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ABSTRACT

Deep neural networks are highly susceptible to adversarial attacks, which pose
significant risks to security- and safety-critical applications. We present KOALA
(KL–Lo Adversarial detection via Label Agreement), a novel, semantics-free ad-
versarial detector that requires no architectural changes or adversarial retraining.
KOALA operates on a simple principle: it detects an adversarial attack when
class predictions from two complementary similarity metrics disagree. These
metrics—KL divergence and an L0-based similarity—are specifically chosen to
detect different types of perturbations. The KL divergence metric is sensitive to
dense, low-amplitude shifts, while the L0-based similarity is designed for sparse,
high-impact changes. We provide a formal proof of correctness for our approach.
The only training required is a simple fine-tuning step on a pre-trained image
encoder using clean images to ensure the embeddings align well with both metrics.
This makes KOALA a lightweight, plug-and-play solution for existing models
and various data modalities. Our extensive experiments on ResNet/CIFAR-10
and CLIP/Tiny-ImageNet confirm our theoretical claims. When the theorem’s
conditions are met, KOALA consistently and effectively detects adversarial ex-
amples. On the full test sets, KOALA achieves a precision of 0.94 and a recall
of 0.81 on ResNet/CIFAR-10, and a precision of 0.66 and a recall of 0.85 on
CLIP/Tiny-ImageNet.

1 INTRODUCTION

The increasing deployment of machine learning and deep learning models in safety-critical appli-
cations—such as autonomous driving, medical imaging, and security—underscores the need for
robust and reliable systems. However, neural networks remain vulnerable to adversarial attacks,
where small, often imperceptible perturbations to an input can cause the model to make a confident
misclassification (Biggio et al., 2013; Xiao et al., 2018a;b; Szegedy et al., 2013). Protecting these
models from such manipulation is a critical security and safety concern.

Defenses against adversarial attacks generally fall into three categories (Aldahdooh et al., 2022).
The first, verification and certification, aims to formally prove model robustness within a defined
perturbation set (Khedr & Shoukry, 2024; Liu et al., 2021). While these methods provide strong
guarantees, they do not actively improve the model’s behavior in deployment. The second, proactive
defenses, such as adversarial training and randomized smoothing, harden models by retraining or
modifying their architecture (Madry et al., 2017b; Cohen et al., 2019; Shafahi et al., 2019). These
methods can be computationally expensive, often require prior knowledge of attack types, and may
lag behind novel attack strategies. The final category, reactive detection, augments a deployed model
with a separate detector to flag adversarial inputs without altering the core network.

We focus on this reactive detection paradigm. Prior work in this area has largely pursued two main
avenues. The first involves add-on detectors, which rely on empirical observations of adversarial
examples, such as their intrinsic statistics or the effects of feature space (Xu et al., 2018; Ma & Liu,
2019; Ma et al., 2018; Meng & Chen, 2017). Other methods train a separate detector head using
adversarial examples (Metzen et al., 2017; Grosse et al., 2017). While these methods can be effective,
they typically lack formal guarantees of correctness. The second involves semantics-driven detectors
that leverage external information, such as label text, auxiliary classifiers, or handcrafted cues (Zhang
et al., 2023; Zhou et al., 2024; Muller et al., 2024). While powerful, these approaches depend on
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domain-specific priors that may not always be available or vary across different deployments and
data modalities. Critically, they also lack proof of correctness for their detection conditions.

To address this issue, we present a novel perspective based on the geometry of norm-bounded
adversarial perturbations. As shown in Figure 1, we observe that energy-bounded attacks manifest
either as (i) dense, low-amplitude shifts across many coordinates or (ii) sparse, high-impact shifts
on few coordinates. These characteristics are naturally captured by two complementary similarity
measures: KL divergence, which is sensitive to broad, small-magnitude output shifts; and an L0-based
score, which is sensitive to sparse, large-magnitude coordinate changes.

In this work, we propose KOALA, a light-weight and semantics-free adversarial detector that flags
input as attack when predictions derived from our two complementary metrics—KL divergence and
the L0-based score—disagree. The only required training is a brief fine-tuning of an image encoder
to align embeddings with both metrics simultaneously. This makes KOALA a simple, plug-and-play
solution for existing models without the need for adversarial training or architectural changes.

Our approach is distinguished by a formal mathematical guarantee. We prove that under norm-
bounded perturbations and mild assumptions on the separation between class prototypes and the
input embedding, each metric induces a distinct prediction stability band. Once the margins be-
tween the classes are sufficiently large, no single perturbation can keep the input within both bands
simultaneously. This mutual exclusivity forces a disagreement between the two metrics, leading to
guaranteed detection. Our extensive experiments on ResNet/CIFAR-10 and CLIP/Tiny-ImageNet
corroborate this theory, demonstrating robust attack identification without relying on semantic priors,
architectural modifications, or costly adversarial retraining.

Our core contributions are summarized as follows:

• We introduce KOALA, a novel, plug-in adversarial detector based on the disagreement between
KL divergence and L0-based predictions.

• We provide a theoretical proof of correctness that defines the explicit conditions under which this
disagreement—and thus detection—is guaranteed to occur.

• We propose a lightweight training recipe that only requires fine-tuning an encoder with clean
images, avoiding the need for architectural changes or adversarial examples.

• Our comprehensive experimental results demonstrate strong detection performance, aligning with
our theory and offering a valuable complement to existing robust training and certification methods.
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Figure 1: Motivation for combining KL and L0 as an attack detector. With an energy bound
adversarial input, ∥δ∥2 ≤ ϵ, the resulting perturbation may be dense (distributed) or sparse (concen-
trated). Each metric defines a prediction-stability band: inside the band the label remains y∗; outside
it flips to ŷ. Dense attacks typically violate the L0 band (green), while sparse attacks violate the KL
band (orange). When two classification decisions disagree, we can detect adversarial attacks.

2 RELATED WORK

Detectors trained with adversarial examples. An intuitive way of train an adversarial detectior
is to train it on generated adversarial examples (Metzen et al., 2017; Grosse et al., 2017; Lee et al.,
2024). While effective against the attacks seen during training, these detectors typically rely on prior
knowledge of the threat model and can degrade under newly crafted or adaptive attacks. Our work is
orthogonal to theirs in that our approach does not require adversarial training.
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Detectors utilizing intrinsic statistics of attacks. Compared to clean samples, adversarial inputs
often exhibit systematic statistical deviations designed to fool neural networks. Leveraging this
observation, prior work distinguishes clean from adversarial inputs by extract residual and structural
information of clean data (Kong et al., 2025) or probing regularities in feature or activation space,
e.g., invariant checking over internal activations (NIC) (Ma & Liu, 2019), prediction inconsistency
under input transformations (feature squeezing) (Xu et al., 2018), local intrinsic dimensionality
(LID) statistics (Ma et al., 2018), autoencoder-based reformers/detectors (MagNet) (Meng & Chen,
2017), Mahalanobis (Lee et al., 2018), CADet (Guille-Escuret et al., 2023), Bayesian-based uncer-
tainty (Feinman et al., 2017), class-disentanglement (Yang et al., 2021) and adversarial direction
comparision (Hu et al., 2019). These methods are generally empirical and lack formal proof-of-
correctness guarantees against adaptive adversaries. While we provide explicit theoretical conditions
under which our detector is provably correct, specifying when adversarial examples must be detected.

Semantics- and knowledge-driven detection. Attacks can also be detected by examining semantic
inconsistencies at inference using domain knowledge and reasoning modules(Mumuni & Mumuni,
2024), e.g., MLN/GCN pipelines for certifiable robustness (Zhang et al., 2023), knowledge-enabled
graph detection (Zhou et al., 2024; Song et al., 2025), and part-level reasoning for object tracking
defenses (VOGUES) (Muller et al., 2024). These approaches can be powerful but have limitations
across modalities and tasks, as their effectiveness depends on semantics and specific domain knowl-
edge. In contrast, our method is semantics-free: it operates purely on representation geometry via
a KL/L0 disagreement criterion and provides detector-specific correctness conditions, yielding a
lightweight, plug-in detector for safety-critical models.

3 METHODOLOGY

3.1 THE KOALA DETECTOR AND KOALA HEAD

We consider a neural network classifier comprised of two main components: i) a backbone encoder
fθ : I → Rd that maps input from the data space I (e.g., images) to feature embedding ∈ Rd; ii) a
classifier head hθ : Rd → {1, . . . ,m} uses the embedding to determine the final class.

In a traditional feedforward neural network, the backbone encoder corresponds to all layers up to
the penultimate layer, while the classifier head is the final output layer (e.g., a fully connected layer
followed by a softmax). Our method, KOALA, replaces this conventional classifier head with a
novel component, which we term the KOALA Detector, operates on the embeddings produced by the
backbone encoder to simultaneously classify the input and flag it as an attack when necessary.

As shown in Figure 2, the KOALA Detector operates as a nearest prototype classifier (Snell et al.,
2017), which determines the predicted class ŷ ∈ {1, . . . ,m} by finding the prototype vector—the pre-
computed centroid for each class—that is closest to the input’s feature embedding in the normalized
feature space, i.e., for feature vector p = fθ(I) of input I , the nearest prototype classifier head

ŷ = argmin
k

Distance(ck,p)

for some Distance function and pre-selected prototype vectors (also known as class centroids)
c1, . . . , cm. This effectively classifies input based on its proximity to representatives of each class.

Traditional nearest prototype classifiers use a single distance metric(e.g., Euclidean) to find the
closest class prototype. In contrast, KOALA is designed to leverage multiple, complementary metrics
for classification and adversarial detection. The motivation behind KOALA is the observation that
adversarial perturbations can manifest in two distinct ways under an energy-limited budget:

• Sparse, High-Impact Perturbations: Few feature dimensions are modified with a large magnitude.
• Dense, Low-Amplitude Perturbations: Many feature dimensions are modified by small magnitude.

These two types of attacks are difficult to detect with a single metric. KOALA addresses this by using
a combination of L0 and KL divergence metrics:

• KL Divergence: This metric measures the shift in the output probability distribution. It is
particularly sensitive to dense, low-amplitude perturbations that subtly influence the model’s overall
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output, even if no single feature dimension is drastically altered. The KL Divergence is defined as:

KL
(
c∥p

)
=

d∑
i=1

ci log
ci
pi
. (1)

• L0 distance: This metric measures the number of dimensions in the feature vector that have been
perturbed above a certain threshold. It is therefore highly sensitive to sparse, high-impact changes,
making it effective at detecting targeted, “surgical” attacks. The L0 distance metric is defined as:

L0(c,p) = card
(
{i : |ci − pi| − τ · µ(c,p) > 0}

)
, (2)

where card({.}) denotes the cardinality of the set, µ(c,p) = 1
d

∑d
i=1 |ci − pi| is the average

distance across all the entries of |c− p|, and τ ∈ [0, 1] is a threshold parameter. In other words,
the L0 metric counts the number of features whose value are above a certain threshold relative to
the average value of the feature vector.

The KOALA Detector operates by simultaneously leveraging the two complementary metrics above.
For a given input embedding p, the detector computes both the KL-divergence and the L0-based
distance to all class prototype vectors ck. These computations yield two distinct class predictions:

ŷKL = argmin
k

KL(ck,p), ŷL0 = argmin
k

L0(ck,p). (3)

The core of our detection mechanism lies in the disagreement between these two predictions. An
input is declared attacked when the class predicted by the KL-divergence, ŷKL, does not match
the class predicted by the L0-based metric, ŷL0 . In this case, the detector abstains from making a
final classification. If the two predictions agree, the input is considered benign, and the shared class
prediction becomes the final output. This behavior is formally defined by the following decision rule:

(â, ŷ) = (1,⊥) if ŷL0
̸= ŷKL, else (0, ŷKL). (4)

where â ∈ {0, 1} is the predicted attack label, with â = 1 indicating an attack and ŷ the final predicted
class, with ⊥ signifying an abstention (no class).

3.2 THEORETICAL GUARANTEES

Our proposed method, KOALA, is not merely an empirical defense; it is grounded in a formal
mathematical guarantee. We provide a proof of correctness under a set of mild and practical
assumptions. The core idea is to show that a single adversarial perturbation cannot simultaneously
fool both the KL- and L0-based classifiers.

The following assumptions underpin our main theorem:
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Figure 2: Training phase: Class centroids C are computed as the centroid of image embeddings
within each class. Each image embedding p is compared with C to compute the LossKL and LossL0

.
The model is trained to make the L0 and KL distances small for the correct class while large for
incorrect classes. Inference phase: An input image embedding p is compared with class centroids C
to calculate KL and L0-based predictions ŷKL and ŷL0

. The predicted class is accepted only if both
metrics agree; otherwise, the system flags the input as an adversarial attack detected (â = 1).
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A1 Normalized Feature vector space: All feature embeddings fθ(I) and class prototypes
c1, . . . , cm are normalized, i.e., their coordinates sum to 1 and are strictly positive. This
is satisfied by using a softmax or similar normalization on the feature vectors.

A2 Bounded Perturbation: The adversarial perturbation δ in the feature space has a limited energy
budget, i.e., ∥δ∥ ≤ ϵ. This is a standard assumption in adversarial robustness, following from
the Lipschitz continuity of the backbone encoder.

A3 Coordinate-wise Bound: The magnitude of the perturbation on any single coordinate is bounded
relative to the original value, |δi| ≤ 3

2 |p
∗
i |. This is a mild and practical condition, as extremely

large, coordinate-wise perturbations are rarely effective or imperceptible.
A4 Clean Example Alignment: On clean, unperturbed inputs, both the KL and L0 metrics agree on

the true class. This alignment is encouraged by our lightweight fine-tuning procedure, which
shapes the embeddings to be meaningful under both metrics.

Building on these assumptions, our central result is Theorem 1, which establishes that a sufficiently
large separation between class prototypes guarantees the detection of adversarial attacks.

Theorem 1. If Assumptions A1-A4 are satisfied, and there exists a coordinate i where the gap
between the true class prototype c∗i and the predicted adversarial class prototype ĉi is sufficiently
large (i.e., |c∗i − ĉi| > Γi(ϵ), for some threshold Γi(ϵ)), then no perturbation δ with ∥δ∥ ≤ ϵ can
simultaneously cause both the KL- and L0-based predictions to favor the adversarial class.

In essence, the theorem proves that the KL and L0 stability bands are mutually exclusive for
adversarial perturbations. An attack can push an embedding out of one stability band, causing a
prediction flip, but it cannot simultaneously push it out of both. This forces a disagreement, leading
to guaranteed detection. This result provides a rigorous foundation for KOALA’s effectiveness,
showing that if the feature space is properly structured (which our fine-tuning encourages), detection
is not a probabilistic outcome but a mathematical certainty.

Proof Sketch for Theorem 1: A complete proof of Theorem 1 is provided in the appendix B. Below,
we provide a high-level sketch to convey the core intuition behind our guarantee. The proof’s central
idea is to show that, under a limited energy budget, an adversarial perturbation cannot simultaneously
satisfy the conditions required to fool both the KL- and L0-based classifiers. We establish this through
three key propositions:

(i) Necessary Conditions for successful attack on KL-Divergence metric (Prop. 2): To change
the KL-based prediction from the true class prototype c∗ to an adversarial class prototype ĉ,
the adversarial perturbation δ must have a positive inner product with the vector ĉ− c∗. This
condition, means the perturbation must “align” with a particular direction in the feature space.

(ii) Necessary Conditions for successful attack on L0-metric Prop. 3): To change the L0 based
prediction, the perturbation must alter a minimum number of feature dimensions (k) by a
significant amount. This consumes a portion of the total perturbation energy (∥δ∥) allowed by
the budget. The more dimensions that need to be flipped, the more energy is consumed, and
the less is left for other purposes.

(iii) The Incompatibility Condition (Prop. 4): We show that these two conditions are fundamentally
incompatible. For any given adversarial perturbation, we can always find a threshold τ for the
L0 metric that forces a trade-off. The energy required to satisfy the L0 flip condition (moving
a sufficient number of coordinates by a large enough magnitude) leaves insufficient residual
energy to satisfy the KL-flip condition (aligning the perturbation with the vector ĉ− c∗.

(iv) Conclusion: The final step proves that such a threshold τ always exists as long as there is
a sufficiently large “coordinate gap” between the true class prototype and the adversarial
class prototype. This means that if the feature space is well-structured–which our fine-tuning
encourages–no single adversarial perturbation can successfully flip both predictions, forcing
them to disagree and enabling our detection mechanism.

3.3 FINE-TUNING FOR PROTOTYPE ALIGNMENT

Our formal guarantees in Theorem 1 rely on the assumption that on clean inputs, the feature embed-
dings are well-aligned with their respective class prototypes under both KL-divergence and L0-based
metrics (Assumption A4). To achieve this, we introduce a lightweight fine-tuning procedure for
the backbone encoder fθ. This procedure is designed to simultaneously minimize the distance
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between a clean image embedding and its corresponding class prototype across both metrics, thereby
encouraging the “coordinate gap” crucial for our detection method.

Our training objective is a composite loss that penalizes the dissimilarity between image embeddings
and their class prototypes. To ensure stable optimization, we first map the KL and L0 distances to a
comparable, differentiable, and range-bounded similarity score.

• KL-similarity loss: We define the KL-based similarity between a class prototype c and an image
embedding p as:

simKL(c,p) = exp
(
−KL(c∥p)

)
∈ (0, 1]

Using this similarity, we train the encoder with a standard binary cross-entropy loss over a set
of positive and negative image-prototype pairs. This loss encourages the similarity of positive
pairs (matching image and prototype) to be high and that of negative pairs (mismatched image and
prototype) to be low. Formally, we finetune the model using the following loss function:

LKL = −E(i,j)∈P [y
∗
ij log sij + (1− y∗ij) log(1− sij)], where sij = simKL(ci,pj) (5)

Here, P denotes the set of image-prototype pairs, and y∗ij is a binary label (1 for a matching pair, 0
otherwise).

• L0-similarity loss: The L0 distance, which counts the number of perturbed dimensions, is non-
differentiable. To make it trainable, we use a smooth, differentiable surrogate. We approximate
the L0 metric with a smoothed surrogate function L̂0(c,p) using the sigmoid function to obtain a
continuous value.The L0-based similarity is then defined as a normalized, inverse measure of this
surrogate:

simL0(c,p) = 1− L̂0(c,p)

d
∈ [0, 1], where L̂0(c,p) =

d∑
i=1

σ

(
|ci − pi| − τ · µ(c,p)

ϕ

)
where ϕ > 0 is a smoothness parameter and σ(x) = 1

1+e−x is the sigmoid function. Similar to the
KL loss, we use the binary cross entropy loss for L0-based similarity:

LL0 = −E(i,j)∈P [y
∗
ij log sij + (1− y∗ij) log(1− sij)], where sij = simL0(ci,pj).

• Total Objective: The final training objective is a weighted sum of the two similarity losses:

Ltotal = ωL0
LL0

+ ωKL LKL, (6)

where ωL0 and ωKL are non-negative mixing weights. This composite loss guides the encoder to
produce embeddings that are simultaneously cohesive under both a dense-shift-sensitive metric (KL)
and a sparse-shift-sensitive metric L0, which is a key requirement for KOALA’s guaranteed detection.

4 EXPERIMENTS

Our experiments evaluate KOALA’s performance on two distinct architectures and datasets, employ-
ing standard adversarial attacks to test its effectiveness.

4.1 EXPERIMENTAL SETUP

• Models and Datasets. We use two models to demonstrate KOALA’s versatility: a ResNet-18
model on CIFAR-10 and a CLIP model on Tiny-ImageNet. For both datasets, we randomly split the
development sets into two equal halves to serve as the test and validation sets.

• ResNet-18 on CIFAR-10: We start with a baseline ResNet-18 backbone trained on CIFAR-
10 (Krizhevsky et al., 2009). The final fully connected layer (classifier head) is removed to
produce image embeddings. Class prototypes (centroids) c1, . . . , cm are computed as the mean
embedding of all training examples for each class. The backbone is finetuned using the composite
loss described in the Fine-Tuning section, with SGD optimizer, learning rate 1× 10−3, weight
decay 5× 10−4, momentum 0.9, and batch size 128. The loss weights are set to ωL0

= 0.9 and
ωKL = 0.1 (as L0 is harder to optimize) and the hyperparameters are τ = 0.75 and ϕ = 0.5.

6
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• CLIP on Tiny-ImageNet: We also fine-tune the pre-trained CLIP ViT-B/32 model on the Tiny-
ImageNet dataset. The class prototypes ck here are obtained by using the CLIP text encoder with
prompt “a photo of [CLASS]”. SGD is used for fine-tuning with learning rate 1× 10−4, weight
decay 0, momentum 0.9, and batch size 128. The loss weights again ωL0

= 0.9 and ωKL = 0.1.

• Adversarial Attacks: We generate a variety of adversarial examples using established attack
methods. We report results on clean accuracy, adversarial accuracy, and adversarial detection rate.
All attacks are constrained by the ℓ∞ norm with ϵ ∈ {2/255, 4/255} and a batch size of 128.

• PGD (Projected Gradient Descent) (Madry et al., 2017a): A classic iterative attack used to
generate adversarial examples for both the ResNet and CLIP models.

• CW (Carlini & Wagner, 2017) Attack: A powerful, optimization-based attack on both models.
• AutoAttack (Croce & Hein, 2020): A suite of four diverse attacks used to reliably test robustness,

serving as a robust benchmark against both models.

4.2 EXPERIMENT 1: VERIFYING THEORETICAL GUARANTEES

• Experiment Objective: We validate our central theorem by evaluating KOALA’s performance on
examples that either satisfy or do not satisfy the conditions of Theorem 1. The primary goal is to
show that when the conditions are met, attack detection is guaranteed. We partition the test sets of
both CIFAR-10 and Tiny-ImageNet into two groups (i) Theorem-Compliant Samples: Inputs that
satisfy the conditions of Theorem 1, specifically the sufficient inter-class prototype separation and (ii)
Non-Compliant Samples: Inputs that do not satisfy these conditions. Table 1 provides a breakdown
of the number of samples (sample size columns) in each group for both datasets, highlighting that
the ResNet model on CIFAR-10 exhibits a larger inter-class separation than the CLIP model on
Tiny-ImageNet. This is likely due to the massive scale of CLIP’s pre-training data, which can lead to
a more compact, less-separable embedding space for a smaller, specialized task like Tiny-ImageNet.

• Evaluation Metrics: To evaluate detection performance, we define a confusion matrix where an
“attacked” input (i.e., a = 1) is considered a positive result as follows:

TP :=
[
a = 1

]
∧
[
(â, ŷ) = (1,⊥) ∨ (â, ŷ) = (0, y∗)

]
, TN :=

[
a = 0

]
∧
[
(â, ŷ) = (0, y∗)

]
,

FP :=
[
a = 0

]
∧
[
(â, ŷ) = (1,⊥) ∨ (â, ŷ) = (0,¬y∗)

]
, FN :=

[
a = 1

]
∧
[
(â, ŷ) = (0,¬y∗)

]
.

Using these definitions, we report standard metrics: Accuracy, Precision, Recall, and F1-score:
Acc = TP+TN

N , Prec = TP
TP+FP , Rec = TP

TP+FN , F1 = 2PrecRec
Prec+Rec , N = TP+TN+FP+FN.

• Results and Analysis: Table 1 summarizes the overall performance. Noteably, the recall scores are
all 1.0 on the Theorem-compliant subset. This means every adversarial attacked input that satisfies the
theorem’s conditions is successfully detected, providing strong empirical support for our theoretical
guarantee. The Accuracy and precision for theorem-compliant examples are 1.0 as well. This is
because the theory assumes that clean, compliant examples are correctly classified by both the KL
and L0 heads, leading to prediction agreement and preventing false alarms.

As our theory predicts, the Theorem-compliant subset achieves a substantially higher Precision
and Recall compared to the non-compliant subset, confirming that when the inter-class prototype
separation is sufficiently large, adversarial perturbations are forced to cause a disagreement between
the KL and L0 heads, leading to more reliable attack detection.

4.3 EXPERIMENT 2: ABLATION STUDY ON METRIC COMBINATIONS

• Experiment Objective: We run an ablation study to validate our choice of using KL-divergence
and L0-based metrics for attack detection. We compare the performance of our proposed KL+L0

combination against other plausible metric pairings: L0+Cosine, KL+Cosine, and L0+KL+Cosine.
For each combination, we fine-tune the backbone encoder using a composite loss tailored to the
specific metrics, then evaluate the detector’s performance. It’s important to note that all models were
fine-tuned exclusively with clean, non-adversarial images. No adversarial training was performed.

• Results and Analysis: The results, summarized in Table 2, show that the KL+L0 combination
consistently yields the best performance on the ResNet/CIFAR-10 setup, achieving the highest scores

7
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Model Attack
Perturbation

Thm. 1 Compliant Samples Non Compliant Samples
Sample Size Acc Prec Rec F1 Sample Size Acc Prec Rec F1

ResNet-CIFAR-10 ℓ
2/255
∞ 3345 1.0 1.0 1.0 1.0 1655 0.63 0.73 0.42 0.53
ℓ
4/255
∞ 2967 1.0 1.0 1.0 1.0 2033 0.66 0.78 0.45 0.57

CLIP-TinyImageNet ℓ
2/255
∞ 510 1.0 1.0 1.0 1.0 4490 0.67 0.63 0.84 0.72
ℓ
4/255
∞ 556 1.0 1.0 1.0 1.0 4444 0.65 0.62 0.80 0.70

Table 1: Results from Experiment 1: Detector metrics—accuracy, precision, recall, and F1—for
ResNet-18 and CLIP (ViT-B/32) backbone finetuned with our Ltotal objective in equation 6 and
evaluated under PGD on the two subsets: images that satisfy Theorem 1 vs. those that do not.

across all four key metrics: Accuracy, Precision, Recall, and F1-score. This confirms our hypothesis
that KL-divergence and L0-based metrics are highly complementary. The KL metric effectively
captures dense, distribution-level shifts that often go undetected by other measures, while the L0

metric is uniquely sensitive to sparse, high-impact changes. Their combined use allows the detector
to identify a wider range of adversarial attack types.

The results on the CLIP/Tiny-ImageNet setup, however, show that the L0+KL+Cosine combination
slightly outperforms the others. This unexpected finding is an interesting artifact of the model’s
behavior. As shown in Table 6, the model fine-tuned with the L0+KL+Cosine loss exhibits a very low
adversarial accuracy. This indicates that a single adversarial perturbation pushes the embedding into
a region where all three metrics are essentially "randomly guessing" a class. The probability of all
three classifiers independently guessing the same incorrect class is extremely low, leading to frequent
disagreements and, consequently, a high attack detection rate.

This outcome on the CLIP model underscores a critical distinction: a high detection rate does not
always equate to a truly robust model. While the L0+KL+Cosine setup appears effective at flagging
attacks on CLIP, it does so by breaking the underlying classification, rather than by preserving it. This
contrasts with the ResNet results, where our KL+L0 combination shows a more balanced approach
to robust classification and detection.

Metric
Combinations

Attack
Perturbation

ResNet-CIFAR-10 CLIP-TinyImageNet
Accuracy Precision Recall F1 Accuracy Precision Recall F1

KL+L0 ℓ
2/255
∞ 0.88 0.94 0.81 0.87 0.71 0.66 0.85 0.74
ℓ
4/255
∞ 0.87 0.94 0.78 0.85 0.69 0.65 0.82 0.73

L0+Cosine ℓ
2/255
∞ 0.73 0.91 0.52 0.66 0.70 0.66 0.85 0.74
ℓ
4/255
∞ 0.68 0.89 0.41 0.56 0.68 0.64 0.79 0.71

KL+Cosine ℓ
2/255
∞ 0.78 0.92 0.62 0.74 0.70 0.66 0.82 0.73
ℓ
4/255
∞ 0.76 0.91 0.59 0.71 0.71 0.67 0.84 0.74

KL+L0+Cosine ℓ
2/255
∞ 0.75 0.91 0.55 0.69 0.75 0.68 0.94 0.79
ℓ
4/255
∞ 0.69 0.89 0.44 0.59 0.74 0.68 0.93 0.78

Table 2: Results from Experiment 2: Comparison of key detector performance metrics (accuracy,
precision, recall, F1) for ResNet-18 and CLIP (ViT-B/32) models.

4.4 EXPERIMENT 3: OVERALL ADVERSARIAL RESILIENCE ACROSS METRIC COMBINATIONS

• Experiment Objective: This experiment moves beyond attack detection metrics to evaluate the
overall classification robustness of models fine-tuned with different metric combinations. We report
both clean accuracy (performance on benign images) and adversarial accuracy (performance on
successfully attacked images that were not detected) to assess how each fine-tuning objective impacts
the underlying model’s resilience. Again, our fine-tuning procedure is intentionally lightweight,
relying solely on clean images. Unlike traditional adversarial defenses, our approach does not require
costly adversarial examples or specialized training routines

8
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• Results and Analysis for ResNet Model on CIFAR-10: We fine-tuned a ResNet-18 backbone
using seven different objectives: Cosine similarity, L0, KL, L0+KL, Cosine+KL, Cosine+L0, and
Cosine+KL+L0. The results in Table 3 show that all models maintain comparable clean accuracy,
indicating that the fine-tuning process does not degrade the model’s core classification ability.

However, the models yield starkly different adversarial accuracies. Our proposed KL+L0 objective
achieves the strongest adversarial performance because KL-divergence and L0-based metrics are
fundamentally complementary: KL excels at capturing dense, distribution-level shifts, while L0 is
sensitive to sparse, high-impact changes. Optimizing both simultaneously forces the embeddings to
be robust against a wider variety of adversarial perturbations, leading to better overall resilience.

In contrast, any objective that includes the Cosine similarity leads to significantly lower adversarial
robustness. The Cosine similarity encourages an angular alignment that conflicts with the the per-
dimension alignment of KL and L0. The resulting optimization trade-off degrades the model’s ability
to resist attacks, highlighting why simply adding more metrics is not always beneficial.

Models Image
Encoder

Clean Image
Accuracy (%)

PGD attack(%) CW attack(%) Auto attack(%)
ℓ
2/255
∞ ℓ

4/255
∞ ℓ

2/255
∞ ℓ

4/255
∞ ℓ

2/255
∞ ℓ

4/255
∞

Baseline model ResNet18 95.16 45.5 33.11 45.99 35.98 45.49 31.95

Note: All finetuning
was done using clean
images only

Cosine Similarity 94.98 45.8 37.8 37.80 33.00 35.40 22.02
KL 89.50 41.48 29.00 39.06 30.78 40.74 30.62
L0 94.96 49.08 32.66 47.02 35.30 42.56 35.88

KL+L0 94.78 57.32 54.60 57.52 54.08 52.28 51.12
Cosine+L0 94.76 43.98 32.22 44.78 36.18 44.94 35.92
KL+Cosine 94.36 55.60 51.32 45.02 34.08 45.48 34.18
KL+L0+Cosine 94.48 44.66 32.86 45.42 34.52 45.84 35.52

Table 3: Clean and adversarial accuracy for the ResNet-18 backbone fine-tuned with seven different
single/composite embedding objectives under a PGD attack. The KL+L0 objective demonstrates
superior adversarial accuracy, highlighting the complementary nature of these two metrics.

Models Image
Encoder

Clean Image
Accuracy (%)

PGD attack Auto attack CW attack
ℓ
2/255
∞ ℓ

4/255
∞ ℓ

2/255
∞ ℓ

4/255
∞ ℓ

2/255
∞ ℓ

4/255
∞

baseline model CLIP(ViT-B/32) 57.88 0.38 0.28 0.01 0.01 0.0 0.0

Note: All finetuning
was done using clean
images only

Cosine Similarity 62.44 33.74 33.72 3.22 0.07 3.06 0.05
L0 54.34 53.31 43.42 25.43 18.35 37.49 13.67
KL 57.65 60.02 58.87 19.35 11.76 25.69 11.16

KL+L0 55.88 26.50 25.47 16.18 9.57 11.91 5.84
Cosine+L0 56.46 16.28 16.09 1.03 0.02 1.15 0.01
Cosine+KL 57.62 55.01 53.87 5.25 0.44 5.02 0.39
KL+L0+Cosine 56.30 14.93 14.72 0.97 0.06 1.14 0.01

Table 4: Clean and adversarial accuracy for the CLIP ViT-B/32 backbone fine-tuned with seven differ-
ent single/composite embedding objectives under a PGD attack. The KL+L0 objective demonstrates
superior adversarial accuracy, highlighting the complementary nature of these two metrics.

• Results and Analysis for CLIP Model on Tiny-ImageNet: Table 4 presents the results for the fine-
tuned CLIP model. Unlike the ResNet, the L0-only fine-tuning objective yields the highest adversarial
robustness, which can be attributed to the models’ different training histories and architectures.

The CLIP model is pre-trained on a massive dataset using a cosine-contrastive objective, which
naturally encourages inter-class variation to be concentrated in a few principal directions of the high-
dimensional text embedding space. Because of this pre-existing sparsity-aware structure, enforcing
further alignment via the L0-based metric is especially effective. Conversely, the ResNet model is
trained from scratch on a smaller dataset (CIFAR-10) using a cross-entropy loss, which encourages
class separations that are dispersed over many coordinates. For such a model, a single metric is
insufficient. The combined KL+L0 criterion becomes necessary to simultaneously account for both
dense and sparse perturbations, thereby realizing the necessary gains in adversarial robustness.
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5 ETHICS STATEMENT:

Adversarial attacks pose significant risks to the safety and security of machine learning systems,
particularly in sensitive applications such as autonomous vehicles and medical diagnostics. Our work
on the KOALA’s detection method aims to mitigate these risks by providing a robust, theoretically
grounded defense. We believe that by enhancing the security of deep neural networks, our research
contributes positively to the ethical deployment of AI technology. This work does not use any
sensitive personal data or create new privacy risks. It focuses on improving model robustness against
malicious manipulation, thereby helping to ensure that AI systems operate as intended and can be
trusted in real-world, safety-critical scenarios. We are committed to transparency and will make our
code and models publicly available to facilitate further research and independent verification.

6 REPRODUCIBILITY STATEMENT:

We provide all details needed to reproduce our results. Section 3 specifies our KOALA’s architecture,
theoretical guarantees, and training objectives; Section 4 describes training/evaluation datasets,
architectures, attack settings, hyperparameters, and evaluation metrics. The appendix provides full
proof of our theorem. We also provide an anonymous repository in the supplementary materials with
training/evaluation scripts.

7 USAGE OF LLM

We used the large language model (LLM) as a general-purpose writing assistant for copy-editing
(grammar, phrasing, and concision) and LaTeX formatting suggestions. The LLM did not generate
ideas, claims, proofs, figures, or results. All technical content and experiments were authored and
verified by the authors, who take full responsibility for the paper. LLMs are not authors.
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A CONFUSION COUNTS OF EXPERIMENT 1

In Experiment 1, we validated Theorem 1 by testing KOALA on inputs that either satisfy or violate
the conditions of Theorem 1. We split CIFAR-10 and Tiny-ImageNet into (i) Theorem-Compliant
(sufficient inter-class prototype separation) and (ii) Non-Compliant subsets. Here in Table 5 we
report the number of samples (sample size columns) in each group for both datasets and the raw data
of the confusion counts (TP/TN/FP/FN) which were used to calculate the accuracy, precision, recall,
and F1 in Table 1.

Model
(KL+ L0)

Attack
Perturbation

Thm. 1 Compliant Samples Non Compliant Samples
Sample Size TP FN FP TN Sample Size TP FN FP TN

ResNet-CIFAR-10 ℓ
2/255
∞ 3345 3345 0 0 3345 1655 690 965 260 1395
ℓ
4/255
∞ 2967 2967 0 0 2967 2033 919 1114 260 1773

CLIP-TinyImageNet ℓ
2/255
∞ 510 510 0 0 510 4490 3762 728 2206 2284
ℓ
4/255
∞ 556 556 0 0 556 4444 3555 889 2206 2238

Table 5: Experiment 1 Raw Results on (a) CIFAR-10 (ResNet-18) and (b) Tiny-ImageNet (CLIP
ViT-B/32) show the number of test images (sample size) that satisfy or do not satisfy the conditions
of Thm. 1. The table also shows the Confusion metrics—TP,TN,FP,FN —for both backbones
finetuned with our Ltotal objective in equation 6 and evaluated under PGD on the two subsets.

B PROOF OF THEOREM 1

B.1 NECESSARY CONDITION FOR SUCCESSFUL ATTACK ON KL DETECTOR

Proposition 2 (Necessary condition for successful attack on KL detector). Let p∗ ∈ Rd be the
input embedding (feature vector) of the clean image and p̂ ∈ Rd be the input embedding of the
adversarially attacked image, i.e., p̂ = p∗ + δ where δ is the adversarial perturbation of the input
embedding. Similarly, let c∗ ∈ Rd be the prototype vector (or class centroid) of the target class and
ĉ = ĉŷKL

∈ Rd be the prototype vector (or class centroid) of the predicted class ŷKL ∈ {1, . . . ,m}
based on the KL distance. Consider a successful attack on the KL detector (i.e., ĉ ̸= c∗) and assume
the Assumptions A1-A4 are satisfied, then the following inequality holds:

d∑
i=1

(
ĉi − c∗i

) δi
p∗i

> ∆KL(p∗),

where:

∆KL(p∗) = KL(ĉ||p∗)−KL(c∗||p∗), and ∆KL(p̂) = KL(ĉ||p̂)−KL(c∗||p̂). (7)

Proof. First note that, since p∗ is the input embedding of the clean image and c∗ is its correspond-
ing target class centroid, then c∗ is the closest class centroid to p∗ (Assumption A4) and hence
∆KL(p∗) > 0. Similarly, it follows from the definition of ∆KL(p̂) and the assumption that the
attack is successful (i.e., p̂ is predicted as ĉ class), that ∆KL(p̂) ≤ 0.

Substituting in the previous equations yield:

∆KL(p∗) = KL(ĉ||p∗)−KL(c∗||p∗)

=

d∑
i=1

(ĉilog(ĉi)− ĉilog(p
∗
i ))−

d∑
i=1

(c∗i log(c
∗
i )− c∗i log(p

∗
i ))

=

d∑
i=1

(ĉilog(ĉi)− c∗i log(c
∗
i ))−

d∑
i=1

(ĉilog(p
∗
i )− c∗i log(p

∗
i )) > 0, (8)
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and:

∆KL(p̂) = KL(ĉ||p̂)−KL(c∗||p̂)

=

d∑
i=1

(ĉilog(ĉi)− ĉilog(p̂i))−
d∑

i=1

(c∗i log(c
∗
i )− c∗i log(p̂i))

=

d∑
i=1

(ĉilog(ĉi)− c∗i log(c
∗
i ))−

d∑
i=1

(ĉilog(p̂i)− c∗i log(p̂i)) < 0. (9)

Subtracting Equation 8-Equation 9, we get:
d∑

i=1

(ĉilog(p̂i)− c∗i log(p̂i))−
d∑

i=1

(ĉilog(p
∗
i )− c∗i log(p

∗
i )) =

d∑
i=1

(ĉi − c∗i )(log(p̂i)− log(p∗i ))

= ∆KL(p∗)−∆KL(p̂)

> ∆KL(p∗). (10)

Expanding the left hand side of the inequality using Taylor Expansion of log(p̂′) yields:

log(p̂) = log(p∗ + δ) = log(p∗) + δT∇p∗ log(p∗) +
1

2
δT∇2

p∗ log(p∗)δ +R3

= log(p∗) +
δT

p∗ − δT diag(
1

2(p∗)2
)δ +R3. (11)

Based on Taylor’s remainder theorem, the error of truncating after the 2nd order is bounded. The
remainder term in the Taylor expansion is:

R3 =
∇3

p∗ log(p∗ + θδ)

6
δ3, for some θ ∈ [0, 1].

Since the third derivative of log(p∗ + θδ) is ∇3
p∗ log(p∗ + θδ) = 2

(p∗+θδ)3 , we conclude:

|R3| =
|∇3

p∗ log(p∗ + θδ)|
6

|δ|3 =
∑
i

|δi|3

3|p∗i + θδi|3
, (12)

which leads to:

−δT diag(
1

2(p∗)2
)δ +R3 ≤ −δT diag(

1

2(p∗)2
)δ + |R3|

≤ −δT diag(
1

2(p∗)2
)δ +

∑
i

|δi|3

3|p∗i + θδi|3

= −
∑
i

|δi|2

2|p∗i |2
+
∑
i

|δi|3

3|p∗i + θδi|3
. (13)

Since θ, p∗, and δ all lie in the interval [0, 1] (thanks to Assumption A1), we observe that the term:∑
i

|δi|3

3|p∗i + θδi|3
,

increases as θ decreases. In particular, when θ = 0, it reaches its maximum value of
∑

i
|δi|3
3|p∗

i |3
.

Hence, we can rewrite this as: ∑
i

|δi|3

3|p∗i |3
=
∑
i

(
|δi|2

2|p∗i |2
· 2|δi|
3|p∗i |

)
.

Under the assumption that |δi| < 3
2 |p

∗
i | for all dimensions i (Assumption A3), we have:

2|δi|
3|p∗i |

≤ 1 ⇒ |δi|3

3|p∗i + θδi|3
≤ |δi|3

3|p∗i |3
≤ |δi|2

2|p∗i |2
.
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Thus, we can bound the remainder term R3 in the Taylor expansion as:

−δ⊤ diag

(
1

2(p∗)2

)
δ +R3 ≤ −

∑
i

|δi|2

2|p∗i |2
+
∑
i

|δi|3

3|p∗i + θδi|3
< 0.

By combining above Taylor expansion with Equation 10:

∆KL(p∗) < (ĉ− c∗)(log(p̂)− log(p̂∗))

= (ĉ− c∗)(
δT

p∗ − δT diag(
1

2(p∗)2
)δ +R3)

< (ĉ− c∗)
δT

p∗ . (14)

B.2 NECESSARY CONDITION FOR SUCCESSFUL ATTACK ON L0 DETECTOR

Proposition 3 (Necessary condition for successful attack on L0 detector). Let p∗ ∈ Rd be the
input embedding (feature vector) of the clean image and p̂ ∈ Rd be the input embedding of the
adversarially attacked image, i.e., p̂ = p∗ + δ where δ is the adversarial perturbation of the input
embedding. Similarly, let c∗ ∈ Rd be the prototype vector (or class centroid) of the target class and
ĉ = ĉŷL0

∈ Rd be the prototype vector (or class centroid) of the predicted class ŷL0
∈ {1, . . . ,m}

based on the L0 distance. Consider a successful attack on the L0 detector (i.e., ĉ ̸= c∗) and assume
the Assumptions A1-A4 are satisfied, then there exists a nonempty set of indices S ⊆ {1, . . . , d},
where for each i ∈ S the following holds:

|δi| ≥ min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}
, (15)

while for all other indices δj /∈ S, the following holds:

|δj | ≤

√
ϵ2 − k

[
min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}]2
.

where k is the cardinality of the set S, i.e., k = |S|. Moreover, the cardinality k satisfies k = |S| ≥
∆L0(p

∗) where:

∆L0(p
∗) = L0(ĉ,p

∗)− L0(c
∗,p∗), and ∆L0(p̂) = L0(ĉ, p̂)− L0(c

∗, p̂).

Proof. First note that, since p∗ is the embedding of the clean input and c∗ is its corresponding target
class centroid, then c∗ is the closest class to p∗ (Assumption A4) and hence ∆L0(p

∗) > 0. Similarly,
it follows from the definition of ∆L0(p̂) and the assumption that the attack is successful (i.e., p̂ is
predicted as the class whose centroid is ĉ), that ∆L0(p̂) ≤ 0. For sake of presentation, we define the
following sets:

A = {i : |ĉi − p∗i | − τ · µ(ĉ,p∗) > 0, |c∗i − p∗i | − τ · µ(c∗,p∗) ≤ 0} (16)
B = {i : |ĉi − p∗i | − τ · µ(ĉ,p∗) ≤ 0, |c∗i − p∗i | − τ · µ(c∗,p∗) > 0} (17)
C = {i : |ĉi − p∗i − δi| − τ · µ(ĉ, p̂) > 0, |c∗i − p∗i − δi| − τ · µ(c∗, p̂) ≤ 0} (18)
D = {i : |ĉi − p∗i − δi| − τ · µ(ĉ, p̂) ≤ 0, |c∗i − p∗i − δi| − τ · µ(c∗, p̂) > 0}. (19)

Using this notation, we can rewrite ∆L0(p
∗) and ∆L0(p̂) as:

∆L0(p
∗) = |A| − |B| > 0 (20)

∆L0(p̂) = |C| − |D| ≤ 0, (21)

where |A|, |B|, |C|, and |D| denote the cardinality (i.e., the number of elements) of the corresponding
sets.

15
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Subtracting Equation 20-Equation 21 yields:

∆L0(p
∗)−∆L0(p̂) > ∆L0(p

∗) ⇒ ∆L0(p
∗)−∆L0(p̂) > 0 (22)

⇒ |A| − |B| − |C|+ |D| > 0 (23)
⇒ (|A| − |C|) + (|D| − |B|) > 0. (24)

This implies that at least one of the terms |A| − |C| or |D| − |B| must be positive, since the sum of
two quantities is positive only if at least one of them is positive. We proceed with case analysis.

• Case 1: If |A| − |C| > 0, then there must be at least |A| − |C| elements δi ∈ A ∩ ¬C, which
satisfies the following constraints:

|ĉi − p∗i | − τ µ(ĉ,p∗) > 0, (25)
|c∗i − p∗i | − τ µ(c∗,p∗) ≤ 0, (26)
|ĉi − p∗i − δi| − τ µ(ĉ, p̂) ≤ 0 or |c∗i − p∗i − δi| − τ µ(c∗, p̂) > 0, (27)

where the first two constraints follows from the definition of the set A in Equation 16 and the last
constraint follows from the negation of the constraints in the set C in Equation 18. Now, we consider
the two situations in Equation 27 separately:

① If |ĉi − p∗i − δi| − τ µ(ĉ, p̂) ≤ 0 in Equation 27, then we have:

|ĉi − p∗i − δi| − τ µ(ĉ, p̂) ≤ 0 and |ŷi − p∗i | − τ µ(ĉ,p∗) > 0, (28)

which in turn implies that:

|(|ĉi − p∗i | − τ · µ(ĉ,p∗))− (|ĉi − (p∗i + δi)| − τ · µ(ĉ, p̂))| > ||ĉi − p∗i | − τ · µ(ĉ,p∗)|. (29)

The inequality above can be rewritten (by swapping its two sides) as:

||ĉi − p∗i | − τ · µ(ĉ, p̂∗)| < |(|ĉi − p∗i | − τ · µ(ĉ,p∗))− (|ĉi − (p∗i + δi)| − τ · µ(ĉ, p̂))|
(a)

≤ |(|ĉi − p∗i | − τ · µ(ĉ,p∗))− ((|ĉi − p∗i | − |δi|)− τ · µ(ĉ, p̂))|
(b)
= ||δi| − τ · (µ(ĉ,p∗)− µ(ĉ, p̂))|

(c)
=

∣∣∣∣∣∣|δi| − τ · 1
d

d∑
j=1

(|ĉj − p∗j | − |ĉj − p̂j |)

∣∣∣∣∣∣
(d)

≤ |δi|+ τ · 1
d

d∑
j=1

∣∣|ĉj − p∗j | − |ĉj − p̂j |
∣∣

(e)

≤ |δi|+ τ · 1
d

d∑
j=1

|δj |

= |δi|+
τ

d
· ∥δ∥1, (30)

where (a) follows from the fact that |ĉi − (p∗i + δi)| ≥ |ĉi − p∗i | − |δi|, (b) follows by reshuffling
the terms in the inequality, (c) follows from the definition of µ(ĉ, p∗) and µ(ĉ, p̂), (d) follows from
the triangle inequality, and (e) follows from the definition of p̂j = p∗j + δj and hence |ĉj − p̂j | =
|ĉj − p∗j − δj | < |ĉj − p∗j |+ |δj | and |ĉj − p̂j | = |ĉj − p∗j − δj | > |ĉj − p∗j | − |δj |, which in turn
implies that

∣∣|ĉj − p∗j | − |ĉj − p̂j |
∣∣ ≤ |δj |.

② Similarly, if |c∗i − p∗i − δi| − τ µ(c∗, p̂) > 0 in Equation 27, we get:

|c∗i − p∗i − δi| − τ µ(c∗, p̂) > 0 and |c∗i − p∗i | − τ µ(c∗,p∗) ≤ 0 (31)

which in turn implies that:

|(|c∗i − p∗i | − τ · µ(c∗,p∗))− (|c∗i − (p∗i + δi)| − τ · µ(c∗, p̂))| > ||c∗i − p∗i | − τ · µ(c∗,p∗)|
(32)
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Following the same procedure in Equation 30, we conclude that:

||c∗i − p∗i | − τ · µ(c∗,p∗)| < |(|c∗i − p∗i | − τ · µ(c∗,p∗))− (|c∗i − (p∗i + δi)| − τ · µ(c∗, p̂))|

≤ |δi|+
τ

d
· ∥δ∥1. (33)

By combining situations ① and ② together, we conclude that if |A| − |C| > 0 then:

|δi|+
τ

d
· ∥δ∥1 > ||c∗i − p∗i | − τ · µ(c∗,p∗)| (34)

or > ||ĉi − p∗i | − τ · µ(ĉ,p∗)| . (35)

Which can be combined toghether in one condition as:

|δi| ≥ min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}
.

• Case 2: If |D| − |B| > 0, then there must be at least |D| − |B| elements δi ∈ D ∩ ¬B, which
satisfies the following constraints:

|ĉi − p∗i − δi| − τ · µ(ĉ, p̂) ≤ 0, (36)
|c∗i − p∗i − δi| − τ · µ(c∗, p̂) > 0 (37)
|ĉi − p∗i | − τ · µ(ĉ,p∗) > 0 or |c∗i − p∗i | − τ · µ(c∗,p∗) ≤ 0, (38)

where the first two constraints follows from the definition of the set D in Equation 19 and the last
constraint follows from the negation of the constraints in the set B in Equation 17. Now, we consider
the two situations in Equation 38 separately:

① If |ĉi − p∗i | − τ · µ(ĉ,p∗) > 0 in Equation 38, then we have:

|ĉi − p∗i | − τ · µ(ĉ,p∗) > 0 and |ĉi − p∗i − δi| − τ · µ(ĉ, p̂) ≤ 0, (39)

which in turn implies that:

|(|ĉi − p∗i | − τ · µ(ĉ,p∗))− (|ĉi − (p∗i + δi)| − τ · µ(ĉ, p̂))| > ||ĉi − p∗i | − τ · µ(ĉ,p∗)|. (40)

Following the same procedure in Equation 30, we conclude that:

||ĉi − p∗i | − τ · µ(ĉ,p∗)| < |(|ĉi − p∗i | − τ · µ(ĉ,p∗))− (|ĉi − (p∗i + δi)| − τ · µ(ĉ, p̂))| (41)

≤ |δi|+
τ

d
· ∥δ∥1. (42)

② Similarly, if |c∗i − p∗i − δi| − τ · µ(c∗, p̂) > 0 in Equation 38, we get:

|c∗i − p∗i | − τ · µ(c∗,p∗) ≤ 0 and |c∗i − p∗i − δi| − τ · µ(c∗, p̂) > 0, (43)

which in turn implies that:

|(|c∗i − p∗i | − τ · µ(c∗,p∗))− (|c∗i − (p∗i + δi)| − τ · µ(c∗, p̂))| > ||c∗i − p∗i | − τ · µ(c∗,p∗)|.
(44)

Following the same procedure in Equation 30, we conclude that:

||c∗i − p∗i | − τ · µ(c∗,p∗)| < |(|c∗i − p∗i | − τ · µ(c∗,p∗))− (|c∗i − (p∗i + δi)| − τ · µ(c∗, p̂))|

≤ |δi|+
τ

d
· ∥δ∥1. (45)

By combining the two situations ① and ② together, we conclude that if |D| − |B| > 0 then:

|δi|+
τ

d
· ∥δ∥1 > ||c∗i − p∗i | − τ · µ(c∗,p∗)| (46)

or > ||ĉi − p∗i | − τ · µ(ĉ,p∗)| . (47)
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Combining the two inequalities above, we conclude:

|δi| ≥ min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}
which in turn implies that:

|δi| ≥ min{||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1
d

, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1
d

}.

Thus for both Case 1 and Case 2 we get the same conclusion that:

|δi| ≥ min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}
.

Thus there are in total at least ∆L0(p
∗) elements δi that fulfills:

|δi| ≥ min

{
||ĉi − p∗i | − τ µ(ĉ,p∗)| − τ ||δ||1

d
, ||c∗i − p∗i | − τ µ(c∗,p∗)| − τ ||δ||1

d

}
, (48)

since ∆L0(p
∗)−∆L0(p̂) ≥ ∆L0(p

∗).

B.3 NECESSARY CONDITION FOR SUCCESSFUL ATTACK ON KL AND L0 DETECTORS ARE
MUTUALLY EXCLUSIVE

Proposition 4 (Necessary conditions of successful attacks on KL and L0 detectors are mutually
exclusive). Let p∗ ∈ Rd be the input embedding (feature vector) of the clean image and p̂ ∈ Rd be
the input embedding of the adversarially attacked image, i.e., p̂ = p∗ + δ where δ is the adversarial
perturbation of the input embedding. Assume that the Assumptions A1-A4 are satisfied, then if a
threshold τ exists such that:

∥v∥
ϵ

∑
i∈Sunchange

(δmax
i )2 +

∑
i∈Schange

mini vi + ϵremain
√ ∑

i∈Sremain

v2i < ∆KL(p∗), (49)

then there exists no perturbation δ that can render ŷKL = ŷL0
, where:

∆KL(p∗) = KL(ĉ||p∗)−KL(c∗||p∗),

∆L0(p
∗) = L0(ĉ||p∗)− L0(c

∗||p∗),

mini = min

{
||ĉi − p∗i | − τµ(ĉ,p∗)| − τ∥δ∥1

d
, ||c∗i − p∗i | − τµ(c∗,p∗)| − τ∥δ∥1

d
.

}
,

vi =
ĉi − c∗i
pi∗

,

δmax
i = ϵ · vi

∥v∥
Sunchange = {i ∈ {1, . . . ,m} | |δmax

i | ≥ mini} ,

Schange = argmin
T⊆{1,...,m}\Sunchange

∑
i∈T

|δmax
i − mini|,

Sremain = {1, . . . ,m} \ (Sunchange ∪ Schange),

ϵremain =

√
ϵ2 −

∑
i∈Schange

(mini)2 −
∑

i∈Sunchange

(δmax
i )2.

Proof. Our proof focuses on establishing a contradiction by showing that no perturbation δ can
simultaneously satisfy both Proposition 2 and Proposition 3. Specifically, we will assume, for the
sake of contradiction, that there exists a perturbation δ′that satisfies the constraints required by
Proposition 3, and we show that even under these constraints, the maximum achievable value of
vT δ′ cannot exceed ∆KL(p∗), contradicting the condition required by Proposition 2.
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Finding such a δ′ is equivalent to solving the following constrained optimization problem:

δ′ := arg max
δ′∈Rd

vT δ′

subject to ∥δ′∥2 = ϵ,

|δ′i| ≥ mini for at least ∆L0(p
∗) coordinates.

(50)

where v is the KL-gradient direction vector, i.e: vi :=
ĉi−c∗i
p∗
i

. In other words, the optimization
problem above aims to maximize the satisfaction of the condition imposed by Proposition 2 while
satisfying the condition imposed by Proposition 3.

Claim B.1. The solution of the optimization problem in Equation 50 can be obtained by following
the following two-steps:

• Step 1: Solve the partially constrained maximization:

δmax := arg max
∥δ∥2=ϵ

vT δ. (51)

This yields the perturbation that maximizes the dot product with v under an L2 norm constraint.

• Step 2: Project δmax onto the feasible set C:

δ′ := argmin
δ∈C

∥δ − δmax∥22, (52)

where C is the feasible set defined as:

C =
{
δ ∈ Rd|∥δ′∥2 = ϵ, |δ′i| ≥ mini for at least ∆L0(p

∗) coordinates.
}

We will provide a formal proof for Claim B.1 at the end of this section by comparing the KKT
conditions for the optimization problem in Equation 50 with those from Equation 51 and Equation 52.

Based on Claim B.1, we proceed with the two steps above as follows. First, note that the δmax is a
maximizer for the inner product

∑
i viδi and hence the maximum is attained when the two vectors

v and δ are aligned (i.e., the cosine of the angle between the two vectors is equal to 1). Second,
note that any strictly interior point of ∥δmax∥2 ≤ ϵ can be radially enlarged to increase v⊤δmax, the
maximum of Equation 50 must lie on the sphere ∥δmax∥2 = ϵ. Hence, we conclude that:

δmax
i =

ϵ

∥v∥2
vi. (53)

Next, we find δ′ by projecting δmax onto the constraint set C by solving:

δ′ := argmin
δ∈C

∥δ − δmax∥22.

To do so, we categorize the indices of δmax into three groups and change them to δ′ accordingly
by choosing the smallest possible ∆δi on each dimension in order to minimize ∥∆δ′ − δmax∥22.
For sake of notation, we denote by mini the requirement from Proposition 3 as: mini =

min
{
||ĉi − p∗i | − τµ(ĉ,p∗)| − τ∥δ∥1

d , ||c∗i − p∗i | − τµ(c∗,p∗)| − τ∥δ∥1

d

}
.

We proceed as follows:

① For all indices i where |δmax
i | ≥ mini, we add them to the set Sunchange, i.e., Sunchange =

{i ∈ {1, . . . ,m} | |δmax
i | ≥ mini}. For this set, the corresponding δ′i will be set to δ′i =

δmax
i (i.e., their perturbation is unchanged).

② Recall that Proposition 3 requires a minimum of ∆L0(p
∗) indices to have their perturbation

higher than mini. Hence, we select ∆L0(p
∗) − |Sunchange| elements whose δmax

i < mini

and set the corresponding δ′i to be δ′i = mini. Indeed, we select the indices i whose δmax
i

are as close as possible to mini, i.e.,

Schange = argmin
T⊆{1,...,m}\Sunchange

∑
i∈T

|δmax
i − mini|
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③ For all remaining indices not in S = Sunchange ∪ Schange, we add them to the set Sremain =
{1, . . . ,m} \ S, and we set the corresponding δ′i according to the next Claim.

Claim B.2. The solution of the optimization problem in Equation 50 δ′ is:

δ′i =


mini for i ∈ Schange

δmax
i for i ∈ Sunchange

ϵremain · vi√∑
j∈Sremain v2j

for i ∈ Sremain (54)

where:

ϵremain =

√
ϵ2 −

∑
i/∈Sremain

(δ′i)
2 =

√
ϵ2 −

∑
i∈Schange

(mini)2 −
∑

i∈Sunchange

(δmax
i )2.

In this way, we keep as many elements as possible in δ′ to make it close to δmax while satisfying
proposition 3. We will provide the proof of Claim B.2 at the end of this section.

To reach the contradiction, we need to show that the perturbation δ′ violates Proposition 2, i.e., we
would like to show that: ∑

i

viδ
′
i ≤ ∆KL(p∗). (55)

Define ∆δ = δ′ − δmax and substitute in the left hand side above as follows:
d∑

i=1

viδ
′
i = vT δ′ = vT (δmax +∆δ)

(a)
=

∥v∥
ϵ

(δmax)T (δmax +∆δ)

=
∥v∥
ϵ

(
∥δmax∥22 + (δmax)T∆δ

)
(b)
=

∥v∥
ϵ

(
ϵ2 + (δmax)T∆δ

)
(c)
=

∥v∥
ϵ

(
ϵ2 − 1

2
∥∆δ∥22

)
= ∥v∥ · ϵ− ∥v∥

2ϵ
∥∆δ∥22. (56)

where (a) follows from Equation 53 which states that δmax = ϵ · v
∥v∥ and hence we can express v as:

v =
∥v∥
ϵ

δmax and thus vT =
∥v∥
ϵ

(δmax)T .

The equalities (b) and (c) follows from the fact that both δmax and δ′ satisfies the constraint
∥δmax∥22 = ∥δ′∥22 = ϵ2. Hence:

∥δ′∥22 − ∥δmax∥22 = 0 ⇒ ∥δmax +∆δ∥22 − ∥δmax∥22 = 0

⇒ ∥δmax∥22 + 2(δmax)T∆δ + ∥∆δ∥22 − ∥δmax∥22 = 0

⇒ 2(δmax)T∆δ + ∥∆δ∥22 = 0

⇒ (δmax)T∆δ = −1

2
∥∆δ∥22

Next, we expand the term ∥∆δ∥22 in Equation 56 by substituting the values of δ′ as:

∥∆δ∥22 =
∑

i∈Schange

(
mini − δmax

i

)2
+

∑
i∈Sremain

(
bi − δmax

i

)2
. (57)

where bi = ϵremain · vi√∑
j∈Sremain v2j
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Expanding each quadratic and using
∑d

i=1(δ
max
i )2 = ϵ2, one obtains:

∥∆δ∥22 =
∑

i∈Schange

(
min2

i − 2mini δ
max
i + (δmax

i )2
)
+

∑
i∈Sremain

(
b2i − 2bi δ

max
i + (δmax

i )2
)

=
∑

i∈Schange

min2
i +

∑
i∈Sremain

b2i − 2

d∑
i=1

a∗i δ
max
i +

∑
i∈Schange

(δmax
i )2 +

∑
i∈Sremain

(δmax
i )2

=
∑

i∈Schange

min2
i + (ϵremain)2︸ ︷︷ ︸

=ϵ2−
∑

i∈Sunchange (δmax
i )2

− 2

d∑
i=1

a∗i δ
max
i +

∑
i∈Schange

(δmax
i )2 +

∑
i∈Sremain

(δmax
i )2︸ ︷︷ ︸

=ϵ2−
∑

i∈Sunchange (δmax
i )2

= 2

(
ϵ2 −

∑
i∈Sunchange

(δmax
i )2

)
− 2

d∑
i=1

a∗i δ
max
i , (58)

where:

a∗i =


mini, i ∈ Schange,

0, i ∈ Sunchange,

bi, i ∈ Sremain.

We expand the term
∑d

i=1 a
∗
i δ

max
i in Equation 58 as follows:

d∑
i=1

a∗i δ
max
i =

∑
i∈Schange

miniδ
max
i +

∑
i∈Sremain

biδ
max
i

=
∑

i∈Schange

mini
ϵvi
∥v∥2

+
∑

i∈Sremain

(ϵremain ϵ|vi|2

∥v∥2
√∑

j∈Sremain v2j

)

=
ϵ

∥v∥2

( ∑
i∈Schange

mini vi + ϵremain
√ ∑

i∈Sremain

v2i

)
. (59)

Substituting back in Equation 58 we conclude:

∥∆δ∥22 = 2 ϵ2 − 2
∑

i∈Sunchange

(δmax
i )2 − 2 ϵ

∥v∥2

[∑
i∈S

mini vi + ϵremain
√ ∑

i∈Sremain

v2i

]
(d)
> 2ϵ2 − 2ϵ

∥v∥
∆KL(p∗), (60)

where (d) follows from the assumption on τ in Equation 49 which requires that:

∥v∥
ϵ

∑
i∈Sunchange

(δmax
i )2 +

∑
i∈Schange

mini vi + ϵremain
√ ∑

i∈Sremain

v2i < ∆KL(p∗),

Finally, by combining the equation above with Equation 56, we arrive at:

d∑
i=1

viδ
′
i = |v∥ · ϵ− ∥v∥

2ϵ
∥∆δ∥22 < ∆KL(p∗),

which contradicts Proposition 2.

To finalize our proof, we need to show that Claim B.1 and Claim B.2 holds.

• Proof of Claim B.1: We proceed by showing the equivalence between the KKT conditions for the
two optimization problems as follows.
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KKT Conditions for the optimization problem in Equation 50. By introducing the Lagrangian
multiplier λ ≥ 0 for ∥δ∥2 = ϵ and µi ≥ 0 for the |δi| ≥ mini bounds (active set S with |S| =
∆L0(p

∗)), we can write the Lagrangian as:

LP1(δ, λ, µ) = −v⊤δ + λ
(
∥δ∥22 − ϵ2

)
+
∑
i∈S

µi

(
mini − |δi|

)
.

The corresponding KKT conditions are:

∂L
∂δj

= −vj + 2λ δj − 1[j∈S] µj sgn(δj) = 0, (KKT-1)

λ
(
∥δ∥22 − ϵ2

)
= 0, (KKT-2)

µi

(
|δi| − mini

)
= 0 for i ∈ S. (KKT-3)

for each coordinate j = 1, . . . , d, where sgn(·) is sign function. Note that ∥δ∥2 = ϵ and hence
(||δ||22 − ϵ2) = 0, implying that λ ∈ R. For the free coordinates (j /∈ S), we obtain:

δ⋆j =
vj
2λ

.

While for i ∈ S there are two cases: inactive bound (µi = 0) which gives the same expression as
above and active bound (|δ⋆i | = mini, µi > 0) which yields:

δ⋆i =
vi
2λ

+
µi

2λ
sgn
(
δ⋆i
)
.

KKT Conditions for the for the optimization problems in Equation 51 and Equation 52.
For the optimization problem in Equation 51, our analysis above (Equation 53) shows that:

δmax =
ϵ

∥v∥2
v.

Hence, we focus on obtaining the KKT conditions for the optimization problem in Equation 52. We
start by constructing its Lagrangian (with the multipliers λ̃ ∈ R and µ̃i ≥ 0) as:

LP2(δ, λ̃, µ) = 1
2∥δ − δmax∥22 + λ̃

(
∥δ∥22 − ϵ2

)
+
∑
i∈S

µ̃i

(
mini − |δi|

)
.

The resulting KKT conditions are then:

∂L
∂δj

= (δ − δmax)j + 2λ̃ δj − 1[j∈S] µ̃j sgn(δj) = 0, (KKT′-1)

λ̃
(
∥δ∥22 − ϵ2

)
= 0, (KKT′-2)

µ̃i

(
|δi| − mini

)
= 0 for i ∈ S. (KKT′-3)

for each coordinate j = 1, . . . , d. Let (1+2λ̃)∥v∥
ϵ = 2λ and µ̃ = ϵ

∥v∥µ (if µ ≥ 0 then µ̃ ≥ 0), then
the KKT′-1 can be written as:

∂L
∂δj

= (δ − δmax)j + 2λ̃ δj − 1[j∈S] µ̃j sgn(δj)︸ ︷︷ ︸
KKT ′−1

= (1 + 2λ̃)δj − δmax
j − 1[j∈S] µ̃j sgn(δj)

= (1 + 2λ̃)δj −
ϵ

∥v∥2
vj − 1[j∈S] µj sgn(δj)

=
ϵ

∥v∥

(
(1 + 2λ̃)

∥v∥
ϵ

δj − vj

)
− 1[j∈S] µ̃j sgn(δj)

(a)
=

ϵ

∥v∥
(2λδj − vj)− 1[j∈S] µ̃j sgn(δj)

(b)
=

ϵ

∥v∥
(2λδj − vj − 1[j∈S] µj sgn(δj))︸ ︷︷ ︸

KKT−1

= 0. (61)
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where (a) follows from the equality (1+2λ̃)∥v∥
ϵ = 2λ and (b) follows from the equality µ̃ = ϵ

∥v∥µ.
Similarly, KKT-2′ is:

λ̃
(
∥δ∥22 − ϵ2

)
= (

ϵλ

∥v∥
− 1

2
)︸ ︷︷ ︸

∈R

(
∥δ∥22 − ϵ2

)
= 0. (62)

And, KKT-3′ is:

µ̃i

(
|δi| −mi

)
=

ϵ

∥v∥
µ
(
|δi| − mini

)︸ ︷︷ ︸
KKT−3

= 0 for i ∈ S. (63)

From which we conclude that the optimal δ′ derived by solving KKT′-1-3 are identical to that derived
from KKT-1-3, which in turn implies that the optimization problems in Equation 51 and Equation 52
are equivalent.

• Proof of Claim C.2:

To obtain the value of δ′remain, we aim to minimize the ℓ2-distance between δ′remain and the correspond-
ing part of δmax, that is:

min
δ′

remain

∑
i∈Sremain

(δ′i − δmax
i )2,

subject to:
∑

i∈Sremain

(δ′i)
2 = ϵ2 −

∑
i∈Schange∪Sunchange

(δ′i)
2

We solve this optimization problem using Lagrangian multiplier. We define the Lagrangian as:

L(δ′remain, λ) = (δ′remain − δmax
remain)

T (δ′remain − δmax
remain) + λ

(
(δ′remain)

T δ′remain − (ϵremain)2
)
.

We calculate the gradient with respect to δ′remain and set it to zero as:

∇δ′
remain

L = 2(δ′remain − δmax
remain) + 2λδ′remain = 0.

Divide by 2 and rearrange:

(1 + λ)δ′remain = δmax
remain ⇒ δ′remain =

1

1 + λ
δmax

remain.

Due to the constraint ∥δ′remain∥2 = ϵremain, with ϵremain =
√
ϵ2 −

∑
i/∈Sremain(δ′i)

2, we get:∥∥∥∥ 1

1 + λ
δmax

remain

∥∥∥∥
2

= ϵremain ⇒ 1

|1 + λ|
∥δmax

remain∥2 = ϵremain.

Since 1 + λ > 0:

1 + λ =
∥δmax

remain∥2
ϵremain ⇒ δ′remain =

ϵremain

∥δmax
remain∥2

δmax
remain.

Now using the expression δmax
i = ϵ

∥v∥vi, we compute:

∥δmax
remain∥2 =

ϵ

∥v∥

√ ∑
i∈Sremain

|vi|2

Thus,

δ′i =
ϵremain

ϵ
∥v∥
√∑

i∈Sremain |vi|2
· ϵ

∥v∥
vi =

ϵremainvi√∑
j∈Sremain v2j

if i ∈ Sremain.
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B.4 PROOF OF THEOREM 1

Proof of Theorem 1. Since Theorem 1 asks for a minimum of one dimension for which the gap
between the two prototype vectors |ĉi − ĉ∗i | is large enough, i.e., |ĉi − ĉ∗i | > Γ(ϵ) for some threshold
Γ(ϵ), we consider the extreme condition when such condition is satisfied for only one dimension.
In such scenario, ∆L0(p

∗) = 1 |S| = 1, and |Schange| = 1,|Sunchange| = 0, |Sremain| = d − 1 and
ϵremain =

√
ϵ2 − min2

i . The remainder of this proof follows two steps. First, we rewrite the condition
on τ Equation 49 into an explicit form. Note that the parameter τ controls the separation between the
classes in the L0 sense that is needed to distinguish between the classes. Second, we derive a lower
bound on the threshold Γ(ϵ) that guarantees the existence of the parameter τ .

Since |Sunchange| = 0, we can rewrite the condition on τ Equation 49 into:∑
j∈Schange

minj vj + ϵremain
√ ∑

i∈Sremain

v2i < ∆KL(p∗)

(a)⇒ minj vj +
√

ϵ2 − min2
j

√∑
i ̸=j

v2i < ∆KL(p∗)

(b)⇒
√
ϵ2 − min2

j

√∑
i̸=j

v2i < ∆KL(p∗)− minj vj

(c)⇒ (ϵ2 − min2
j )(
∑
i ̸=j

v2i ) < (∆KL(p∗)− minj vj)
2

⇒ (ϵ2 − min2
j )(
∑
i ̸=j

v2i ) < (∆KL(p∗))2 − 2∆KL(p∗)minjvj + (minj vj)
2

(d)⇒ (minj)
2(v2j +

∑
i ̸=j

v2i )− 2∆KL(p∗)minjvj + (∆KL(p∗)2 − ϵ2
∑
i ̸=j

v2i ) > 0,

(64)

where (a) follows from |Sunchange| = 0 and ϵremain =
√

ϵ2 − min2
j , (b) follows from rearranging the

terms, (c) follows from squaring the two sides of the inequality, and (d) follows from rearranging the
terms.

We solve the quadratic equation below for the dummy variable a:

(a)2(v2j +
∑
i ̸=j

v2i )− 2∆KL(p∗)avj + (∆KL(p∗)2 − ϵ2
∑
i ̸=j

v2i ) = 0 (65)

which yields:

a =
∆KL(p∗)vj ±

√
∆KL(p∗)2(vj)2 − (v2j +

∑
i ̸=j v

2
i )(∆KL(p∗)2 − ϵ2

∑
i ̸=j v

2
i )

v2j +
∑

i ̸=j v
2
i

(66)

Next, we expend the items inside the square root as:

a =
∆KL(p∗)vj
v2j +

∑
i ̸=j v

2
i

±

√
∆KL(p∗)2(vj)2 − v2j∆KL(p∗)2 −

∑
i ̸=j v

2
i∆KL(p∗)2 + v2j ϵ

2
∑

i ̸=j v
2
i + ϵ2(

∑
i ̸=j v

2
i )

2

v2j +
∑

i ̸=j v
2
i

=
∆KL(p∗)vj ±

√
−
∑

i̸=j v
2
i∆KL(p∗)2 + v2j ϵ

2
∑

i ̸=j v
2
i + ϵ2(

∑
i ̸=j v

2
i )

2∑d
i=1 v

2
i

,
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where the last equality follows from the fact that ∆KL(p∗)2(vj)
2 − v2j∆KL(p∗)2 = 0. We extract√∑

j ̸=i v
2
i from square root as:

a =
∆KL(p∗)vj ±

√∑
i ̸=j v

2
i

√
−∆KL(p∗)2 + v2j ϵ

2 + ϵ2
∑

i ̸=j v
2
i∑d

i=1 v
2
i

=
∆KL(p∗)vj ±

√∑
i ̸=j v

2
i

√
−∆KL(p∗)2 + ϵ2(v2j +

∑
i̸=j v

2
i )∑d

i=1 v
2
i

=
∆KL(p∗)vj ±

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2(

∑d
i=1 v

2
i )∑d

i=1 v
2
i

=
∆KL(p∗)vj ±

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
.

As shown in the proof of Proposition 4, ∆KL(p∗) < ϵ∥v∥, we have −∆KL(p∗)2 + ϵ2∥v∥22 > 0,
thus

a1 =
∆KL(p∗)vj −

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
or

a2 =
∆KL(p∗)vj +

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
.

However,

a1 =
∆KL(p∗)vj −

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
<

∆KL(p∗)vj
∥v∥22

<
ϵ∥v∥2vj
∥v∥22

=
ϵvj
∥v∥2

= δmax
j

However, it follows from the definition of Sunchange in Proposition 4 that the minj must fulfill that
minj > |δmax

j |. Hence, we conclude that a1 is not a valid solution. Since a2 is the only viable solution
for the Equation 65, we conclude that the solution of the corresponding inequality (Equation 64)
must satisfy:

minj >
∆KL(p∗)vj +

√∑
j ̸=i v

2
i

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
. (67)

Nevertheless,it follows from Proposition 4 that for each j ∈ Schange ⊆ S this dimension fulfills:

|δmax
j | =

ϵ |vj |
∥v∥

≤ min
{∣∣|ĉj − p∗j | − τ µ(ĉ,p∗)

∣∣ − τ ∥δ∥1
d

,
∣∣|c∗j − p∗j | − τ µ(c∗,p∗)

∣∣ − τ ∥δ∥1
d

}
= minj (68)

Combining Equation 68 and Equation 67 then we can have

minj = min
{∣∣|ĉj − p∗j | − τ µ(ĉ,p∗)

∣∣ − τ ∥δ∥1
d

,
∣∣|c∗j − p∗j | − τ µ(c∗,p∗)

∣∣ − τ ∥δ∥1
d

}
> max

{ ϵ |vj |
∥v∥2

,
∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

}
. (69)
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Solving the inequality above for τ , we conclude that we can rewrite the condition on τ from
Equation 49 as:

τ ≤ max

{ |ĉj − p∗j | − max
{

ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
µ(ĉ,p∗) + ∥δ∥1

d

,

|c∗j − p∗j | − max
{

ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
µ(c∗,p∗) + ∥δ∥1

d

}
. (70)

Note that while Equation 49 was an implicit constraint on τ , the constraint above is an explicit
constraint on τ . Next, we derive the condition on the gap |ĉj − cji | that ensures that Equation 70 has a
non-empty set of solutions.

It follows from Proposition 3 and the fact that we are considering the case where only one dimension
satisfies the class gap |ĉi − c∗i | that such dimension j must belong to the set A where: A = {i :
|ĉi − p∗i | − τ · µ(ĉ,p∗) > 0, |c∗i − p∗i | − τ · µ(c∗,p∗) ≤ 0}, and hence τ must satisfy the two
constraints imposed by the set A, i.e.,

|c∗j − p∗j |
µ(c∗,p∗)

< τ <
|ĉj − p∗j |
µ(ĉ,p∗)

(71)

Note that:

|ĉi − p∗i | − max
{

ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
µ(ĉ,p∗) + ∥δ∥1

d

<
|ĉj − p∗j |
µ(ĉ,p∗)

and:

|c∗i − p∗i | − max
{

ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

,
√

5
4ϵ

2 − ϵ∆KL(p∗)
∥v∥

}
µ(c∗,p∗) + ∥δ∥1

d

<
|c∗j − p∗j |
µ(c∗,p∗)

since both the have smaller nominator and a larger denominator on the left-hand-side.

Thus we can write Equation 71 and Equation 70 together as:

|c∗j − p∗j |
µ(c∗,p∗)

< τ <
|ĉi − p∗i |

µ(ĉ,p∗) + ∥δ∥1

d

−
max

{
ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
µ(ĉ,p∗) + ∥δ∥1

d

(72)

To make τ feasible, we must have:

|c∗j − p∗j |
µ(c∗,p∗)

<
|ĉi − p∗i | − max

{
ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
µ(ĉ,p∗) + ∥δ∥1

d

(73)

Multiplying
(
µ(ĉ,p∗) + ∥δ∥1

d

)
on both sides yields:(

µ(ĉ,p∗) +
∥δ∥1
d

) |c∗j − p∗j |
µ(c∗,p∗)

< |ĉj − p∗j | (74)

− max
{ ϵ |vj |
∥v∥2

,
∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

}
. (75)

By switching the LHS and RHS and then moving the

max
{

ϵ |vj |
∥v∥2

,
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

}
term to the other side:

|ĉj − p∗j | >max
{ ϵ |vj |
∥v∥2

,
∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

}
(76)

+
(
µ(ĉ,p∗) +

∥δ∥1
d

) |c∗j − p∗j |
µ(c∗,p∗)

(77)
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Then we can get a necessary condition on |ĉj − c∗j | via:

|ĉj − c∗j | >
∣∣∣|ĉj − p∗j | − |c∗j − p∗j |

∣∣∣
>

∣∣∣∣∣max
{ ϵ |vj |
∥v∥2

,
∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

}
(78)

+
(
µ(ĉ,p∗) +

∥δ∥1
d

) |c∗j − p∗j |
µ(c∗,p∗)

− |c∗j − p∗j |

∣∣∣∣∣
=

∣∣∣∣∣max
{ ϵ |vj |
∥v∥2

,
∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

}
(79)

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

∣∣∣∣∣ (80)

Therefore if ϵ |vj |
∥v∥2

>
∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

, then we have:

|ĉj − c∗j | >
∣∣∣ ϵ |vj |∥v∥2

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

∣∣∣
⇓ Since each term is positive

=
ϵ |vj |
∥v∥2

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

⇓ Since vj =
ĉj − c∗j

p∗j

=
ϵ |ĉj − c∗j |
∥v∥2|p∗j |

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j | (81)

Moving all |ĉj − c∗j | to the left-hand-side:

|ĉj − c∗j | >

(
µ(ĉ,p∗)
µ(c∗,p∗) +

∥δ∥1

d·µ(c∗,p∗) − 1
)
|c∗j − p∗j |

1− ϵ
∥v∥|p∗

j |
(82)

=
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
) |c∗j − p∗j |∥v∥|p∗j |

∥v∥|p∗j | − ϵ
(83)

On the other hand, if ∆KL(p∗)vj+∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

>
ϵ |vj |
∥v∥2

, then we have:

|ĉj − c∗j | >
∣∣∣∆KL(p∗)vj + ∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

∣∣∣
=

∆KL(p∗)vj + ∥v∥2
√

−∆KL(p∗)2 + ϵ2∥v∥22
∥v∥22

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

=
∆KL(p∗)vj

∥v∥22
+

∥v∥2
√

−∆KL(p∗)2 + ϵ2∥v∥22
∥v∥22

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |
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=
∆KL(p∗)(ĉj − c∗j )

∥v∥22p∗j
+

∥v∥2
√

−∆KL(p∗)2 + ϵ2∥v∥22
∥v∥22

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

=
∆KL(p∗)|ĉj − c∗j |
∥v∥22p∗jsgn(ĉj − c∗j )

+
∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

Moving all term containing |ĉj − c∗j | to the left-hand-side:

|ĉj − c∗j | >
∥v∥2

√
−∆KL(p∗)2+ϵ2∥v∥2

2

∥v∥2
2

+
(

µ(ĉ,p∗)
µ(c∗,p∗) +

∥δ∥1

d·µ(c∗,p∗) − 1
)
|c∗j − p∗j |

1− ∆KL(p∗)
∥v∥2

2p
∗
j sgn(ĉj−c∗j )

=

(
∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

)

·
∥v∥22p∗jsgn(ĉj − c∗j )

∥v∥22p∗jsgn(ĉj − c∗j )−∆KL(p∗)

=

(
∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22
+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
)
|c∗j − p∗j |

)

·
∥v∥22p∗j

∥v∥22p∗j −∆KL(p∗)sgn(ĉj − c∗j )

=
p∗j∥v∥2

√
−∆KL(p∗)2 + ϵ2∥v∥22

∥v∥22p∗j −∆KL(p∗)sgn(ĉj − c∗j )
(84)

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
) |c∗j − p∗j |∥v∥22|p∗j |
∥v∥22p∗j −∆KL(p∗)sgn(ĉj − c∗j )

(85)

Combining Equation 82, Equation 84, we can have:

|ĉj − c∗j | > max

{( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
) |c∗j − p∗j |∥v∥2|p∗j |

∥v∥2|p∗j | − ϵ
,

p∗j∥v∥2
√

−∆KL(p∗)2 + ϵ2∥v∥22
∥v∥22p∗j −∆KL(p∗)sgn(ĉj − c∗j )

+
( µ(ĉ,p∗)

µ(c∗,p∗)
+

∥δ∥1
d · µ(c∗,p∗)

− 1
) |c∗j − p∗j |∥v∥22|p∗j |
∥v∥22p∗j −∆KL(p∗)sgn(ĉj − c∗j )

}
The Theorem holds by setting the threshold Γ(ϵ) to the right hand side of the inequality above.
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