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Abstracit—In this article, we focus on the computa-
tional efficiency of probabilistic model-based reinforcement
learning (MBRL) in unmanned surface vehicles (USV) under
unforeseeable and unobservable external disturbances. A
novel MBRL approach, local update spectrum probabilistic
model predictive control (LUSPMPC), is proposed to fully
release the superiority of the probabilistic model approxi-
mated in the frequency domain in computational efficiency
while mitigating its risk of overfitting during the learning
procedure. It employs a local update strategy to relieve
the violation of Bochner’s theory, and a frequency clipping
trick to encourage the approximated model to focus on
the features in the low-frequency domain. Evaluated by the
position-keeping task in a real USV data-driven simulation,
LUSPMPC shows its significant advantages in computa-
tional efficiency while achieving better learning capability,
generalization capability, and control performances in a
wide range of sparse scales compared with the baseline
MBRL approaches that approximate their models in sample
space and frequency domain, and therefore becomes an
appealing solution for MBRL USV system defending against
rapidly changing ocean disturbances.
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learning (RL), unmanned surface vehicles (USV).
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[. INTRODUCTION

OTH industry and academia have been rapidly developing
B unmanned surface vehicles (USV) that offer advantages in
safety and efficiency in order to tackle the shortage of skilled
professionals in the growing marine shipping industry [1]. The
corresponding autonomous technologies of USV have been
abundantly studied in various scenarios, such as position control
path following and collision avoidance [2], [3], [4], [5], [6],
[7], [8]. Although human intervention is usually required in the
current works, e.g., the heuristic selection of parameters based on
human experiences toward the excellent controller for specific
USV tasks [3] and the data-driven neural networks controller
achieved by massive sampling on a human knowledge-based
numerical USV model [9], the fully autonomous USV have been
a long-term ambition [1].

As one appealing solution to a self-learning fully autonomous
USV, reinforcement learning (RL) [10] drives the agent to
learn control policies through trial-and-error interactions with
the unknown environment. Despite the detailed evaluations of
the popular model-free RL algorithms in the USV domain by
simulations [11], [12], [13], [14], [15], the corresponding im-
plementation in the real-world USV remains limited due to the
poor capability of handling the uncertain disturbances caused
by the real ocean environments. Based on the successful imple-
mentations of Gaussian processes (GP) [16] in predicting distur-
bances [17] and modeling underwater vehicle dynamics [18] in
ocean environments, it turns to a potential modeling approach in
the model-based RL (MBRL) to tackle this issue by describing
the system uncertainties as a collection of Gaussian distribu-
tions. Probabilistic inference for learning control (PILCO) [19]
employed the propagation of GP uncertainties in long-term pre-
diction using analytic moment matching [20] and achieved great
control performances in systems with uncertainties. However,
this method is not applicable to USV as its closed-loop feedback
policy with full horizon planning is computationally demanding
to properly alleviate the unforeseeable and frequently changing
disturbances in the ocean environment. Kamthe and Deisenroth
[21] proposed Gaussian process-based model predictive control
(GP-MPC) [21] by introducing the model predictive control
(MPC) into PILCO. It successfully moderated the real-time
disturbances in simulated cart—pole and double pendulum tasks.
Extended from GP-MPC, sample-efficient probabilistic model
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predictive control (SPMPC) [22] successfully developed an
MBRL system specialized for USV to learn the position control
policy of a regular size boat in the real ocean environment
without human’s prior knowledge.

On the other hand, the computational complexity of the GP
model was not well addressed in the existing approach [22] that
turned to a difficult balance between data capacity and control
performance by employing the traditional sparse approach over
the sample space [23]. Based on the outstanding performance
of approximating the kernel functions in the frequency do-
main [24], the sparse spectrum GP (SSGP) achieved a superior
tradeoff between predictive accuracy and computational com-
plexity compared with the traditional sparse approaches [25].
Pan et al. [26] successfully extended it to autonomous driving
tasks by proposing the analytic moment matching in the fre-
quency domain. Despite the great potential of these approaches
in both theory and engineering, their current research mainly
focused on a fixed data set, and remains a long distance to the
MBRL USYV system.

In this article, we tackle the computational complexity issue
of the current GP-based MBRL approaches by proposing a
novel MBRL approach based on the SSGP model, local update
spectrum probabilistic model predictive control (LUSPMPC),
that stably learns the approximation of GP kernel functions
in the frequency domain from the iteratively generated sam-
ples of RL. According to the existing approaches using SSGP
that optimize their frequency samples without constraints on
a fixed data set [25], [26], a local update strategy that limits
the overlarge change of a sampled frequency in optimization
is proposed to relieve the violation of Bochner’s theory caused
by capriciously changing the frequency samples in the iterative
learning framework of RL, which negatively affects the learning
capability of MBRL approach using SSGP model due to the
high risk of overfitting. A frequency clipping trick is further
proposed to encourage the MBRL agent to approximate the
kernel functions by features in the low-frequency domain to
mitigate the effects of high-frequency noise in the engineering
application on USV. The proposed approach was implemented in
the MBRL USV system and evaluated by a position-keeping task
in the real USV data-driven simulation following the existing
work [22]. The experimental results indicated the significant
advantages of the proposed method in learning capability and
control performance compared with the direct combination of
the existing MBRL work with the SSGP model [25], [26].
Compared with the existing work using sparse GP [22] that
had been successfully implemented to the real-world USV, our
approach enjoyed superior control performances while reducing
about 30%—-80% computational cost with a wide range of the
sparse scales.

According to the relationship between our approach and the
related works concluded in Table I, our work integrates SSGP
into the MBRL system specified to USV with the following
contributions.

1) On the side of algorithm, the existing works SSGP [25]
and SSGP-exact moment matching (EMM) [26] focus on
the theory of SSGP and its extension to analytic moment
matching [20], which are irrelevant to RL. LUSPMPC
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TABLE |
COMPARISON OF THE PROPOSED AND RELATED APPROACHES
Approach Frequency | Analytical plan | RL | USV
SSGP [25] O X X
SSGP-EMM [26] O O X
GP-MPC [21] X O O
SPMPC [22] X O O
LUSPMPC (ours) O O O
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Fig. 1. Overview of MBRL USV control problem studied in this work.

relieves the risk of overfitting by introducing additional
constraints in the optimization of frequency samples and,
therefore, expands the application of SSGP in the domain
of RL with superior computational efficiency and learning
capability.

2) Ontheside of USV control, the proposed method attempts
to integrate SSGP to the existing probabilistic MBRL
framework specialized for USV [21], [22]. Evaluated by
a simulation driven by real USV data, it demonstrates
the advantages of better control performance and less
computational complexity compared with existing works.
Enjoying both a probabilistic model of system uncertain-
ties in the ocean environment and rapid control against
disturbances with limited computational resources, this
work expands the potential of MBRL as an emerging
direction of fully autonomous USV.

The rest of this article is organized as follows. The target
MBRL problem of USV control was formulated in Section II.
Section III detailed the proposed LUSPMPC. The experimental
results were demonstrated in Section IV. Finally, Section V
concludes this article.

[I. PROBLEM STATEMENT

We state the MBRL problem of USV control in this section.
Following the overview described in Fig. 1, the USV system
observes states including its global position (X,,, Y, ), heading
v,,, velocity V,,, current engine throttle 7, and rudder angle
0y, where the subscript u of these states indicates “USV.” The
system detects the wind direction and velocity ¥,,, V,,, where
the subscript w indicates “wind.” Although the system is also
affected by other disturbances, such as currents and waves, we
consider them as unobservable noises in this work.

1) Markov Decision Process (MDP): We usually describe the
MBRL problem as an MDP [10]. The state space S and the
action space A are defined as the sets of the observed state ; =
(X Vi wt Vit 5t VE .- cos(WE), ViE - sin(PE)], and the

ur Tu) Cu?
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control signal w; = [7%, '], where ¢ indicates the time step.
The conditional distribution of the state in the next time step
given the current state and action is predicted by the system
model f(x¢y|x:, u:). The MBRL agent aims to learn a pol-
icy 7 : y — uy that maximizes a task-related reward function
R (@141, ut), which concerns the next step state and the current
action.

2) Modeling the System: The MBRL agent iteratively learns
an approximated system model f(-) following the existing ap-
proaches [19], [22], [27]:

i1 = fe,u) +w (D

where the noisy signals w represent the unobservable distur-
bances, such as current and wave. Different from the model-free
RL updating value function and policy via Bellman equations,
MBRL updates its agent by training the model with explored
samples.

3) Planning Using Learned Model: The MBRL policy in
this article is implemented by MPC following the existing
works [21], [22], [27]. Given the current state x; and the predic-
tion horizon H, the MPC controller decides an action sequence
to maximize the expected long-term reward

H-1

[u; SR u;erl]:arg maXa,, .. we g ZE[R(:EHS+17 ut+8)]'
s=0

S.t. Tiystl € S,US e A (2)

At each step, E[-] calculates the exception of a reward function
R(Tt45+1, Utts), and the future state ;s is predicted by
the learned model following (1) given the initial state x; and
the candidate control sequence [uy, . . ., w4 g—1]. Following the
MPC settings in existing works [22], [27], the states are not
manually restricted, and the ranges of the action sequence are
regularized within [—1, 1]. Once the optimal action sequence
[uf,...,uj, ] is obtained, the MPC controller executes wu;
and moves to the next step ¢ + 1. This process is repeated as
a closed-loop controller that implicitly forms a policy u; =
m(a¢). Note that this MPC-based policy does not have the
model identification procedure in advance, and its performances,
therefore, strongly depend on the quality of the model learned
by RL.

4) Updating Agent: Following the demonstration in Fig. 1,
the MBRL agent in this work can be divided into two compo-
nents: the approximate system model that predicts future states
based on the current observed states, and the MPC-based policy
that plans control signals to maximize the long-term reward
based on the observed states and the approximate model. Define
the data set as D, the MBRL agent is updated by periodically
retaining the approximated system model following the loop
given as follows.

1) Optimize u; by the MPC-based policy based on the

observation in the previous step ;.

2) Execute uj, and drive the USV with the ocean environ-

ment and observe the next state & .
3) Expand data set D < D U {x¢, uj, ®141}.
4) Sett =t + 1, returnto 1).
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[ll. APPROACH
A. Learning SSGP Model

The original GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution [16]. Define
Z; := (x4, u;) and combine the input states ; € R® and the
control signals u; € R, y,,; € R is the observed state in the
next step, w, ~ N (0, afua) as Gaussian noise, GP separately
models the system for each dimension of the observed state
a=1,...,0 as fa following:

y?+1 = fa(it) + W (3)

The unobservable disturbances w are assumed to follow Gaus-
sian distributions in GP for an analytical calculation. Despite the
difficulty of fully describing disturbances following unknown
distributions, GP is an ideal modeling approach of USV ac-
cording to its successful applications in ocean engineering [17],
[18]. Define afca as variance and /~1a as the diagonal matrix of
squared length-scales, GP is specified by a covariance squared
exponential (SE) kernel of two state-action pairs Z; and Z;

ka(Zi, &;) = 07, exp (—;(5;1- — ij)T/l;l(:;:i - 5:j)> .4

Set n training samples as input set X = [®1,...,2&,] and
target set Y = [y2,...,Yny1], the hyper parameters of GP
0, = [J} , Aq, 07, |arelearned by maximizing the log marginal

likelihood [16]

n 1 1
1ng(Ya|9a):_§ log (27) — 5 |Ka+afua12|_§YaTﬁa ©)

where K is the matrix with elements K;'; = kq(Z;, &) calcu-
lated in (4) over X ,and 3, = (K* + s, I)7'Y 4. Givenanew
input &, and define k. = k‘a(X, ) and kg = ko(&s, ), its
posterior mean and variance are calculated by

my, (&) =kl (K*+05, I)'Y,=kLB.  (6)

07 (#.) = kqus — ko, (K* + 0%, T) ' kq.. 7

The original GP provides a data-driven probabilistic model of
a target system with stability: a control system based on a full
GP dynamics model with SE kernel function has been proved
to converge to a unique and invariant limiting distribution from
any start states [28].

Due to the polynomial computational complexity of the sam-
ple size [16], GP is not directly applicable to large datasets.
Compared with the traditional sparse approach [23] that reduces
the burden of computing kernel by selecting pseudo inputs in
the sample space, SSGP [25] simplifies the calculation of GP
in the view of frequency domain, as described in Fig. 2. Define
Zfe the SE kernel in (4) can be properly approximated

m

Jka =
by m random frequencies {w, ; }/*, sampled independently fol-
lowing p(w,) ~ N (0, A,) according to Bochner’s theorem [24]

. T (& 1 - -
ka(wiv wj) :/p(wa)ejwa (mlimj)dwa ~ Ez(rl)a(wi)d)a(wj)T
(®)
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Sample space Frequency domain

CRY, * e ~
Approximating the
kernel function of GP*
wils

Sparse spectrum GP

o Original samples ~ _
+ Pseudo samples ~ -

Sparse GP

Fig. 2. Principle of the sparse GP [23] that selects pseudoinputs in
sample space and SSGP [25] that approximates kernel in the frequency
domain.

where w,, is the matrix of {w, ;}7~,, and the feature vector of
any state-action pair ¢, (&) is calculated as

oula) = | ©)

o, cos(wlz)
o, sin(wl'x)

Applying linear Gaussian model [29], the posterior mean and
variance are calculated as follows:

mg, (5;*) = d)a(fc*)TA;l@aYa = ¢a(3~c*)Taa

U}a (x.) = 0'12ua ¢a(5~c*)TA¢;l¢a(i*) + U%ua

(10)
1D

where B, = [Ba(@1), .. ., bal@n)], Aw = B, BT + "G5 T,

fa

and o, = A;'®,Y .. Including the randomly generated fre-
quencies in the hyperparameters 6, = [afca, A, 07, Wal, the
learning of SSGP are achieved by maximizing the following log
marginal likelihood function withy, =YY, - Y1 ®T a,:

2

")/a 1 a
Ing(Yalea) = = 202 2 log |Aa| + mlog O_zw
Wa fa
_ glog 2102, . (12)

B. Uncertainties Propagation Using SSGP
Analytic moment matching [20] enables the GP prediction

with uncertain input by assuming the following non-Gaussian
distribution as a Gaussian one processing the same mean and
variance

p(f (@), B2) Z/p(f(:i*)li*) p(&,)dz,.  (13)

Define the input as p(&..) ~ N (ft,, 3.), it turns to the propaga-
tion of uncertainties through function (&., 3.) ~ N (., "),
which significantly smooths the nonlinear characteristics of GP
caused by large state uncertainties and contribute to better per-
formances of USV under unobservable disturbances according
to Cui et al. [22].

The analytic moment matching specialized for SSGP was
proposed in[26], and it calculates the mean of h(&,,X,) by
integrating the posterior mean in (10) over the input distribution

p(@.) ~ N (., X.)

’ ~ Ok COS(wTw) !
fa. = Bz, [my, (@.)] = Eg, [Uka, Sin("-’aTw)} e
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T
Tk, exp (=3 llwalls;, ) cos(wg pu.)

. (14)
Ok, €XP (_%||wa||22> sin(wy p.)

Q.

The variances are calculated based on the law of total variance
and (11) and (14)

—Es, [my, (&))"
(15)

¥,. =Eg, [0} (&.)] +Ez, [m}, (z.)]
= aza + UfuaTr (A;'lI’a) + ol W0, — 2,

w
where W, is the expectation of the feature vectors’ outer product
overp(Z.).Definei, j = 1, ..., masthe indicate of the elements
in each m x m submatrix, it can be calculated by the product-
to-sum trigonometric identities introduced in [26]

Ty Tk [ W
W, = s [0,(@)0,@)7] = 5 | 3i

oo
o

According to Deisenroth et al.[19] and Pan et al. [26], the com-
putational complexity of traditional sparse GP [23] and SSGP
has the same order: O(Onm?) for the training and O(Om?)
for the predicting, and O(O*m?(S + C)) for the analytical mo-
ment matching. The superior computational efficiency of SSGP
comes from not only the additional flexibility of optimizing the
characteristics of kernel function via frequency that could model
the system dynamics with fewer features than sparse GP, but also
the heavily calculated terms o, A, !, and W, irrelevant to the
input &, in (14) and (15) that can be computed in advance. On the
other hand, such a flexibility resulted in a high risk of overfitting,

as reported in [25].

C. Local Update Spectrum Probabilistic MPC

Optimizing the matrix of frequency samples w, without
constraint to maximize the log marginal likelihood function
in (12), SSGP [25], [26] have demonstrated the advantages of
efficiency and accuracy in both GP regression and uncertainties
propagation on the fixed data set of supervised learning. On the
other hand, directly applying SSGP to the data set iteratively
generated in an RL framework could be improper. As shown
in the left-hand side of Fig. 3, the freely optimized frequency
samples can be far away from their initial Gaussian distribution
and violate Bochner’s theorem. Repeating this optimization
in each iteration, therefore, turned to a deteriorated learning
capability of the MBRL agent due to the unstable GP model
with capriciously changing approximated SE kernel functions.

In this section, a novel MBRL approach, LUSPMPC, was
proposed to tackle this issue. It first introduced a local update
strategy to relieve the violation of Bochner’s theorem during the
learning procedure. As shown in the right-hand side of Fig. 3,
an additional term Aw, was introduced in the feature vector

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on June 11,2024 at 00:18:25 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 1: RL process of LUSPMPC for USV.

Input sample set (X,Y), time of executing action At
f=TrainGp (X,Y)

for i =1,2,..., Nypjor do

xy =ResetState (), uj = [0,0]

for t =1,2,..., Lyojjous do

# CPU 1

OperateActions (u;_;)

[xt,y:] = ObserveState ()

#CPU 2

& = f(xi-1,ui_y)

search [u},...,u;, | with &; using Eq. (2)
if t > 1 then

.
O
’ o0 . o
Target .o (] . Target °
L]
o e ® o o
. - L]
P «®
g, 00 e, %0
L] . L] .
Leam poor MBRL agent Learn good MBRL agent
from an iteratively generated data set from an iteratively generated data set
Sparse spectrum GP Our approach

L

Ty = (eo1,uf_4)
X ={X,z11},Y ={Y,u}

Fig. 8. Principle of the existing MBRL approach using SSGP and the
proposed LUSPMPC.

®2 = [p2 (%), .. ., P2 (&,,)] with elements

O, COS ((wa + Awa)Tﬁc)

1

O, Sin ((wa + Awa)T:i> (7
Instead of optimizing the frequency samples w, in (9) with-
out constraint, LUSPMPC switched Aw, within a given range
[—Clocal s Clocal] @s @ hyperparameter in (17) to fit the approximated
SE kernel on the target data set without hugely breaking the
initial distribution of w,. It stabilized the approximated SE
kernel function during the learning procedure of MBRL agent.

LUSPMPC further employed a frequency clipping trick fol-
lowing existing works [30], [31] to reduce the negative effect of
over high-frequency noise to the approximated SE kernel func-
tion in the engineering applications of USV. It clipped the initial
frequency samples following a Gaussian distribution p(wg) ~
N(0,A,) within a given range @, = clip(w,, — Celips Celip)»
which is utilized into (17) as the fixed-frequency samples.

Overall, define A2 = ®292T 4 "] and 42 =
fG.

YTY, - Y7®2" A2 '®2Y,, the marginal likelihood
function in LUSPMPC is calculated by

A 2
v 1 moy,
logp(Y,|05) = — 20(; —Elog|AaA| +mlog p
Wa fa

— g log 277012% . (18)

The hyperparameters HaA = [crffa,]la,afua,

mized with additional constraints as follows:

Aw,] are opti-

02" = arg max,a log p(¥ 4 |02)
S.t. Awa S [_Clocalu clocal]
W, = clip(wa, —Celip, Celip)

p(wa) ~ N(0, Ay). 19)

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS

| f: TrainGP (X,Y)
Returnf

Employing cjocal and cejip as constraints of (19), LUSPMPC
could customize its kernel functions to fit the current data set
without a high risk of overfitting and, therefore, enjoy superior
performances than the original SSGP.

The RL process of LUSPMPC system specific for USV is
detailed in Algorithm 1. At the beginning, the GP model f is
initialized by a preprepared sample set (X ,Y') following (19)
where Aw, € [—Clocal; Clocal] 18 updated with a fixed @,,. The GP
model will be updated in Ny, trials during the RL process. At
each trial, the USV system is reset to an initial state xy with
a zero control action uy, and interacts with the environment in
an Lonoue-Step rollout. At each step ¢, the control signals and
the MPC controller are separately executed by two CPU cores
following the parallel framework introduced in [22] to alleviate
the bias caused by the MPC optimization time of w; when the
USV continuously operates the previous control signals u;_;.
CPU 1 executes u;_, and observes the USV state x, after At.
Yy, 1s obtained by removing the unpredictable wind information
from ;. At the same time, CPU 2 predicts &; = f(a:t,l, u;_ )
to compensate the bias caused by u;_, at the current step. The
MPC controller searches the optimal control sequence following
(2) from &; where the unpredictable disturbances are assumed
fixed in the H-steps prediction. For ¢ > 1, its initial control
sequence is partially inherited from the one optimized in the
previous step for better system stability, only the last control
signal w7 is set to zeros. After obtaining the optimal control
sequence [uj, ..., u;, ;;_,|, only the first control signal u; will
be operated in the next step by CPU 1. For step ¢ > 1, the
interaction samples (x;_;,uw;_;) and y;_ are added to sample
set (X,Y). The GP model will be iteratively updated at the
end of each trial by the current sample set as one RL loop. In
the training procedure, LUSPMPC adds an exploration noise
following Gaussian distribution w,. ~ N(0,3,.) and updates
its agent after each rollout by the current data set. After training,
it runs without exploration noise w, and model update in the
testing procedure.

. Downloaded on June 11,2024 at 00:18:25 UTC from |IEEE Xplore. Restrictions apply.
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V. EXPERIMENTS
A. Experimental Settings

In this section, the proposed method was evaluated by the USV
simulation introduced in the existing MBRL approach specified
for USV [22], which contributed to a successful implementation
of the real-world USV system. This simulation approximated the
USV dynamics in various ocean environments with different
wind and current settings based on the real USV driving data.
Generated following the initial distributions, the velocities and
directions of both wind and current continuously change at each
step following uniform distributions. In order to sufficiently
evaluate the proposed MBRL approach’s learning capability,
generalization capability, control performance, and model qual-
ity in the USV domain with the existing baseline approach,
the stochastic disturbances of ocean environment were set
as 1, = 37° + U(-30,30)°, ¢, = 100° + U(—30,30)°, v, =
2.0+ U(0,0.1) m/s, and v. = 0.25 4+ U(0,0.1) m/s based on
the study and analysis in [22], where 1, and v,, are the angle
and velocity of wind, 1. and v, are the angle and velocity of the
unobservable current, and U indicates the uniform distribution.
Following the simulation model introduced in [22, Appendix],
the influences of wind and current on the USV dynamics are
independent: the movement of USV is separately affected by
wind and current, whereas the orientation of USV is strongly
affected by the wind. We focused on the position-keeping task
in [22] where the reward function is defined as the minus squared
Euclidean distance between the predicted mean of the boat
position p;; and the target position Pareer = [0, 0]

1
R(pt+l) = _EHthrl - ptargetHz- (20)

Set the initial position py = [0, 0], this reward function encour-
ages the USV to keep its position by properly switching its
engine throttle and rudder angle to counteract and utilize the fre-
quently changing disturbances. The stochastic disturbances were
generated within the control capability of USV following [22]
so that a well-learned policy could always resist environmental
disturbances.

Although (20) only considers USV’s position offset, it is a
proper metric of the given task as the USV’s position is fully
affected by its dynamics and external disturbances according
to the results in [22]. Therefore, we believe it is sufficient to
investigate the superiority of the proposed method in learning
capability, model quality, and computational complexity over the
existing work. In each trial, the initial GP model was trained by
500 samples generated by random control signals. The training
took Nyia = 20 rollouts, each rollout has 50 steps. After train-
ing, the agent was tested by 30 longer rollouts with 100 steps.
During each step, the MBRL agent predicts H = 3 stepsin MPC,
and the optimization time is limited within A¢. Each dimension
of initial variance of MPC prediction 3 is set to 10~*, and
the variance of explore noise w, is set to 3. = 0.1. In the test
procedure, the agent will stop collecting samples and updating
its model. In total, five independent trials were conducted with
different random seeds for statistical evidence.
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The MBRL agent was implemented by Python based on
GPflow [32] accelerated by the computational graph of Ten-
sorflow. We utilized bound optimization by quadratic approx-
imation [33] in NLopt! for the optimization of MPC. All
experiments were conducted on a computational server with an
Intel Xeon(R) W-2245 CPU and 64 GB memory.

B. Evaluation of Local Update and Frequency Clip

In this experiment, we evaluated the advantages of the local
update and the frequency clip in LUSPMPC to the MBRL USV
using the SSGP model. We denoted the combination of existing
work SPMPC [22] and SSGP [25] that directly employs SSGP
model with neither local update nor frequency clip by SPMPC
(SSGP) as a reasonable baseline approach. In total, 24 con-
figurations of SPMPC (SSGP) and LUSPMPC were evaluated
following the right-hand side of Fig. 4. Configurations 1-4 are
the SPMPC (SSGP) with different c.i, = [N/A, 1.0,0.5,0.25],
where N/A indicates no frequency clip. Configurations 5-24 are
the LUSPMPC with ¢jocy = [1.0,0.5,0.25,0.1,0.0] and differ-
ent Ccjip-

The learning curve of the RL training procedure was eval-
uated on the left-hand side of Fig. 4. All baseline approaches
(configurations 1-4) converged to larger average offsets (> 10
m), which indicate the limited learning capability of directly em-
ploying SSGP into SPMPC’s RL framework. Note ¢joca; = N/A
indicated that the local update trick was not employed and
w, can be freely optimized, it is inequivalent to Cjoca = 0.0
where Aw, was fixed during training. As a comparison, overall,
the converged offset decreases with the different cjocy from
1.0 to 0.1 (configurations 5 to 20). Configurations 21-24 that
prevent optimizing frequency in (18) by setting cjocq = 0.0
turn to degraded control performances than configurations 9-20
while still outperforming the baseline approaches. These results
demonstrate the positive effect of ¢y, that stabilizes the ap-
proximated kernel by adding constraints to the optimization of
SSGP’s likelihood function. The superiority of a proper cjjp in
improving the learning capability can also be observed from
configurations 5 to 20 while only employing c;, in the baseline
approach without ¢joc, did not work.

After training, the control performances and generalization
capability of all configurations were evaluated in the test pro-
cedure. The average offsets and median offsets were presented
in Table II. The success rates (final/overall) were defined as
the average rates of successfully holding the distance between
the USV and the target within 7 m threshold at the end of
rollout/during the whole rollout. The threshold is selected close
to the length of the simulated boat introduced in [22] (7.93 m),
which turns into a reasonable metric of successfully keeping the
USV’s position. The learned models’ quality was investigated
in Fig. 5 including the predicted errors of the position in X- and
Y-axes, orientation, and velocity in one-step prediction.

We can observe that directly applying frequency clip to
SPMPC (SSGP) (configurations 1-4) improves neither the con-
trol performance nor the model quality. Configurations 1-4

![Online]. Available: http://github.com/stevengj/nlopt
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Fig. 4. Learning curves of the RL training procedure in LUSPMPC with different configurations of parameters.

TABLE Il
TEST RESULTS OF LUSPMPC WITH DIFFERENT CONFIGURATIONS OF PARAMETERS

Approach Parameters Average [m] Median [m] | Success rate (final) | Success rate (overall)

@ cioeat = N/A, carip = N/A 15.93 £ 12.16 12.41 24.67% 2.67%

@ crocal = N/A ceip = 1.0 10.21 £8.93 7.38 51.33% 4.67%
SPMPC (SSGP) 135 Clocal = N/A, ccni =05 11.61 £ 11.04 743 11.33% 1.0%
@ clocl = N/A, carip = 0.25 15.78 4 14.52 10.91 34.67% 1.33%

® ciocal = 1.0, caip = N/A 13.12 £ 10.58 10.22 42.0% 4.67%

© ciocal = 1.0, carip = 1.0 11.12 £ 8.78 8.40 38.0% 10.0%

@ ciocal = 1.0, ciip = 0.5 5.34 £5.77 4.72 92.0% 32.0%

® cigeal = 1.0, celip = 0.25 6.62 £7.16 4.99 74.67% 25.33%

D ciocal = 0.5, caip = N/A 11.39 £ 8.94 8.80 44.0% 4.67%

(10) cloca = 0.5, caip = 1.0 8.74 4+ 6.91 7.16 47.33% 16.0%

(D) ciocar = 0.5, caip = 0.5 6.16 + 9.27 4.32 90.0% 46.67%

@ Clocal = 0.5, calip = 0.25 6.69 + 8.54 5.08 74.67% 36.67%

LUSPMPC @ Clocal = 0.25, celip = N/A 6.96 £+ 4.98 6.24 61.33% 22.67%
@ Clocal = 0.25, celip = 1.0 5.10 £ 3.21 5.05 83.33% 30.0%

@ Clocal = 0.25, caip = 0.5 3.78 £3.35 3.72 96.67% 62.67%

(16) clocal = 0.25, caip = 0.25 | 4.44 £ 2.80 4.56 90.0% 38.67%

@ Clocal = 0.1, ceiip = N/A 4.43 + 5.48 4.69 90.0% 43.33%

@ Clocal = 0.1, celip = 1.0 4.92 + 2.56 4.48 94.67% 49.33%

@ Clocal = 0.1, celip = 0.5 3.64 +2.17 3.80 98.67% 67.33%

@ Clocal = 0.1, celip = 0.25 3.65+2.14 3.82 98.0% 62.67%
@ Clocal = 0.0, celip = N/A 7.87+£9.94 6.94 55.33% 8.0%

@ Clocal = 0.0, celip = 1.0 6.93 +4.47 6.52 70.0% 22.67%

(2_3) Clocal = 0.0, ceip = 0.5 4.90 +4.36 4.59 85.33% 46.0%

@ Clocal = 0.0, celip = 0.25 6.68 £ 6.41 5.69 76.0% 30.67%

The bold entities represent the best performances.

also had large standard deviations in offset, which indicated
the poor generalization capability in the test procedure with
stochastically initialized and continuously changing environ-
mental disturbances. According to the results of configurations
5,9, 13, 17, and 21 given in Table II, LUSPMPC with only
local update achieved the best performance with configuration
17 ¢iocal = 0.1. Compared with configuration 1, it significantly
reduced 72.19% average offset, 54.93% standard deviations
of offset, and 62.21% median offset, and improved the final
success rate from 24.67% to 90.0% and the overall success
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rate from 2.67% to 43.33%. Based on Fig. 5, it also achieved
better model quality by reducing 83.33% predicted error in the
X-axis position, 68.42% in the Y-axis position, 73.91% in the
velocity, and 58.84% in the orientation. This result indicated the
advantages of the local update in LUSPMPC compared with the
original SSGP (configuration 1) in control performances, model
quality, and generalization capability.

The results of configurations 18, 19, and 20 demonstrated bet-
ter control performance and generalization capability achieved
by both local updating and properly clipping the frequency.
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Fig. 5. Average model prediction errors of the GP models learned in LUSPMPC with configurations of parameters.
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Fig. 6. Distribution of the frequency samples after training in LUSPMPC with different configurations of parameters. The blue and red bars
represent the frequency samples initialized following the normal distribution and optimized after training.

Setting cjoca = 0.1, ceip = 0.5 (configuration 19), LUSPMPC  adapting the approximated kernel function to the given samples,
achieved the overall best performance in Table II: it reduced which is suggested by the related works [25], [26]. On the
77.15% and 82.15% in the average and standard deviations of other hand, releasing the constraints cjo, in configurations 7
offset, 69.38% in the median offset, and improved 74.0% in the and 11 increased the predicted errors of model in position,
final success rate and 64.66% in the overall success rate while orientation, and velocity due to the overlarge update of the
maintaining the high model quality compared with the original ~ frequency samples, which turned to more capriciously changing
SSGP (configuration 1). approximated kernel functions during the training procedure, as
The effect of different cjocar With a fixed cgjip = 0.5 was then  shown in Fig. 3. These deteriorating models turned to worse
studied in configurations 7, 11, 15, 19, and 23. Configuration performances and generalization capability in Table Il compared
23 prevented the optimization of frequency samples by set- with configuration 19 but still outperformed SPMPC (SSGP) in
ting cjocal = 0. Although it had a close converge performance configurations 1-4.
compared with configuration 19 in the training procedure (see We finally summarized the results in this section based on
Fig. 4), it resulted in a low generalization capability (about the distribution of the frequency samples w over all configura-
100% increased standard deviation in offset) with overall de- tions analyzed in Fig. 6 where the blue/red bars represent the
graded control performances due to the limited flexibility of frequency samples initialized following the normal distribution/
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Average calculation time and model prediction errors of the GP models learned in SPMPC (sparse GP) and LUSPMPC with different

sparse scales. The red and green bars represent the result of SPMPC (sparse GP) and LUSPMPC.

optimized after training. All distributions were calculated over
all input dimensions regularized by their own A,.InLUSPMPC
with cijp = N/A (configurations 5, 9, 13, 17, and 21), the local
update contributed to a stable distribution close to the initial
one after the RL training procedure since the change of fre-
quency in optimization is limited. We believed it is the key to
the advantages of learning capability, generalization capabil-
ity, control performance, and model quality. As a comparison,
the freely optimized frequency samples distribution in SPMPC
(SSGP) was very different from the initial one according to
the result of configuration 1. Although the frequency samples
were initialized and clipped within the low-frequency domain
in configurations 2—4, they covered the high-frequency domain
after optimizations without the local update. These distributions
turned to the hugely biased approximated kernel functions with
poor control performances and low model quality. According to
the results of configurations 18, 19, and 20, properly clipping the
initial frequency samples based on the local update contributed
to better control performance and generalization capability than
configuration 17. (The same results can be observed in all
configurations with the local update following the axis of cgjip.)
Although Bochner’s theory was damaged due to the biased
distribution after clipping, it resulted in an approximated kernel
function focusing on the low-frequency domain whose engineer-
ing value of improving the performance of MBRL without losing
model accuracy was experimentally evaluated in this section.

C. Evaluation of Model Quality and Control Performance

In this section, the advantages of LUSPMPC over the baseline
MBRL approach specified to USV, SPMPC (sparse GP) [22]
that employed sparse GP [23] over sample space rather than
SSGP [24] were evaluated. We set cjoeal = 0.1, caip = 0.5 in
LUSPMPC according to the superior performance of config-
uration 19 on average offset, media offset, success rates, and
predicted errors over other configurations compared in Table IT
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and Fig. 5, Section IV-B. Both two approaches with differ-
ent numbers of sparse samples, i.e., the number of frequency
samples and pseudoinputs, were trained following the setting
in Section I'V-A. Compared with SPMPC, LUSPMPC reached
the same feature size of the approximated kernel with half
sparse samples since m-frequency samples are translated to a
2m feature vector via trigonometric functions following (9). We
fairly compared these two approaches with the same feature
size.

Table III and Fig. 7 demonstrated the control performances
and model quality in the test procedure where the numbers in
red and green presented the increase/decrease of each term in
LUSPMPC compared with SPMPC using sparse GP with the
same sparse scale. With a limited feature size 30, LUSPMPC
learned a model with increased predicted errors in position
(1.41% and 36.36% in X- and Y-axes, respectively), and ve-
locity (3.45%) compared with SPMPC using Sparse GP. It
turned to deteriorated performances in the average offset and
the final success rate. With an increased feature size from 50
to 200, LUSPMPC stably outperformed the baseline approach
in the control performances with close model qualities. It re-
duced about 2.67%—-8.65% average offset and 2.56%-14.51%
median offset while improving 1.34%-2.0% final success rate
and 4.0%—-28.0% overall success rate. From the one-step predic-
tion time defined as the time of calculating the long-term reward
with H steps’ model prediction, and the optimization time de-
fined as the time of the whole MPC procedure in one step shown
in Fig. 7, we observed the significant advantages of LUSPMPC
in computational complexity besides its superior control per-
formances. It reduced about 26.09%-72.5% average one-step
prediction time and 33.33%—78.63% average optimization time.
Although the moment matching with Sparse GP and SSGP
had the same order of computational complexity according
to Deisenroth et al. [19] and Pan et al. [26], LUSPMPC enjoyed
better computational efficiency than SPMPC using Sparse GP
in the engineering implementation: the heavy calculated terms
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TABLE IlI
TEST ResuLT oF LUSPMPC CoMPARED WITH SPMPC USING SPARSE GP
Approach Sparse samples | Feature size Average [m] Median [m] Success rate (final) Success rate (overall)
15 30 4.1+ 4.33 (+0.49%) 3.87 (—9.79%) | 96.67% (—0.66%) 58.67% (+5.34%)
LUSPMPC 25 50 3.64 £2.17 (—2.61%) 3.8 (—2.56%) 98.67% (+1.34%) | 67.33% (+10.0%)
50 100 3.59 £ 2.16 (—3.05%) | 3.74 (—9.06%) | 96.97% (+1.64%) 61.33% (+4.0%)
100 200 3.98 £3.65 (—7.87%) | 3.80 (—14.51%) | 97.33% (+2.0%) 58.67% (128.0%)
30 30 4.08 +2.29 4.29 97.33% 53.33%
50 50 3.74 £2.26 3.9 97.33% 59.33%
SPMPC (sparse GP) 100 100 3.93 £2.52 114 95.33% 57.33%
200 200 432F2.58 4.55 95.33% 30.67%
The bold entities represent the best performances.
g, A', and ¥, in (14) and (15) are irrelevant to the input &, REFERENCES

and, therefore, could be computed in advanced.

In summary, with proper feature size, the proposed
LUSPMPC achieved less offset and higher success rates in
the USV position-keeping task while dramatically reducing the
computational cost (from 33.33% to 78.63%) compared with the
traditional work using Sparse GP [22]. Its superiority in control
performance and computational efficiency contributes to a wide
range of MBRL applications in the real-world USV where the
computational resource is usually limited.

V. CONCLUSION

In this work, we proposed LUSPMPC for the better computa-
tional efficiency of MBRL in USV control problem. LUSPMPC
employed a local update strategy to stably learn the GP approx-
imation in the frequency domain from the iteratively generated
data set. The approximated GP was further encouraged to focus
on the low-frequency features by a frequency clip trick. Eval-
uated by the comprehensive comparisons of different configu-
rations in the position-keeping task of a real USV data-driven
simulation, LUSPMPC demonstrated its advantages in learning
capability, model quality, and generalization capability over
traditional SSGP [24] and existing MBRL USV approach using
the sparse GP [22]. Compared with SSGP, it converged to 46%
fewer average position offset in the training while learning a
more accurate probabilistic model of USV. It achieved 77.2%
less average position offset and 74.0% higher success rate in
the testing with superior generalization capability. With 100
sparse features, it significantly outperformed the SPMPC using
the sparse GP with 8.7% fewer average position offset and over
70% less computational burden and, therefore, expanded the
potential of probabilistic MBRL in USV systems with limited
computational resources.

Our future work can be divided into two parts. On the
algorithmic side, extending LUSPMPC to partially observed
MDP where the unobservable disturbances are handled by
hidden states instead of Gaussian noises could contribute to
a superior performance of MBRL under strong disturbances
following [34], [35]. On the side of engineering, designing
sophisticated reward functions for specific tasks (e.g., consider
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