas. On the other hand, Text-to-SQL (Rajku-
mar et al., 2022) translates a natural language query directly into a single SQL command, which is
then applied to the input table to generate the answer.

Hybrid. Hybrid approaches combine the strengths of LLM reasoning and programs to perform
Table QA and achieve state-of-the-art performance. Dater (Ye et al., 2023) uses an LLM to ex-
tract relevant sub-tables, while breaking queries into sub-queries and executing SQL commands
to retrieve factual information. Similarly, TabSQLify (Nahid & Rafiei, 2024) leverages LLMs to
generate SQL commands, which is then used to create query-focused sub-tables. Binder (Cheng
et al., 2023) takes a different approach by converting natural language questions into executable
programs. It blends API calls with symbolic language interpreters like SQL or Python to address
reasoning gaps that cannot be handled through offline methods alone. Lastly, CoTable (Wang et al.,
2023) dynamically plans a sequence of predefined table operations–such as selecting rows or adding
columns, allowing it to iteratively transform the table based on the intermediate information. De-
spite their differences, Dater, TabSQLify, and CoTable all share a common strategy: they input the
final simplified table along with the original query into an LLM to produce the final answer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ABLATION STUDY FOR POS

To study the contributions of each component in POS, we perform ablation studies on TabFact and
WikiTQ. Due to the deprecation of gpt-3.5-turbo-16k-06132, we use gpt-4o-mini for
these experiments. Tab. 4 summarizes the results of our ablation studies on three key components:

Table 4: Ablation studies of POS components on TabFact and WikiTQ with gpt-4o-mini. The
check-marks indicate the inclusion of a component, while crosses indicate its removal. "Fallback"
refers to the percentage of samples unsolvable by POS, which are instead handled by fallback to
end-to-end QA, as in (Chen, 2023; Kong et al., 2024).

Component Atomicity Planning Step-to-SQL TabFact (%) WikiTQ (%)
Accuracy Fallback Accuracy Fallback

POS ✓ ✓ ✓ 77.22 11.56 48.90 22.63
w/o Atomicity ✗ ✓ ✓ 78.11 11.85 50.02 23.29
w/o NL Planning ✓ ✗ ✓ 77.90 40.61 48.27 42.84
w/o Step-to-SQL ✓ ✓ ✗ 78.26 53.06 27.05 41.64

Atomicity To assess the importance of atomic steps, we remove the constraint of atomicity in the
planning step in Sec. 3.1 as well as in in-context examples (w/o Atomicity). This means the LLM
is allowed to generate plans with more complex, compound steps. Unexpectedly, we observe an
improvement in the accuracy of POS on both datasets. We hypothesize that while the steps become
more complex, gpt-4o-mini is still able to handle the Step-to-SQL conversion successfully. This
is evident from the minimal impact on the fallback rate. However, we argue that interpretability is
affected due to the increased complexity of the plan steps, making it more challenging for users
to comprehend and trust the model’s reasoning process. We present qualitative examples of POS
explanations with and without atomicity in Appendix D.

NL Planning We replace the natural-language planning with a direct prompt that asks the LLM
to generate a sequence of SQL commands to solve the question end-to-end (w/o NL Planning).
We find that this component has minimal impact on the model’s accuracy. However, we observe a
significant increase in fallback rate–rising from 11.56% to 40.61% on TabFact and from 22.63% to
42.84% on WikiTQ. This indicates that many of the generated SQL-based plans are unexecutable
due to syntax errors or logical inconsistencies (e.g., referring to non-existent columns), significantly
hurting model interpretability.

Step-to-SQL Conversion We modify the table transformation process to rely on prompting LLMs
rather than executing SQL. Specifically, we ask the LLM to transform the table based on the natural-
language steps, substituting the Step-to-SQL conversion with black-box LLM reasoning (w/o Step-
to-SQL). This leads to a negligible increase in accuracy on TabFact but a substantial drop on WikiTQ
(from 48.90% to 27.05%), indicating that relying on the LLM for table transformations can severely
impact model accuracy. We argue that this is likely due to the LLM’s likelihood for hallucinations or
errors when handling complex tables (Chen, 2023; Wang et al., 2023). Additionally, this approach
diminishes interpretability, as the table transformations are no longer transparent or traceable.

2https://platform.openai.com/docs/deprecations/2023-11-06-chat-model-updates

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D QUALITATIVE EXAMPLES FOR POS EXPLANATIONS WITHOUT ATOMICITY

Below, we provide qualitative examples of POS explanations with and without atomicity in NL
Planning. Removing atomicity from the plan steps can negatively impact interpretability, as the
added complexity makes it harder for users to understand and trust the model’s reasoning process.

Statement: the time value for the rider brian finch , team suzuki and a rank greater than 3 is 2:14.59.0

Input Table: 1970 isle of man tt

Step 1: Select rows where 'rider' is 'brian finch'.

rank rider team speed time

1 frank whiteway suzuki 89.94 mph 2:05.52.0

2 gordon pantall triumph 88.90 mph 2:07.20.0

3 ray knight triumph 88.89 mph 2:07.20.4

4 rbaylie triumph 87.58 mph 2:09.15.0

5 graham penny triumph 86.70 mph 2:10.34.4

6 jwade suzuki 85.31 mph 2:12.42.0

7 brian finch velocette 83.86 mph 2:14.59.0

Step 2: Select rows where 'team' is 'suzuki'.

rank rider team speed time

7 brian finch velocette 83.86 mph 2:14.59.0

Step 3: Select rows where 'rank' is greater than 3.

rank rider team speed time

Step 4: Select rows where 'time' is '2:14.59.0'.

rank rider team speed time

Step 5: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

rank rider team speed time

verification_result

FALSE

Prediction: FALSE

Statement: the time value for the rider brian finch , team suzuki and a rank greater than 3 is 2:14.59.0

Input Table: 1970 isle of man tt

Step 1: Select rows where 'rider' is 'brian finch' AND 'team' is 'suzuki' AND 'rank' is greater than 3.

rank rider team speed time

1 frank whiteway suzuki 89.94 mph 2:05.52.0

2 gordon pantall triumph 88.90 mph 2:07.20.0

3 ray knight triumph 88.89 mph 2:07.20.4

4 rbaylie triumph 87.58 mph 2:09.15.0

5 graham penny triumph 86.70 mph 2:10.34.4

6 jwade suzuki 85.31 mph 2:12.42.0

7 brian finch velocette 83.86 mph 2:14.59.0

Step 2: Select rows where 'time' is '2:14.59.0'.

rank rider team speed time

Step 3: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

rank rider team speed time

verification_result

FALSE

Prediction: FALSE

Figure 8: Upper: POS explanation with atomicity. Lower: POS explanation without atomicity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Statement: after 1985 , the united states contributed two players with rafael araãjo being the most recent

Input Table: utah jazz all - time roster

Step 1: Select rows where 'nationality' is 'united states' and 'years_for_jazz' is after 1985.

player nationality position years_for_jazz school___club_team

rick adelman united states guard 1974-01-01 loyola (ca)

john amaechi england center / forward 2001-03-01 penn state

louis amundson united states forward 2007-01-01 unlv

j j anderson united states forward 1982-01-01 bradley

shandon anderson united states guard / forward 9999-01-01 georgia

rafael araãjo brazil center 2006-01-01 byu

carlos arroyo puerto rico guard 2002-05-01 florida international

isaac austin united states center 1991-01-01 arizona state

anthony avent united states forward 1998-01-01 seton hall

Step 2: Use a `CASE` statement to return TRUE if the number of rows is equal to 2, otherwise return FALSE.

player nationality position years_for_jazz school___club_team

louis amundson united states forward 2007-01-01 unlv

shandon anderson united states guard / forward 9999-01-01 georgia

isaac austin united states center 1991-01-01 arizona state

anthony avent united states forward 1998-01-01 seton hall

verification_result

FALSE

Prediction: FALSE

Statement: galina voskoboeva played a total of 3 games on a hard tennis court , and 1 on clay

Input Table: galina voskoboeva

Step 1: Select rows where 'surface' is 'hard' and count the number of such rows to determine the total games played on hard courts.

outcome date tournament surface opponent score

runner - up 2003-01-28 tipton hard (i) matea mezak 6 - 4 , 4 - 6 , 4 - 6

winner 2003-06-29 mont - de - marsan hard (i) oleksandra kravets 6 - 4 , 6 - 2

runner - up 2003-10-03 latina clay roberta vinci 3 - 6 , 4 - 6

runner - up 2005-11-08 pittsburgh hard lilia osterloh 6 - 7 , 4 - 6

winner 2006-06-06 cuneo , italy clay alice canepa 6 - 1 , 6 - 2

Step 2: Select rows where 'surface' is 'clay' and count the number of such rows to determine the total games played on clay courts.

outcome date tournament surface opponent score hard_court_games

runner - up 2005-11-08 pittsburgh hard lilia osterloh 6 - 7 , 4 - 6 1

Step 3: Use a CASE statement to return TRUE if the count of hard court games is equal to 3 AND the count of clay court games is equal to 1, otherwise return
FALSE.

total_clay_games

0

verification_result

FALSE

Prediction: FALSE

Figure 9: Two POS explanations without atomicity. The steps are compound and the attribution
maps are non-trivial to comprehend.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E EXTRACTING COLUMNS FROM SQL COMMANDS

We design an algorithm to analyze SQL queries and identify the columns used within them.

E.1 ALGORITHM OVERVIEW

The algorithm follows these main steps:

1. Preprocessing: Remove comments and normalize whitespace in the SQL query.
2. Column Extraction: Parse different clauses of the SQL query to identify column names:

• SELECT clause: Extract both regular columns and those used in functions.
• WHERE clause: Identify columns used in conditions.
• ORDER BY clause: Extract columns used for sorting.

3. Filtering: Compare extracted columns against a list of original columns to ensure validity.

E.2 IMPLEMENTATION DETAILS

The algorithm is implemented using regular expressions to parse the SQL query. Key implementa-
tion details include:

• Use of re.sub() for comment removal and whitespace normalization.
• Application of re.search() and re.findall() for extracting column names from

different parts of the query.
• Special treatment for columns used within functions in the SELECT, WHERE, ORDER BY

clauses.

E.3 AN EXAMPLE OF DATA-ATTRIBUTION TRACKING FOR TABLE QA

Here, we use the table transformation in Fig. 2– 3 as an example to illustrate our data-attribution
tracking algorithm (Fig. 10):

• (a) Adding the Tracking Index Column
• (b) Executing the SQL Command
• (c) Identifying Selected Rows
• (d) Parsing SQL Commands to Identify Selected Columns
• (e) Mapping to Original Indices

(e)

Select rows where 'opponents' is 0
SELECT *
FROM table_sql
WHERE opponents = 0;

(a) (b)

rows=[0, 1,2,3]

cols=[opponents]

(d)

(c)

(e)

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

3 xavier win 20 7

7 alabama loss 0 13

10 tennessee loss 6 13

1 ole miss loss 7 14

idx game opponent result wc_pts opponents

0 2 cincinnati win 20 0

1 4 georgia win 26 0

2 5 vanderbilt win 14 0

3 9 evansville win 36 0

4 6 michigan win 7 6

5 8 w virginia win 15 6

6 3 xavier win 20 7

7 7 alabama loss 0 13

8 10 tennessee loss 6 13

9 1 ole miss loss 7 14

game opponent result wc_pts opponents

2 cincinnati win 20 0

4 georgia win 26 0

5 vanderbilt win 14 0

9 evansville win 36 0

6 michigan win 7 6

8 w virginia win 15 6

3 xavier win 20 7

7 alabama loss 0 13

10 tennessee loss 6 13

1 ole miss loss 7 14

idx game opponent result wc_pts opponents

0 2 cincinnati win 20 0

1 4 georgia win 26 0

2 5 vanderbilt win 14 0

3 9 evansville win 36 0

(d)

Figure 10: Data-attribution tracking algorithm.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F HALLUCINATIONS IN SUB-TABLE SELECTION

Methods like CoTable and DATER aim to answer questions by performing complex table
transformations—specifically, selecting sub-tables from the input table based on reasoning steps.
However, these methods are prone to errors regarding which table entries to select, leading to irra-
tional or irrelevant information being considered in the final answer.
As illustrated in Fig. 11, although Chain-of-Table correctly answers the question Q: True or False?
In four different baseball games, the final score was 9-2, it irrationally selects unrelated information
(game 3) from the input table. Similarly, DATER, shown in Fig. 12, selects rows 2, 3, 4, 5, and 9 to
answer the same question. However, the inclusion of row 3 is illogical and does not contribute to a
valid answer.

Statement: the wildcats kept the opposing team scoreless in four games

Input Table: 1947 kentucky wildcats football team

Step 1: f_select_row(row 1, row 2, row 3, row 4, row 8)

game date opponent result wildcats points opponents record

1 sept 20 ole miss loss 7 14 0 - 1

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

6 oct 25 michigan state win 7 6 5 - 1 , 13

7 nov 1 18 alabama loss 0 13 5 - 2

8 nov 8 west virginia win 15 6 6 - 2

9 nov 15 evansville win 36 0 7 - 2

10 nov 22 tennessee loss 6 13 7 - 3

Step 2: f_select_column(game, wildcats points, opponents)

game date opponent result wildcats points opponents record

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

9 nov 15 evansville win 36 0 7 - 2

Step 3: f_sort_column(opponents)

game wildcats points opponents

2 20 0

3 20 7

4 26 0

5 14 0

9 36 0

Step 4: simple_query()

game wildcats points opponents

2 20 0

4 26 0

5 14 0

9 36 0

3 20 7

Prompting LLM for the final answer... >>>

Prediction: TRUE

Figure 11: Although CoTable correctly answers the question Q: True or False? In four different
baseball games, the final score was 9-2, it irrationally selects unrelated information (game 3) from
the input table.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Statement: the wildcats kept the opposing team scoreless in four games

Input Table: 1947 kentucky wildcats football team

Step 1: Select Rows (row 4, row 5, row 3, row 2, row 9) and Select Columns (opponents, wildcats points, game)

game date opponent result wildcats points opponents record

1 sept 20 ole miss loss 7 14 0 - 1

2 sept 27 cincinnati win 20 0 1 - 1

3 oct 4 xavier win 20 7 2 - 1

4 oct 11 9 georgia win 26 0 3 - 1 , 20

5 oct 18 10 vanderbilt win 14 0 4 - 1 , 14

6 oct 25 michigan state win 7 6 5 - 1 , 13

7 nov 1 18 alabama loss 0 13 5 - 2

8 nov 8 west virginia win 15 6 6 - 2

9 nov 15 evansville win 36 0 7 - 2

10 nov 22 tennessee loss 6 13 7 - 3

Sub-table Selection

opponents wildcats points game

0 20 2

7 20 3

0 26 4

0 14 5

0 36 9

Contextual information: the wildcats kept the opposing team scoreless in 4 games.

Prompting LLM for the final answer... >>>

Prediction: TRUE

Figure 12: DATER selects rows 2, 3, 4, 5, and 9 to answer the question. However, the inclusion of
row 3 is illogical and does not contribute to a valid answer.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G DETAILS FOR LLM-AS-A-JUDGE EXPERIMENTS

G.1 PROMPT FOR LLM-AS-A-JUDGE IN FORWARD SIMULATION

Prompt for LLM-as-a-Judge in Forward Simulation

prompt = f""" Given an input statement, an Artificial Intelligence (AI) model will output either TRUE or FALSE.
Your job in this Simulation task is to use the AI’s explanation to guess the machine response. Specifically,
please choose which response (TRUE/FALSE) model would output regardless of whether you think that re-
sponse is correct or not.

Explanation: [text_content]

Based on this explanation, guess what the model will predict on the Statement based on the provided expla-
nation. Answer with only ’TRUE’ or ’FALSE’: """

G.2 PROMPT FOR LLM-AS-A-JUDGE IN PREFERENCE RANKING

It is well known that LLM-as-a-Judge exhibits a strong bias toward the position of the options
presented to it (Dubois et al., 2024). To eliminate this bias in our prompt, we shuffle the order of the
four methods four times and compute the average ranking.

Prompt for LLM-as-a-Judge in Preference Ranking

prompts = []

num_methods = len(methods)

Create a dictionary mapping methods to their descriptions

method_descriptions = {

"DATER": """DATER is a method that focuses on selecting relevant information from the input table and provid-
ing contextual information to support the statement verification process. The explanation contains:

1. Sub-table Selection: Dater selects a sub-table from the original input Table that is relevant to the Statement.

2. Contextual Information: Dater provides contextual information that is fact-checked against the Table.""",

"COT": """COT is a method that breaks down the question-answering process into a series of intermediate
tables. Each step in the chain represents a specific operation on the table, leading to the final answer. The
explanation contains:

1. Step Descriptions: Each step is accompanied by a function with arguments, providing context for the
transformation.

2. Intermediate Tables: We display the intermediate tables resulting from each function, showing the state of
the data at each step.

3. Row and Column Highlighting: Rows and Columns used in the current step are highlighted with background-
color:yellow.""",

"Text2SQL": """Text2SQL is a method that translates the natural language query into a single SQL query. The
SQL query itself serves as the explanation for how the system arrives at its answer. The explanation contains:
The generated SQL command that will be directly applied onto the table to generate the final answer.""",

"POS": """POS is a Table QA method that breaks down the question-answering process into a series of natural-
language steps. Each step represents a specific operation on the table, leading to the final answer. The
explanation contains:

1. Step Descriptions: Each step is accompanied by a natural-language description of the atomic step per-
formed, providing context for the transformation.

2. Intermediate Tables: We display the intermediate tables resulting from each step, showing the state of the
data at each step.

3. Attribution Maps: We highlight the the rows, columns, and cells involved in each table transformation over
intermediate tables. Row and Column Highlighting: Rows and Columns used in the current step are highlighted
with background-color:yellow. Cell Highlighting: Cells that directly match the conditions in the current step are
highlighted with background-color:90EE90.""" }

for i in range(num_methods):
shuffled_methods = methods[i:] + methods[:i]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

prompt = f""" You are given explanations from four different methods for the same table fact verification task.
Please rank these explanations based on their clarity, coherence, and helpfulness in understanding the model’s
reasoning.

Clarity Definition: How easy is the explanation to understand? Is the language clear and straightforward?

Coherence Definition: Does the explanation logically flow and make sense as a whole? Are the ideas well-
connected?

Helpfulness in Understanding the Model’s Reasoning Definition: How effectively does the explanation help you
understand why the model made its decision? Does it reveal the reasoning process?

Provide the ranking from best to worst.

Explanations:

"""

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

H PROMPT ENGINEERING

H.1 PROMPT FOR ATOMIC PLANNING FOR TABFACT

H.1.1 DECOMPOSITION OF QUERY Q

The decomposition process breaks down the complex query Q into a sequence of atomic steps. This
is achieved through a carefully crafted prompt provided to the LLM. The prompt includes:

• Instructional Guidelines: We instruct the LLM to “Develop a step-by-step plan to answer the
question given the input table”.

• Emphasis on Atomicity: The LLM is instructed that “Each step in your plan should be very
atomic and straightforward, ensuring they can be easily executed or converted into SQL”.

• In-context Examples: We provide example inputs (T,Q) along with their corresponding plans
to serve as in-context examples for planning (see Appendix I).

H.1.2 SEQUENCING OF STEPS

Correct sequencing is crucial because each step depends on the output of the previous one. We
ensure proper sequencing by:

• Explicit Instructions: The LLM is instructed that “The order of steps is crucial! You must ensure
the orders support the correct information retrieval and verification!”.

• Dependencies: Clarifying that “The next step will be executed on the output table of the previous
step. The first step will be executed on the given Table”.

• Handling Comparatives and Superlatives: Instructing the LLM on how to handle statements
involving terms like ‘highest’, ‘lowest’, etc., by ordering the table before selecting rows.

Prompt for atomic planning

[In-context examples]

Here come to your task!

Table caption: {caption}

/* {table2string(table_info["table_text"])} */ # Convert Table into markdown format

This Table has {num_rows} rows.

Statement: {sample["statement"]}

Let’s develop a step-by-step plan to verify if the given Statement is TRUE or FALSE on the given Table!

You MUST think carefully analyze the Statement and comprehend it before writing the plan!

Plan Steps: Each step in your plan should be very atomic and straightforward, ensuring they can be easily
executed or converted into SQL.

You MUST make sure all conditions (except those mentioned in the table caption) are checked properly in the
steps.

Step order: The order of steps is crucial! You must ensure the orders support the correct information retrieval
and verification!

The next step will be executed on the output table of the previous step. The first step will be executed on the
given Table.

For comparative or superlative Statement involving "highest," "lowest," "earliest," "latest," "better," "faster,"
"earlier," etc., you should order the table accordingly before selecting rows. This ensures that the desired
comparative or superlative data is correctly retrieved.

Plan:

H.1.3 THE IMPORTANCE OF STEP ORDER

In this example, step 1 is crucial. If the table is not ordered by ‘rank’ first, selecting row number 1
(step 2) or filtering by ‘athlete’ (step 3) will return the wrong result. Only by ensuring that the table
is correctly ordered beforehand can we reliably select the top-ranked athlete. Thus, the sequence of
steps must be followed precisely to avoid logical errors.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A plan where the step order determines the correctness

Table: Olympic 2018; Table Tennis

/*
col : rank| athlete | time
row 1 : 1 | manjeet kaur (ind) | 52.17
row 2 : 2 | olga tereshkova (kaz) | 51.86
row 3 : 3 | pinki pramanik (ind) | 53.06

*/

Statement: manjeet had the highest rank in the competition.

Plan:

1. Order the table by ‘rank’ in ascending order.
2. Select row number 1.
3. Select rows where ‘athlete’ is ‘manjeet’ using the LIKE function.
4. Use a CASE statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

H.2 PROMPT FOR STEP-TO-SQL

Prompt for Step-to-SQL

[In-context examples]

Given this table:

/* {table2string(intermediate_table)} */

Data types of columns:

• {col_1}: {dtype_str_1}
• {col_2}: {dtype_str_2}
• . . .

Write a SQL command that: {natural_language_step}

The original table has {num_rows} rows.

Constraints for your SQL:

1. If using SELECT COUNT(*), SUM, MAX, AVG, you MUST use AS to name the new column. If
adding new columns, they should be different than columns {existing_cols}.

2. Your SQL command MUST be compatible and executable by Python sqlite3 and pandas.
3. If using FROM, the table to be selected MUST be {table_name}.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

I IN-CONTEXT EXAMPLES

I.1 IN-CONTEXT EXAMPLES FOR ATOMIC PLANNING

In-context examples for atomic planning

TabFact

Table: 2005 tournament results

/*
col : id | name | hometown | score
row 1 : 1 | alice | new york | 85
row 2 : 2 | bob | los angeles | 90
row 3 : 3 | charlie | chicago | 75
row 4 : 4 | dave | new york | 88
row 5 : 5 | eve | los angeles | 92

*/

Statement: in 2005 tournament, bob and charlie are both from chicago.

Plan: # Natural-language step

1. Select rows where the ‘name’ is ‘bob’ or ‘charlie’.
2. Select rows where ‘hometown’ is ‘chicago’.
3. Use a CASE statement to return TRUE if the number of rows is equal to 2, otherwise return FALSE.

WikiTQ

Table: 2005 tournament results

/*
col : id | name | hometown | score
row 1 : 1 | alice | new york | 85
row 2 : 2 | bob | los angeles | 90
row 3 : 3 | charlie | chicago | 75

*/

Question: which players are from chicago?

Plan: # Natural-language step

1. Select rows where the ‘hometown’ is ‘chicago’.
2. Select the ‘name’ column.

I.2 IN-CONTEXT EXAMPLES FOR STEP-TO-SQL

In-context examples for Step-to-SQL

Given this table:

/*
col : id | name | department | salary | years
row 1 : 1 | alice | it | 95000 | 3
row 2 : 2 | bob | finance | 105000 | 5
row 3 : 3 | charlie | marketing | 88000 | 2

*/

Write a SQL command that: Select rows where the ‘salary’ is greater than 100000.

SQL is:

SELECT *
FROM t a b l e _ s q l
WHERE sa la ry > 100000;
−− Selec t rows where the ‘ sa lary ’ i s g rea te r than 100000.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

J ERROR ANALYSIS OF POS

We notice that most errors in POS come from the planning stage rather than the
Step-to-SQL process. The common issues are due to missing condition checks
(see Fig. 13, Fig. 15, Fig. 14, Fig. 16, Fig. 17) in atomic steps. An interesting error due to
the exact-matching nature of SQL can also be found in Fig. 18.

Statement: pádraig harrington is the only player from northern ireland

Input Table: 2006 u.s. open (golf)

Step 1: Select rows where 'country' is 'northern ireland'.

place player country score to_par

1 steve stricker united states 70 + 69 = 139 - 1

2 colin montgomerie scotland 69 + 71 = 140 e

t3 kenneth ferrie england 71 + 70 = 141 + 1

t3 geoff ogilvy australia 71 + 70 = 141 + 1

t5 jim furyk united states 70 + 72 = 142 + 2

t5 pádraig harrington ireland 70 + 72 = 142 + 2

t7 jason dufner united states 72 + 71 = 143 + 3

t7 graeme mcdowell northern ireland 71 + 72 = 143 + 3

t7 phil mickelson united states 70 + 73 = 143 + 3

t7 arron oberholser united states 75 + 68 = 143 + 3

Step 2: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

place player country score to_par

t7 graeme mcdowell northern ireland 71 + 72 = 143 + 3

verification_result

TRUE

Prediction: TRUE

Figure 13: POS (ours) predicts TRUE but the groundtruth is FALSE (False Positive). In planning,
POS misses checking the player name.

Statement: frank nobilo is the only player from zimbabwe

Input Table: 1996 pga championship

Step 1: Select rows where 'country' is 'zimbabwe'.

place player country score to_par money

1 mark brooks united states 68 + 70 + 69 + 70 = 277 - 11 430000

2 kenny perry united states 66 + 72 + 71 + 68 = 277 - 11 260000

t3 steve elkington australia 67 + 74 + 67 + 70 = 278 - 10 140000

t3 tommy tolles united states 69 + 71 + 71 + 67 = 278 - 10 140000

t5 justin leonard united states 71 + 66 + 72 + 70 = 279 - 9 86667

t5 jesper parnevik sweden 73 + 67 + 69 + 70 = 279 - 9 86667

t5 vijay singh fiji 69 + 69 + 69 + 72 = 279 - 9 86667

t8 lee janzen united states 68 + 71 + 71 + 70 = 280 - 8 57500

t8 per - ulrik johansson sweden 73 + 72 + 66 + 69 = 280 - 8 57500

t8 phil mickelson united states 67 + 67 + 74 + 72 = 280 - 8 57500

t8 larry mize united states 71 + 70 + 69 + 70 = 280 - 8 57500

t8 frank nobilo new zealand 69 + 72 + 71 + 68 = 280 - 8 57500

t8 nick price zimbabwe 68 + 71 + 69 + 72 = 280 - 8 57500

Step 2: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

place player country score to_par money

t8 nick price zimbabwe 68 + 71 + 69 + 72 = 280 - 8 57500

verification_result

TRUE

Prediction: TRUE

Figure 14: POS (ours) predicts TRUE but the groundtruth is FALSE (False Positive). In planning,
POS misses checking the player name.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Statement: as porto novo scored three points against the victoria club mokanda

Input Table: 1971 african cup of champions clubs

Step 1: Select rows where 'team_1' is 'as porto novo'.

team_1 agg team_2 c_1st_leg c_2nd_leg

al - merrikh 2 - 2 (5 - 4 pen) tele sc asmara 9999-01-02 9999-01-01

abaluhya united 1 - 3 great olympics 9999-01-01 9999-01-01

asc diaraf 3 - 4 stade malien 9999-03-01 9999-01-01

maseru united 3 - 5 mmm tamatave 9999-01-02 9999-02-03

as porto novo 0 - 3 victoria club mokanda 9999-01-01 9999-01-02

canon yaoundé 9 - 4 as solidarité 9999-07-03 9999-01-02

espérance 1 - 0 al - ahly (benghazi) 9999-01-01 9999-01-01

secteur 6 1 - 2 enugu rangers 9999-01-01 9999-01-01

young africans 2 - 0 lavori publici 9999-01-01 9999-01-01

Step 2: Select rows where 'team_2' is 'victoria club mokanda'.

team_1 agg team_2 c_1st_leg c_2nd_leg

as porto novo 0 - 3 victoria club mokanda 9999-01-01 9999-01-02

Step 3: Use a `CASE` statement to return TRUE if the number of rows is greater than or equal to 1, otherwise return FALSE.

team_1 agg team_2 c_1st_leg c_2nd_leg

as porto novo 0 - 3 victoria club mokanda 9999-01-01 9999-01-02

verification_result

TRUE

Prediction: TRUE

Figure 15: POS (ours) predicts TRUE but the groundtruth is FALSE (False Positive). In planning,
POS misses checking the score.

Statement: wrestling is the sport with the latest date in 2007

Input Table: iowa corn cy - hawk series

Step 1: Order the table by 'date' in descending order.

date site sport winning_team series

2007-09-04 cedar rapids m golf iowa state iowa state 2 - 0

2007-09-08 des moines volleyball iowa state iowa state 4 - 0

2007-09-09 iowa city w soccer tie iowa state 5 - 1

2007-09-15 ames football iowa state iowa state 8 - 1

2007-11-10 peoria m cross country iowa state iowa state 10 - 1

2007-11-10 peoria w cross country iowa iowa state 10 - 3

2007-12-05 ames w basketball iowa state iowa state 12 - 3

2007-12-07 ames w swimming iowa state iowa state 14 - 3

2007-12-08 ames m basketball iowa state iowa state 16 - 3

2007-12-09 ames wrestling iowa iowa state 16 - 5

2008-02-22 ames w gymnastics iowa state iowa state 18 - 5

2008-03-07 iowa city w gymnastics iowa iowa state 18 - 7

2008-04-01 ames softball iowa iowa state 18 - 9

Step 2: Select row number 1.

date site sport winning_team series

2008-04-01 ames softball iowa iowa state 18 - 9

2008-03-07 iowa city w gymnastics iowa iowa state 18 - 7

2008-02-22 ames w gymnastics iowa state iowa state 18 - 5

2007-12-09 ames wrestling iowa iowa state 16 - 5

2007-12-08 ames m basketball iowa state iowa state 16 - 3

2007-12-07 ames w swimming iowa state iowa state 14 - 3

2007-12-05 ames w basketball iowa state iowa state 12 - 3

2007-11-10 peoria m cross country iowa state iowa state 10 - 1

2007-11-10 peoria w cross country iowa iowa state 10 - 3

2007-09-15 ames football iowa state iowa state 8 - 1

2007-09-09 iowa city w soccer tie iowa state 5 - 1

2007-09-08 des moines volleyball iowa state iowa state 4 - 0

2007-09-04 cedar rapids m golf iowa state iowa state 2 - 0

Step 3: Select rows where 'sport' is 'wrestling'.

date site sport winning_team series

2008-04-01 ames softball iowa iowa state 18 - 9

Step 4: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

date site sport winning_team series

verification_result

FALSE

Prediction: FALSE

Figure 16: POS (ours) predicts FALSE but the groundtruth is TRUE (False Negative). In planning,
POS misses checking the year.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Statement: erick walder and bob beamon had the same wind

Input Table: long jump

Step 1: Select rows where 'athlete' is 'erick walder'.

mark wind athlete nationality venue date

8.95 m (29ft4¼in) 0.3 mike powell united states tokyo 1991-08-30

8.90 m (29ft2¼in) a 2.0 bob beamon united states mexico city 1968-10-18

8.87 m (29ft1in) 0.2 carl lewis united states tokyo 1991-08-30

8.86 m (29ft0¾in) a 1.9 robert emmiyan soviet union tsakhkadzor 1987-05-22

8.74 m (28ft8in) 1.4 larry myricks united states indianapolis 1988-07-18

8.74 m (28ft8in) a 2.0 erick walder united states el paso 1994-04-02

8.74 m (28ft8in) 1.2 dwight phillips united states eugene 2009-06-07

8.73 m (28ft7½in) 1.2 irving saladino panama hengelo 2008-05-24

8.71 m (28ft6¾in) 1.9 iván pedroso cuba salamanca 1995-07-18

8.66 m (28ft4¾in) 1.6 loúis tsátoumas greece kalamáta 2007-06-02

Step 2: Select rows where 'athlete' is 'bob beamon'.

mark wind athlete nationality venue date

8.74 m (28ft8in) a 2.0 erick walder united states el paso 1994-04-02

Step 3: Select rows where the 'wind' is the same for both athletes.

mark wind athlete nationality venue date

Step 4: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

mark wind athlete nationality venue date

verification_result

FALSE

Prediction: FALSE

Figure 17: POS (ours) predicts FALSE but the groundtruth is TRUE (False Negative). In planning,
POS should select two rows at the same step.

Statement: thomas bjørn , of denmark , has a score of 68 + 71 + 76 = 215

Input Table: 1998 open championship

Step 1: Select rows where 'player' is 'thomas bjørn'.

place player country score to_par

1 brian watts united states 68 + 69 + 73 = 210 e

t2 jim furyk united states 70 + 70 + 72 = 212 + 2

t2 mark o'meara united states 72 + 68 + 72 = 212 + 2

t2 jesper parnevik sweden 68 + 72 + 72 = 212 + 2

5 justin rose (a) england 72 + 66 + 75 = 213 + 3

t6 thomas bjãrn denmark 68 + 71 + 76 = 215 + 5

t6 brad faxon united states 67 + 74 + 74 = 215 + 5

t6 john huston united states 65 + 77 + 73 = 215 + 5

t6 tiger woods united states 65 + 73 + 77 = 215 + 5

t10 david duval united states 70 + 71 + 75 = 216 + 6

t10 costantino rocca italy 72 + 74 + 70 = 216 + 6

t10 raymond russell scotland 68 + 73 + 75 = 216 + 6

t10 katsuyoshi tomori japan 75 + 71 + 70 = 216 + 6

Step 2: Select rows where 'country' is 'denmark'.

place player country score to_par

Step 3: Select rows where 'score' is '68 + 71 + 76 = 215'.

place player country score to_par

Step 4: Use a `CASE` statement to return TRUE if the number of rows is equal to 1, otherwise return FALSE.

place player country score to_par

verification_result

FALSE

Prediction: FALSE

Figure 18: POS (ours) predicts FALSE but the groundtruth is TRUE (False Negative). The exact-
matching nature of SQL makes POS cannot retrieve the relevant information.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

K HUMAN STUDY INTERFACE

To evaluate the effectiveness of different explanation methods in Table QA on human users, we
develop a web-based interface using HuggingFace Gradio and Flask. The interface is designed for
Forward Simulation to guide participants through the study seamlessly, ensuring they understand
the tasks and provide valuable feedback.
Overview of the Forward Simulation Interface Flow:

1. Informed Consent ⇒
2. Introduction to Table QA and Forward Simulation ⇒
3. Introduction to Explanations in Table QA ⇒
4. Welcome page where users are asked to choose one of 4 XAI methods ⇒
5. Specific explanation page for the chosen method ⇒
6. Experiment pages for 10 samples ⇒
7. Completion page!

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

K.1 INFORMED CONSENT

Informed Consent for Table QA Study
Study Information:
You are invited to participate in a research study on Table QA systems. This study aims to improve
how AI systems explain their reasoning when answering questions based on tabular data.

Study Duration and Requirements:
1. The entire study will take approximately 20 minutes to complete.
2. Please perform this study on a computer (not a phone).
3. Do not seek help from the Internet or other people during the study.

Study Structure:
1. Introduction to Table QA and task explanation
2. Main study: 10 questions about Table QA explanations

Benefits:
Your participation will contribute to the development of AI systems that can better explain their
reasoning to humans, particularly in the domain of question answering from tabular data. There are
no known risks associated with this study.

Data Usage and Confidentiality:
All data collected will be anonymized and used solely for research purposes. Your personal infor-
mation will be kept confidential.

Voluntary Participation:
Your participation in this study is entirely voluntary. You may choose to withdraw at any time
without any consequences.

Contact Information:
If you have any questions or concerns about this study, please contact [anonymized].

Agreement:
By clicking “I Agree” below, you confirm that you have read and understood this informed consent,
and you agree to participate in this Table QA study under the terms described above.

I Agree

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

K.2 INTRODUCTION TO TABLE QA AND FORWARD SIMULATION

Introduction to Table QA
In this experiment, you will interact with Table QA models. Table QA involves answering questions
based on data provided in tables.

Verify if the following Statement is TRUE or FALSE

Statement: The Wildcats kept the opposing team scoreless in four games.
Input Table Caption: 1947 Kentucky Wildcats Football Team

Game Date Opponent Result Wildcats Points Opponents Record
1 9999-09-20 Ole Miss Loss 7 14 0 - 1
2 9999-09-27 Cincinnati Win 20 0 1 - 1
3 9999-10-04 Xavier Win 20 7 2 - 1
4 9999-10-11 9 Georgia Win 26 0 3 - 1, 20
5 9999-10-18 10 Vanderbilt Win 14 0 4 - 1, 14
6 9999-10-25 Michigan State Win 7 6 5 - 1, 13
7 9999-11-01 18 Alabama Loss 0 13 5 - 2
8 9999-11-08 West Virginia Win 15 6 6 - 2
9 9999-11-15 Evansville Win 36 0 7 - 2
10 9999-11-22 Tennessee Loss 6 13 7 - 3

Model thinks this Statement is: TRUE

Model Simulation Task

Given an input statement, an Artificial Intelligence (AI) model will output either TRUE or FALSE.
Your job in this Simulation task is to use the AI’s explanation to guess the machine response.
Specifically, please choose which response (Statement is TRUE/Statement is FALSE) the model
would output regardless of whether you think that response is correct or not.

Next

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

K.3 INTRODUCTION TO EXPLANATIONS IN TABLE QA

Understanding Attribution Explanations
Attribution explanations highlight specific parts of a table—such as rows, columns, or
cells—that are most relevant to the answer predicted by a Table QA model. These expla-
nations help you understand which information of the input the system considered important
when predicting the answer.

Table caption: 1947 Kentucky Wildcats Football Team

Statement to verify: “The Wildcats kept the opposing team scoreless in 4 games.”

Game Date Opponent Result Wildcats Points Opponents Record
1 9999-09-20 Ole Miss Loss 7 14 0 - 1
2 9999-09-27 Cincinnati Win 20 0 1 - 1
4 9999-10-11 9 Georgia Win 26 0 3 - 1 , 20
5 9999-10-18 10 Vanderbilt Win 14 0 4 - 1 , 14
9 9999-11-15 Evansville Win 36 0 7 - 2

In this example, the Table QA model has highlighted specific rows and cells to explain its
prediction:
1. The entire rows for games 2, 4, 5, and 9 are highlighted in yellow.
2. Within these rows, the Opponents column cells containing “0” or “scoreless” are high-

lighted in green.
These highlights indicate that the system identified four games where the opposing team did
not score, verifying the statement as TRUE. The yellow highlighting shows the relevant rows,
while the green highlighting represents the cells containing fine-grained information needed to
verify the statement.

By using different colors for highlighting, the system provides a more nuanced explanation:
1. Yellow highlights (rows): Show the overall context of the relevant games.
2. Green highlights (cells): Pinpoint the exact information (opposing team’s score of 0) that

directly answer the question.
During the experiment, you will use explanations to choose which response (Statement is
TRUE/ Statement is FALSE) the model would output, regardless of whether you think that
response is correct or not.

Proceed to Experiment

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

K.4 WELCOME PAGE

Let’s Get Started!

Task Instructions

g Enter your name
� Choose a lucky number
| Select an explanation method
◎ Complete 10 samples in the experiment

Hi there! What is your name?

What is your lucky number?

Explanation Methods

Chain-of-Table Plan-of-SQLs

Text-to-SQL Dater

Next

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

K.5 EXPERIMENT PAGE

Sample: 1 / 10
Please note that in select row function, starting index is 0 for Chain-of-Table and 1 for Dater
and Index * represents the selection for all rows.

Based on the explanation below, please guess what the AI model will predict on the
input Statement below.

[Input Statement]

[Explanation content]

Guess what the model will predict on the Statement based on the provided explanation?

Model will predict: Statement is TRUE

Model will predict: Statement is FALSE

K.6 COMPLETION PAGE

Thank you!
You’ve successfully completed the experiment. Your predictions have been recorded.

Your Labeling Accuracy
user_accuracy %

You Predicted TRUE
true_percentage %

You Predicted FALSE
false_percentage %

Back to Start Page

37

	Introduction
	Related Work
	Decomposing complex input queries in Table QA
	Program-aided table transformations
	Interpretability for Table QA

	POS: Interpretable Table QA
	Generating Natural-Language Atomic Plans
	Executing Atomic Plans with SQL Commands
	Step-to-SQL: Converting Atomic Steps to SQL Commands
	Sequential Execution of SQL Commands

	Generating explanations for LLM-based Table QA models
	Attribution maps
	Chain-of-highlighted-table Explanations

	Experiments
	Evaluating Explanation Methods for Table QA
	Evaluating explanations with human users
	Evaluating explanations with LLM-as-a-Judge
	Experimental Results

	Evaluating Table QA performance

	Conclusion and Discussion
	Baseline XAI methods for Table QA
	LLM-only, Program-only, & Hybrid approaches for Table QA
	Ablation study for POS
	Qualitative examples for POS explanations without atomicity
	Extracting Columns from SQL commands
	Algorithm Overview
	Implementation Details
	An example of data-attribution tracking for Table QA

	Hallucinations in sub-table selection
	Details for LLM-as-a-Judge experiments
	Prompt for LLM-as-a-Judge in Forward Simulation
	Prompt for LLM-as-a-Judge in Preference Ranking

	Prompt Engineering
	Prompt for atomic planning for TabFact
	Decomposition of query Q
	Sequencing of Steps
	The importance of step order

	Prompt for Step-to-SQL

	In-context examples
	In-context examples for atomic planning
	In-context examples for Step-to-SQL

	Error analysis of POS
	Human study interface
	Informed Consent
	Introduction to Table QA and Forward Simulation
	Introduction to Explanations in Table QA
	Welcome page
	Experiment Page
	Completion Page

