
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Anonymous Authors1

Abstract

Reinforcement learning (RL) post-training is cru-
cial for LLM alignment and reasoning, but ex-
isting policy-based methods, such as PPO and
DPO, can fall short of fixing shortcuts inherited
from pre-training. In this work, we introduce Q♯,
a value-based algorithm for KL-regularized RL
that guides the reference policy using the optimal
regularized Q function. We propose to learn the
optimal Q function using distributional RL on
an aggregated online dataset. Unlike prior value-
based baselines that guide the model using un-
regularized Q-values, our method is theoretically
principled and provably learns the optimal policy
for the KL-regularized RL problem. Empirically,
Q♯ outperforms prior baselines in math reasoning
benchmarks while maintaining a smaller KL di-
vergence to the reference policy. Theoretically,
we establish a reduction from KL-regularized RL
to no-regret online learning, providing the first
bounds for deterministic MDPs under only realiz-
ability. Thanks to distributional RL, our bounds
are also variance-dependent and converge faster
when the reference policy has small variance. In
sum, our results highlight Q♯ as an effective ap-
proach for post-training LLMs, offering both im-
proved performance and theoretical guarantees.

1. Introduction
Reinforcement learning (RL) post-training is a crucial step
in training large language models (LLMs), aligning their
generations with human preferences (Christiano et al., 2017)
and enhancing their reasoning capabilities (Setlur et al.,
2024; Guo et al., 2025). This stage typically follows su-
pervised learning (next-token prediction), where the model
is further trained to maximize expected cumulative reward
while minimizing KL divergence from the reference policy

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

πref obtained via supervised learning. The KL penalty plays
a critical role by keeping the model close to πref, mitigating
issues such as reward hacking and catastrophic forgetting.

Most state-of-the-art LLMs (Ouyang et al., 2022; Dubey
et al., 2024; Team et al., 2024) are post-trained using policy-
based RL methods, which update model weights via stochas-
tic gradient descent using algorithms like RLOO (Kool et al.,
2019), PPO (Schulman et al., 2017), and DPO (Rafailov
et al., 2024). However, these methods are computationally
expensive, requiring full backpropagation through the LLM
during training. In this paper, we propose a more efficient al-
ternative: a value-based RL approach that guides the gener-
ations of the reference policy πref using a learned value func-
tion, without modifying πref model weights. This approach
is particularly attractive because, for many tasks, evalu-
ating generations is easier than producing them (Ouyang
et al., 2022; Pang et al., 2023), suggesting we can use much
smaller models to learn value functions for guidance. For
instance, in our experiments (Section 3.2), we show that a
1B parameter value model can effectively steer and improve
a 70B parameter LLM.

Existing value-based methods for LLM post-training, such
as CD (Mudgal et al., 2023) and VAS (Han et al., 2024), fall
short of faithfully optimizing the KL-constrained RL objec-
tive. These approaches guide πref using Qπref

—the expected
reward-to-go under πref without KL regularization—which
does not guarantee convergence to the optimal policy π⋆,η.
In contrast, under the classical KL-regularized RL frame-
work, we show that it is provably optimal to guide πref using
Q⋆,η, the expected reward-to-go under the optimal policy
π⋆,η, which accounts for KL regularization. This theoreti-
cal insight ensures convergence to π⋆,η and addresses the
shortcomings of previous methods. As we demonstrate
empirically and theoretically, prior approaches can lead to
suboptimal rewards or large KL divergence—issues that our
algorithm, Q♯, provably avoids.

Our method exploits special properties of Q⋆,η in deter-
ministic MDPs and iteratively trains a model to estimate it
through supervised distributional learning such as MLE. The
iterative training procedure is motivated by the classic imi-
tation learning algorithm DAgger (Ross et al., 2011), which
addresses covariate shift and ensures that the learned Q⋆,η

estimator remains accurate when used to guide πref at infer-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Figure 1. (Left) A sketch of our post-training algorithm (Q♯) based on distributional RL. Q♯ alternates between learning Z⋆ – the
reward-to-go distribution of πref – and using the induced policy to collect new data and further improve the distributional estimate. (Right)
Evaluation result on the GSM8K dataset (Cobbe et al., 2021). We see that Q♯ achieves both higher accuracy and lower KL compared to
prior value-based post-training algorithms (Mudgal et al., 2023; Han et al., 2024).

ence time. This distributional learning approach not only
enhances empirical performance but also enables second-
order style regret bounds - instance-dependent bounds that
adapt to the variance of the model’s generation.

Q♯ differs from traditional RL methods in two key aspects.
First, we avoid complex temporal difference (TD) learning
(Tesauro, 1991) or Q-learning techniques (Van Hasselt et al.,
2016; Kumar et al., 2020), instead relying on direct super-
vised learning of a fixed critic. Second, while we adopt a
distributional perspective, Q♯ is conceptually simpler than
classical distributional RL algorithms like C51 (Bellemare
et al., 2017): we directly learn outcome distributions via
supervised maximum likelihood, without invoking distribu-
tional Bellman updates. We elaborate on this and related
works in Appendix A. In summary, our contributions are as
follows:

1. We propose Q♯, a principled algorithm for KL-
regularized RL in deterministic MDPs, which includes
LLMs, based on guiding πref with the soft Q⋆ learned
with distributional RL (Section 2.2).

2. We prove variance-dependent PAC bounds for con-
vergence to the optimal policy, which only requires
realizability in the function class (Section 4).

3. We show that value-based post-training, which includes
Q♯, can fix biases and shortcuts in a star-graph environ-
ment (Bachmann & Nagarajan, 2024), while popular
policy-based methods cannot (Section 3.1).

4. We provide extensive experiments on math reasoning
tasks that validate the effectiveness of our method at
maximizing reward while maintaining small KL devia-
tions from the reference policy (Section 3.2).

2. Method
2.1. Preliminaries

We study KL-regularized reinforcement learning (RL) in de-
terministic Markov Decision Processes (MDPs), where large
language model (LLM) post-training is a motivating special
case. An MDP is defined by a state space X , action space
Y , horizon H , transition kernels (P1, . . . , PH) with Ph :
X ×Y 7→ ∆(X), and known reward functions (r1, . . . , rH)
where rh : X × Y → R. A policy π = (π1, . . . , πH) con-
sists of decision rules πh : X → ∆(Y). For a given η > 0,
the KL-regularized value of a policy π is defined as

V π,η := Eπ

[∑H
h=1 rh(xh, yh)− ηKL(πh(xh) || πref

h (xh))
]
.

(1)

A classical result shows that KL-regularized RL can be
solved via soft Bellman equations (Ziebart et al., 2008).
Starting from h = H and proceeding backward, we define:

V ⋆,η
H+1(x) = 0,

Q⋆,η
h (x, y) = rh(x, y) + Ex′∼Ph(x,y)[V

⋆,η
h+1(x

′)],

π⋆,η
h (y | x) ∝ πref

h (y | x) exp(η−1Q⋆,η
h (x, y)), (2)

V ⋆,η
h (x) = η lnEy∼πref(x) exp(η

−1Q⋆,η
h (x, y)).

This expresses the optimal policy as a softmax over Q⋆,η
h ,

weighted by πref
h . Moreover, Q⋆,η

h (x, y) is the maximal
expected KL-regularized return starting from (x, y) at time
h. We now focus on deterministic MDPs, which covers
LLM post-training and other structured generation tasks
such as diffusion models (Domingo-Enrich et al., 2024).
Assumption 2.1. The transitions Ph are deterministic.

Under this assumption, the value function simplifies signifi-
cantly:

exp(η−1V ⋆,η
h (x))

= Ey∼πref
h (x)[exp(η

−1rh(x, y) + η−1V ⋆,η
h+1(x

′))] (3)

= Eπref [exp(η−1
∑

t≥h rt(xt, yt)) | xh = x], (4)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Q♯: Provably Optimal Distributional RL for LLM Post-Training

where Equation (3) is due to the determinism of Ph, while
Equation (4) follows by recursively unrolling until the final
step. Note that although V ⋆,η

h (xh) corresponds to the soft
value of the optimal policy, its recursion is expressed via
expectations over πref. We summarize this in the following
known result (Piché et al., 2018; Li et al., 2024; Domingo-
Enrich et al., 2024):
Theorem 2.2. Under Assumption 2.1, we have

V ⋆,η
h (xh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh],

Q⋆,η
h (xh, yh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh, yh].

This shows V ⋆,η and Q⋆,η are simple functionals of Z⋆

– the cumulative reward distribution of πref – where the
functional is f(P) = η lnEP exp(X/η). In other words, if
we learn the cumulative reward distribution of πref, then we
can directly compute V ⋆,η and Q⋆,η, without any dynamic
programming.

This offers several benefits. First, we do not require tem-
poral difference (TD) learning (i.e., bootstrapping) which
is notoriously unstable with deep networks (Van Hasselt
et al., 2018) and requires completeness-type assumptions
to guarantee convergence in theory (Munos & Szepesvári,
2008). Second, fitting the reward-to-go distribution Z⋆ or re-
gressing Eπref [exp(η−1

∑
t≥h rt)] is a standard supervised

learning task with a fixed target, which is much more stable
in practice and well-understood in theory. Notably, there
is no bootstrapping or changing targets which is what ren-
ders deep RL fragile. Third, we can apply distributional RL
methods, where we directly fit the distribution Z⋆ via super-
vised learning (e.g., maximum likelihood). Importantly, our
approach does not involve distributional Bellman equation
nor distributional TD update, which are known to be non-
contractive under certain metrics (Bellemare et al., 2017).
Prior work has shown that fitting Z⋆ in this manner yields
benefits in representation learning (Bellemare et al., 2017;
Lyle et al., 2019), lower variance updates (Rowland et al.,
2023), and second-order bounds (Wang et al., 2024a;c).

Applicability to LLMs. Our deterministic MDP frame-
work directly models LLM post-training as a special case
(Ouyang et al., 2022). The initial state x1 corresponds to
the input prompt, each intermediate state xh is the cur-
rent generation prefix, and the action yh is the next to-
ken (or next block of tokens). The policy thus reflects
the LLM’s autoregressive decoding process. The transi-
tion function is deterministic: Ph(xh, yh) = xhyh, which
simply appends the new token to the prefix. In many post-
training settings, the reward is sparse, meaning only rH is
nonzero. Under this assumption, Theorem 2.2 simplifies
to Q⋆,η

h (xh, yh) = η lnEπref [exp(η−1r(xH , yH)) | xh, yh].
For example, the reward may indicate solution correctness
in math tasks or reflect user preference in dialogue, as deter-
mined by a learned reward model.

Inference with cumulative reward distribution. Let
Z⋆ denote the conditional distribution over cumulative
rewards under rollouts from πref, that is, Z⋆

h(x, y)
D
=∑

t≥h rt(xt, yt) | xh = x, yh = y, where the trajectory

(xh, yh, . . . , xH , yH) is sampled under πref, and D
= denotes

equality in distribution. Combining Theorem 2.2 and Equa-
tion (2), the optimal policy can be rewritten in terms of Z⋆

as π⋆,η
h (y | x) ∝ πref

h (y | x)Ez∼Z⋆
h(x,y)

[exp(z/η)]. This
motivates defining a general family of policies induced by
any distribution Z : X × Y → ∆(R) via

πZ,η
h (y | x) ∝ πref

h (y | x)Ez∼Zh(x,y)[exp(z/η)]. (5)

Since π⋆,η = πZ⋆,η , we can approximate the optimal policy
by estimating Z⋆ with Ẑ ≈ Z⋆ using distributional learning
techniques such as maximum likelihood estimation (MLE),
and then instantiating πZ,η. This forms the core of our
proposed Q♯ algorithm.

2.2. Algorithm Q♯

We propose Q-Sharp (Q♯), a distributional value-based al-
gorithm for KL-regularized RL in deterministic MDPs. Q♯
iteratively collects data from progressively improved poli-
cies to approximate the target distribution Z⋆ (Algorithm 1).
In this section, we describe Q♯ in practical terms for deep
neural networks and LLMs; in Section 4, we formalize it
using online learning oracles and prove convergence under
a mild realizability assumption.

Algorithm 1 Q♯

1: Input: reference policy πref.
2: Initialize parameters θ1 of conditional distribution Zθ :
X × Y → ∆(R) and dataset Dh = ∅ for all h.

3: for k = 1, 2, . . . until convergence do
4: Let πk ← πZ

θk
,η be policy induced by Zθk (using

Equation (5)).
5: for i = 1, 2, . . . , N do
6: Sample a switching time h ∼ [H].
7: Roll-in with πk for h− 1 steps.
8: Resume trajectory with πref from xh.
9: Let Rt denote cumulative rewards after time t.

10: Add (xt, yt, Rt) to Dt, ∀t ≥ h.
11: end for
12: Update θk by minimizing the distributional loss on

the aggregated data:

θk+1 ← argminθ
∑

h EDh
[L(Rh, Z

θ(xh, yh))].

13: end for
14: Output: Final θk.

Let Zθ
h : X × Y → ∆(R) denote a parametric conditional

distribution with parameters θ. Given a sample R ∈ R (e.g.,

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Q♯: Provably Optimal Distributional RL for LLM Post-Training

drawn from Z⋆) and a model prediction Ẑ, let L(R, Ẑ) be
a distributional loss for training the model. We denote by
θ⋆ the parameter that minimizes the distance between Z⋆

and Zθ. For example, if Z⋆
h(x, y) is Ber(p⋆h(x, y)), we can

parameterize Zθ
h(x, y) by a neural network that outputs a

scalar estimate p̂ of p⋆h(x, y). The natural loss in this case is
binary cross-entropy (BCE):

Lbce(r, p̂) = − r ln p̂ − (1− r) ln(1− p̂) .

This binary setup is appropriate for tasks such as math or
multiple-choice questions where the reward is binary. If
the reward distribution has no known parametric form, one
can use a non-parametric model (e.g., a histogram that dis-
cretizes the reward space) trained via maximum likelihood
(MLE) (Bellemare et al., 2017):

Lmle(r, ẑ) = − ln ẑ[idx(r)] ,

where idx(r) returns the index of the bin containing r, and
ẑ[i] denotes the probability estimate for bin i. In general, Q♯
can incorporate any distributional RL loss function (Belle-
mare et al., 2023). Once Zθ closely approximates Z⋆, we
instantiate a near-optimal policy πθ,η via Equation (5). In
Section 4, we prove that this procedure converges to the
optimal policy under a mild realizability assumption.

Then, the key idea of Q♯ is an iterative data-collection and
update process. At iteration k, with current parameters θk,

we deploy the induced policy πk := πZθk ,η to gather new
data. Specifically, we roll in with πk for h−1 steps to reach
a state xh, then switch to πref to complete the trajectory. The
cumulative reward from step h to the end, denoted Rh,k, is
a sample from Z⋆

h(xh). We add these samples to the dataset
and update θ via gradient descent on the distributional loss.
This process repeats until convergence.

Our iterative approach is similar in spirit to DAgger (Ross
et al., 2011), AggreVaTe (Ross & Bagnell, 2014; Sun et al.,
2017), and RLGF (Chang et al., 2023), which likewise mit-
igate distribution shift to ensure the learned estimator re-
mains accurate at test time. In contrast, prior value-based
methods such as CD (Mudgal et al., 2023) and entropy-
regularized PRM (Zhang et al., 2024a) train their estimators
only on data from πref. While such an estimator may per-
form well on πref’s distribution, it offers no guarantee of
accuracy when used to steer πref’s generation at inference
time.

Comparison with CD and VAS. The most closely re-
lated value-based baselines are CD (Mudgal et al., 2023)
and VAS (Han et al., 2024), yet they exhibit three criti-
cal limitations. (i) Incorrect value target. Both methods
re-weight πref using Qπref,0—the unregularized Q-function
of πref—thereby ignoring the KL term. As shown in
Section 4, this choice can yield policies that are either

sub-optimal in reward or far from πref. Q♯ instead employs
the principled target Q⋆,η and is guaranteed to converge to
π⋆,η under realizability. (ii) Offline training. CD and VAS
fit their value functions on a fixed dataset, whereas Q♯ alter-
nates data collection and updates, improving robustness to
distribution shift (Ross et al., 2011; Ross & Bagnell, 2014).
(iii) Squared-loss regression. Both baselines learn Qπref,0

with an ℓ2 loss, implicitly assuming homoskedastic Gaus-
sian rewards. Q♯ leverages distributional RL losses, which
are theoretically more sample-efficient (Wang et al., 2023;
2024c) and empirically superior (Bellemare et al., 2017;
Lyle et al., 2019).

Relation to actor–critic methods. Although Q♯ learns a
value function, its target V ⋆,η (or Q⋆,η) is fixed through-
out training. Standard actor–critic algorithms (e.g., PPO)
continuously update V π or Qπ as π evolves, and rely on
bootstrap-based TD updates. In contrast, Q♯ trains the value
network via distributional supervised learning (e.g., MLE),
thereby avoiding the instability of changing targets.

Inference with multiple η. Because the learned distribution
Ẑθ is independent of η, a single trained network can support
any choice of η at inference time simply by plugging it into
Equation (5).

3. Experiments
In this section, we present a suite of experiments, from
a minimal synthetic task to complex reasoning tasks, to
evaluate Q♯ for post-training LLMs.

3.1. Star-Graph

We begin with the star-graph task from Bachmann & Nagara-
jan (2024), illustrated in Figure 2(a). A star-graph G(d, ℓ)
has d paths of length ℓ from a central node. Given a start/-
goal node and the graph edges, the LM must generate a
valid path. Though seemingly simple, Bachmann & Na-
garajan (2024) showed that next-token pre-training often
learns a faulty shortcut: the model picks the first node at
random (correct with probability 1/d) and follows the path,
yielding a test accuracy of only 1/d. This highlights the
limitations of next-token prediction on planning tasks. Hu
et al. (2024) also showed that the task embeds the ”sparse
parity” problem — determining whether the sum of a binary
string is even or odd — which is known to be difficult for
gradient-based optimizers and is widely studied in learning
theory and optimization (Shalev-Shwartz et al., 2017; Barak
et al., 2022; Abbe & Sandon, 2023; Kou et al., 2024).

Can this shortcut be fixed during post-training? We eval-
uate REINFORCE (Ahmadian et al., 2024), DPO (Rafailov
et al., 2024), RPO (Pang et al., 2024a), and Q♯, reporting
test accuracies in Figure 2 (b). Q♯ consistently corrects
the shortcut, achieving near-perfect accuracy, even for long

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Q♯: Provably Optimal Distributional RL for LLM Post-Training

(a) The star-graph G(5, 5). (b) Generalization accuracies.

Figure 2. (a) The star-graph with degree d = 5 and path length ℓ = 5. Next-token prediction, the standard pre-training loss, learns a
sub-optimal shortcut that selects a random first node and follows it until the end. (b) Accuracies on held-out test graphs for various models.
Policy-based post-training methods such as REINFORCE and RPO (a variant of DPO) still exhibit the shortcut and has test accuracy 1/d,
while our value-based Q♯ fixes the shortcut and achieves near-perfect accuracy.

paths (G(2, 20)) or large degrees (G(5, 5)). CD (Mudgal
et al., 2023) achieves similar performance as Q♯. In contrast,
policy-based methods like REINFORCE and RPO fail to
fix the shortcut, plateauing at 1/d accuracy. DPO performs
worst, often collapsing the policy to zero accuracy by sup-
pressing both chosen and rejected paths—a failure mode
also noted by RPO. These results suggest that once shortcuts
are learned, policy-based methods struggle to unlearn them,
reinforcing the effectiveness of value-based approaches like
Q♯ and CD for LLM post-training. Please see Appendix C
for implementation details.

3.2. Math Reasoning

Datasets. We evaluate on two mathematical reasoning
benchmarks: GSM8K (Cobbe et al., 2021), a dataset
of grade school arithmetic word problems, and MATH
(Hendrycks et al., 2021), which features more challenging
high school competition problems. We split each training
set 90%-10% for training and validation. Test performance
is reported on the full GSM8K test set and a 500-sample sub-
set of MATH (MATH-500), following prior work (Lightman
et al., 2023; Wang et al., 2024d).

Models. We experiment with Llama 3 (Dubey et al., 2024)
and Qwen 2.5 (Yang et al., 2024) model families, both of
which are competitive on math reasoning tasks and span a
wide range of parameter scales. Due to space constraints,
we report results for Llama 3 in the main text and defer
Qwen 2.5 results to Appendix G. Unless otherwise noted,
the Q⋆,η function in Q♯ is parameterized and initialized with
a Llama 3.2 1B model, and we use η = 0.1, which yields
consistent and strong performance. We run Q♯ for two
iterations, after which performance converges. Additional
details on model configurations and Q♯ training are provided
in Appendices D and E.

Evaluation metrics. We report single sample accu-

Table 1. Comparison of Q♯ with πref and CD baseline on GSM8K
(Top) and MATH (Bottom). For both Llama 3 and Llama 3.1
8B, Q♯ consistently improves both pass@1 and majority voting
accuracy upon baselines while incurring minimal KL deviation.

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 69.1 77.8 78.4 82.9 84.5 85.1
maj1@8 ↑ 85.8 87.2 88.1 90.5 90.9 91.4

KL-Divergence ↓ - 6.39 2.65 - 7.43 3.67

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 25.4 24.9 27.1 43.9 45.3 46.7
maj1@8 ↑ 34.3 34.3 37.9 57.0 59.0 60.1

KL-Divergence ↓ - 15.27 7.14 - 26.8 8.69

racy (pass@1) and majority voting accuracy (maj1@k).
pass@1 evaluates one sampled generation per problem
against the ground truth, while maj1@k checks if the most
frequent answer among k samples is correct. We use k = 8,
temperature T = 0.8, and nucleus sampling p = 0.9. The
evaluation prompt template is provided in Appendix F.

Main results. Table 1 presents Q♯ performance on GSM8K
(Top) and MATH (Bottom) with πref as Llama 3 or 3.1
8B. Although both have 8B parameters, Llama 3.1 per-
forms significantly better. Across all settings, Q♯ consis-
tently improves over πref, boosting pass@1 by up to 9%
on GSM8K with just 1B additional parameters. We also
compare against the CD baseline (Mudgal et al., 2023; Han
et al., 2024), which incorrectly uses Qπref,0 to guide πref.
Q♯ outperforms CD on accuracy metrics while maintaining
lower KL divergence. Overall, Q♯ Pareto-dominates CD in
the KL-regularized RL setting by achieving higher reward
and lower KL.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Table 2. Performance of πref and Q♯ on MATH with larger πref and
Q♯ model sizes. Q♯ of size 1B is capable of guiding a 70B πref

model. Increasing Q♯ model sizes to 3B also leads to noticeably
better performance for Llama 3.1 70B.

πref Llama 3 70B Llama 3.1 70B

Q♯ Model None Llama 3.2 1B Llama 3.2 3B None Llama 3.2 1B Llama 3.2 3B

pass@1 ↑ 45.6 46.4 46.7 60.6 63.1 64.1
maj1@8 ↑ 55.6 55.5 55.3 69.0 72.5 72.7

KL-Divergence ↓ - 3.12 5.15 - 4.98 4.99

Table 3. Performance of πref and Q♯ on GSM8K and MATH when
using Q♯ also as a reward model to evaluate complete generations.
The reward model can determine the best generation among all
generations for a problem and consistently improves maj1@8 for
πref and Q♯ own generations.

Setting Llama 3 8B GSM8K Llama 3.1 8B MATH

Methods πref Q♯ πref Q♯

pass@1 69.1 78.4 43.9 46.7
maj1@8 85.8 88.1 57.0 60.1

Q♯-RM Best of 8 85.9 86.0 54.0 54.0
Q♯-RM maj1@8 88.5 89.2 59.2 60.6

Larger πref and Q♯ sizes. We evaluate how performance
scales with larger πref and Q♯ models on MATH (Table 2).
Using 70B Llama 3 and 3.1 as πref significantly boosts base-
line pass@1 (45.6% and 60.6%, respectively). Remark-
ably, a 1B Q♯ still improves these large models—e.g., by
2.5% pass@1 and 3.5% maj1@8 for Llama 3.1. Increas-
ing Q♯ to 3B yields further gains, demonstrating scalability.
Compared to Table 1 (right), we note that with 9B total pa-
rameters (8B πref + 1B Q♯), the maj1@8 accuracy already
matches the pass@1 of the 70B πref in Table 2, suggesting a
promising low-resource alternative. For Llama 3, pass@1
improves while maj1@8 slightly drops, likely due to in-
creased generation diversity benefiting harder problems but
reducing consistency on easier ones.

Q♯ as a reward model. Beyond guiding πref genera-
tion, Q♯’s token-level Q function can also assess how
good a complete generation is among many. We compute
Q(generation,EOS) by applying Q♯ as a reward model (Q♯-
RM) on GSM8K and MATH, using both πref and Q♯ genera-
tions. Table 3 reports two settings: Q♯-RM Best of 8 (selects
top-scoring sample) and Q♯-RM maj1@8 (aggregates ma-
jority voting with scores). Q♯-RM maj1@8 consistently
improves over vanilla maj1@8, and Best of 8 yields more
than 10% gains over pass@1 for πref. The reward model
can be used on both πref and Q♯ own generations to further
improve performance, which suggests the (same) reward
model has generalizability for evaluating diverse genera-
tions.

Effect of η. Figure 3 shows the performance–KL tradeoff
between CD and Q♯ on the GSM8K validation set. (Left)

101 102

KL-Divergence

0.50

0.55

0.60

0.65

0.70

0.75

0.80

pa
ss

@
1

Pass@1 vs. KL-Divergence
CD
Q#

101 102

KL-Divergence

100

101

1

1 vs. KL-Divergence

CD
Q#

Figure 3. Performance tradeoff of CD and Q♯ on the validation
set of GSM8K. (Left) pass@1 accuracy vs. KL divergence. Q♯
dominates CD by achieving higher accuracy with a lower KL
penalty. (Right) Different η leads to different KL for CD and Q♯.
The KL of CD blows up quickly and significantly deviates from
πref whereas Q♯ is more stable.

Table 4. Ablations of Q♯ (last row) on pass@1 with various con-
figurations on the validation set of GSM8K and MATH. The im-
provement suggests that our design choices all contribute positively
to the final performance.
Prefix Type Opt. # Iter. Llama 3 8B GSM8K Llama 3.1 8B MATH

Single V Dist. 1 80.5 64.5
All Q Dist. 1 81.4 66.4
All V MSE 1 81.4 65.4
All V Dist. 1 82.3 67.4
All V Dist. 2 83.5 68.5

Increasing KL can improve pass@1 for both methods, but
Q♯ consistently achieves a better Pareto frontier. (Right)
CD is highly sensitive to η: as η−1 increases, its KL grows
rapidly and performance degrades below that of πref. In
contrast, Q♯ remains stable and requires less tuning of η.

Ablations. We ablate several design choices in Table 4
on the GSM8K and MATH validation sets using pass@1
accuracy. The “Prefix” column tests training on all t ≥ h
prefixes after switching to πref (Algorithm 1, Line 10), as
opposed to only t = h. Though this breaks IID assumptions,
the increased training data improves Q♯ performance by up
to 4%. We compare two parameterizations of Q⋆,η: Q-type,
which computes Q⋆,η(x, y) for all y, and V-type, which
predicts Q⋆,η(x, ŷ) for a specific ŷ. V-type outperforms Q-
type, likely due to its lower parameter count and per-token
computation. Details are in Appendix D. We also compare
distributional Q♯ with MSE-based regression, which un-
derperforms as expected under Bernoulli rewards. Finally,
more iterations of Algorithm 1 yield marginal gains, with
performance saturating after two iterations, which we adopt
by default.

Qualitative comparison. Figure 5 shows side-by-side gen-
erations from πref and Q♯ on math reasoning tasks. While
both models often begin with similar prefixes—consistent
with Q♯’s low KL deviation—Q♯ typically corrects πref’s
mistakes and produces more coherent reasoning. Additional

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Q♯: Provably Optimal Distributional RL for LLM Post-Training

examples are provided in Appendix I.

4. Theory
In this section, we provide theoretical analyses for Q♯ and
prior value-based post-training approaches, including CD
(Mudgal et al., 2023) and VAS (Han et al., 2024).

4.1. CD & VAS are sub-optimal for KL-regularized RL

First, CD and VAS both propose to reweight πref(· | x) with
the unregularized Q-function of πref:

πCD,η(y | x) ∝ πref(y | x) exp(Qπref
(x, y)/η), (6)

where recall that Qπref

h (xh, yh) = Eπref [
∑

t≥h rt | xh, yh].
Comparing with Equation (2), we can already see that πCD,η

does not match the optimal policy π⋆,η, as Qπref
can be

arbitrarily far from Q⋆,η. In particular, πCD may fail to
optimize the KL-regularized RL objective and exhibit two
failure cases, which we demonstrate with a simple MDP
in Example 1. First, we show that CD fails to maximize
expected reward in this MDP, even as the KL-regularizer η
decays to zero.

x1

xL

r = 0.1

1

pL

xR

r = 1

0.05

r = 0

0.95

pR
Z⋆
L = δ(0.1) Z⋆

R = Ber(0.05)

Example 1. A tree MDP where edges are labeled with πref’s action
probability. Specifically, πref goes to the left sub-tree w.p. pL and
the right sub-tree w.p. pR, where pL, pR > 0. The left sub-tree
gives r = 0.1 w.p. 1. In the right sub-tree, πref chooses reward 1
w.p. 0.05 and chooses reward 0 w.p. 0.95.

First, we show that CD fails to maximize expected reward
in this MDP, even as the KL-regularizer η decays to zero.
Theorem 4.1. Under Example 1, CD learns to always select
the left sub-tree as η → 0, which gives a sub-optimal reward
of 0.1, while π⋆,η learns to always select the right sub-tree
and chooses the path that gives reward 1.

Proof. First, for CD, we have Qπref
(x1, aL) = 0.1 and

Qπref
(x1, aR) = 0.05. Hence, CD’s probability of selecting

the left sub-tree is pL exp(0.1/η)
pL exp(0.1/η)+pR exp(0.05/η) , which con-

verges to 1 as η → 0. Next, for Q♯, we have Q⋆,η(x1, aL) =
0.1 and Q⋆,η(x1, aR) = η ln(0.05 exp(1/η) + 0.95).
Hence, Q♯’s probability of selecting the left sub-tree is

pL exp(0.1/η)
pL exp(0.1/η)+pR(0.05 exp(1/η)+0.95) , which converges to 0

as η → 0. Thus, CD learns the sub-optimal path.

Next, we show that CD also incurs a higher KL than Q♯.

Theorem 4.2. Under Example 1, CD’s KL converges to
ln(1/pL) while Q♯’s KL converges to ln(1/pR) as η → 0.
Thus if pL ≪ pR, CD converges to a higher KL than Q♯.

Proof. As shown in Theorem 4.1, CD learns to select the
left sub-tree while Q♯ learns to select the right sub-tree as
η → 0. Then, the KLs simply follow by definition.

In sum, we proved that Example 1, CD both incurs a higher
KL and achieves a lower sub-optimal reward compared to
Q♯. Thus, Q♯ generally Pareto-dominates CD in the reward-
KL trade-off, which matches our empirical findings.

4.2. Performance Guarantee for Q♯

We prove that the learned policy by Q♯ is guaranteed to
converge to the optimal policy with enough samples. This
result holds in rich-observation MDPs where the size of the
state space can be exponentially large or infinite, so long as
the mild realizability assumption holds.

To setup, let F be a distributional function class for mod-
eling Z⋆, the reward-to-go distribution under πref. Each
element of F has type f = (f1, . . . , fH) and fh : X ×Y 7→
∆([0, V max]).1 For purpose of analysis, we assume access
to a no-regret online learning oracle for the maximum like-
lihood (MLE) loss, which proceeds as follows: for each
iteration k = 1, 2, . . . ,K, given any {xh,k, yh,k, Rh,k}Hh=1,
the oracle outputs Ẑk ∈ F s.t.∑K

k=1

∑H
h=1 logZ

⋆
h(Rh,k | xh,k, yh,k)

− log Ẑh,k(Rh,k | xh,k, yh,k) ≤ Regmle(K).

No-regret online learning is well-studied in the literature
(Cesa-Bianchi & Lugosi, 2006; Orabona, 2019) and is a
standard tool when reducing decision making to supervised
learning (Ross et al., 2011; Foster & Krishnamurthy, 2021;
Wang et al., 2023). For example, if F is finite and satisfies
realizability, then Vovk’s aggregating algorithm ensures that
Regmle(K) ≲ ln(|F|) (Vovk, 1995).2

Assumption 4.3 (Realizability). Z⋆ ∈ F .

The following algorithm is a slightly modified version of
Algorithm 1 amenable for theoretical analysis. The only
differences with Algorithm 1 are: (1) we use the MLE oracle
to learn Ẑk, and (2) for purpose of local exploration, we play
a random action at the switching time h before following
πref to the end of the trajectory (Ross & Bagnell, 2014).

We now state our main PAC bound for Q♯.
1Suppose rewards-to-go under πref lie in [0, V max] w.p. 1.
2a ≲ b is short for a ≤ Cb for some universal constant C.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Algorithm 2 Q♯ (Theory Version)

1: Input: reference πref, iteration count K, regularizer η.
2: Initialize Ẑ1 randomly.
3: for k = 1, 2, . . . ,K do
4: Let πk ← πẐk,η .
5: for step h = 1, 2, . . . ,H do
6: Roll-in with πk for h− 1 steps and see xh,k.
7: Play random action yh,k and transit to xh+1,k.
8: Resume trajectory with πref from xh+1,k.
9: Let Rh,k be cumulative rewards after time h.

10: end for
11: Input {xh,k, yh,k, Rh,k}h∈[H] to MLE oracle.
12: Receive Ẑk from MLE oracle.
13: end for
14: Output: Ẑ1, . . . , ẐK .

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under
Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have∑K

k=1 V
⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the co-

efficient of variation of exp(Z⋆
h(xh, yh)/η), xh, yh ∼ πk,

and Eh := ∥exp((V max−Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the

envelope of exp((V max −Q⋆,η
h (xh, yh))/η) under πref.

We highlight this applies to rich-observation MDPs where
our only requirement for F is realizability. Moreover,
our bound scales with the function class’s complexity, i.e.,
ln(|F|), and does not contain structural complexity mea-
sures. In contrast, prior bounds in RL theory require stronger
assumptions such as Bellman completeness (Chen & Jiang,
2019; Wang et al., 2021; Foster et al., 2021b; Jin et al., 2021;
Chang et al., 2022; Ayoub et al., 2024; Wang et al., 2024c),
even in deterministic MDPs (Wu et al., 2024), and/or scale
with structural complexity measures such as coverability
(Xie et al., 2022; Mhammedi et al., 2024) or eluder dimen-
sion (Russo & Van Roy, 2013; Jin et al., 2021).

Also, we highlight that Algorithm 2 is model-free and com-
putationally efficient. In contrast, most prior algorithms re-
quire computationally hard exploration with version spaces
(Jiang et al., 2017; Dann et al., 2018; Jin et al., 2021; Xie
et al., 2022; Wang et al., 2024c). Thus, Theorem 4.4 shows
that it is possible to achieve both statistical and computa-
tional efficiency under mild assumptions by simply operat-
ing within the KL-regularized RL framework, which itself
is of great relevance for LLM post-training. We remark that
Uehara et al. (2023) observed similar benefits in offline RL
while we study the harder online setting.

Moreover, thanks to distributional RL, Theorem 4.4
is a second-order bound (Wang et al., 2024a;c) com-
prising of two main terms. The leading term

O(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y)) is the summed coeffi-
cient of variations, which in the worst case scales like√∑H

h=1 E
2
hK. However, in benign cases where Z⋆

h has
small or zero variance, this term vanishes and we are left
with the lower order term O(maxh∈[H] Eh ln(K)) which
only grows logarithmically in K. While in the worst-case,
our envelope term is exponential in η−1, it is interestingly
also instance-dependent. Specifically, our envelope term
is exp((V max −Q⋆,η

h (xh, yh))/η) which involves the opti-
mal policy’s Q-function Q⋆,η. Thus, if the optimal policy
achieves near-maximal reward, i.e., if Q⋆,η ≈ V max, then
the envelope term becomes closer to 1, avoiding the expo-
nential dependence on η−1.

Remark: Modification for Regret Bound. It is possible to
turn Theorem 4.4 into a regret bound by replacing random
action in Line 7 of Algorithm 2 with a no-regret contex-
tual bandit oracle, where “context” is xh, action is yh and
“reward” is Rh. This is alike the steps needed to convert
AggreVaTe’s PAC bound into a regret bound (Ross & Bag-
nell, 2014). Our theory can be interpreted as a regret/PAC
reduction from KL-regularized RL in deterministic MDPs
to no-regret online learning, which mirrors the type of guar-
antees obtained for AggreVaTe (Ross & Bagnell, 2014).

5. Conclusion
Our results focus on deterministic MDPs including LLM
post-training, where the optimal action-value Q⋆,η is
a simple functional of the reference return distribution
Zπref

and Theorem 2.2 applies directly. For domains
with stochastic transitions, Q⋆,η need to be learned via
temporal-difference methods, which typically rely on the
stronger Bellman-completeness assumption and may in-
troduce additional training instability. In summary, Q♯
offers a principled and practical avenue for post-training
LLMs. It combines a distributional-RL objective with super-
vised regression, enjoys provable convergence under mild
assumptions, and consistently surpasses prior value-based
baselines on synthetic planning and math-reasoning bench-
marks—achieving higher accuracy while maintaining a
lower KL divergence from the reference policy.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Q♯: Provably Optimal Distributional RL for LLM Post-Training

References
Abbe, E. and Sandon, C. Polynomial-time universality and

limitations of deep learning. Communications on Pure
and Applied Mathematics, 76(11):3493–3549, 2023.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
J., Pietquin, O., Üstün, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

Ayoub, A., Wang, K., Liu, V., Robertson, S., McInerney,
J., Liang, D., Kallus, N., and Szepesvari, C. Switching
the loss reduces the cost in batch reinforcement learn-
ing. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=7PXSc5fURu.

Bachmann, G. and Nagarajan, V. The pitfalls of next-token
prediction. arXiv preprint arXiv:2403.06963, 2024.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017.

Bellemare, M. G., Dabney, W., and Rowland, M. Distribu-
tional reinforcement learning. MIT Press, 2023.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chang, J., Wang, K., Kallus, N., and Sun, W. Learning
bellman complete representations for offline policy evalu-
ation. In International Conference on Machine Learning,
pp. 2938–2971. PMLR, 2022.

Chang, J. D., Brantley, K., Ramamurthy, R., Misra, D., and
Sun, W. Learning to generate better than your llm. arXiv
preprint arXiv:2306.11816, 2023.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Con-
ference on Machine Learning, pp. 1042–1051. PMLR,
2019.

Cho, J. H., Park, M., and Lee, B.-J. Vpo: Leveraging
the number of votes in preference optimization. arXiv
preprint arXiv:2410.22891, 2024.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
Distributional reinforcement learning with quantile re-
gression. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On oracle-efficient pac rl
with rich observations. Advances in neural information
processing systems, 31, 2018.

Domingo-Enrich, C., Drozdzal, M., Karrer, B., and Chen,
R. T. Adjoint matching: Fine-tuning flow and diffusion
generative models with memoryless stochastic optimal
control. arXiv preprint arXiv:2409.08861, 2024.

Donsker, M. D. and Varadhan, S. S. Asymptotic evaluation
of certain markov process expectations for large time. iv.
Communications on pure and applied mathematics, 36
(2):183–212, 1983.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Farebrother, J., Orbay, J., Vuong, Q., Taı̈ga, A. A., Cheb-
otar, Y., Xiao, T., Irpan, A., Levine, S., Castro, P. S.,
Faust, A., et al. Stop regressing: Training value func-
tions via classification for scalable deep rl. arXiv preprint
arXiv:2403.03950, 2024.

Foster, D. J. and Krishnamurthy, A. Efficient first-order
contextual bandits: Prediction, allocation, and triangular
discrimination. Advances in Neural Information Process-
ing Systems, 34:18907–18919, 2021.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A.
The statistical complexity of interactive decision mak-
ing. arXiv preprint arXiv:2112.13487, 2021a.

Foster, D. J., Krishnamurthy, A., Simchi-Levi, D., and Xu,
Y. Offline reinforcement learning: Fundamental barri-
ers for value function approximation. arXiv preprint
arXiv:2111.10919, 2021b.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

9

https://openreview.net/forum?id=7PXSc5fURu
https://openreview.net/forum?id=7PXSc5fURu

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Gao, Z., Chang, J., Zhan, W., Oertell, O., Swamy, G., Brant-
ley, K., Joachims, T., Bagnell, D., Lee, J. D., and Sun,
W. Rebel: Reinforcement learning via regressing relative
rewards. Advances in Neural Information Processing
Systems, 37:52354–52400, 2025.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Han, S., Shenfeld, I., Srivastava, A., Kim, Y., and Agrawal, P.
Value augmented sampling for language model alignment
and personalization. arXiv preprint arXiv:2405.06639,
2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hu, E. S., Ahn, K., Liu, Q., Xu, H., Tomar, M., Langford,
A., Jayaraman, D., Lamb, A., and Langford, J. Learning
to achieve goals with belief state transformers. arXiv
preprint arXiv:2410.23506, 2024.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder di-
mension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in neural information
processing systems, 34:13406–13418, 2021.

Kool, W., van Hoof, H., and Welling, M. Buy 4 reinforce
samples, get a baseline for free! 2019.

Kou, Y., Chen, Z., Gu, Q., and Kakade, S. Matching the
statistical query lower bound for k-sparse parity problems
with sign stochastic gradient descent. Advances in Neu-
ral Information Processing Systems, 37:113001–113037,
2024.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in neural information processing systems, 33:
1179–1191, 2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, X., Zhao, Y., Wang, C., Scalia, G., Eraslan, G., Nair,
S., Biancalani, T., Ji, S., Regev, A., Levine, S., et al.
Derivative-free guidance in continuous and discrete dif-
fusion models with soft value-based decoding. arXiv
preprint arXiv:2408.08252, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and
Smith, N. A. Tuning language models by proxy. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=dribhnhm1i.

Loshchilov, I., Hutter, F., et al. Fixing weight decay regu-
larization in adam. arXiv preprint arXiv:1711.05101, 5,
2017.

Lyle, C., Bellemare, M. G., and Castro, P. S. A compara-
tive analysis of expected and distributional reinforcement
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4504–4511, 2019.

Mhammedi, Z., Foster, D. J., and Rakhlin, A. The power
of resets in online reinforcement learning. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.
net/forum?id=7sACcaOmGi.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H.-T., Collins, M., Strohman, T.,
et al. Controlled decoding from language models. arXiv
preprint arXiv:2310.17022, 2023.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(5), 2008.

Nachum, O., Chow, Y., Dai, B., and Li, L. Dualdice:
Behavior-agnostic estimation of discounted stationary
distribution corrections. Advances in neural information
processing systems, 32, 2019a.

Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L., and
Schuurmans, D. Algaedice: Policy gradient from ar-
bitrary experience. arXiv preprint arXiv:1912.02074,
2019b.

Orabona, F. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

10

https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=7sACcaOmGi
https://openreview.net/forum?id=7sACcaOmGi

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pang, J.-C., Wang, P., Li, K., Chen, X.-H., Xu, J., Zhang,
Z., and Yu, Y. Language model self-improvement by
reinforcement learning contemplation. arXiv preprint
arXiv:2305.14483, 2023.

Pang, R. Y., Yuan, W., Cho, K., He, H., Sukhbaatar, S., and
Weston, J. Iterative reasoning preference optimization.
arXiv preprint arXiv:2404.19733, 2024a.

Pang, R. Y., Yuan, W., He, H., Cho, K., Sukhbaatar, S., and
Weston, J. Iterative reasoning preference optimization.
Advances in Neural Information Processing Systems, 37:
116617–116637, 2024b.

Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal,
C. Probabilistic planning with sequential monte carlo
methods. In International Conference on Learning Rep-
resentations, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Ross, S. and Bagnell, J. A. Reinforcement and imitation
learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Rowland, M., Tang, Y., Lyle, C., Munos, R., Bellemare,
M. G., and Dabney, W. The statistical benefits of quantile
temporal-difference learning for value estimation. In In-
ternational Conference on Machine Learning, pp. 29210–
29231. PMLR, 2023.

Russo, D. and Van Roy, B. Eluder dimension and the sample
complexity of optimistic exploration. Advances in Neural
Information Processing Systems, 26, 2013.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Shalev-Shwartz, S., Shamir, O., and Shammah, S. Failures
of gradient-based deep learning. In International Con-
ference on Machine Learning, pp. 3067–3075. PMLR,
2017.

Sun, K., Jiang, B., and Kong, L. How does return dis-
tribution in distributional reinforcement learning help
optimization? arXiv preprint arXiv:2209.14513, 2022.

Sun, K., Zhao, Y., Liu, W., Jiang, B., and Kong, L. Distri-
butional reinforcement learning with regularized wasser-
stein loss. Advances in Neural Information Processing
Systems, 37:63184–63221, 2024.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imita-
tion learning for sequential prediction. In International
conference on machine learning, pp. 3309–3318. PMLR,
2017.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Tesauro, G. Practical issues in temporal difference learning.
Advances in neural information processing systems, 4,
1991.

Uehara, M., Kallus, N., Lee, J. D., and Sun, W. Offline
minimax soft-q-learning under realizability and partial
coverage. Advances in Neural Information Processing
Systems, 36, 2023.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Vovk, V. G. A game of prediction with expert advice. In
Proceedings of the eighth annual conference on Compu-
tational learning theory, pp. 51–60, 1995.

Wang, K., Zhou, K., Wu, R., Kallus, N., and Sun, W. The
benefits of being distributional: Small-loss bounds for

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Q♯: Provably Optimal Distributional RL for LLM Post-Training

reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

Wang, K., Kallus, N., and Sun, W. The central role of the
loss function in reinforcement learning. arXiv preprint
arXiv:2409.12799, 2024a.

Wang, K., Liang, D., Kallus, N., and Sun, W. Risk-sensitive
rl with optimized certainty equivalents via reduction to
standard rl. arXiv preprint arXiv:2403.06323, 2024b.

Wang, K., Oertell, O., Agarwal, A., Kallus, N., and Sun,
W. More benefits of being distributional: Second-order
bounds for reinforcement learning. International Confer-
ence of Machine Learning, 2024c.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024d.

Wang, Y., Wang, R., and Kakade, S. An exponential lower
bound for linearly realizable mdp with constant subopti-
mality gap. Advances in Neural Information Processing
Systems, 34:9521–9533, 2021.

Wu, R., Sekhari, A., Krishnamurthy, A., and Sun, W.
Computationally efficient rl under linear bellman com-
pleteness for deterministic dynamics. arXiv preprint
arXiv:2406.11810, 2024.

Xie, T., Foster, D. J., Bai, Y., Jiang, N., and Kakade, S. M.
The role of coverage in online reinforcement learning.
arXiv preprint arXiv:2210.04157, 2022.

Xie, T., Foster, D. J., Krishnamurthy, A., Rosset, C., Awadal-
lah, A., and Rakhlin, A. Exploratory preference optimiza-
tion: Harnessing implicit q*-approximation for sample-
efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Xiong, W., Dong, H., Ye, C., Zhong, H., Jiang, N., and
Zhang, T. Gibbs sampling from human feedback: A
provable kl-constrained framework for rlhf. CoRR, 2023.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, K. and Klein, D. FUDGE: Controlled text gen-
eration with future discriminators. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 3511–3535, Online, June 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.276. URL https://aclanthology.
org/2021.naacl-main.276/.

Zhang, H., Wang, P., Diao, S., Lin, Y., Pan, R., Dong,
H., Zhang, D., Molchanov, P., and Zhang, T. Entropy-
regularized process reward model. arXiv preprint
arXiv:2412.11006, 2024a.

Zhang, S., Yu, D., Sharma, H., Zhong, H., Liu, Z., Yang,
Z., Wang, S., Hassan, H., and Wang, Z. Self-exploring
language models: Active preference elicitation for online
alignment. arXiv preprint arXiv:2405.19332, 2024b.

Zhao, S., Brekelmans, R., Makhzani, A., and Grosse, R.
Probabilistic inference in language models via twisted
sequential monte carlo. arXiv preprint arXiv:2404.17546,
2024.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

12

https://aclanthology.org/2021.naacl-main.276/
https://aclanthology.org/2021.naacl-main.276/

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Q♯: Provably Optimal Distributional RL for LLM Post-Training

A. Related Works
From the empirical side, the most relevant works are controlled decoding (CD; Mudgal et al., 2023) and value augmented
sampling (VAS; Han et al., 2024). These two works both propose to guide the reference policy πref with Qπref,0, the expected
reward-to-go under πref without KL regularization. As discussed in Section 4.1, guiding with Qπref,0 is not principled for
the KL-regularized RL problem and can lead to both sub-optimal reward and large KL from πref. In contrast, we propose
to guide πref with Q⋆,η, the expected reward-to-go under the optimal policy with KL regularization, which is the correct
closed-form of the optimal policy. A recent work Zhang et al. (2024a) proposed a process reward model (PRM) of a similar
form as our Q⋆,η, but their PRM is applied to steps instead of tokens, and they do not use distributional RL or iterative
training (i.e., data aggregation).

In terms of reweighting πref with classifier scores, FUDGE (Yang & Klein, 2021) is another closely related work but
their derivation is based on Bayes rule and FUDGE does not solve KL-regularized RL. Sequential Monte Carlo (SMC)
methods (Piché et al., 2018; Zhao et al., 2024) also reweight πref’s distribution with a twist function, where the optimal twist
function is analogous to our Q⋆,η. One key difference is that SMC performs resampling while we directly combine logits
of πref and exp(Q⋆,η) to avoid importance sampling, which has higher variance. Finally, none of these prior works apply
distributional RL losses (Bellemare et al., 2017; Dabney et al., 2018; Farebrother et al., 2024; Ayoub et al., 2024) or online
data aggregation (Ross et al., 2011) to learn Q⋆,η , which we showed to be beneficial in our ablations. Indeed, CD and VAS
both use square loss regression over a fixed offline dataset. We also remark that risk-sensitive RL has been an important
application of distributional RL (Dabney et al., 2018; Wang et al., 2024b) and extending Q♯ along those lines is a promising
future direction.

We also discuss some of the recent advances in stable distributional RL. Sun et al. (2022) shows that the categorical
distributional RL loss, which we employ for our theory and experiments, enjoys smoothness and optimization stability
under a bounded logit condition. Sun et al. (2024) introduces a Sinkhorn distributional RL loss which is a computationally
efficient alternative for Wasserstein distance, and was shown to be more stable for multi-dimensional rewards. Dabney et al.
(2018) proposed a KL-regularized categorical loss which they showed is empirically more stable in Atari games. However,
these references all apply TD-learning with function approximation and replay buffers, which Sutton et al. (1998) identified
as a deadly triad that is notoriously difficult to scale, requiring many tricks such as double Q-learning and target networks.
In contrast, our work obviates the need for TD-learning or tricks such as the target network by leveraging the special form of
Q⋆ in deterministic KL-regularized MDPs, which perfectly captures the LLM post-training application we focus on.

We also cite some tangentially related works. Proxy tuning (Liu et al., 2024) and speculative decoding (Leviathan et al.,
2023) both use a small model to guide the logit distribution of a large πref model. Speculative decoding is focused on
maximizing the large model’s likelihood, which does not relate to any extrinsic rewards. In our framework, the classifier
model can be any size relative to πref, although deeper investigation into the computational benefits of using a small classifier
is a promising direction for future work. We note that the star-graph problem can also be solved during pre-training by also
predicting backwards via the belief state transformer (Hu et al., 2024).

Finally we discuss previous post-training methods for LLMs. First, online iterative DPO (Xiong et al., 2023; Pang et al.,
2024b), REBEL (Gao et al., 2025), PPO (Schulman et al., 2017), etc. are based on policy gradient and require a good
reset distribution which only guarantees local optimality. XPO (Xie et al., 2024), VPO (Cho et al., 2024), SELM (Zhang
et al., 2024b), etc. treat this as an exploration setting but requires solving non-convex optimization oracles and relies on
strong structure conditions such as coverability / eluder / linearity, similar to the theoretical works like (Jin et al., 2021; Xie
et al., 2022). Instead, we approach post-training in a fundamentally different angle and solve it via simple computationally
tractable regression and mle oracles, without any strong structural conditions or reset distribution assumptions.

From the theoretical side, KL-regularized RL is closely related to soft RL or maximum entropy RL which are well-studied
(Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2018; Piché et al., 2018). The optimal policy decomposition in
deterministic MDPs is also known in prior works (Li et al., 2024; Domingo-Enrich et al., 2024). Our contribution is an
algorithm that provably learns Q⋆,η using distributional RL (Bellemare et al., 2017) and data aggregation (Ross et al., 2011).
This enables us to prove a reduction of KL-regularized RL (in deterministic MDPs) to no-regret online learning, which
ensures convergence to the optimal policy with realizability being the only assumption for function approximation. Notably
we are able to avoid more stringent conditions such as completeness or structural MDP conditions which are ubiquitous in
the current literature (Wang et al., 2021; Jin et al., 2021; Chang et al., 2022; Wang et al., 2023; 2024c; Ayoub et al., 2024;
Xie et al., 2022). Uehara et al. (2023) observed similar benefits in offline RL, while we provide guarantees for the harder
online RL setting.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Complementary to our online, KL-regularized setting, DualDICE (Nachum et al., 2019a) and AlgaeDICE (Nachum et al.,
2019b) tackle the high-variance ”curse of horizon” that arises when one performs importance weighting for long trajectories
in offline RL. Both methods replace per-step importance weights with stationary-distribution density ratios, learned through
a dual (Lagrangian) formulation, and have shown empirical success on low-dimensional continuous-control benchmarks,
although learning is also shown to be difficult in high-dimensional control tasks (Chang et al., 2022). Because we continually
collect on-policy data and constrain updates via an explicit KL penalty—which already limits distribution shift—we do
not need such ratio estimation; nonetheless, density-ratio approaches remain a promising orthogonal direction for variance
reduction in purely offline LLM post-training.

We remark that our theoretical guarantees are quite similar in structure to that of AggreVaTe (Ross & Bagnell, 2014; Sun
et al., 2017), which is a reduction of imitation learning to no-regret online learning. Besides the obvious difference in
problem setting, another improvement from our work is using distributional RL theory to prove second-order bounds.
Notably, we are able to prove second-order bounds without any completeness assumptions that were required in (Wang
et al., 2023; 2024a;c).

B. Proofs
In this section, we provide the full proof for Theorem 4.4.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have

∑K
k=1 V

⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the coefficient of variation of exp(Z⋆

h(xh, yh)/η), xh, yh ∼ πk, and

Eh := ∥exp((V max −Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the envelope of exp((V max −Q⋆,η

h (xh, yh))/η) under πref.

Proof. Fix any η ∈ (0, V max). Let Qh,k(x, y) = η lnEz∼Ẑh,k(x,y)
exp(z/η) denote the induced soft Q function from the

distributional estimate Ẑk. Let πk
h(y | x) ∝ πref

h (y | x) exp(Qh,k(x, y)/η) denote the induced policy from Qh,k. Then,

V ⋆,η − V πk,η

(i)
=

∑H
h=1 Eπk [Q⋆,η

h (xh, π
⋆,η
h)−Qπk,η

h (xh, π
k
h) + ηKL(πk

h(xh) ∥ πref
h (xh))− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

k
h)− ηKL(πk

h(xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

(ii)

≤
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)−Qh,k(xh, π

⋆,η
h) +Qh,k(xh, π

k
h)−Q⋆,η

h (xh, π
k
h)]

≤ 2
∑H

h=1 Exh∼πk [maxπ∈{π⋆,πk}
∣∣Q⋆,η

h (xh, π)−Qh,k(xh, π)
∣∣]

≤ 2A
∑H

h=1 Exh∼πk,yh∼Unif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣,
where (i) is by the performance difference lemma in the soft MDP (Lemma B.2); (ii) is by Donsker-Varadhan (Lemma B.1)
which proves that πk

h(xh) = argmaxπ Eπ[Qh,k(xh, π)− KL(π(xh) ∥ πref
h (xh))]. Now, we bound the difference between

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Q♯: Provably Optimal Distributional RL for LLM Post-Training

the optimal and learned Q functions:∣∣Q⋆,η
h (x, y)−Qh,k(x, y)

∣∣
= η

∣∣∣lnEz∼Z⋆
h(x,y)

exp(z/η)− lnEz∼Ẑh,k(x,y)
exp(z/η)

∣∣∣
(i)

≲ η(1 + Vmax/η)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)−1
Ez∼Z⋆

h
(x,y) exp(z/η)

H2
h,k(x, y)

)
= (η + Vmax)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)
exp(Q⋆,η

h (x,y)/η)
H2

h,k(x, y)
)
,

where (i) is by Lemma B.4 and the fact that Z⋆, Ẑk ∈ [0, V max] and Hh,k(x, y) := H(Z⋆
h(x, y), Ẑh,k(x, y)) is the Hellinger

distance between the learned Ẑh,k and optimal Z⋆
h.

Thus, if we let xh, yh ∼ πk ◦h Unif(A) denote the distribution of rolling in with πk until xh and taking a random
yh ∼ Unif(A), then we have:∑K

k=1 V
⋆,η − V πk,η

≤ 2A
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣
≲ AVmax

∑H
h=1

∑K
k=1 Eπk◦hUnif(A)

[
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(xh, yh) +

exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)
H2

h,k(x, y)
]

≤ AVmax

√∑H
h=1

∑K
k=1 Eπk◦hUnif(A)[CV2

h,k(xh, yh)]
√∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)]

+AVmax

∥∥∥ exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)

∥∥∥
L∞(πk◦hUnif(A))

·
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)].

The final step is to bound the summed Hellinger square terms. This can be done via Multiplicative Azuma’s inequality
and Foster et al. (2021a, Lemma A.14), which shows that for any δ ∈ (0, 1), we have

∑
h,k Eπk◦hUnif(A)[H

2
h,k(xh, yh)] ≲∑

h,k H
2
h,k(xh,k, yh,k) + ln(1/δ) ≲ Regmle(K) + ln(1/δ), which recall is exactly the definition of β. This finishes the

proof of Theorem 4.4.

Lemma B.1 (Donsker-Varadhan’s Variational Formula; Donsker & Varadhan, 1983). For any prior p ∈ ∆(Θ), consider the
KL-regularized optimization:

π⋆ = argmaxπ∈∆(Θ) V (π) := Eπ[Q(θ)− ηKL(π(θ) ∥ p(θ))].

The optimal policy π⋆ is given by π⋆(θ) ∝ p(θ) exp(Q(θ)/η) and it has value V (π⋆) = η lnEθ∼p exp(Q(θ)/η).
Lemma B.2 (Soft Performance Difference Lemma (PDL)). For any f and π,

V π − f1(x1, π) =

H∑
h=1

Eπ[(T π
h fh+1 − fh)(xh, yh)]− ηKL(π1(x1) ∥ πref

1 (x1)).

For any π, π′,

V π − V π′
=

H∑
h=1

Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh) ∥ πref
h (xh))− ηKL(πh(xh) ∥ πref

h (xh))].

Proof. Let KL(πh(xh)) := KL(πh(xh) ∥ πref
h (xh)) denote KL-divergence w.r.t. πref. Then,

V π − V π′

=
∑H

h=1 Eπ[rh − ηKL(πh(xh))]− (Qπ′

1 (x1, π
′)− ηKL(π′

1(x1)))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) + ηKL(π′

h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′)− ηKL(πh(xh))] + ηKL(π′

1(x1))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[T π′

h Qπ′

h+1(xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))].

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Lemma B.3. For any two numbers x, y ∈ [exp(a), exp(b)], we have

|ln(x)− ln(y)| ≤ (1 + b− a)

∣∣∣∣x− y

y

∣∣∣∣.
If b− a ≥ 1

2 , then max(1, b−a
1−exp(a−b)) ≤ 3(b− a).

Proof. If x ≥ y, then ln(x)− ln(y) = ln(1+(x−y)/y) ≤ (x−y)/y. If x < y, then ln(y)− ln(x) = − ln(1+(x−y)/y).
By premise, we have 0 ≥ x−y

y ≥ exp(a − b) − 1. Note that − ln(1 + z) is convex and is thus upper bounded by the
line connecting (0, 0) and (exp(a− b)− 1, b− a), i.e., − ln(1 + z) ≤ b−a

1−exp(a−b) |z| for 0 ≥ z ≥ exp(a− b)− 1. Thus,

− ln(1 + (x− y)/y) ≤ b−a
1−exp(a−b)

∣∣∣x−y
y

∣∣∣. Thus, we’ve shown that |ln(x)− ln(y)| ≤ max
(
1, b−a

1−exp(a−b)

)
|x−y

y |. Finally,

since x
1−exp(−x) ≤ 1 + x when x ≥ 0, we have max(1, b−a

1−exp(a−b)) ≤ max(1, 1 + b− a) = 1 + b− a.

Lemma B.4. For any distributions p, q on [a, b], we have

|ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≲ (1 + b− a)

(√
Varq(ez)

Eqez
H(p, q) + exp(b)−exp(a)

Eqez
H2(p, q)

)
,

where H2(p, q) = 1
2

∑
z(
√
p(z)−

√
q(z))2 is the squared Hellinger distance.

Proof. By Lemma B.3, we have |ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≤ (1 + b− a)
∣∣∣∑z(p(z)−q(z))ez∑

z q(z)ez

∣∣∣. By Lemma B.5, we have

that the numerator is bounded by
√
Varq(ez)H(p, q) + (exp(b)− exp(a))H2(p, q).

Lemma B.5 (Second-Order Lemma). Suppose p, q are distributions on the interval [a, b]. Then, we have

|p̄− q̄| ≲
√
Var(p)H(p, q) + (b− a)H2(p, q).

Proof. Define p′, q′ as the normalized distributions on [0, 1], i.e., p′ is the law of X ′ = (X − a)/(b − a) where X ∼ p.
Then, we have

|p̄− q̄| = (b− a)|p̄′ − q̄′|

≲ (b− a)(
√

Var(p′)H(p′, q′) +H2(p′, q′))

=
√
Var(p)H(p, q) + (b− a)H2(p, q),

where the ≲ step is due to the second-order lemma of Wang et al. (2024a).

B.1. Case of Bernoulli reward-to-go

In this section, we focus on problems where Z⋆
h(x, y) = Ber(ph(x, y)) is a Bernoulli distribution, which is common for

closed-ended problems such as math or multiple choice. Here, the envelope term can be bounded as follows:

Lemma B.6. If Z⋆
h(x, y) = Ber(ph(x, y)), then we have V max = 1 and for all η > 0, we have

exp((1−Q⋆,η
h (x, y))/η) ≤ 1/ph(x, y).

Proof. Fix x, y and let p = ph(x, y). Then, it suffices to show that

1/η − ln(p exp(1/η) + 1− p) ≤ ln(1/p).

This is indeed true because

1/η − ln(p exp(1/η) + 1− p) = ln

(
exp(1/η)

p exp(1/η) + 1− p

)
= ln

(
1

p+ (1− p) exp(−1/η)

)
≤ ln(1/p).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Q♯: Provably Optimal Distributional RL for LLM Post-Training

We can also bound the coefficient of variance in terms of the Bernoulli parameter.

Lemma B.7. If Z⋆
h(x, y) = Ber(ph(x, y)), then for all η > 0, we have√

Var(exp(Z⋆
h(x, y)/η))

E[exp(Z⋆
h(x, y)/η)]

≤
√

(1− p)/p.

Proof. Fix x, y and let p = ph(x, y). Then, the variance term is:

Var(exp(Z⋆
h(x, y)/η)) = E[exp(2Z⋆

h(x, y)/η)]− (E[exp(Z⋆
h(x, y)/η)])

2

= p exp(2/η) + (1− p)− (p exp(1/η) + (1− p))
2

= p exp(2/η) + (1− p)− p2 exp(2/η)− 2p exp(1/η)(1− p)− (1− p)2

= p(1− p) exp(2/η) + (1− p)p− 2p exp(1/η)(1− p)

= p(1− p)(exp(2/η) + 1− 2 exp(1/η))

= p(1− p)(exp(1/η)− 1)2.

Thus, the CV is:√
p(1− p)(exp(1/η)− 1)2

p exp(1/η) + 1− p
=

√
p(1− p)(exp(1/η)− 1)2

p(exp(1/η)− 1) + 1
≤

√
p(1− p)

p
=

√
(1− p)/p.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Figure 4. Full results for star-graph experiments. The empty bar for G(5, 5) and G(3, 8) are for DPO, which pushed down both the chosen
and reject paths resulting in 0 accuracy.

C. Additional Details for Star-Graph Experiments
We follow the setup of Bachmann & Nagarajan (2024) and reused their official code for producing the star-graph results. We
used the GPT-2 small model for graphs G(2, 5), G(5, 5) and the GPT-2 medium model for G(3, 8) (Radford et al., 2019).3

We first pretrain these models with next-token prediction on a pretraining set of 200k random graphs and correct paths. We
call this the resultant model the “pre-trained” model, and as observed by Bachmann & Nagarajan (2024), these models
have the Clever Hans shortcut so they do not generalize well on unseen test graphs. We highlight that this is a failure in
generalization, since the pre-trained model achieves near-perfect accuracy on the training set but only 1/d accuracy on the
test set.

In order to fix the Clever Hans shortcut, we perform post-training with two common baselines – REINFORCE (Ahmadian
et al., 2024) and DPO (Rafailov et al., 2024), RPO (Pang et al., 2024a) – as well as our algorithm Q♯. The post-training is
done on another set of 200k random graphs. For REINFORCE, the reward function we use is 1 if the response is correct,
and −0.1 if incorrect. We noticed that if the incorrect reward is too negative, this causes model collapsing to accuracy of 0.
For DPO and RPO, we sampled pairwise responses (ychosen, yreject) where ychosen is the correct path and yreject is an incorrect
shortcut path sampled from the pretrained model. For Q♯, we also trained the classifier on the same dataset of pairwise
responses, where correct paths are marked with reward 1 and incorrect responses are marked with reward 0. Throughout, we
used the AdamW optimizer with weight decay 0.1 and batch size of 256, and trained for 10 epochs. The learning rates were
2.5e− 4 for pre-training; 1e− 5 for REINFORCE; 1e− 4 for DPO and RPO; 1e− 4 for classifier-based CD and Q♯. All
models are trained on a single A100 or H100 GPU. All models were evaluated on a separate test set of 20k graphs, using
top-k 10 and temperature 1.0. For Q♯ and CD, we use η = 0.1. We found that DPO often pushed down the probabilities of
both the chosen and reject paths, leading to poor performance even on the training set; RPO fixed this issue and so we report
the RPO numbers.

D. Additional Model Details
πref models. All models we use in the experiments are the ”Instruct” versions. That is, Llama 3 8B refers to
meta-llama/Meta-Llama-3-8B-Instruct and we use the default chat template and system message from Meta
to interact with them.

Q♯ models. Two variants for Q♯ are implemented and experimented: Q-type and V-type. Specifically, the Q-type takes input
of a partial generation x and computes Q⋆,η(x, y) for all y in the vocabulary of the πref model whereas the V-type takes
input of concatenated x and a specific token ŷ and outputs a single value that represents Q⋆,η(x, ŷ). Because of the key
difference, Q-type therefore can efficiently calculate Q⋆,η with just one forward pass and its model architecture can also be
identical to the original LLM. V-type, however, has a prohibitive inference cost with a naive implementation since it requires

3Models from https://huggingface.co/openai-community/gpt2 and https://huggingface.co/openai-community/gpt2-medium.

18

https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2-medium

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Q♯: Provably Optimal Distributional RL for LLM Post-Training

making |V | forward passes at every decoding step to calculate the full Q function. In the paragraph below, we discuss our
efficient implementation to address this issue. For Q-type, we initialize the model directly from Llama 3.2 1B and for V-type,
we replace the last layer of Llama 3.2 1B with a randomly initialized fully connected layer with output size of 1. Therefore,
V-type Q♯ also has slightly fewer number of parameters than Q-type. We by default use V-type Q♯ in our experiments.

Efficient inference with V-type. To speed up inference for V-type, we note that not all tokens in the vocabulary are worth
computing its value since for any partial generation x, most tokens have extremely low probability from πref as the next
token candidate. In our preliminary experiments, we have found that only computing the values for the top 20 tokens ranked
by πref give similar performance compared to computing for all tokens. Additionally, we also note that the values for these
tokens can be computed in one forward pass. To accomplish this, we input a partial generation x and the top 20 candidate
next tokens together, modify the attention mask so that the candidate tokens do not attend to each other but still to x. This
allows us to compute the values for these top tokens in just one additional forward pass without any approximation.

E. Q♯ Training Settings
We collect 16 samples for each question in the training set and label every sample either as correct (1) or incorrect (0) based
on the final answer. The first round of training data is collected with just πref. For training Q♯ model, we filter out samples
from questions where all samples are either correct or incorrect. we use a learning rate of 2e− 5 and weight decay of 0.01
with AdamW optimizer (Loshchilov et al., 2017). The model is trained for 5 epochs. We train Q♯ for two iterations as we
observe performance converges. In the second iteration, we repeat the above data collection procedure and concatenate the
training data from the first round. The model is always trained from scratch between iterations.

F. Additional Evaluation Details
We evaluate all methods and models with zero-shot prompting. The prompt template is ’Problem:\n\n{0} Write
your answer inside \\boxed{{}}.\n\nSolution:’ where {0} is replaced by the actual question from the
dataset. The MATH-500 dataset can also be found at Huggingface 4.

G. Math Reasoning Results on Qwen 2.5
We conduct experiments using Qwen 2.5 (Yang et al., 2024), where a 1.5B model guides the 7B version on both GSM8K
and MATH (Table 5). All other configurations mirror those used with Llama 3. We find that Q♯ consistently outperforms
both πref and CD across both datasets, achieving higher accuracy with lower KL divergence. Compared to Table 1, Qwen
2.5 yields stronger overall performance, likely due to its stronger base model, demonstrating that Q♯ generalizes well across
model families.

H. Computational Complexity and Runtime Comparison of Q♯

Q♯ and other value-based baselines such as CD (Mudgal et al., 2023) have the same computational complexity. Compared to
generating responses solely with πref, value-based approaches additionally use the guidance model to compute a Q function
at every decoding step. That is, it increases complexity by the ratio of the guidance model’s size to that of πref. Since the
guidance model can be much smaller in size compared to πref, the overhead is mild. For instance, guiding a Llama 8B with
Llama 1B increases complexity by 12.5%.

Additionally, we efficiently implemented value-based guidance for Q♯ in Hugging Face using LogitProcessor and key-value
caches. On an Nvidia A6000, generating one response on test set of MATH takes 4.10s for πref and 5.18s for Q♯, slightly
exceeding 12.5% possibly due to sequential Q function computation in LogitProcessor. The code for our implementation
can be found in the supplementary materials.

I. Qualitative Examples
In Figure 5 and the ones below it, we qualitative visualize side by side generation results from πref and Q♯ on Llama 3 8B
GSM8K and Llama 3.1 8B MATH settings. In the first example of Figure 5, we observe πref and Q♯ start off similarly by

4https://huggingface.co/datasets/HuggingFaceH4/MATH-500

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Table 5. Comparison of Q♯ with πref and CD baseline on GSM8K (Left) and MATH (Right) with Qwen 2.5.

Dataset GSM8K MATH

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 76.1 79.0 83.5 58.6 60.7 61.9
maj1@8 ↑ 92.9 93.1 93.8 72.8 74.2 74.8

KL-Divergence ↓ - 5.37 4.10 - 7.07 6.46

calculating the total number of cookies Shannon eat but πref starts to roughly guess the answer (highlighted in red) without
calculating the answer precisely, where Q♯ calculates the answer step by step (in blue). In the second MATH example,
πref first states some confusing statement (highlighted in orange) and then makes a mistake of addition (5 + 5) instead of
multiplication when calculating all the possibilities. Q♯, however, correctly solves the problem by multiplying the options
(5 ∗ 5) for Paul and Jesse and then adds the single case when using the number of 2, arriving at the correct answer.

More examples can be found in subsequent pages with various levels of difficulty. We highlight that Q♯ can still make
confusing statements similar to πref even in solution that arrives at the correct final answer. For example, in the Cecilia
puppy example (the first after Figure 5), similar to πref, Q♯ also makes a division of 1 when it should be multiplication.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Problem from GSM8K: Shannon makes her own madeleine cookies and eats 2 a night as a treat. She wants to make enough
cookies to last her for 30 days by storing them in the freezer. Her recipe makes 1 dozen madeleine cookies. How many dozens of
cookies will she need to make so she has enough for 30 days?

Incorrect Solution from πref: Since Shannon eats 2 cookies per night, she will eat 2 · 30 = 60 cookies over 30 days. She will
need 7 dozen cookies, since 7 · 12 = 84 > 60.
Final Answer: The final answer is 7. I hope it is correct.

Correct Solution from Q♯: Shannon eats 2 cookies per night, so she will eat 2 * 30 = 60 cookies in 30 days. Since 1 dozen
cookies is 12, we can divide 60 by 12 to find out how many dozens she needs. 60 ÷ 12 = 5. The answer is 5 dozens.

Counting & Probability Problem from MATH: Paul and Jesse each choose a number at random from the first six primes.
What is the probability that the sum of the numbers they choose is even?

Incorrect Solution from πref: To find the probability that the sum of the numbers Paul and Jesse choose is even, we need to
consider the possible combinations of even and odd numbers. The first six primes are 2, 3, 5, 7, 11, and 13. Since 2 is the only
even prime number, we will always have one even number and one or more odd numbers. For the sum to be even, both numbers
must be either even or odd. If Paul chooses the even number (2), Jesse can choose any of the 5 odd numbers (3, 5, 7, 11, 13),
resulting in 5 possibilities. If Paul chooses any of the 5 odd numbers, Jesse can choose the even number (2), resulting in 5 more
possibilities. Therefore, there are 5 + 5 = 10 possibilities where the sum is even. The total number of possible combinations is 6 *
6 = 36 (6 choices for Paul and 6 choices for Jesse). The probability that the sum of the numbers Paul and Jesse choose is even is

10/36, which simplifies to 5/18. The answer is:
5

18

Correct Solution from Q♯: The first six primes are 2, 3, 5, 7, 11, and 13. For the sum of the numbers Paul and Jesse choose to
be even, they must either both choose even numbers or both choose odd numbers. There is only one even prime number, which
is 2. Paul has 6 options, and Jesse also has 6 options. The total number of possibilities is 6 * 6 = 36. For the case where both
choose the even number, there is only one possibility (2, 2). For the case where both choose odd numbers, there are 5 options for
Paul and 5 options for Jesse. The total number of possibilities is 5 * 5 = 25. So, the total number of possibilities where the sum is

even is 1 + 25 = 26. The probability that the sum of the numbers they choose is even is 26/36 = 13/18. The answer is
13

18
.

Figure 5. Example generations from πref and Q♯ on GSM8K and MATH questions. πref consistently fails to solve the problems compared
to Q♯. The generations from πref and Q♯ usually start off with similar reasoning chain-of-thought but πref gradually makes unjustified
reasoning leap or simply a guess of the answer whereas Q♯ tends to be more logical for solving the problems. Colors are manually added
for ease of visualization. Blue represents correct reasoning steps or answers, red represents clearly incorrect ones and orange represents
ambiguous or minor mistake that could potentially lead to clearly incorrect steps or answers.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Problem from GSM8K: Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog
food every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of its life. If one
bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first year?

Incorrect Solution from πref: For the first 180 days, Cecilia needs 180
1

= 180 cups of dog food. For the rest of the year, she
needs 365−180

2
= 92.5 cups of dog food. So in total she needs 180 + 92.5 = 272.5 cups of dog food. If one bag of dog food

contains 110 cups, then she will need 272.5
110

= 2.5 bags of dog food. Final Answer: The final answer is 2.5. I hope it is correct.

Correct Solution from Q♯: The first 180 days, she will need to feed her puppy 180
1

= 180 cups of dog food. After that, she will
need to feed her puppy 365-180=185 days of 2 cups each, for a total of 2 · 185 = 370 cups of dog food. So, the total amount of
dog food needed in the first year is 180 + 370 = 550 cups. Since each bag of dog food contains 110 cups, the number of bags

needed is
550

110
= 5 .

Problem from GSM8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5
servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

Incorrect Solution from πref: Let’s break this down step by step!
1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of
servings by the calories per serving:
5 servings × 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can
consume, subtract the calories you’ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories ÷ 250 calories/serving = 0.8 servings
4. Since there are 5 servings in the bag, you can eat:
0.8 servings × 300g/bag = 240g
So, you can eat up to 240g of the bag of chips.
Here’s the answer:

240 g

Correct Solution from Q♯: A delicious problem!
Let’s break it down step by step:
1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.
2. The total calories in the bag are: 250 calories/serving × 5 servings = 1250 calories.
3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.
4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8 servings.
5. Since there are 5 servings in the bag, you can eat: 0.8 servings × 300g/5 servings = 0.8 × 60g = 48g.
So, you can eat up to 48g of the bag of chips.
Enjoy your snacking, but don’t overdo it!

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Problem from GSM8K: Nate’s dog can dig six holes a day. He digs for 14 days while Nate is on vacation. When Nate gets
home, he starts filling in 9 holes a day, but the dog keeps digging 6 new holes every night. How many weeks does it take him to
fill in all the holes?

Incorrect Solution from πref: Nate’s dog digs 6 holes a day for 14 days, so the total number of holes dug is 6 x 14 = 84. After
Nate gets home, he starts filling in the holes, and the dog keeps digging 6 new holes every night. So the number of holes to fill is
always 84 + 6. Nate fills 9 holes a day, so the number of days it takes to fill all the holes is:⌈

84 + 6

9

⌉
= 11

Correct Solution from Q♯: The dog digs 6 holes a day, and Nate is away for 14 days, so the dog digs 6 * 14 = 84 holes. Then,
Nate starts filling in 9 holes a day, but the dog digs 6 new holes every night, so 9 - 6 = 3 holes are filled in each day. So, each day
3 more holes are filled in. The number of holes filled in after x days is 84 - 3x. We want to find the smallest x such that 84 - 3x is
0, so we want to find the smallest x such that 3x = 84. 3x = 84 is true when x = 28, so it takes 28 days to fill in all the holes. Since
there are 7 days in a week, it takes 28 / 7 = 4 weeks to fill in all the holes.

Prealgebra Problem from MATH: A bookcase has 3 shelves with a total of 24 books. The top shelf has 8 mystery books. The
middle shelf has 10 math books. The bottom shelf has 6 science books. Two books are now taken off each shelf. What fraction of
the books remaining on the three shelves are math books? Express your answer as a common fraction.

Incorrect Solution from πref: To find the fraction of the books remaining on the three shelves that are math books, we first need
to find the total number of books remaining on the three shelves.
Initially, the bookcase had 24 books. Two books are taken off each shelf. Since there are 3 shelves, a total of 6 books are taken
off.
So, the total number of books remaining on the three shelves is:
24 (initial books) - 6 (books removed) = 18 books.
The middle shelf had 10 math books. Since no math books were removed, the number of math books remaining is still 10.
Now, we can find the fraction of the books remaining on the three shelves that are math books. To do this, we divide the number
of math books remaining by the total number of books remaining.
Fraction of math books = Number of math books / Total number of books
= 10 / 18
We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2.
Simplified fraction = 5 / 9
So, the fraction of the books remaining on the three shelves that are math books is: 5/9

Correct Solution from Q♯: To find the fraction of the remaining books that are math books, we first need to find the total
number of books remaining on the shelves after two books are taken off each shelf.
Top shelf initially had 8 books. After removing 2 books, it has 8 - 2 = 6 books.
Middle shelf initially had 10 books. After removing 2 books, it has 10 - 2 = 8 books.
Bottom shelf initially had 6 books. After removing 2 books, it has 6 - 2 = 4 books.
So the total number of books remaining is 6 + 8 + 4 = 18 books.
Initially, there were 10 math books. Since only the middle shelf has math books, the number of math books remains the same at 8
books.
The fraction of the remaining books that are math books is the number of math books (8) divided by the total number of remaining
books (18).
Fraction = 8 / 18 = 4 / 9

So the answer is:
4

9
.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Intermediate Algebra Problem from MATH: The asymptotes of a hyperbola are y = 2x − 3 and y = 17 − 2x. Also, the
hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

Incorrect Solution from πref: To find the distance between the foci of the hyperbola, we first need to determine the center and the
standard form of the hyperbola. The asymptotes are given by y = 2x−3 and y = 17−2x. Their point of intersection will be the
center of the hyperbola. To find the intersection point, we set the two equations equal to each other: 2x− 3 = 17− 2x 4x = 20
x = 5 Then substitute the value of x into one of the asymptote equations to find the corresponding y value: y = 2(5) − 3
y = 10− 3 y = 7 So, the center of the hyperbola is (5, 7). Next, we need to find the standard form of the hyperbola. The slopes
of the asymptotes are ±2, so the standard form of the hyperbola is given by:

(y − 7)2

a2
− (x− 5)2

b2
= 1

Since the slopes of the asymptotes are ±2, we know that b/a = 2. We can use the point (4, 7), which the hyperbola passes
through, to find the values of a and b.

(7− 7)2

a2
− (4− 5)2

b2
= 1

(−1)2

b2
= 1

1

b2
= 1

b2 = 1

b = 1

Since b/a = 2, we have a = b/2 = 1/2. Now we can find the values of a2 and b2.

a2 = (1/2)2 = 1/4

b2 = 12 = 1

Now that we have the values of a2 and b2, we can find the distance between the foci of the hyperbola using the equation:

c2 = a2 + b2

c2 = 1/4 + 1

c2 = 5/4

c =
√

5/4 =
√
5/2

The distance between the foci of the hyperbola is 2c = 2
√
5/2 =

√
5. Therefore, the distance between the foci of the hyperbola

is
√
5 .

Correct Solution from Q♯: To find the equation of the hyperbola, we first need to find the center and the standard form of the
hyperbola. The center is the point of intersection of the two asymptotes. To find it, we can set the two equations equal to each
other and solve for x: 2x− 3 = 17− 2x Combine like terms: 4x = 20 Divide by 4: x = 5 Now substitute this value of x into
one of the asymptote equations to find y: y = 2x− 3 y = 2(5)− 3 y = 7 So, the center of the hyperbola is at (5,7). Since the
slopes of the asymptotes are 2 and -2, the standard form of the hyperbola is: (y−k)2

a2 − (x−h)2

b2
= 1 where (h,k) is the center of

the hyperbola. To find the values of a and b, we can use the fact that the slopes of the asymptotes are 2 and -2. The slopes of
the asymptotes are given by ±a

b
. Therefore: a

b
= 2 We also know that the point (4,7) is on the hyperbola. We can substitute

this point into the equation to get: (7−7)2

a2 − (4−5)2

b2
= 1 This simplifies to: 1

b2
= 1 b2 = 1 Now we can substitute this value

of b2 into the equation a
b
= 2 to get: a

1
= 2 a = 2 Now we can substitute the values of a and b into the standard form of the

hyperbola to get: (y−7)2

4
− (x−5)2

1
= 1 The distance between the foci of a hyperbola is given by 2c, where c is the distance

from the center to each focus. The relationship between a, b, and c is given by: c2 = a2 + b2 c2 = 22 + 12 c2 = 5 c =
√
5 The

distance between the foci is: 2c = 2
√
5 So, the distance between the foci of the hyperbola is 2

√
5 .

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Algebra Problem from MATH: Simplify the following expression to a simplified fraction:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

.

Incorrect Solution from πref: To simplify the expression

√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

, we need to follow the order of operations.

First, we simplify the terms inside the square root:
5√
80

=
5√

16× 5
=

5

4
√
5
=

5

4
√
5
×

√
5√
5
=

5
√
5

4× 5
=

√
5

4√
845 =

√
13× 65 =

√
13× 13× 5 = 13

√
5√

45 =
√
9× 5 =

√
9×

√
5 = 3

√
5

Now, we can rewrite the expression as:

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the numerator by finding a common denom-

inator:
√
5

4
+

13
√
5

9
+ 3

√
5 =

9
√
5

36
+

52
√
5

36
+

108
√
5

36
=

169
√
5

36
Now, we can rewrite the expression as:

√√√√√ 169
√
5

36√
5

To

simplify the expression, we can multiply the numerator and denominator by
√
5:

169
√
5

36√
5

=
169

√
5

36
×

√
5√
5
=

169× 5

36
=

845

36

Now, we can rewrite the expression as:

√
845

36
We can simplify the square root by finding the square root of the numerator and

denominator:

√
845

36
=

√
5× 132

62
=

√
5× 13√
62

=

√
5× 13

6
So, the simplified fraction is

13
√
5

6
.

Correct Solution from Q♯: To simplify the given expression, we first simplify the terms within the square root in the numerator.
5√
80

=
5√
16 · 5

=
5

4
√
5
=

√
5

4√
845 =

√
13 · 65 =

√
13 · 13 · 5 = 13

√
5√

45 =
√
9 · 5 = 3

√
5

Now, we substitute these simplified expressions back into the original expression:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

=

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the expression further by combining like terms in the numerator:

√
5

4
+

13
√
5

9
+ 3

√
5

√
5

=

9
√
5 + 52

√
5 + 108

√
5

36√
5

=

169
√
5

36√
5

=
169

36

Finally, we take the square root of the fraction: √
169

36
=

√
169√
36

=
13

6

The answer is
13

6
.

25

