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Q♯: Provably Optimal Distributional RL for LLM Post-Training
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Abstract

Reinforcement learning (RL) post-training is cru-
cial for LLM alignment and reasoning, but ex-
isting policy-based methods, such as PPO and
DPO, can fall short of fixing shortcuts inherited
from pre-training. In this work, we introduce Q♯,
a value-based algorithm for KL-regularized RL
that guides the reference policy using the optimal
regularized Q function. We propose to learn the
optimal Q function using distributional RL on
an aggregated online dataset. Unlike prior value-
based baselines that guide the model using un-
regularized Q-values, our method is theoretically
principled and provably learns the optimal policy
for the KL-regularized RL problem. Empirically,
Q♯ outperforms prior baselines in math reasoning
benchmarks while maintaining a smaller KL di-
vergence to the reference policy. Theoretically,
we establish a reduction from KL-regularized RL
to no-regret online learning, providing the first
bounds for deterministic MDPs under only realiz-
ability. Thanks to distributional RL, our bounds
are also variance-dependent and converge faster
when the reference policy has small variance. In
sum, our results highlight Q♯ as an effective ap-
proach for post-training LLMs, offering both im-
proved performance and theoretical guarantees.

1. Introduction
Reinforcement learning (RL) post-training is a crucial step
in training large language models (LLMs), aligning their
generations with human preferences (Christiano et al., 2017)
and enhancing their reasoning capabilities (Setlur et al.,
2024; Guo et al., 2025). This stage typically follows su-
pervised learning (next-token prediction), where the model
is further trained to maximize expected cumulative reward
while minimizing KL divergence from the reference policy
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πref obtained via supervised learning. The KL penalty plays
a critical role by keeping the model close to πref, mitigating
issues such as reward hacking and catastrophic forgetting.

Most state-of-the-art LLMs (Ouyang et al., 2022; Dubey
et al., 2024; Team et al., 2024) are post-trained using policy-
based RL methods, which update model weights via stochas-
tic gradient descent using algorithms like RLOO (Kool et al.,
2019), PPO (Schulman et al., 2017), and DPO (Rafailov
et al., 2024). However, these methods are computationally
expensive, requiring full backpropagation through the LLM
during training. In this paper, we propose a more efficient al-
ternative: a value-based RL approach that guides the gener-
ations of the reference policy πref using a learned value func-
tion, without modifying πref model weights. This approach
is particularly attractive because, for many tasks, evalu-
ating generations is easier than producing them (Ouyang
et al., 2022; Pang et al., 2023), suggesting we can use much
smaller models to learn value functions for guidance. For
instance, in our experiments (Section 3.2), we show that a
1B parameter value model can effectively steer and improve
a 70B parameter LLM.

Existing value-based methods for LLM post-training, such
as CD (Mudgal et al., 2023) and VAS (Han et al., 2024), fall
short of faithfully optimizing the KL-constrained RL objec-
tive. These approaches guide πref using Qπref

—the expected
reward-to-go under πref without KL regularization—which
does not guarantee convergence to the optimal policy π⋆,η.
In contrast, under the classical KL-regularized RL frame-
work, we show that it is provably optimal to guide πref using
Q⋆,η, the expected reward-to-go under the optimal policy
π⋆,η, which accounts for KL regularization. This theoreti-
cal insight ensures convergence to π⋆,η and addresses the
shortcomings of previous methods. As we demonstrate
empirically and theoretically, prior approaches can lead to
suboptimal rewards or large KL divergence—issues that our
algorithm, Q♯, provably avoids.

Our method exploits special properties of Q⋆,η in deter-
ministic MDPs and iteratively trains a model to estimate it
through supervised distributional learning such as MLE. The
iterative training procedure is motivated by the classic imi-
tation learning algorithm DAgger (Ross et al., 2011), which
addresses covariate shift and ensures that the learned Q⋆,η

estimator remains accurate when used to guide πref at infer-
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Q♯: Provably Optimal Distributional RL for LLM Post-Training

Figure 1. (Left) A sketch of our post-training algorithm (Q♯) based on distributional RL. Q♯ alternates between learning Z⋆ – the
reward-to-go distribution of πref – and using the induced policy to collect new data and further improve the distributional estimate. (Right)
Evaluation result on the GSM8K dataset (Cobbe et al., 2021). We see that Q♯ achieves both higher accuracy and lower KL compared to
prior value-based post-training algorithms (Mudgal et al., 2023; Han et al., 2024).

ence time. This distributional learning approach not only
enhances empirical performance but also enables second-
order style regret bounds - instance-dependent bounds that
adapt to the variance of the model’s generation.

Q♯ differs from traditional RL methods in two key aspects.
First, we avoid complex temporal difference (TD) learning
(Tesauro, 1991) or Q-learning techniques (Van Hasselt et al.,
2016; Kumar et al., 2020), instead relying on direct super-
vised learning of a fixed critic. Second, while we adopt a
distributional perspective, Q♯ is conceptually simpler than
classical distributional RL algorithms like C51 (Bellemare
et al., 2017): we directly learn outcome distributions via
supervised maximum likelihood, without invoking distribu-
tional Bellman updates. We elaborate on this and related
works in Appendix A. In summary, our contributions are as
follows:

1. We propose Q♯, a principled algorithm for KL-
regularized RL in deterministic MDPs, which includes
LLMs, based on guiding πref with the soft Q⋆ learned
with distributional RL (Section 2.2).

2. We prove variance-dependent PAC bounds for con-
vergence to the optimal policy, which only requires
realizability in the function class (Section 4).

3. We show that value-based post-training, which includes
Q♯, can fix biases and shortcuts in a star-graph environ-
ment (Bachmann & Nagarajan, 2024), while popular
policy-based methods cannot (Section 3.1).

4. We provide extensive experiments on math reasoning
tasks that validate the effectiveness of our method at
maximizing reward while maintaining small KL devia-
tions from the reference policy (Section 3.2).

2. Method
2.1. Preliminaries

We study KL-regularized reinforcement learning (RL) in de-
terministic Markov Decision Processes (MDPs), where large
language model (LLM) post-training is a motivating special
case. An MDP is defined by a state space X , action space
Y , horizon H , transition kernels (P1, . . . , PH) with Ph :
X ×Y 7→ ∆(X ), and known reward functions (r1, . . . , rH)
where rh : X × Y → R. A policy π = (π1, . . . , πH) con-
sists of decision rules πh : X → ∆(Y). For a given η > 0,
the KL-regularized value of a policy π is defined as

V π,η := Eπ

[∑H
h=1 rh(xh, yh)− ηKL(πh(xh) || πref

h (xh))
]
.

(1)

A classical result shows that KL-regularized RL can be
solved via soft Bellman equations (Ziebart et al., 2008).
Starting from h = H and proceeding backward, we define:

V ⋆,η
H+1(x) = 0,

Q⋆,η
h (x, y) = rh(x, y) + Ex′∼Ph(x,y)[V

⋆,η
h+1(x

′)],

π⋆,η
h (y | x) ∝ πref

h (y | x) exp(η−1Q⋆,η
h (x, y)), (2)

V ⋆,η
h (x) = η lnEy∼πref(x) exp(η

−1Q⋆,η
h (x, y)).

This expresses the optimal policy as a softmax over Q⋆,η
h ,

weighted by πref
h . Moreover, Q⋆,η

h (x, y) is the maximal
expected KL-regularized return starting from (x, y) at time
h. We now focus on deterministic MDPs, which covers
LLM post-training and other structured generation tasks
such as diffusion models (Domingo-Enrich et al., 2024).
Assumption 2.1. The transitions Ph are deterministic.

Under this assumption, the value function simplifies signifi-
cantly:

exp(η−1V ⋆,η
h (x))

= Ey∼πref
h (x)[exp(η

−1rh(x, y) + η−1V ⋆,η
h+1(x

′))] (3)

= Eπref [exp(η−1
∑

t≥h rt(xt, yt)) | xh = x], (4)
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where Equation (3) is due to the determinism of Ph, while
Equation (4) follows by recursively unrolling until the final
step. Note that although V ⋆,η

h (xh) corresponds to the soft
value of the optimal policy, its recursion is expressed via
expectations over πref. We summarize this in the following
known result (Piché et al., 2018; Li et al., 2024; Domingo-
Enrich et al., 2024):
Theorem 2.2. Under Assumption 2.1, we have

V ⋆,η
h (xh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh],

Q⋆,η
h (xh, yh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh, yh].

This shows V ⋆,η and Q⋆,η are simple functionals of Z⋆

– the cumulative reward distribution of πref – where the
functional is f(P ) = η lnEP exp(X/η). In other words, if
we learn the cumulative reward distribution of πref, then we
can directly compute V ⋆,η and Q⋆,η, without any dynamic
programming.

This offers several benefits. First, we do not require tem-
poral difference (TD) learning (i.e., bootstrapping) which
is notoriously unstable with deep networks (Van Hasselt
et al., 2018) and requires completeness-type assumptions
to guarantee convergence in theory (Munos & Szepesvári,
2008). Second, fitting the reward-to-go distribution Z⋆ or re-
gressing Eπref [exp(η−1

∑
t≥h rt)] is a standard supervised

learning task with a fixed target, which is much more stable
in practice and well-understood in theory. Notably, there
is no bootstrapping or changing targets which is what ren-
ders deep RL fragile. Third, we can apply distributional RL
methods, where we directly fit the distribution Z⋆ via super-
vised learning (e.g., maximum likelihood). Importantly, our
approach does not involve distributional Bellman equation
nor distributional TD update, which are known to be non-
contractive under certain metrics (Bellemare et al., 2017).
Prior work has shown that fitting Z⋆ in this manner yields
benefits in representation learning (Bellemare et al., 2017;
Lyle et al., 2019), lower variance updates (Rowland et al.,
2023), and second-order bounds (Wang et al., 2024a;c).

Applicability to LLMs. Our deterministic MDP frame-
work directly models LLM post-training as a special case
(Ouyang et al., 2022). The initial state x1 corresponds to
the input prompt, each intermediate state xh is the cur-
rent generation prefix, and the action yh is the next to-
ken (or next block of tokens). The policy thus reflects
the LLM’s autoregressive decoding process. The transi-
tion function is deterministic: Ph(xh, yh) = xhyh, which
simply appends the new token to the prefix. In many post-
training settings, the reward is sparse, meaning only rH is
nonzero. Under this assumption, Theorem 2.2 simplifies
to Q⋆,η

h (xh, yh) = η lnEπref [exp(η−1r(xH , yH)) | xh, yh].
For example, the reward may indicate solution correctness
in math tasks or reflect user preference in dialogue, as deter-
mined by a learned reward model.

Inference with cumulative reward distribution. Let
Z⋆ denote the conditional distribution over cumulative
rewards under rollouts from πref, that is, Z⋆

h(x, y)
D
=∑

t≥h rt(xt, yt) | xh = x, yh = y, where the trajectory

(xh, yh, . . . , xH , yH) is sampled under πref, and D
= denotes

equality in distribution. Combining Theorem 2.2 and Equa-
tion (2), the optimal policy can be rewritten in terms of Z⋆

as π⋆,η
h (y | x) ∝ πref

h (y | x)Ez∼Z⋆
h(x,y)

[exp(z/η)]. This
motivates defining a general family of policies induced by
any distribution Z : X × Y → ∆(R) via

πZ,η
h (y | x) ∝ πref

h (y | x)Ez∼Zh(x,y)[exp(z/η)]. (5)

Since π⋆,η = πZ⋆,η , we can approximate the optimal policy
by estimating Z⋆ with Ẑ ≈ Z⋆ using distributional learning
techniques such as maximum likelihood estimation (MLE),
and then instantiating πZ,η. This forms the core of our
proposed Q♯ algorithm.

2.2. Algorithm Q♯

We propose Q-Sharp (Q♯), a distributional value-based al-
gorithm for KL-regularized RL in deterministic MDPs. Q♯
iteratively collects data from progressively improved poli-
cies to approximate the target distribution Z⋆ (Algorithm 1).
In this section, we describe Q♯ in practical terms for deep
neural networks and LLMs; in Section 4, we formalize it
using online learning oracles and prove convergence under
a mild realizability assumption.

Algorithm 1 Q♯

1: Input: reference policy πref.
2: Initialize parameters θ1 of conditional distribution Zθ :
X × Y → ∆(R) and dataset Dh = ∅ for all h.

3: for k = 1, 2, . . . until convergence do
4: Let πk ← πZ

θk
,η be policy induced by Zθk (using

Equation (5)).
5: for i = 1, 2, . . . , N do
6: Sample a switching time h ∼ [H].
7: Roll-in with πk for h− 1 steps.
8: Resume trajectory with πref from xh.
9: Let Rt denote cumulative rewards after time t.

10: Add (xt, yt, Rt) to Dt, ∀t ≥ h.
11: end for
12: Update θk by minimizing the distributional loss on

the aggregated data:

θk+1 ← argminθ
∑

h EDh
[L(Rh, Z

θ(xh, yh))].

13: end for
14: Output: Final θk.

Let Zθ
h : X × Y → ∆(R) denote a parametric conditional

distribution with parameters θ. Given a sample R ∈ R (e.g.,
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drawn from Z⋆) and a model prediction Ẑ, let L(R, Ẑ) be
a distributional loss for training the model. We denote by
θ⋆ the parameter that minimizes the distance between Z⋆

and Zθ. For example, if Z⋆
h(x, y) is Ber(p⋆h(x, y)), we can

parameterize Zθ
h(x, y) by a neural network that outputs a

scalar estimate p̂ of p⋆h(x, y). The natural loss in this case is
binary cross-entropy (BCE):

Lbce(r, p̂) = − r ln p̂ − (1− r) ln(1− p̂) .

This binary setup is appropriate for tasks such as math or
multiple-choice questions where the reward is binary. If
the reward distribution has no known parametric form, one
can use a non-parametric model (e.g., a histogram that dis-
cretizes the reward space) trained via maximum likelihood
(MLE) (Bellemare et al., 2017):

Lmle(r, ẑ) = − ln ẑ[idx(r)] ,

where idx(r) returns the index of the bin containing r, and
ẑ[i] denotes the probability estimate for bin i. In general, Q♯
can incorporate any distributional RL loss function (Belle-
mare et al., 2023). Once Zθ closely approximates Z⋆, we
instantiate a near-optimal policy πθ,η via Equation (5). In
Section 4, we prove that this procedure converges to the
optimal policy under a mild realizability assumption.

Then, the key idea of Q♯ is an iterative data-collection and
update process. At iteration k, with current parameters θk,

we deploy the induced policy πk := πZθk ,η to gather new
data. Specifically, we roll in with πk for h−1 steps to reach
a state xh, then switch to πref to complete the trajectory. The
cumulative reward from step h to the end, denoted Rh,k, is
a sample from Z⋆

h(xh). We add these samples to the dataset
and update θ via gradient descent on the distributional loss.
This process repeats until convergence.

Our iterative approach is similar in spirit to DAgger (Ross
et al., 2011), AggreVaTe (Ross & Bagnell, 2014; Sun et al.,
2017), and RLGF (Chang et al., 2023), which likewise mit-
igate distribution shift to ensure the learned estimator re-
mains accurate at test time. In contrast, prior value-based
methods such as CD (Mudgal et al., 2023) and entropy-
regularized PRM (Zhang et al., 2024a) train their estimators
only on data from πref. While such an estimator may per-
form well on πref’s distribution, it offers no guarantee of
accuracy when used to steer πref’s generation at inference
time.

Comparison with CD and VAS. The most closely re-
lated value-based baselines are CD (Mudgal et al., 2023)
and VAS (Han et al., 2024), yet they exhibit three criti-
cal limitations. (i) Incorrect value target. Both methods
re-weight πref using Qπref,0—the unregularized Q-function
of πref—thereby ignoring the KL term. As shown in
Section 4, this choice can yield policies that are either

sub-optimal in reward or far from πref. Q♯ instead employs
the principled target Q⋆,η and is guaranteed to converge to
π⋆,η under realizability. (ii) Offline training. CD and VAS
fit their value functions on a fixed dataset, whereas Q♯ alter-
nates data collection and updates, improving robustness to
distribution shift (Ross et al., 2011; Ross & Bagnell, 2014).
(iii) Squared-loss regression. Both baselines learn Qπref,0

with an ℓ2 loss, implicitly assuming homoskedastic Gaus-
sian rewards. Q♯ leverages distributional RL losses, which
are theoretically more sample-efficient (Wang et al., 2023;
2024c) and empirically superior (Bellemare et al., 2017;
Lyle et al., 2019).

Relation to actor–critic methods. Although Q♯ learns a
value function, its target V ⋆,η (or Q⋆,η) is fixed through-
out training. Standard actor–critic algorithms (e.g., PPO)
continuously update V π or Qπ as π evolves, and rely on
bootstrap-based TD updates. In contrast, Q♯ trains the value
network via distributional supervised learning (e.g., MLE),
thereby avoiding the instability of changing targets.

Inference with multiple η. Because the learned distribution
Ẑθ is independent of η, a single trained network can support
any choice of η at inference time simply by plugging it into
Equation (5).

3. Experiments
In this section, we present a suite of experiments, from
a minimal synthetic task to complex reasoning tasks, to
evaluate Q♯ for post-training LLMs.

3.1. Star-Graph

We begin with the star-graph task from Bachmann & Nagara-
jan (2024), illustrated in Figure 2(a). A star-graph G(d, ℓ)
has d paths of length ℓ from a central node. Given a start/-
goal node and the graph edges, the LM must generate a
valid path. Though seemingly simple, Bachmann & Na-
garajan (2024) showed that next-token pre-training often
learns a faulty shortcut: the model picks the first node at
random (correct with probability 1/d) and follows the path,
yielding a test accuracy of only 1/d. This highlights the
limitations of next-token prediction on planning tasks. Hu
et al. (2024) also showed that the task embeds the ”sparse
parity” problem — determining whether the sum of a binary
string is even or odd — which is known to be difficult for
gradient-based optimizers and is widely studied in learning
theory and optimization (Shalev-Shwartz et al., 2017; Barak
et al., 2022; Abbe & Sandon, 2023; Kou et al., 2024).

Can this shortcut be fixed during post-training? We eval-
uate REINFORCE (Ahmadian et al., 2024), DPO (Rafailov
et al., 2024), RPO (Pang et al., 2024a), and Q♯, reporting
test accuracies in Figure 2 (b). Q♯ consistently corrects
the shortcut, achieving near-perfect accuracy, even for long

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Q♯: Provably Optimal Distributional RL for LLM Post-Training

(a) The star-graph G(5, 5). (b) Generalization accuracies.

Figure 2. (a) The star-graph with degree d = 5 and path length ℓ = 5. Next-token prediction, the standard pre-training loss, learns a
sub-optimal shortcut that selects a random first node and follows it until the end. (b) Accuracies on held-out test graphs for various models.
Policy-based post-training methods such as REINFORCE and RPO (a variant of DPO) still exhibit the shortcut and has test accuracy 1/d,
while our value-based Q♯ fixes the shortcut and achieves near-perfect accuracy.

paths (G(2, 20)) or large degrees (G(5, 5)). CD (Mudgal
et al., 2023) achieves similar performance as Q♯. In contrast,
policy-based methods like REINFORCE and RPO fail to
fix the shortcut, plateauing at 1/d accuracy. DPO performs
worst, often collapsing the policy to zero accuracy by sup-
pressing both chosen and rejected paths—a failure mode
also noted by RPO. These results suggest that once shortcuts
are learned, policy-based methods struggle to unlearn them,
reinforcing the effectiveness of value-based approaches like
Q♯ and CD for LLM post-training. Please see Appendix C
for implementation details.

3.2. Math Reasoning

Datasets. We evaluate on two mathematical reasoning
benchmarks: GSM8K (Cobbe et al., 2021), a dataset
of grade school arithmetic word problems, and MATH
(Hendrycks et al., 2021), which features more challenging
high school competition problems. We split each training
set 90%-10% for training and validation. Test performance
is reported on the full GSM8K test set and a 500-sample sub-
set of MATH (MATH-500), following prior work (Lightman
et al., 2023; Wang et al., 2024d).

Models. We experiment with Llama 3 (Dubey et al., 2024)
and Qwen 2.5 (Yang et al., 2024) model families, both of
which are competitive on math reasoning tasks and span a
wide range of parameter scales. Due to space constraints,
we report results for Llama 3 in the main text and defer
Qwen 2.5 results to Appendix G. Unless otherwise noted,
the Q⋆,η function in Q♯ is parameterized and initialized with
a Llama 3.2 1B model, and we use η = 0.1, which yields
consistent and strong performance. We run Q♯ for two
iterations, after which performance converges. Additional
details on model configurations and Q♯ training are provided
in Appendices D and E.

Evaluation metrics. We report single sample accu-

Table 1. Comparison of Q♯ with πref and CD baseline on GSM8K
(Top) and MATH (Bottom). For both Llama 3 and Llama 3.1
8B, Q♯ consistently improves both pass@1 and majority voting
accuracy upon baselines while incurring minimal KL deviation.

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 69.1 77.8 78.4 82.9 84.5 85.1
maj1@8 ↑ 85.8 87.2 88.1 90.5 90.9 91.4

KL-Divergence ↓ - 6.39 2.65 - 7.43 3.67

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 25.4 24.9 27.1 43.9 45.3 46.7
maj1@8 ↑ 34.3 34.3 37.9 57.0 59.0 60.1

KL-Divergence ↓ - 15.27 7.14 - 26.8 8.69

racy (pass@1) and majority voting accuracy (maj1@k).
pass@1 evaluates one sampled generation per problem
against the ground truth, while maj1@k checks if the most
frequent answer among k samples is correct. We use k = 8,
temperature T = 0.8, and nucleus sampling p = 0.9. The
evaluation prompt template is provided in Appendix F.

Main results. Table 1 presents Q♯ performance on GSM8K
(Top) and MATH (Bottom) with πref as Llama 3 or 3.1
8B. Although both have 8B parameters, Llama 3.1 per-
forms significantly better. Across all settings, Q♯ consis-
tently improves over πref, boosting pass@1 by up to 9%
on GSM8K with just 1B additional parameters. We also
compare against the CD baseline (Mudgal et al., 2023; Han
et al., 2024), which incorrectly uses Qπref,0 to guide πref.
Q♯ outperforms CD on accuracy metrics while maintaining
lower KL divergence. Overall, Q♯ Pareto-dominates CD in
the KL-regularized RL setting by achieving higher reward
and lower KL.
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Table 2. Performance of πref and Q♯ on MATH with larger πref and
Q♯ model sizes. Q♯ of size 1B is capable of guiding a 70B πref

model. Increasing Q♯ model sizes to 3B also leads to noticeably
better performance for Llama 3.1 70B.

πref Llama 3 70B Llama 3.1 70B

Q♯ Model None Llama 3.2 1B Llama 3.2 3B None Llama 3.2 1B Llama 3.2 3B

pass@1 ↑ 45.6 46.4 46.7 60.6 63.1 64.1
maj1@8 ↑ 55.6 55.5 55.3 69.0 72.5 72.7

KL-Divergence ↓ - 3.12 5.15 - 4.98 4.99

Table 3. Performance of πref and Q♯ on GSM8K and MATH when
using Q♯ also as a reward model to evaluate complete generations.
The reward model can determine the best generation among all
generations for a problem and consistently improves maj1@8 for
πref and Q♯ own generations.

Setting Llama 3 8B GSM8K Llama 3.1 8B MATH

Methods πref Q♯ πref Q♯

pass@1 69.1 78.4 43.9 46.7
maj1@8 85.8 88.1 57.0 60.1

Q♯-RM Best of 8 85.9 86.0 54.0 54.0
Q♯-RM maj1@8 88.5 89.2 59.2 60.6

Larger πref and Q♯ sizes. We evaluate how performance
scales with larger πref and Q♯ models on MATH (Table 2).
Using 70B Llama 3 and 3.1 as πref significantly boosts base-
line pass@1 (45.6% and 60.6%, respectively). Remark-
ably, a 1B Q♯ still improves these large models—e.g., by
2.5% pass@1 and 3.5% maj1@8 for Llama 3.1. Increas-
ing Q♯ to 3B yields further gains, demonstrating scalability.
Compared to Table 1 (right), we note that with 9B total pa-
rameters (8B πref + 1B Q♯), the maj1@8 accuracy already
matches the pass@1 of the 70B πref in Table 2, suggesting a
promising low-resource alternative. For Llama 3, pass@1
improves while maj1@8 slightly drops, likely due to in-
creased generation diversity benefiting harder problems but
reducing consistency on easier ones.

Q♯ as a reward model. Beyond guiding πref genera-
tion, Q♯’s token-level Q function can also assess how
good a complete generation is among many. We compute
Q(generation,EOS) by applying Q♯ as a reward model (Q♯-
RM) on GSM8K and MATH, using both πref and Q♯ genera-
tions. Table 3 reports two settings: Q♯-RM Best of 8 (selects
top-scoring sample) and Q♯-RM maj1@8 (aggregates ma-
jority voting with scores). Q♯-RM maj1@8 consistently
improves over vanilla maj1@8, and Best of 8 yields more
than 10% gains over pass@1 for πref. The reward model
can be used on both πref and Q♯ own generations to further
improve performance, which suggests the (same) reward
model has generalizability for evaluating diverse genera-
tions.

Effect of η. Figure 3 shows the performance–KL tradeoff
between CD and Q♯ on the GSM8K validation set. (Left)

101 102

KL-Divergence

0.50

0.55

0.60

0.65
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0.80
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ss

@
1

Pass@1 vs. KL-Divergence
CD
Q#

101 102

KL-Divergence

100

101

1

1 vs. KL-Divergence

CD
Q#

Figure 3. Performance tradeoff of CD and Q♯ on the validation
set of GSM8K. (Left) pass@1 accuracy vs. KL divergence. Q♯
dominates CD by achieving higher accuracy with a lower KL
penalty. (Right) Different η leads to different KL for CD and Q♯.
The KL of CD blows up quickly and significantly deviates from
πref whereas Q♯ is more stable.

Table 4. Ablations of Q♯ (last row) on pass@1 with various con-
figurations on the validation set of GSM8K and MATH. The im-
provement suggests that our design choices all contribute positively
to the final performance.
Prefix Type Opt. # Iter. Llama 3 8B GSM8K Llama 3.1 8B MATH

Single V Dist. 1 80.5 64.5
All Q Dist. 1 81.4 66.4
All V MSE 1 81.4 65.4
All V Dist. 1 82.3 67.4
All V Dist. 2 83.5 68.5

Increasing KL can improve pass@1 for both methods, but
Q♯ consistently achieves a better Pareto frontier. (Right)
CD is highly sensitive to η: as η−1 increases, its KL grows
rapidly and performance degrades below that of πref. In
contrast, Q♯ remains stable and requires less tuning of η.

Ablations. We ablate several design choices in Table 4
on the GSM8K and MATH validation sets using pass@1
accuracy. The “Prefix” column tests training on all t ≥ h
prefixes after switching to πref (Algorithm 1, Line 10), as
opposed to only t = h. Though this breaks IID assumptions,
the increased training data improves Q♯ performance by up
to 4%. We compare two parameterizations of Q⋆,η: Q-type,
which computes Q⋆,η(x, y) for all y, and V-type, which
predicts Q⋆,η(x, ŷ) for a specific ŷ. V-type outperforms Q-
type, likely due to its lower parameter count and per-token
computation. Details are in Appendix D. We also compare
distributional Q♯ with MSE-based regression, which un-
derperforms as expected under Bernoulli rewards. Finally,
more iterations of Algorithm 1 yield marginal gains, with
performance saturating after two iterations, which we adopt
by default.

Qualitative comparison. Figure 5 shows side-by-side gen-
erations from πref and Q♯ on math reasoning tasks. While
both models often begin with similar prefixes—consistent
with Q♯’s low KL deviation—Q♯ typically corrects πref’s
mistakes and produces more coherent reasoning. Additional
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examples are provided in Appendix I.

4. Theory
In this section, we provide theoretical analyses for Q♯ and
prior value-based post-training approaches, including CD
(Mudgal et al., 2023) and VAS (Han et al., 2024).

4.1. CD & VAS are sub-optimal for KL-regularized RL

First, CD and VAS both propose to reweight πref(· | x) with
the unregularized Q-function of πref:

πCD,η(y | x) ∝ πref(y | x) exp(Qπref
(x, y)/η), (6)

where recall that Qπref

h (xh, yh) = Eπref [
∑

t≥h rt | xh, yh].
Comparing with Equation (2), we can already see that πCD,η

does not match the optimal policy π⋆,η, as Qπref
can be

arbitrarily far from Q⋆,η. In particular, πCD may fail to
optimize the KL-regularized RL objective and exhibit two
failure cases, which we demonstrate with a simple MDP
in Example 1. First, we show that CD fails to maximize
expected reward in this MDP, even as the KL-regularizer η
decays to zero.

x1

xL

r = 0.1

1

pL

xR

r = 1

0.05

r = 0

0.95

pR
Z⋆
L = δ(0.1) Z⋆

R = Ber(0.05)

Example 1. A tree MDP where edges are labeled with πref’s action
probability. Specifically, πref goes to the left sub-tree w.p. pL and
the right sub-tree w.p. pR, where pL, pR > 0. The left sub-tree
gives r = 0.1 w.p. 1. In the right sub-tree, πref chooses reward 1
w.p. 0.05 and chooses reward 0 w.p. 0.95.

First, we show that CD fails to maximize expected reward
in this MDP, even as the KL-regularizer η decays to zero.
Theorem 4.1. Under Example 1, CD learns to always select
the left sub-tree as η → 0, which gives a sub-optimal reward
of 0.1, while π⋆,η learns to always select the right sub-tree
and chooses the path that gives reward 1.

Proof. First, for CD, we have Qπref
(x1, aL) = 0.1 and

Qπref
(x1, aR) = 0.05. Hence, CD’s probability of selecting

the left sub-tree is pL exp(0.1/η)
pL exp(0.1/η)+pR exp(0.05/η) , which con-

verges to 1 as η → 0. Next, for Q♯, we have Q⋆,η(x1, aL) =
0.1 and Q⋆,η(x1, aR) = η ln(0.05 exp(1/η) + 0.95).
Hence, Q♯’s probability of selecting the left sub-tree is

pL exp(0.1/η)
pL exp(0.1/η)+pR(0.05 exp(1/η)+0.95) , which converges to 0

as η → 0. Thus, CD learns the sub-optimal path.

Next, we show that CD also incurs a higher KL than Q♯.

Theorem 4.2. Under Example 1, CD’s KL converges to
ln(1/pL) while Q♯’s KL converges to ln(1/pR) as η → 0.
Thus if pL ≪ pR, CD converges to a higher KL than Q♯.

Proof. As shown in Theorem 4.1, CD learns to select the
left sub-tree while Q♯ learns to select the right sub-tree as
η → 0. Then, the KLs simply follow by definition.

In sum, we proved that Example 1, CD both incurs a higher
KL and achieves a lower sub-optimal reward compared to
Q♯. Thus, Q♯ generally Pareto-dominates CD in the reward-
KL trade-off, which matches our empirical findings.

4.2. Performance Guarantee for Q♯

We prove that the learned policy by Q♯ is guaranteed to
converge to the optimal policy with enough samples. This
result holds in rich-observation MDPs where the size of the
state space can be exponentially large or infinite, so long as
the mild realizability assumption holds.

To setup, let F be a distributional function class for mod-
eling Z⋆, the reward-to-go distribution under πref. Each
element of F has type f = (f1, . . . , fH) and fh : X ×Y 7→
∆([0, V max]).1 For purpose of analysis, we assume access
to a no-regret online learning oracle for the maximum like-
lihood (MLE) loss, which proceeds as follows: for each
iteration k = 1, 2, . . . ,K, given any {xh,k, yh,k, Rh,k}Hh=1,
the oracle outputs Ẑk ∈ F s.t.∑K

k=1

∑H
h=1 logZ

⋆
h(Rh,k | xh,k, yh,k)

− log Ẑh,k(Rh,k | xh,k, yh,k) ≤ Regmle(K).

No-regret online learning is well-studied in the literature
(Cesa-Bianchi & Lugosi, 2006; Orabona, 2019) and is a
standard tool when reducing decision making to supervised
learning (Ross et al., 2011; Foster & Krishnamurthy, 2021;
Wang et al., 2023). For example, if F is finite and satisfies
realizability, then Vovk’s aggregating algorithm ensures that
Regmle(K) ≲ ln(|F|) (Vovk, 1995).2

Assumption 4.3 (Realizability). Z⋆ ∈ F .

The following algorithm is a slightly modified version of
Algorithm 1 amenable for theoretical analysis. The only
differences with Algorithm 1 are: (1) we use the MLE oracle
to learn Ẑk, and (2) for purpose of local exploration, we play
a random action at the switching time h before following
πref to the end of the trajectory (Ross & Bagnell, 2014).

We now state our main PAC bound for Q♯.
1Suppose rewards-to-go under πref lie in [0, V max] w.p. 1.
2a ≲ b is short for a ≤ Cb for some universal constant C.
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Algorithm 2 Q♯ (Theory Version)

1: Input: reference πref, iteration count K, regularizer η.
2: Initialize Ẑ1 randomly.
3: for k = 1, 2, . . . ,K do
4: Let πk ← πẐk,η .
5: for step h = 1, 2, . . . ,H do
6: Roll-in with πk for h− 1 steps and see xh,k.
7: Play random action yh,k and transit to xh+1,k.
8: Resume trajectory with πref from xh+1,k.
9: Let Rh,k be cumulative rewards after time h.

10: end for
11: Input {xh,k, yh,k, Rh,k}h∈[H] to MLE oracle.
12: Receive Ẑk from MLE oracle.
13: end for
14: Output: Ẑ1, . . . , ẐK .

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under
Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have∑K

k=1 V
⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the co-

efficient of variation of exp(Z⋆
h(xh, yh)/η), xh, yh ∼ πk,

and Eh := ∥exp((V max−Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the

envelope of exp((V max −Q⋆,η
h (xh, yh))/η) under πref.

We highlight this applies to rich-observation MDPs where
our only requirement for F is realizability. Moreover,
our bound scales with the function class’s complexity, i.e.,
ln(|F|), and does not contain structural complexity mea-
sures. In contrast, prior bounds in RL theory require stronger
assumptions such as Bellman completeness (Chen & Jiang,
2019; Wang et al., 2021; Foster et al., 2021b; Jin et al., 2021;
Chang et al., 2022; Ayoub et al., 2024; Wang et al., 2024c),
even in deterministic MDPs (Wu et al., 2024), and/or scale
with structural complexity measures such as coverability
(Xie et al., 2022; Mhammedi et al., 2024) or eluder dimen-
sion (Russo & Van Roy, 2013; Jin et al., 2021).

Also, we highlight that Algorithm 2 is model-free and com-
putationally efficient. In contrast, most prior algorithms re-
quire computationally hard exploration with version spaces
(Jiang et al., 2017; Dann et al., 2018; Jin et al., 2021; Xie
et al., 2022; Wang et al., 2024c). Thus, Theorem 4.4 shows
that it is possible to achieve both statistical and computa-
tional efficiency under mild assumptions by simply operat-
ing within the KL-regularized RL framework, which itself
is of great relevance for LLM post-training. We remark that
Uehara et al. (2023) observed similar benefits in offline RL
while we study the harder online setting.

Moreover, thanks to distributional RL, Theorem 4.4
is a second-order bound (Wang et al., 2024a;c) com-
prising of two main terms. The leading term

O(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y)) is the summed coeffi-
cient of variations, which in the worst case scales like√∑H

h=1 E
2
hK. However, in benign cases where Z⋆

h has
small or zero variance, this term vanishes and we are left
with the lower order term O(maxh∈[H] Eh ln(K)) which
only grows logarithmically in K. While in the worst-case,
our envelope term is exponential in η−1, it is interestingly
also instance-dependent. Specifically, our envelope term
is exp((V max −Q⋆,η

h (xh, yh))/η) which involves the opti-
mal policy’s Q-function Q⋆,η. Thus, if the optimal policy
achieves near-maximal reward, i.e., if Q⋆,η ≈ V max, then
the envelope term becomes closer to 1, avoiding the expo-
nential dependence on η−1.

Remark: Modification for Regret Bound. It is possible to
turn Theorem 4.4 into a regret bound by replacing random
action in Line 7 of Algorithm 2 with a no-regret contex-
tual bandit oracle, where “context” is xh, action is yh and
“reward” is Rh. This is alike the steps needed to convert
AggreVaTe’s PAC bound into a regret bound (Ross & Bag-
nell, 2014). Our theory can be interpreted as a regret/PAC
reduction from KL-regularized RL in deterministic MDPs
to no-regret online learning, which mirrors the type of guar-
antees obtained for AggreVaTe (Ross & Bagnell, 2014).

5. Conclusion
Our results focus on deterministic MDPs including LLM
post-training, where the optimal action-value Q⋆,η is
a simple functional of the reference return distribution
Zπref

and Theorem 2.2 applies directly. For domains
with stochastic transitions, Q⋆,η need to be learned via
temporal-difference methods, which typically rely on the
stronger Bellman-completeness assumption and may in-
troduce additional training instability. In summary, Q♯
offers a principled and practical avenue for post-training
LLMs. It combines a distributional-RL objective with super-
vised regression, enjoys provable convergence under mild
assumptions, and consistently surpasses prior value-based
baselines on synthetic planning and math-reasoning bench-
marks—achieving higher accuracy while maintaining a
lower KL divergence from the reference policy.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Works
From the empirical side, the most relevant works are controlled decoding (CD; Mudgal et al., 2023) and value augmented
sampling (VAS; Han et al., 2024). These two works both propose to guide the reference policy πref with Qπref,0, the expected
reward-to-go under πref without KL regularization. As discussed in Section 4.1, guiding with Qπref,0 is not principled for
the KL-regularized RL problem and can lead to both sub-optimal reward and large KL from πref. In contrast, we propose
to guide πref with Q⋆,η, the expected reward-to-go under the optimal policy with KL regularization, which is the correct
closed-form of the optimal policy. A recent work Zhang et al. (2024a) proposed a process reward model (PRM) of a similar
form as our Q⋆,η, but their PRM is applied to steps instead of tokens, and they do not use distributional RL or iterative
training (i.e., data aggregation).

In terms of reweighting πref with classifier scores, FUDGE (Yang & Klein, 2021) is another closely related work but
their derivation is based on Bayes rule and FUDGE does not solve KL-regularized RL. Sequential Monte Carlo (SMC)
methods (Piché et al., 2018; Zhao et al., 2024) also reweight πref’s distribution with a twist function, where the optimal twist
function is analogous to our Q⋆,η. One key difference is that SMC performs resampling while we directly combine logits
of πref and exp(Q⋆,η) to avoid importance sampling, which has higher variance. Finally, none of these prior works apply
distributional RL losses (Bellemare et al., 2017; Dabney et al., 2018; Farebrother et al., 2024; Ayoub et al., 2024) or online
data aggregation (Ross et al., 2011) to learn Q⋆,η , which we showed to be beneficial in our ablations. Indeed, CD and VAS
both use square loss regression over a fixed offline dataset. We also remark that risk-sensitive RL has been an important
application of distributional RL (Dabney et al., 2018; Wang et al., 2024b) and extending Q♯ along those lines is a promising
future direction.

We also discuss some of the recent advances in stable distributional RL. Sun et al. (2022) shows that the categorical
distributional RL loss, which we employ for our theory and experiments, enjoys smoothness and optimization stability
under a bounded logit condition. Sun et al. (2024) introduces a Sinkhorn distributional RL loss which is a computationally
efficient alternative for Wasserstein distance, and was shown to be more stable for multi-dimensional rewards. Dabney et al.
(2018) proposed a KL-regularized categorical loss which they showed is empirically more stable in Atari games. However,
these references all apply TD-learning with function approximation and replay buffers, which Sutton et al. (1998) identified
as a deadly triad that is notoriously difficult to scale, requiring many tricks such as double Q-learning and target networks.
In contrast, our work obviates the need for TD-learning or tricks such as the target network by leveraging the special form of
Q⋆ in deterministic KL-regularized MDPs, which perfectly captures the LLM post-training application we focus on.

We also cite some tangentially related works. Proxy tuning (Liu et al., 2024) and speculative decoding (Leviathan et al.,
2023) both use a small model to guide the logit distribution of a large πref model. Speculative decoding is focused on
maximizing the large model’s likelihood, which does not relate to any extrinsic rewards. In our framework, the classifier
model can be any size relative to πref, although deeper investigation into the computational benefits of using a small classifier
is a promising direction for future work. We note that the star-graph problem can also be solved during pre-training by also
predicting backwards via the belief state transformer (Hu et al., 2024).

Finally we discuss previous post-training methods for LLMs. First, online iterative DPO (Xiong et al., 2023; Pang et al.,
2024b), REBEL (Gao et al., 2025), PPO (Schulman et al., 2017), etc. are based on policy gradient and require a good
reset distribution which only guarantees local optimality. XPO (Xie et al., 2024), VPO (Cho et al., 2024), SELM (Zhang
et al., 2024b), etc. treat this as an exploration setting but requires solving non-convex optimization oracles and relies on
strong structure conditions such as coverability / eluder / linearity, similar to the theoretical works like (Jin et al., 2021; Xie
et al., 2022). Instead, we approach post-training in a fundamentally different angle and solve it via simple computationally
tractable regression and mle oracles, without any strong structural conditions or reset distribution assumptions.

From the theoretical side, KL-regularized RL is closely related to soft RL or maximum entropy RL which are well-studied
(Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2018; Piché et al., 2018). The optimal policy decomposition in
deterministic MDPs is also known in prior works (Li et al., 2024; Domingo-Enrich et al., 2024). Our contribution is an
algorithm that provably learns Q⋆,η using distributional RL (Bellemare et al., 2017) and data aggregation (Ross et al., 2011).
This enables us to prove a reduction of KL-regularized RL (in deterministic MDPs) to no-regret online learning, which
ensures convergence to the optimal policy with realizability being the only assumption for function approximation. Notably
we are able to avoid more stringent conditions such as completeness or structural MDP conditions which are ubiquitous in
the current literature (Wang et al., 2021; Jin et al., 2021; Chang et al., 2022; Wang et al., 2023; 2024c; Ayoub et al., 2024;
Xie et al., 2022). Uehara et al. (2023) observed similar benefits in offline RL, while we provide guarantees for the harder
online RL setting.
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Complementary to our online, KL-regularized setting, DualDICE (Nachum et al., 2019a) and AlgaeDICE (Nachum et al.,
2019b) tackle the high-variance ”curse of horizon” that arises when one performs importance weighting for long trajectories
in offline RL. Both methods replace per-step importance weights with stationary-distribution density ratios, learned through
a dual (Lagrangian) formulation, and have shown empirical success on low-dimensional continuous-control benchmarks,
although learning is also shown to be difficult in high-dimensional control tasks (Chang et al., 2022). Because we continually
collect on-policy data and constrain updates via an explicit KL penalty—which already limits distribution shift—we do
not need such ratio estimation; nonetheless, density-ratio approaches remain a promising orthogonal direction for variance
reduction in purely offline LLM post-training.

We remark that our theoretical guarantees are quite similar in structure to that of AggreVaTe (Ross & Bagnell, 2014; Sun
et al., 2017), which is a reduction of imitation learning to no-regret online learning. Besides the obvious difference in
problem setting, another improvement from our work is using distributional RL theory to prove second-order bounds.
Notably, we are able to prove second-order bounds without any completeness assumptions that were required in (Wang
et al., 2023; 2024a;c).

B. Proofs
In this section, we provide the full proof for Theorem 4.4.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have

∑K
k=1 V

⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the coefficient of variation of exp(Z⋆

h(xh, yh)/η), xh, yh ∼ πk, and

Eh := ∥exp((V max −Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the envelope of exp((V max −Q⋆,η

h (xh, yh))/η) under πref.

Proof. Fix any η ∈ (0, V max). Let Qh,k(x, y) = η lnEz∼Ẑh,k(x,y)
exp(z/η) denote the induced soft Q function from the

distributional estimate Ẑk. Let πk
h(y | x) ∝ πref

h (y | x) exp(Qh,k(x, y)/η) denote the induced policy from Qh,k. Then,

V ⋆,η − V πk,η

(i)
=

∑H
h=1 Eπk [Q⋆,η

h (xh, π
⋆,η
h )−Qπk,η

h (xh, π
k
h) + ηKL(πk

h(xh) ∥ πref
h (xh))− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

k
h)− ηKL(πk

h(xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

(ii)

≤
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )−Qh,k(xh, π

⋆,η
h ) +Qh,k(xh, π

k
h)−Q⋆,η

h (xh, π
k
h)]

≤ 2
∑H

h=1 Exh∼πk [maxπ∈{π⋆,πk}
∣∣Q⋆,η

h (xh, π)−Qh,k(xh, π)
∣∣]

≤ 2A
∑H

h=1 Exh∼πk,yh∼Unif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣,
where (i) is by the performance difference lemma in the soft MDP (Lemma B.2); (ii) is by Donsker-Varadhan (Lemma B.1)
which proves that πk

h(xh) = argmaxπ Eπ[Qh,k(xh, π)− KL(π(xh) ∥ πref
h (xh))]. Now, we bound the difference between
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the optimal and learned Q functions:∣∣Q⋆,η
h (x, y)−Qh,k(x, y)

∣∣
= η

∣∣∣lnEz∼Z⋆
h(x,y)

exp(z/η)− lnEz∼Ẑh,k(x,y)
exp(z/η)

∣∣∣
(i)

≲ η(1 + Vmax/η)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)−1
Ez∼Z⋆

h
(x,y) exp(z/η)

H2
h,k(x, y)

)
= (η + Vmax)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)
exp(Q⋆,η

h (x,y)/η)
H2

h,k(x, y)
)
,

where (i) is by Lemma B.4 and the fact that Z⋆, Ẑk ∈ [0, V max] and Hh,k(x, y) := H(Z⋆
h(x, y), Ẑh,k(x, y)) is the Hellinger

distance between the learned Ẑh,k and optimal Z⋆
h.

Thus, if we let xh, yh ∼ πk ◦h Unif(A) denote the distribution of rolling in with πk until xh and taking a random
yh ∼ Unif(A), then we have:∑K

k=1 V
⋆,η − V πk,η

≤ 2A
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣
≲ AVmax

∑H
h=1

∑K
k=1 Eπk◦hUnif(A)

[
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(xh, yh) +

exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)
H2

h,k(x, y)
]

≤ AVmax

√∑H
h=1

∑K
k=1 Eπk◦hUnif(A)[CV2

h,k(xh, yh)]
√∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)]

+AVmax

∥∥∥ exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)

∥∥∥
L∞(πk◦hUnif(A))

·
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)].

The final step is to bound the summed Hellinger square terms. This can be done via Multiplicative Azuma’s inequality
and Foster et al. (2021a, Lemma A.14), which shows that for any δ ∈ (0, 1), we have

∑
h,k Eπk◦hUnif(A)[H

2
h,k(xh, yh)] ≲∑

h,k H
2
h,k(xh,k, yh,k) + ln(1/δ) ≲ Regmle(K) + ln(1/δ), which recall is exactly the definition of β. This finishes the

proof of Theorem 4.4.

Lemma B.1 (Donsker-Varadhan’s Variational Formula; Donsker & Varadhan, 1983). For any prior p ∈ ∆(Θ), consider the
KL-regularized optimization:

π⋆ = argmaxπ∈∆(Θ) V (π) := Eπ[Q(θ)− ηKL(π(θ) ∥ p(θ))].

The optimal policy π⋆ is given by π⋆(θ) ∝ p(θ) exp(Q(θ)/η) and it has value V (π⋆) = η lnEθ∼p exp(Q(θ)/η).
Lemma B.2 (Soft Performance Difference Lemma (PDL)). For any f and π,

V π − f1(x1, π) =

H∑
h=1

Eπ[(T π
h fh+1 − fh)(xh, yh)]− ηKL(π1(x1) ∥ πref

1 (x1)).

For any π, π′,

V π − V π′
=

H∑
h=1

Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh) ∥ πref
h (xh))− ηKL(πh(xh) ∥ πref

h (xh))].

Proof. Let KL(πh(xh)) := KL(πh(xh) ∥ πref
h (xh)) denote KL-divergence w.r.t. πref. Then,

V π − V π′

=
∑H

h=1 Eπ[rh − ηKL(πh(xh))]− (Qπ′

1 (x1, π
′)− ηKL(π′

1(x1)))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) + ηKL(π′

h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′)− ηKL(πh(xh))] + ηKL(π′

1(x1))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[T π′

h Qπ′

h+1(xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))].
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Lemma B.3. For any two numbers x, y ∈ [exp(a), exp(b)], we have

|ln(x)− ln(y)| ≤ (1 + b− a)

∣∣∣∣x− y

y

∣∣∣∣.
If b− a ≥ 1

2 , then max(1, b−a
1−exp(a−b) ) ≤ 3(b− a).

Proof. If x ≥ y, then ln(x)− ln(y) = ln(1+(x−y)/y) ≤ (x−y)/y. If x < y, then ln(y)− ln(x) = − ln(1+(x−y)/y).
By premise, we have 0 ≥ x−y

y ≥ exp(a − b) − 1. Note that − ln(1 + z) is convex and is thus upper bounded by the
line connecting (0, 0) and (exp(a− b)− 1, b− a), i.e., − ln(1 + z) ≤ b−a

1−exp(a−b) |z| for 0 ≥ z ≥ exp(a− b)− 1. Thus,

− ln(1 + (x− y)/y) ≤ b−a
1−exp(a−b)

∣∣∣x−y
y

∣∣∣. Thus, we’ve shown that |ln(x)− ln(y)| ≤ max
(
1, b−a

1−exp(a−b)

)
|x−y

y |. Finally,

since x
1−exp(−x) ≤ 1 + x when x ≥ 0, we have max(1, b−a

1−exp(a−b) ) ≤ max(1, 1 + b− a) = 1 + b− a.

Lemma B.4. For any distributions p, q on [a, b], we have

|ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≲ (1 + b− a)

(√
Varq(ez)

Eqez
H(p, q) + exp(b)−exp(a)

Eqez
H2(p, q)

)
,

where H2(p, q) = 1
2

∑
z(
√
p(z)−

√
q(z))2 is the squared Hellinger distance.

Proof. By Lemma B.3, we have |ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≤ (1 + b− a)
∣∣∣∑z(p(z)−q(z))ez∑

z q(z)ez

∣∣∣. By Lemma B.5, we have

that the numerator is bounded by
√
Varq(ez)H(p, q) + (exp(b)− exp(a))H2(p, q).

Lemma B.5 (Second-Order Lemma). Suppose p, q are distributions on the interval [a, b]. Then, we have

|p̄− q̄| ≲
√
Var(p)H(p, q) + (b− a)H2(p, q).

Proof. Define p′, q′ as the normalized distributions on [0, 1], i.e., p′ is the law of X ′ = (X − a)/(b − a) where X ∼ p.
Then, we have

|p̄− q̄| = (b− a)|p̄′ − q̄′|

≲ (b− a)(
√

Var(p′)H(p′, q′) +H2(p′, q′))

=
√
Var(p)H(p, q) + (b− a)H2(p, q),

where the ≲ step is due to the second-order lemma of Wang et al. (2024a).

B.1. Case of Bernoulli reward-to-go

In this section, we focus on problems where Z⋆
h(x, y) = Ber(ph(x, y)) is a Bernoulli distribution, which is common for

closed-ended problems such as math or multiple choice. Here, the envelope term can be bounded as follows:

Lemma B.6. If Z⋆
h(x, y) = Ber(ph(x, y)), then we have V max = 1 and for all η > 0, we have

exp((1−Q⋆,η
h (x, y))/η) ≤ 1/ph(x, y).

Proof. Fix x, y and let p = ph(x, y). Then, it suffices to show that

1/η − ln(p exp(1/η) + 1− p) ≤ ln(1/p).

This is indeed true because

1/η − ln(p exp(1/η) + 1− p) = ln

(
exp(1/η)

p exp(1/η) + 1− p

)
= ln

(
1

p+ (1− p) exp(−1/η)

)
≤ ln(1/p).
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We can also bound the coefficient of variance in terms of the Bernoulli parameter.

Lemma B.7. If Z⋆
h(x, y) = Ber(ph(x, y)), then for all η > 0, we have√

Var(exp(Z⋆
h(x, y)/η))

E[exp(Z⋆
h(x, y)/η)]

≤
√

(1− p)/p.

Proof. Fix x, y and let p = ph(x, y). Then, the variance term is:

Var(exp(Z⋆
h(x, y)/η)) = E[exp(2Z⋆

h(x, y)/η)]− (E[exp(Z⋆
h(x, y)/η)])

2

= p exp(2/η) + (1− p)− (p exp(1/η) + (1− p))
2

= p exp(2/η) + (1− p)− p2 exp(2/η)− 2p exp(1/η)(1− p)− (1− p)2

= p(1− p) exp(2/η) + (1− p)p− 2p exp(1/η)(1− p)

= p(1− p)(exp(2/η) + 1− 2 exp(1/η))

= p(1− p)(exp(1/η)− 1)2.

Thus, the CV is:√
p(1− p)(exp(1/η)− 1)2

p exp(1/η) + 1− p
=

√
p(1− p)(exp(1/η)− 1)2

p(exp(1/η)− 1) + 1
≤

√
p(1− p)

p
=

√
(1− p)/p.
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Figure 4. Full results for star-graph experiments. The empty bar for G(5, 5) and G(3, 8) are for DPO, which pushed down both the chosen
and reject paths resulting in 0 accuracy.

C. Additional Details for Star-Graph Experiments
We follow the setup of Bachmann & Nagarajan (2024) and reused their official code for producing the star-graph results. We
used the GPT-2 small model for graphs G(2, 5), G(5, 5) and the GPT-2 medium model for G(3, 8) (Radford et al., 2019).3

We first pretrain these models with next-token prediction on a pretraining set of 200k random graphs and correct paths. We
call this the resultant model the “pre-trained” model, and as observed by Bachmann & Nagarajan (2024), these models
have the Clever Hans shortcut so they do not generalize well on unseen test graphs. We highlight that this is a failure in
generalization, since the pre-trained model achieves near-perfect accuracy on the training set but only 1/d accuracy on the
test set.

In order to fix the Clever Hans shortcut, we perform post-training with two common baselines – REINFORCE (Ahmadian
et al., 2024) and DPO (Rafailov et al., 2024), RPO (Pang et al., 2024a) – as well as our algorithm Q♯. The post-training is
done on another set of 200k random graphs. For REINFORCE, the reward function we use is 1 if the response is correct,
and −0.1 if incorrect. We noticed that if the incorrect reward is too negative, this causes model collapsing to accuracy of 0.
For DPO and RPO, we sampled pairwise responses (ychosen, yreject) where ychosen is the correct path and yreject is an incorrect
shortcut path sampled from the pretrained model. For Q♯, we also trained the classifier on the same dataset of pairwise
responses, where correct paths are marked with reward 1 and incorrect responses are marked with reward 0. Throughout, we
used the AdamW optimizer with weight decay 0.1 and batch size of 256, and trained for 10 epochs. The learning rates were
2.5e− 4 for pre-training; 1e− 5 for REINFORCE; 1e− 4 for DPO and RPO; 1e− 4 for classifier-based CD and Q♯. All
models are trained on a single A100 or H100 GPU. All models were evaluated on a separate test set of 20k graphs, using
top-k 10 and temperature 1.0. For Q♯ and CD, we use η = 0.1. We found that DPO often pushed down the probabilities of
both the chosen and reject paths, leading to poor performance even on the training set; RPO fixed this issue and so we report
the RPO numbers.

D. Additional Model Details
πref models. All models we use in the experiments are the ”Instruct” versions. That is, Llama 3 8B refers to
meta-llama/Meta-Llama-3-8B-Instruct and we use the default chat template and system message from Meta
to interact with them.

Q♯ models. Two variants for Q♯ are implemented and experimented: Q-type and V-type. Specifically, the Q-type takes input
of a partial generation x and computes Q⋆,η(x, y) for all y in the vocabulary of the πref model whereas the V-type takes
input of concatenated x and a specific token ŷ and outputs a single value that represents Q⋆,η(x, ŷ). Because of the key
difference, Q-type therefore can efficiently calculate Q⋆,η with just one forward pass and its model architecture can also be
identical to the original LLM. V-type, however, has a prohibitive inference cost with a naive implementation since it requires

3Models from https://huggingface.co/openai-community/gpt2 and https://huggingface.co/openai-community/gpt2-medium.
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making |V | forward passes at every decoding step to calculate the full Q function. In the paragraph below, we discuss our
efficient implementation to address this issue. For Q-type, we initialize the model directly from Llama 3.2 1B and for V-type,
we replace the last layer of Llama 3.2 1B with a randomly initialized fully connected layer with output size of 1. Therefore,
V-type Q♯ also has slightly fewer number of parameters than Q-type. We by default use V-type Q♯ in our experiments.

Efficient inference with V-type. To speed up inference for V-type, we note that not all tokens in the vocabulary are worth
computing its value since for any partial generation x, most tokens have extremely low probability from πref as the next
token candidate. In our preliminary experiments, we have found that only computing the values for the top 20 tokens ranked
by πref give similar performance compared to computing for all tokens. Additionally, we also note that the values for these
tokens can be computed in one forward pass. To accomplish this, we input a partial generation x and the top 20 candidate
next tokens together, modify the attention mask so that the candidate tokens do not attend to each other but still to x. This
allows us to compute the values for these top tokens in just one additional forward pass without any approximation.

E. Q♯ Training Settings
We collect 16 samples for each question in the training set and label every sample either as correct (1) or incorrect (0) based
on the final answer. The first round of training data is collected with just πref. For training Q♯ model, we filter out samples
from questions where all samples are either correct or incorrect. we use a learning rate of 2e− 5 and weight decay of 0.01
with AdamW optimizer (Loshchilov et al., 2017). The model is trained for 5 epochs. We train Q♯ for two iterations as we
observe performance converges. In the second iteration, we repeat the above data collection procedure and concatenate the
training data from the first round. The model is always trained from scratch between iterations.

F. Additional Evaluation Details
We evaluate all methods and models with zero-shot prompting. The prompt template is ’Problem:\n\n{0} Write
your answer inside \\boxed{{}}.\n\nSolution:’ where {0} is replaced by the actual question from the
dataset. The MATH-500 dataset can also be found at Huggingface 4.

G. Math Reasoning Results on Qwen 2.5
We conduct experiments using Qwen 2.5 (Yang et al., 2024), where a 1.5B model guides the 7B version on both GSM8K
and MATH (Table 5). All other configurations mirror those used with Llama 3. We find that Q♯ consistently outperforms
both πref and CD across both datasets, achieving higher accuracy with lower KL divergence. Compared to Table 1, Qwen
2.5 yields stronger overall performance, likely due to its stronger base model, demonstrating that Q♯ generalizes well across
model families.

H. Computational Complexity and Runtime Comparison of Q♯

Q♯ and other value-based baselines such as CD (Mudgal et al., 2023) have the same computational complexity. Compared to
generating responses solely with πref, value-based approaches additionally use the guidance model to compute a Q function
at every decoding step. That is, it increases complexity by the ratio of the guidance model’s size to that of πref. Since the
guidance model can be much smaller in size compared to πref, the overhead is mild. For instance, guiding a Llama 8B with
Llama 1B increases complexity by 12.5%.

Additionally, we efficiently implemented value-based guidance for Q♯ in Hugging Face using LogitProcessor and key-value
caches. On an Nvidia A6000, generating one response on test set of MATH takes 4.10s for πref and 5.18s for Q♯, slightly
exceeding 12.5% possibly due to sequential Q function computation in LogitProcessor. The code for our implementation
can be found in the supplementary materials.

I. Qualitative Examples
In Figure 5 and the ones below it, we qualitative visualize side by side generation results from πref and Q♯ on Llama 3 8B
GSM8K and Llama 3.1 8B MATH settings. In the first example of Figure 5, we observe πref and Q♯ start off similarly by

4https://huggingface.co/datasets/HuggingFaceH4/MATH-500

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Table 5. Comparison of Q♯ with πref and CD baseline on GSM8K (Left) and MATH (Right) with Qwen 2.5.

Dataset GSM8K MATH

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 76.1 79.0 83.5 58.6 60.7 61.9
maj1@8 ↑ 92.9 93.1 93.8 72.8 74.2 74.8

KL-Divergence ↓ - 5.37 4.10 - 7.07 6.46

calculating the total number of cookies Shannon eat but πref starts to roughly guess the answer (highlighted in red) without
calculating the answer precisely, where Q♯ calculates the answer step by step (in blue). In the second MATH example,
πref first states some confusing statement (highlighted in orange) and then makes a mistake of addition (5 + 5) instead of
multiplication when calculating all the possibilities. Q♯, however, correctly solves the problem by multiplying the options
(5 ∗ 5) for Paul and Jesse and then adds the single case when using the number of 2, arriving at the correct answer.

More examples can be found in subsequent pages with various levels of difficulty. We highlight that Q♯ can still make
confusing statements similar to πref even in solution that arrives at the correct final answer. For example, in the Cecilia
puppy example (the first after Figure 5), similar to πref, Q♯ also makes a division of 1 when it should be multiplication.
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Problem from GSM8K: Shannon makes her own madeleine cookies and eats 2 a night as a treat. She wants to make enough
cookies to last her for 30 days by storing them in the freezer. Her recipe makes 1 dozen madeleine cookies. How many dozens of
cookies will she need to make so she has enough for 30 days?

Incorrect Solution from πref: Since Shannon eats 2 cookies per night, she will eat 2 · 30 = 60 cookies over 30 days. She will
need 7 dozen cookies, since 7 · 12 = 84 > 60.
Final Answer: The final answer is 7. I hope it is correct.

Correct Solution from Q♯: Shannon eats 2 cookies per night, so she will eat 2 * 30 = 60 cookies in 30 days. Since 1 dozen
cookies is 12, we can divide 60 by 12 to find out how many dozens she needs. 60 ÷ 12 = 5. The answer is 5 dozens.

Counting & Probability Problem from MATH: Paul and Jesse each choose a number at random from the first six primes.
What is the probability that the sum of the numbers they choose is even?

Incorrect Solution from πref: To find the probability that the sum of the numbers Paul and Jesse choose is even, we need to
consider the possible combinations of even and odd numbers. The first six primes are 2, 3, 5, 7, 11, and 13. Since 2 is the only
even prime number, we will always have one even number and one or more odd numbers. For the sum to be even, both numbers
must be either even or odd. If Paul chooses the even number (2), Jesse can choose any of the 5 odd numbers (3, 5, 7, 11, 13),
resulting in 5 possibilities. If Paul chooses any of the 5 odd numbers, Jesse can choose the even number (2), resulting in 5 more
possibilities. Therefore, there are 5 + 5 = 10 possibilities where the sum is even. The total number of possible combinations is 6 *
6 = 36 (6 choices for Paul and 6 choices for Jesse). The probability that the sum of the numbers Paul and Jesse choose is even is

10/36, which simplifies to 5/18. The answer is:
5

18

Correct Solution from Q♯: The first six primes are 2, 3, 5, 7, 11, and 13. For the sum of the numbers Paul and Jesse choose to
be even, they must either both choose even numbers or both choose odd numbers. There is only one even prime number, which
is 2. Paul has 6 options, and Jesse also has 6 options. The total number of possibilities is 6 * 6 = 36. For the case where both
choose the even number, there is only one possibility (2, 2). For the case where both choose odd numbers, there are 5 options for
Paul and 5 options for Jesse. The total number of possibilities is 5 * 5 = 25. So, the total number of possibilities where the sum is

even is 1 + 25 = 26. The probability that the sum of the numbers they choose is even is 26/36 = 13/18. The answer is
13

18
.

Figure 5. Example generations from πref and Q♯ on GSM8K and MATH questions. πref consistently fails to solve the problems compared
to Q♯. The generations from πref and Q♯ usually start off with similar reasoning chain-of-thought but πref gradually makes unjustified
reasoning leap or simply a guess of the answer whereas Q♯ tends to be more logical for solving the problems. Colors are manually added
for ease of visualization. Blue represents correct reasoning steps or answers, red represents clearly incorrect ones and orange represents
ambiguous or minor mistake that could potentially lead to clearly incorrect steps or answers.
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Problem from GSM8K: Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog
food every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of its life. If one
bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first year?

Incorrect Solution from πref: For the first 180 days, Cecilia needs 180
1

= 180 cups of dog food. For the rest of the year, she
needs 365−180

2
= 92.5 cups of dog food. So in total she needs 180 + 92.5 = 272.5 cups of dog food. If one bag of dog food

contains 110 cups, then she will need 272.5
110

= 2.5 bags of dog food. Final Answer: The final answer is 2.5. I hope it is correct.

Correct Solution from Q♯: The first 180 days, she will need to feed her puppy 180
1

= 180 cups of dog food. After that, she will
need to feed her puppy 365-180=185 days of 2 cups each, for a total of 2 · 185 = 370 cups of dog food. So, the total amount of
dog food needed in the first year is 180 + 370 = 550 cups. Since each bag of dog food contains 110 cups, the number of bags

needed is
550

110
= 5 .

Problem from GSM8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5
servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

Incorrect Solution from πref: Let’s break this down step by step!
1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of
servings by the calories per serving:
5 servings × 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can
consume, subtract the calories you’ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories ÷ 250 calories/serving = 0.8 servings
4. Since there are 5 servings in the bag, you can eat:
0.8 servings × 300g/bag = 240g
So, you can eat up to 240g of the bag of chips.
Here’s the answer:

240 g

Correct Solution from Q♯: A delicious problem!
Let’s break it down step by step:
1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.
2. The total calories in the bag are: 250 calories/serving × 5 servings = 1250 calories.
3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.
4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8 servings.
5. Since there are 5 servings in the bag, you can eat: 0.8 servings × 300g/5 servings = 0.8 × 60g = 48g.
So, you can eat up to 48g of the bag of chips.
Enjoy your snacking, but don’t overdo it!
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Problem from GSM8K: Nate’s dog can dig six holes a day. He digs for 14 days while Nate is on vacation. When Nate gets
home, he starts filling in 9 holes a day, but the dog keeps digging 6 new holes every night. How many weeks does it take him to
fill in all the holes?

Incorrect Solution from πref: Nate’s dog digs 6 holes a day for 14 days, so the total number of holes dug is 6 x 14 = 84. After
Nate gets home, he starts filling in the holes, and the dog keeps digging 6 new holes every night. So the number of holes to fill is
always 84 + 6. Nate fills 9 holes a day, so the number of days it takes to fill all the holes is:⌈

84 + 6

9

⌉
= 11

Correct Solution from Q♯: The dog digs 6 holes a day, and Nate is away for 14 days, so the dog digs 6 * 14 = 84 holes. Then,
Nate starts filling in 9 holes a day, but the dog digs 6 new holes every night, so 9 - 6 = 3 holes are filled in each day. So, each day
3 more holes are filled in. The number of holes filled in after x days is 84 - 3x. We want to find the smallest x such that 84 - 3x is
0, so we want to find the smallest x such that 3x = 84. 3x = 84 is true when x = 28, so it takes 28 days to fill in all the holes. Since
there are 7 days in a week, it takes 28 / 7 = 4 weeks to fill in all the holes.

Prealgebra Problem from MATH: A bookcase has 3 shelves with a total of 24 books. The top shelf has 8 mystery books. The
middle shelf has 10 math books. The bottom shelf has 6 science books. Two books are now taken off each shelf. What fraction of
the books remaining on the three shelves are math books? Express your answer as a common fraction.

Incorrect Solution from πref: To find the fraction of the books remaining on the three shelves that are math books, we first need
to find the total number of books remaining on the three shelves.
Initially, the bookcase had 24 books. Two books are taken off each shelf. Since there are 3 shelves, a total of 6 books are taken
off.
So, the total number of books remaining on the three shelves is:
24 (initial books) - 6 (books removed) = 18 books.
The middle shelf had 10 math books. Since no math books were removed, the number of math books remaining is still 10.
Now, we can find the fraction of the books remaining on the three shelves that are math books. To do this, we divide the number
of math books remaining by the total number of books remaining.
Fraction of math books = Number of math books / Total number of books
= 10 / 18
We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2.
Simplified fraction = 5 / 9
So, the fraction of the books remaining on the three shelves that are math books is: 5/9

Correct Solution from Q♯: To find the fraction of the remaining books that are math books, we first need to find the total
number of books remaining on the shelves after two books are taken off each shelf.
Top shelf initially had 8 books. After removing 2 books, it has 8 - 2 = 6 books.
Middle shelf initially had 10 books. After removing 2 books, it has 10 - 2 = 8 books.
Bottom shelf initially had 6 books. After removing 2 books, it has 6 - 2 = 4 books.
So the total number of books remaining is 6 + 8 + 4 = 18 books.
Initially, there were 10 math books. Since only the middle shelf has math books, the number of math books remains the same at 8
books.
The fraction of the remaining books that are math books is the number of math books (8) divided by the total number of remaining
books (18).
Fraction = 8 / 18 = 4 / 9

So the answer is:
4

9
.
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1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
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Q♯: Provably Optimal Distributional RL for LLM Post-Training

Intermediate Algebra Problem from MATH: The asymptotes of a hyperbola are y = 2x − 3 and y = 17 − 2x. Also, the
hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

Incorrect Solution from πref: To find the distance between the foci of the hyperbola, we first need to determine the center and the
standard form of the hyperbola. The asymptotes are given by y = 2x−3 and y = 17−2x. Their point of intersection will be the
center of the hyperbola. To find the intersection point, we set the two equations equal to each other: 2x− 3 = 17− 2x 4x = 20
x = 5 Then substitute the value of x into one of the asymptote equations to find the corresponding y value: y = 2(5) − 3
y = 10− 3 y = 7 So, the center of the hyperbola is (5, 7). Next, we need to find the standard form of the hyperbola. The slopes
of the asymptotes are ±2, so the standard form of the hyperbola is given by:

(y − 7)2

a2
− (x− 5)2

b2
= 1

Since the slopes of the asymptotes are ±2, we know that b/a = 2. We can use the point (4, 7), which the hyperbola passes
through, to find the values of a and b.

(7− 7)2

a2
− (4− 5)2

b2
= 1

(−1)2

b2
= 1

1

b2
= 1

b2 = 1

b = 1

Since b/a = 2, we have a = b/2 = 1/2. Now we can find the values of a2 and b2.

a2 = (1/2)2 = 1/4

b2 = 12 = 1

Now that we have the values of a2 and b2, we can find the distance between the foci of the hyperbola using the equation:

c2 = a2 + b2

c2 = 1/4 + 1

c2 = 5/4

c =
√

5/4 =
√
5/2

The distance between the foci of the hyperbola is 2c = 2
√
5/2 =

√
5. Therefore, the distance between the foci of the hyperbola

is
√
5 .

Correct Solution from Q♯: To find the equation of the hyperbola, we first need to find the center and the standard form of the
hyperbola. The center is the point of intersection of the two asymptotes. To find it, we can set the two equations equal to each
other and solve for x: 2x− 3 = 17− 2x Combine like terms: 4x = 20 Divide by 4: x = 5 Now substitute this value of x into
one of the asymptote equations to find y: y = 2x− 3 y = 2(5)− 3 y = 7 So, the center of the hyperbola is at (5,7). Since the
slopes of the asymptotes are 2 and -2, the standard form of the hyperbola is: (y−k)2

a2 − (x−h)2

b2
= 1 where (h,k) is the center of

the hyperbola. To find the values of a and b, we can use the fact that the slopes of the asymptotes are 2 and -2. The slopes of
the asymptotes are given by ±a

b
. Therefore: a

b
= 2 We also know that the point (4,7) is on the hyperbola. We can substitute

this point into the equation to get: (7−7)2

a2 − (4−5)2

b2
= 1 This simplifies to: 1

b2
= 1 b2 = 1 Now we can substitute this value

of b2 into the equation a
b
= 2 to get: a

1
= 2 a = 2 Now we can substitute the values of a and b into the standard form of the

hyperbola to get: (y−7)2

4
− (x−5)2

1
= 1 The distance between the foci of a hyperbola is given by 2c, where c is the distance

from the center to each focus. The relationship between a, b, and c is given by: c2 = a2 + b2 c2 = 22 + 12 c2 = 5 c =
√
5 The

distance between the foci is: 2c = 2
√
5 So, the distance between the foci of the hyperbola is 2

√
5 .
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Algebra Problem from MATH: Simplify the following expression to a simplified fraction:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

.

Incorrect Solution from πref: To simplify the expression

√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

, we need to follow the order of operations.

First, we simplify the terms inside the square root:
5√
80

=
5√

16× 5
=

5

4
√
5
=

5

4
√
5
×

√
5√
5
=

5
√
5

4× 5
=

√
5

4√
845 =

√
13× 65 =

√
13× 13× 5 = 13

√
5√

45 =
√
9× 5 =

√
9×

√
5 = 3

√
5

Now, we can rewrite the expression as:

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the numerator by finding a common denom-

inator:
√
5

4
+

13
√
5

9
+ 3

√
5 =

9
√
5

36
+

52
√
5

36
+

108
√
5

36
=

169
√
5

36
Now, we can rewrite the expression as:

√√√√√ 169
√
5

36√
5

To

simplify the expression, we can multiply the numerator and denominator by
√
5:

169
√
5

36√
5

=
169

√
5

36
×

√
5√
5
=

169× 5

36
=

845

36

Now, we can rewrite the expression as:

√
845

36
We can simplify the square root by finding the square root of the numerator and

denominator:

√
845

36
=

√
5× 132

62
=

√
5× 13√
62

=

√
5× 13

6
So, the simplified fraction is

13
√
5

6
.

Correct Solution from Q♯: To simplify the given expression, we first simplify the terms within the square root in the numerator.
5√
80

=
5√
16 · 5

=
5

4
√
5
=

√
5

4√
845 =

√
13 · 65 =

√
13 · 13 · 5 = 13

√
5√

45 =
√
9 · 5 = 3

√
5

Now, we substitute these simplified expressions back into the original expression:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

=

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the expression further by combining like terms in the numerator:

√
5

4
+

13
√
5

9
+ 3

√
5

√
5

=

9
√
5 + 52

√
5 + 108

√
5

36√
5

=

169
√
5

36√
5

=
169

36

Finally, we take the square root of the fraction: √
169

36
=

√
169√
36

=
13

6

The answer is
13

6
.
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