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ABSTRACT

Vision-language models (VLMs) such as CLIP face significant challenges in con-
tinual learning (CL), where they must retain both pre-trained and incremental
knowledge. Existing methods often rely on reference datasets or domain discrimi-
nators, leading to high overhead or limited generalization. Moreover, the semantic
gap between modalities hinders effective alignment. While prototypes can partially
mitigate this issue, they introduce new challenges: 1) inconsistent prototype fidelity
across classes can impede modality fusion and fine-grained alignment, and 2)
prototype separability degrades as tasks accumulate in CL. To tackle these, we
propose a residual prototype coupled with uncertainty-aware fusion to achieve
consistent CLIP alignment. Class-wise prototypes derived from the backbone
capture task-specific distributions, supporting both knowledge retention and gener-
alization. Residual prototypes then refine these class representations, mitigating
fidelity inconsistency and preserving cross-task separability. In parallel, Bayesian
uncertainty-aware estimation and fusion draws on the complementarity between vi-
sual prototypes and textual descriptions to dynamically balance multiple objectives,
effectively promoting more robust modality fusion and unbiased semantic align-
ment. Extensive experiments across challenging CL scenarios demonstrate that our
method outperforms state-of-the-art approaches, including strong rehearsal-based
baselines, across key metrics.

1 INTRODUCTION

Existing Al systems are typically built on the assumption of static data distributions and optimize
model parameters by minimizing a predefined loss function. However, this assumption breaks down
in real-world scenarios where data continuously evolves. Continual learning (CL) has emerged
as a prominent solution, requiring models to adapt dynamically to sequential data stream while
maintaining performance comparable to joint training on all tasks. Yet, this process often leads to
catastrophic forgetting, where knowledge learned from previous is overwritten or distorted (Wang
et al.} 2024b). To mitigate this, numerous CL methods have been proposed, focusing on stabilizing
parameter updates (Kirkpatrick et al.,2017;|Li & Hoiem, |2017; | Qiao et al.,|2023). Recently, with
increasing interest in pre-trained models, enabling CL in vision-language models (VLMs) such
as CLIP (Jia et al., 2022) has posed new challenges (Yu et al., [2024a). On one hand, achieving
effective cross-modal alignment is inherently difficult (Liang et al., [2022; [Wang et al., | 2024a; Zhu
et al., 2024; Zhou et al.,[2025b)); on the other hand, VLMs must incrementally acquire and retain
domain-specific knowledge while simultaneously preserving the general knowledge obtained during
pre-training (Zheng et al., [2023} [Yu et al., [2024b; (Xu et al., [2024)).

In CL, CLIP often acts as a source of prior knowledge, offering strong pre-trained representations
that are biased toward the original training domains, which limits incremental adaptation and efficient
knowledge transfer. ZSCL (Zheng et al.| 2023) leverage extra reference datasets and a dual-CLIP
setup — one trainable and one frozen — to transfer both pre-trained and incremental knowledge through
distillation or related mechanisms (L1 & Hoiem, [2017; |Wortsman et al., [2022)), as illustrated in
Figure[Ial Obviously, such methods incur substantial computational and storage overhead. MoE-
Adapter (Yu et al.| 2024b) and RAIL (Xu et al.,|2024) represent two typical adapter-based methods
(Figure [Ib). MoE-Adapter employs an adapter-based mixture-of-experts architecture to isolate
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Figure 1: Comparison of different CL methods for CLIP. (a) ZSCL incur high overhead by fine-tuning
the whole CLIP with reference data. (b) Adapter-based methods fail to exploit incremental knowledge
and are limited by the modality gap. (c) Our method employs excel in both domain generalization
and cross-modal alignment.

parameter across domains and further trains a domain discriminator using reference datasets to retain
zero-shot performance. Nonetheless, it still relies on external data and fails to exploit incrementally
acquired knowledge to improve unseen domain generalization. RAIL adopts a training-free framework
based on static ridge regression, inherently limiting knowledge transfer from previously seen tasks
(domains). Moreover, it heavily depends on the quality of the representation space. As a result,
the computational burden escalates as tasks accumulate, and performance tends to degrade when
handling large-scale datasets.

Beyond these, the semantic gap between modalities hinders effective alignment, constraining the
performance upper bound. In practice, visual prototypes abstract complex, low-level visual signals
into stable fine-grained representations, thereby partially bridging this gap. Methods like Tip-
Adapter (Zhang et al., 2021), PROOF (Zhou et al. 2025b)), and LADA (Luo et al., 2025) either
statically bias toward or simply average certain semantic information. However, visual and textual
semantics often provide complementary representations, making it difficult to dynamically estimate
their reliability in realistic CL. In addition, prototype fidelity across classes is sensitive to data scale
and quality as well as CLIP biased toward the pre-trained domains. Prototype separability, meanwhile,
degrades as tasks accumulate in CL, leading to prototype interference (L1 et al.,|2024)). Together, these
factors impede modality fusion and fine-grained alignment, exacerbating the difficulty of estimating
the uncertainty of different semantics.

In this work, we introduce a residual prototype coupled with uncertainty-aware fusion to enable
continual learning of CLIP without rehearsal, as illustrated in Figure[Ic| Class-wise prototypes and
task-specific prompts are used to model task distributions and capture task-wise semantics, while
prototypes from seen domains are further leveraged to adaptively integrate incremental prompts,
facilitating generalization to unseen domains. To ensure consistent fidelity and discriminability of
prototypes, residual prototypes independently refine class representations, which preserves intra-
modality consistency and supports more reliable integration of visual and textual semantics through
attention. Building on this, we introduce Bayesian uncertainty-aware estimation and fusion to
dynamically balance the reliability of different semantic sources. Unlike static fusion, this enables
adaptive fusion of complementary semantics, thereby mitigating biased modality contributions and
ensuring more consistent cross-modal alignment in CL. The contributions are summarized as follows:

* We propose a rehearsal-free CL method for CLIP that achieves consistent cross-modal
alignment while supporting better generalization to unseen domains.

* We leverage prototypes and task-specific prompts to dynamically aggregate knowledge from
seen domains, enhancing knowledge retention and generalization to unseen domains.

» We refine class representations via residual prototypes and leverage a semantic uncertainty
perspective through Bayesian estimation and fusion to synergistically balance multiple
semantics, promoting robust modality fusion and unbiased cross-modal alignment.

* We conduct extensive experiments demonstrating that our method consistently achieves
state-of-the-art results across challenging continual learning settings.
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2 RELATED WORK

Continual Learning. Previous CL approaches have focused mainly on addressing Task-Incremental
Learning (TIL) (Ge et al.,|2023)), Domain-Incremental Learning (DIL) (Wang et al., 2022a; 2024c),
and Class-Incremental Learning (CIL) (Li & Hoiem| 2017;|Wang et al.,|2023}; [Zhou et al., [2025b)).
Among them, CIL is a more challenging setting where task identity is not provided during the
inference phase, and the number of classes increases as tasks arrive. Replay-based methods (Rebuffi
et al,|2017; Van de Ven et al.,[2020)) store or regenerate a portion of historical data to recover past
distributions. Regularization-based methods (Kirkpatrick et al., [2017}; [Zheng et al.| 2023)) constrain
important parameters to reduce forgetting. Distillation-based methods (L1 & Hoiem,|[2017; Ding et al.|
2022) distill knowledge from previous models to facilitate knowledge transfer. Architecture-based
methods (Yu et al.| [2024b}; Tang et al.l |2024) dynamically expand network to isolate parameters.
Recently, |Zheng et al.|(2023) and [Xu et al.| (2024)) proposed two emerging CL settings: Multi-
Domain Task-Incremental Learning (MTIL) and Cross-Domain Task-Agnostic Incremental Learning
(X-TAIL). Both aim to preserve the pre-trained and incremental knowledge when continually adapting
to downstream tasks. Similarly to TIL, MTIL relies on task identity to construct the test label space,
while X-TAIL includes both seen and novel classes, thereby better reflecting real-world conditions.

Parameter-Efficient Fine-Tuning. PEFT methods were initially proposed in large language models
(LLMs) to enable rapid adaptation to downstream tasks with reduced computational overhead (L1
& Liangl 2021} [Lester et al., [2021; |L1u et al., 2021; Hu et al., 2022}, later extending to the visual
and multi-modal domains (Zhou et al., 2022b} Khattak et al.l 2023} |Gao et al., [2024)). Recently,
prompt-based methods have garnered increasing attention as interest grows in CL with pre-trained
models. L2P (Wang et al.} 2022b) and CODA-Prompt (Smith et al., [2023) introduces a prompt pool
that selects or computes task-relevant prompts conditioned on image inputs. AttriCLIP (Wang et al.|
2023)) and DIKI (Tang et al., 2024} further extend this to CLIP (Radford et al., 2021a). Essentially,
Prompt tuning preserves the backbone architecture while injecting a small number of learnable
parameters to steer internal representations toward task-specific subspaces. In VLMs, however, its
effectiveness hinges on the semantic richness of textual descriptions (Pratt et al., 2023). When such
semantics are insufficient, cross-modal alignment can be adversely affected.

Prototypes in Continual Learning. In human cognition, we typically abstract and categorize
information around conceptual centers rather than memorizing all instances. Prototypes reflect
this principle well. Initially, |Snell et al.| (2017) leveraged prototypes to tackle few- and zero-shot
classification. In CL, well-formed prototypes are promising as they can capture class-wise semantics
within a shared representation space. iCaRL (Rebutffi et al., [2017) constructs prototypes from a
few representative samples stored in memory, and replaces the classifier with a nearest-class-mean
strategy to alleviate forgetting caused by parameter coupling. PROOF (Zhou et al.| 2025b)) further
introduces expandable projection to incorporate new concepts while preserving old knowledge with
rehearsal, and leverages a fusion module that exploits cross-modal information. CPP (Li et al., 2024)
employ prototypes as anchors in the latent task space to prevent prototype interference across tasks,
and LADA (Luo et al., [2025) further presents a label-specific CLIP adapter that does not require
parameter selection.

3 METHODOLOGY

3.1 PRELIMINARIES

Problem Setting. In a typical CL setting, the model sequentially adapts a series of tasks. For each
task t, there is an associated dataset D* = {(zt, y!)} B tl, where ! € R™ denotes an image sample,

79 1=

y! represents its corresponding class label and B! indicates the number of samples in task ¢. The
category set for task ¢ is defined as the set of category names corresponding to |C?| distinct labels, i.e.,

Ct = {cf}lcztl‘ The complete category set across all tasks is C = UlNzthi = C*°°" U CUm5ee" with
N; total tasks. While MTIL defines the test label space as the domain-specific category subset C?,
X-TAIL evaluates the model over the full category set C without any domain identity hints.
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Figure 2: Overview of the proposed method. (a) Training Phase: For each task ¢, class prototypes
are stored in a prototype library. Task-specific prompts generate image and text features ( ),
which are concatenated with the refined prototypes ( ) and then fed into the fusion module.
Modality-wise uncertainty-aware estimation is learned as in Eq. @ @( ). (b) Inference Phase:
For unseen domains, dynamic aggregation ( ) integrate pre-trained and incremental knowledge
via prototypes, as described in Eq.[5] [6] For seen domains, modality-wise uncertainty-aware fusion
incorporates the reliable semantic sources, as defined in Eq. ﬂ_?F ).

CLIP Model. CLIP employs a dual-encoder architecture consisting of an image encoder fy(-) and
a text encoder g4(-), which project visual and textual modalities into a shared embedding space:

RP1 — R4, RPT — R?. Specifically, given an input image z, the image encoder extract the visual
feature I = fy(x). On the textual side, each category in C is inserted into one or more predefined

templates (e.g., a photo of a [CLASS NAME].) to form a set of textual inputs W = {wl}‘gl The
posterior probability of zero-shot is then computed as:

exp (cos (1, gg (wi)) /7)

S exp (cos (I, gy (w;)) /1)

where cos(+, -) denotes the cosine similarity, and 7 is a temperature scaling parameter.

Dzs (yz | .%‘) = (1)

Prompt Learning. Prompt tuning (Khattak et al. [2023) can adapt to diverse downstream tasks,
thereby effectively capturing task-wise semantics. Thus, we introduce task-specific learnable prompts
P! = {(P},, P},)}i=y . where P}, € Rlv*dr and P}, € RE»*97 are inserted into the input
embeddlngs of the i-th transformer block in the i image and text encoders, respectively. L, is the
prompt length, L is the total number of transformer layers, d; and dr are the dimensions of the image
and text token. Let B;; and By denote the [-th transformer block of the image and text encoders,
respectively. For the first L layers (I = 1, ..., L), P* are injected before each layer as follows:

let, - Vi) = Bri ([ei-1, P11, Viea]) s [ 8] = Bry ([Pry_1, Si-1]) - 2

For subsequent layers, the prompts are not updated. Here, ¢; € R'*P7 is the class token, V €
REL1%dr is the fixed image tokens, and § € RL7X47 s the fixed text tokens, with L; and Ly
denoting their respective token lengths. As shown in Figure 2] ( ), image and text features are
then computed as I = fy(z; Pf) and T = g,(W"; PL), where W' = {w;} M|, and M* = 3" |C7|
is the total number of seen classes. The probability follows Eq.[I]and is computed under task-wise
semantics as:

exp (cos (I,T;) /)
S M exp (cos (I,T) /7)

Pt (¥i | ) = 3

4
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3.2 FROM TASK-SPECIFIC TO CROSS-TASK PROMPTS: RETHINKING CLIP SEMANTIC
ALIGNMENT

Leveraging the strong representation of pre-trained models, approaches like L2P (Wang et al.| [2022b)
and DIKI (Tang et al.l |2024) exploit it to identify a task-specific subspace. In a similar spirit,
we compute class-wise visual prototypes before training to preserve task distribution over time,
formulated as Z% = ﬁzxebg fo(x), where DY, denotes all samples belonging to class c in task ¢.

These prototypes are then stored in a prototype library P = {Z7 € Rl Xd}N *. This ensures the
representation of each task remains accurate and discriminative regardless of the data scale.

During inference, we first identify the input’s domain with CLIP. If the domain is seen, we extract the
image feature g and identify the most likely task by measuring similarity with historical prototypes:
t= argmax {COS (q, Zﬁ)} , 4
te{l,...,N.}, ceCt
Theorem 1 (Weighted aggregation outperforms single prompt in expectation). Assuming that model’s
output probability p (x; P) w.r.t. P is an approximately concave function, Jensen’s inequality implies
that weighted prompt aggregation yields a higher expected probability than any individual one:

p (x;f’) >3 p(a; PY) >l -p(;PT), j=argmaxjc {97}

If the domain is unseen, selecting an optimal prompt P becomes nontrivial since prompts P are not
explicitly optimized for unseen domains. Empirically, prompt tuning activates and modulates internal
attention patterns, enabling the model to capture more domain-aligned inductive biases without
significantly degrading performance on novel classes (Zhou et al.,[2022a}b). To leverage knowledge
from both seen tasks and pre-trained domains, we propose to aggregate all previously learned prompts,
each weighted by a similarity score (" , to form a composite representation (Theorem , as shown in

Figure 2] ( ).

. ‘Cq| Zt . t . )

Lpl _ tzc C?OS(qa c) , P= sz . P%. (5)
i cos(a, 2 :

Meanwhile, we introduce a hyperparameter o € (0, 1) to balance the generalization ability of the

original model (o« — 1) and the domain adaptation of the fine-tuned model (o« — 0):

ptransfer(x) = Q- st(ﬁC) + (]- - Oé) 'ppt(x; 13) (6)

Visual prototypes vs. textual features: which contains
richer semantic information? To investigate this, we Aircraft
adopt a train-free baseline, nearest-class-mean (NCM) (Re+ caltech101
buffi et al.| [2017)), as a naive classifier:

g = argmax {cos(q,Z,)}. @)

ye{l,...,|IC|}
We compare its classification accuracy with CLIP zero-
shot ability in the X-TAIL setting. As shown in Figure
the former outperforms the latter on most domains, even
in few-shot scenarios, particularly when the original class
descriptions are insufficient or the domains are highly fine-
grained or professional, such as Aircraft (Maji et al., 2013
and EuroSAT (Helber et al. [2019). Theoretically, text
features have the potential to encode rich semantic knowl-
edge via LLMs, but this advantage often relies on carefully
designed prompts or external knowledge injection (Pratt
et al.} 2023} [Yang et al.| 2023} |Zhou et al., 2025a), provid-
ing semantic information more aligned with visual tasks.  Fjgure 3: Cross-domain accuracy of
CLIP zero-shot vs. NCM classifiers un-

3.3 RESIDUAL PROTOTYPES FOR CROSS-MODAL der different few-shot settings.
FusioN

= = Zero-Shot 16-Shot NCM
5-Shot NCM Full-Shot NCM

In practice, visual prototypes and textual descriptions provide complementary and diverse semantics:
the former encapsulates fine-grained visual characteristics grounded in real data, while the latter



Under review as a conference paper at ICLR 2026

conveys abstract, high-level knowledge from language, and their relative reliability may vary across
scenarios. Intuitively, their dynamic integration can offer a potential optimization path for cross-
modal alignment. Although PROOF (Zhou et al.l 2025b)) adopts a cross-modal fusion that enables
mutual semantic exchange between modalities, such methods typically assume consistent prototype
fidelity, which rarely holds in CL: class-wise visual prototypes vary with data scale, quality and
backbone’s pre-training bias, and their separability degrades as tasks accumulate, leading to prototype
interference. To address this, we introduce class-wise learnable residual prototypes that refine the
original class representations on a token-wise basis:

Z™ = Z + R, (8)

where R is initialized as 0 and frozen for past tasks. During training, residual prototypes from
previous tasks are kept frozen as shown in Figure 2] (b!u¢). This lightweight design improves intra-
modality consistency, thereby eliminating intra-modal bias and supporting more reliable integration
of visual and textual semantics through cross-modal fusion. Moreover, residual prototypes implicitly
encode task-specific knowledge, enabling us to employ a single task-shared attention module without
rehearsal, while still mitigating forgetting in CL.

Now, in task ¢, the inputs consist of image features I € R1*? and text features T € RM' %4, both
containing task-specific semantics, together with refined prototypes Z*'¢ € RM'xd These are
concatenated to form the query Q. For constructing key and value, we introduce cross-task fusion
prompts Pr € RXLr)xd to facilitate interaction between cross-modal features while efficiently
integrating accumulated semantic information across tasks, reducing computational overhead. Ac-
cordingly, K and V are formed by concatenating I and Pr. They are subsequently processed by a
task-shared cross-attention module.

X = Attention (Q, K,V), )
where X = [f T, Z] corresponds to the enhanced image features, text features, and prototypes,

respectively. Following Eq.[3] we compute probabilities under textual and visual semantic objectives
as:

exp (COS (f, T,) /7') exp (COS (fa Zi) /7')

P i e (eos (18) /7). T S e (e (1.25) /7).

(10)

Finally, to futher mitigate forgetting in the task-shared module, we use Elastic Weight Consolidation
(EWO) (Kirkpatrick et al.,2017), which constrains updates to parameters deemed important.

3.4 BAYESIAN UNCERTAINTY-AWARE ESTIMATION FOR CONSISTENT FUSION

Now, we obtain three semantic objectives — pp, pii, and p;, — with corresponding loss functions:

N N N
1 1 1

Ly = N Zi:Ingpl (yi | i), Lo= N zi:lngit (yi | @), Lg= N zi:lngip (yi | @)

(11)

Previous methods often assume equal reliability across modalities, but in practice, the reliability of
different semantic sources varies. To dynamically balance inter-modal contributions, we leverage
the intra-modality consistency provided by residual prototypes and draw inspiration from Bayesian
uncertainty theory (Kendall et al.l 2018)), estimating modality-wise homoscedastic uncertainty. As
illustrated in Figure 2 (i11%), for each task ¢, we learn an uncertainty coefficient o = {ot, 0%, 0%}
to adaptively modulate the contribution of each semantic objective to the overall objective Ligy-
Incorporating EWC with the penalty coefficient A, the final loss is defined as L.
3

1 1
Lot =5 foryE e +log o L= Liow + A+ Lewe (12)
k k

Theorem 2 (Uncertainty Estimation). Assume consistent observation noise between training and test-
ing. Let the true logit z ~ N (o, 08), and suppose each of the K semantic objectives independently
observes a noisy version z, ~ N (z, 0%). Under a uniform prior, the MAP estimate of z reduces to:

K K K
10/08 + D ke /0% Dr 21/} ~ Zik

5= ks ~ ;.
1/og + Yy 1/0}

K
P 1/‘71% =1 %k
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Table 1: Comparison of different CL methods on 16-shot X-TAIL for each domain in terms of
Transfer, Average, and Last scores (%). The best and second results are highlighted with bold and
underline styles, respectively. RAIL" includes both Primal- and Dual-RAIL, as they adopt the same
domain discriminator technique. Dual-RAILT stores and replays all historical data.

= = ~ P

2 = e S = 2] Z )

Method 2 ¢ B & & & § 2 & 3 :z
Zero-shot 248 739 375 520 71.0 880 425 888 640 602 60.3
LwF (Li & Hoiem/[2017) - 723 330 272 515 769 306 744 353 546 506
iCaRL (Rebutfi et al.|[2017) - 540 248 153 407 652 302 722 17.6 482 409
"y WiSE-FT (Wortsman et al.[[2022) - 69.6 317 400 478 752 204 750 388 545 503
a; ZSCL (Zheng et al.[[2023) - 751 38,5 442 665 874 275 872 586 627 60.9
g MoE-Adapter (Yu et al.|[2024b) - 739 349 520 694 88.0 434 888 64.0 60.2 63.8
= RAIL" (Xu et al.| 2024) - 739 375 520 71.0 88.0 425 88.8 64.0 60.2 64.2
Ours - 757 372 521 711 883 437 892 637 629 649
LwF (Li & Hoiem|[2017) 299 843 506 479 694 752 576 752 412 563 588
iCaRL (Rebutt et al.|[2017) 43.1 738 463 356 60.1 679 568 769 29.0 503 54.0
© WiSE-FT (Wortsman et al.|[2022) 44.8 850 557 67.5 72,6 788 512 793 472 564 639
g ZSCL (Zheng et al.|[2023) 40.1 782 568 718 824 884 504 885 633 639 684
5 MoE-Adapter (Yu et al.|[2024b) 446 820 619 520 851 87.8 642 888 674 614 695
E Primal-RAIL (Xu et al.|[2024) 453 87.8 581 762 86.0 89.0 624 899 674 615 724
Dual-RAIL' (Xu et al.][2024) 462 879 590 768 862 891 629 899 67.6 6.6 727
Ours 49.6 88.0 600 787 867 884 639 90.5 67.6 640 73.7
LwF (Li & Hoiem|[2017) 251 819 535 662 804 766 979 810 623 721 69.7
iCaRL (Rebutti et al.|[2017) 434 773 531 454 788 76,5 975 87.1 742 692 703
WiISE-FT (Wortsman et al.|[2022) 364 84.5 574 657 880 81.8 983 885 789 731 753
- ZSCL (Zheng et al.[[2023) 36.0 79.7 59.7 793 909 895 849 91.1 81.8 747 768
3 MoE-Adapter (Yu et al.|[2024b) 444 814 686 520 951 877 952 889 8l.1 728 76.7
Primal-RAIL (Xu et al.|[2024) 446 94.1 680 864 955 90.1 913 926 809 735 81.7
Dual-RAIL" (Xu et al.] 2024) 46.1 948 70.2 882 963 902 932 92.6 822 739 828
Ours 49.1 929 700 90.7 97.2 885 939 935 83.0 742 833

Finally, grounded on Theorem 2| we design a modality-wise probabilistic fusion mechanism that
incorporates all semantic objectives in a uncertainty-aware manner during inference.
cos(I,Ty)  cos(I,T;) cos(I,Z;) exp(§;)
S; = t\2 t\2 t\2 ’ pfused(yi ‘ l‘) - = <~ -
(o1) (03) (o3) >_;exp(5;)

This facilitates adaptive fusion of complementary semantics, mitigating biased influences from
individual modalities and promoting more consistent CLIP alignment in CL.

(13)

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets. Following |Xu et al.|(2024)), we evaluate our method under two challenging continual
learning scenarios: MTIL and X-TAIL. In the MTIL setting, 11 datasets are involved in alphabetical
order: Aircraft (Maji et al.,2013)), Caltech101 (Fei-Fei et al.|[2004), CIFAR100 (Krizhevsky et al.|
2009), DTD (Cimpoi et al., [2014), EuroSAT (Helber et al.,|2019), Flowers (Nilsback & Zisserman,
2008)), Food (Bossard et al., 2014), MNIST (Deng}, 2012), OxfordPet (Parkhi et al.,|2012)), Stanford-
Cars (Krause et al.}2013)), and SUN397 (Xiao et al.| 2010), resulting in 1200 classes. For X-TAIL,
we follow |Xu et al.| (2024} and exclude CIFAR100 to reduce domain overlap with other datasets,
resulting in 1100 classes. We construct few-shot variants by sampling 5-shot training subsets for
MTIL and 16-shot for X-TAIL, while retaining the full test sets.

Evaluation Metrics. In line with prior works (Xu et al., 2024), we leverage three metrics, namely
Transfer, Average, and Last, to evalute our method. Transfer measures the zero-shot transfer perfor-
mance of the model on unseen domains. Last assesses the model’s ability to retain knowledge from
all previously learned tasks. Average represents the cumulative average of Transfer and Last metrics
across all test domains during training process.
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Table 2: Comparison of different CL methods on 5-shot MTIL for each domain in terms of Transfer,
Average, and Last scores (%). The best and second results are highlighted with bold and underline
styles, respectively.

S 8 »

g 5 = < @ = S &

5 g < a % g - 2 ) . 2 s

2 = [ = =} Z 2 o

B < =1 = = 2 3 > s =) >

Method < O @) =) m = = = A O 7] <
Zero-shot 248 935 684 429 549 710 885 594 89.1 640 616 653
LwF (Li & Hoiem/|2017) - 86.8 64.6 412 440 560 77.1 614 754 368 535 59.7
iCaRL (Rebutfi et al.[[2017) - 66.2 456 327 277 450 66.1 469 78.0 23,6 492 48.1
"y WiSE-FT (Wortsman et al.|[2022) - 86.4 623 423 365 527 78.6 629 779 435 587 60.2
ﬁ ZSCL (Zheng et al.||2023) - 924 66.7 445 473 668 870 633 857 562 622 672
g MoE-Adapter (Yu et al.[|[2024b) - 93.5 684 41.8 473 683 885 604 89.1 640 61.6 68.3
& RAIL (Xu et al.[[2024) - 935 684 429 549 710 885 594 89.1 640 616 693
Ours - 941 694 437 554 713 89.0 578 895 64.0 64.1 69.8
LwF (Li & Hoiem||2017) 222 902 613 504 610 669 728 73.8 750 409 547 60.8
iCaRL (Rebutfi et al.[[2017) 252 849 512 46.7 505 586 670 64.1 803 304 508 554
o WiSE-FT (Wortsman et al.|[2022) 32.3 928 61.7 56.0 632 690 788 754 80.3 477 596 652
g ZSCL (Zheng et al.||2023) 279 933 73.0 573 674 79.1 872 743 86.5 589 63.1 69.8
5  MoE-Adapter (Yu et al.|[2024b) 323 953 748 61.2 428 83.0 882 604 89.1 645 623 68.5
35 Primal-RAIL (Xu et al./[2024) 344 955 676 571 723 837 887 664 894 657 623 712
Dual-RAIL (Xu et al.]|2024} 343 953 676 579 727 764 88.6 674 892 657 623 70.7
Ours 385 956 743 605 723 845 883 683 899 664 649 73.0
LwF (Li & Hoiem/[2017) 194 88.6 526 46.8 659 70.1 703 952 739 585 671 644
iCaRL (Rebufthi et al.||2017) 265 863 479 50.5 558 663 707 934 858 602 667 64.6
WiSE-FT (Wortsman et al.|[2022) 30.2 93.0 59.6 58.7 73.6 820 79.1 97.1 864 656 683 721
- ZSCL (Zheng et al.[[2023) 243 915 723 599 741 868 873 93.0 884 717 719 747
5 MoE-Adapter (Yu et al.[|[2024b) 323 955 762 685 404 952 879 604 89.1 669 69.1 71.0
Primal-RAIL (Xu et al.[[2024) 347 954 674 629 818 941 89.0 775 903 73.6 694 76.0
Dual-RAIL (Xu et al.|[2024) 350 953 675 6377 827 948 887 806 899 737 689 764
Ours 386 958 756 67.1 826 956 876 877 90.8 772 731 79.2

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Cross-domain task-agnostic incremental learning. Table[I]compares our method with existing
baselines in the 16-shot X-TAIL setting across three evaluation metrics. Here, we refer to both under
the Transfer metric simply as RAIL because Primal- and Dual-RAIL adopt the same domain discrim-
inator. Notably, Dual-RAIL, the current state-of-the-art, stores all historical data representations and
replay them during new task training. We consider this a strong but unfair baseline and include it for
reference. See Appendix [A.7]for more details.

Our method achieves improvements over Primal-

RAIL by +0.7%, +1.3%, and +1.6% on Transfer, Table 3: Comparison of different CL methods in
Average, and Last, respectively. Even compared  fy]]-shot X-TAIL setting.

to the strong baseline Dual-RAIL, we still outper-

form it by +1.0% on Average and +0.5% on Last. Method Transfer ~Average Last Params. GPU Time

Additionally, the improvement on Transfer indi-  WiSE-FT 453 554 753 1496M  32.120MiB  107m 125

s . ZSCL 62.5 71.2 80.5 149.6M 49,778MiB  446m Is
cates that our dynamic aggregation better captures — MoE-Adapter 601 725 827 59.8M  28486MiB  15Im 55
. . . . . Primal-RAIL 64.2 734 82.1 24.18M N/A 6m 57s
inductive biases from historical tasks and more ef-  ous 648 758 874 422M 27048MiB  25m2ls

fectively leverages pre-trained knowledge, rather
than relying solely on CLIP’s zero-shot capacity. Moreover, CLIP tends to misclassify seen domains
as unseen, while our strategy alleviates this issue, with detailed analysis reported in Appendix

Significant gains are observed in specific domains such as Aircraft, EuroSAT and SUN397, where
ours surpass Primal-RAIL by +4.3%, +2.5% and +2.5% on Average, respectively. Domains like
Aircraft, which involve fine-grained categories (e.g., 707-320), textual descriptions provide limited
semantic detail and may be confounded by interference from other classes. In contrast, refined
visual prototypes can capture more nuanced semantics, enabling consistent cross-modal alignment,
particularly in scenarios where fine-grained distinctions are critical.

Table [3|illustrates the performance of our method in the full-shot X-TAIL setting. Ours achieves
notable improvements in Transfer, Average, and Last, outperforming RAIL by +0.6%, +2.4%, and
+5.3%, respectively. The contribution of residual prototypes diminishes as more samples improve
prototype fidelity (Table ) but becomes more significant in the 16-shot settings (Table[5). Despite its
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higher training time compared to RAIL, due to RAIL’s training-free, single-epoch ridge regression
design, our method consistently outperforms RAIL in few- and full-shot X-TAIL settings, especially
under full-shot conditions where RAIL fails. Lastly, our method uses significantly fewer parameters
per task (4.22M + 515 |C?| vs. RAIL’s 15k |C?|), ensuring greater efficiency when |Ct| > 4.

Multi-Task incremental learning. Furthermore, in the 5-shot MTIL setting, our method is reduced
to using only the prototypes and classes included in the current domain via the domain identity.
Comparing with previous baselines, ours also outperforms others, achieving +0.5%, +1.8%, and
+3.2% improvements over Primal-RAIL in Transfer, Average, and Last, respectively, and +0.5%,
+2.3%, and +2.8% improvements over Dual-RAIL, as shown in Table@

4.3 ABLATION STUDIES

To better understand the contribution of each component, we conduct a series of ablation studies as
shown in Table4] We begin with a naive continual prompt tuning (PT) baseline and progressively
introduce modules. (1) +CA: The cross-attention module (CA) performs static fusion of cross-modal
information. (2) +DA: Incorporating the dynamic aggregation (DA) yields performance gains on un-
seen domains by leveraging knowledge from learned tasks. (3) +1P: Introducing residual prototypes
(RP) ensures consistent fidelity and discriminability of prototype. (4) + : Applying uncertainty-
aware fusion (UaF) adaptively integrates complementary semantics and promotes unbiased semantic
alignment. (5) +EWC: Applying EWC regularization to the CA.

Task Semantics Visual semantics Textual semantics

Table 4: Ablation studies on the contribution of 10

202 189 337 236 18.4

each component in full-shot X-TAIL setting. ~ 5 326 236 321 333 272 28.6
9
§ o0 50.4
Method | EWC | Transfer ~Average Last B 59.6 532 35.7 477 360 33.4 415 56.0 396
CLIP | - - - - | o642 60.3 603 g 40
PT 642 734 843 8
A v - - - 64.9 737 843 © 20 Jop 307 235 317 287 319 333 314 550 318
w PT&CA i , j gig ;i; ggg R T o W oo
. : . o
v VR 64.9 753 865
j j j p gjg Zgg ggj Figure 4: Relative contributions of different se-
- - - mantic objectives in full-shot X-TAIL setting.
i i ransfer .6%, i izati
As shown in Table improves 77 by +0.6%, demonstrating better generalization to
unseen domains. Independently, P improves Last by +0.3%, while improves Last by +1.0%.

Together, they synergistically achieve a 1.9% improvement on Last, an additional 0.6% gain, proving
their interdependence. Moreover, even without employing EWC, our method maintains a strong
advantage, outperforming Primal-RAIL on Last by 4.3%. In the 16-shot setting, the benefit of
EWC further diminishes (+0.1%, Table E]), indicating that our method inherently suffers little from
catastrophic forgetting. Figure[]illustrates the relative contributions of different semantics across
domains. As previously discussed, due to insufficient category-wise semantics in domains like
Aircraft, prompt tuning struggles to bridge the modality gap, leading the model to rely more heavily
on visual semantics. While domains like Food exhibit richer textual semantics (Figure [3)), it still
shows a preference for visual semantics. Similar trends are observed across other domains, where
prototype semantics contribute more significantly, suggesting its lower uncertainty according to
Eq. Although this may be attributed to the residual prototypes, we argue that, visual semantics
inherently provide more informative semantics unless textual semantics are carefully crafted.

5 CONCLUSION

In this work, we propose a rehearsal-free CL method for CLIP that achieves consistent cross-
modal alignment while supporting better generalization to unseen domains. The proposed dynamic
aggregation integrates incremental knowledge to enhance CLIP’s generalization to unseen domains.
Empirical results further suggest that integrating residual prototypes coupled with uncertainty-aware
fusion enables more robust modality fusion and effective alignment. Notably, our findings indicate that
fine-grained visual semantics provide more stable and informative guidance than textual semantics.
Extensive experiments under both MTIL and X-TAIL settings demonstrate that our method achieves
state-of-the-art performance while requiring significantly fewer parameters and no replay data.
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ETHICS STATEMENT

This work does not involve new human or animal subjects, personally identifiable data, or sensitive
content. All datasets used are publicly available and widely adopted in the community. We believe our
method does not raise additional ethical concerns beyond those of existing vision-language continual
learning research.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. The implementation
details of our proposed method, including datasets, training procedures and hyperparameter settings,
are provided in Section and Appendix Additional experimental results and ablation stud-
ies can be found in Appendix Theoretical results, including proofs of the main claims, are
presented in Appendix [A.3] [A.4] Furthermore, we provide an anonymous link to the source code
and instructions for reproducing all experiments: https://anonymous.4open.science/r/
RP-MSFusion—2777.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as general-purpose writing assistants to aid with
polishing the presentation and improving readability of the paper. LLMs were not involved in
research ideation, experimental design, implementation, or result analysis. All technical contributions,
experiments, and interpretations are the sole responsibility of the authors.

A.2 MORE EXPERIMENTAL DETAILS

A.2.1 DATASETS

In both the X-TAIL and MTIL settings, Order-I follows the alphabetical order of the dataset names.
The prompt templates for each dataset are designed as follows:

* Aircraft (Maji et al. [2013)): a photo of a {}, a type of aircrafft.
e Caltech101 (Fei-Fei et al.l 2004): a photo of a {}, a type of aircrafft.
« CIFAR100 (Krizhevsky et al.l [2009): a photo of a {}.

» DTD (Cimpoi et al., [2014): a photo of a {} texture.
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EuroSAT (Helber et al.l 2019): a centered satellite photo of { }.

Flowers (Nilsback & Zisserman), [2008): a photo of a {}, a type of flower.

* Food (Bossard et al.| 2014): a photo of a {}, a type of food.
e MNIST (Deng| 2012): a photo of the number: {}.
 OxfordPet (Parkhi et al.,2012): a photo of a {}, a type of pet.
* StanfordCars (Krause et al.,[2013): a photo of a {}, a type of car.
* SUN397 (Xiao et al'l 2010): a photo of a {}.

In line with (Yu et al.| 2024b)), Caltech101, EuroSAT, and SUN397 are split into training and test
sets using a random seed of 42, following an 80/20 ratio. For all other datasets, we directly utilize
the default train/test splits provided by the official PyTorch library. Additionally, for the X-TAIL
setting, we adopt the same random order as in (Xu et al.,|2024)), referred to as Order-II: StanfordCars,
Aircraft, OxfordPet, Food, SUN397, MNIST, Flowers, DTD, Caltech101, and EuroSAT.

A.2.2 EVALUATION METRICS

We provide detailed definitions of the three evaluation metrics Transfer, Average, and Last. Let ag
denote the accuracy on the i-th domain after the j-th task has been learned, where 1 < 4,5 < N and
N is the total number of tasks. Then the metrics for domain ¢ are defined as:

i—1
R
Transferi:m E al, 1=2,3,...,N

Jj=1

N
1 < (14)
Average; = N E al, i=1,2,...,N
j=1

Last; =dY, i=1,2,...,N

K2

A.2.3 IMPLEMENTATION DETAILS.

Similarly, we adopt CLIP with a ViT-B/16 (Radford et al., 202 1b) visual backbone and conduct all
experiments on a single NVIDIA A100 40GB GPU. For each experiment, a few-shot training set is
constructed by randomly sampling examples from each class using a fixed random seed of 42. The
model is trained for 10 epochs using SGD optimizer with a learning rate of 0.015 and a batch size of
64. For prompt tuning, we use a prompt length of 4 and insert prompts into 9 transformer layers. The
probability fusion hyperparameter « is set to 0.8. For multi-semantic fusion, we use a single-head
attention mechanism, and the fusion prompt length is also set to 4. The EWC coefficient is set to 400,
and the Fisher matrix is updated via exponential moving average.

A.3 THE ALGORITHM

We summarize the training and inference workflows of our method in Algorithm[T|and Algorithm 2]
respectively.
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Algorithm 1 Training Phase

Require: Training data D' = {(z!,y!)}2', and textual inputs W' = {w; }| for all seen classes in
task ¢; total number of tasks V;; frozen image encoder fy(-), text encoder gy (-)

Ensure: Optimized prompts P* = { P}, Pk, PL}, residual prototypes R', semantic fusion parame-
ters ®, and uncertainty coefficients o’

1: Initialize the multi-semantic fusion module ®

2: fort =1to N; do

3: Extract image features I = fp(X) forall X € D*

4 Compute class-wise prototypes Z* by averaging I within each class

5:  Initialize task-specific prompts P}, Pk, Pk

6 Initialize residual prototypes R! and uncertainty coefficients o' = {ot, 0%, ot}

7 for epoch = 1to F do

8 for mini-batch (X,Y) € D! do

9 Compute prompt-conditioned features: I = fo(X; Pf), T = g,(W"; P})

10: Compensate prototypes: Z (1) « Z(1:t) 1 R(1:t) > Eq. [
11: Compute enhanced features I, T', Z from I, T', Z11), P}lzt), and ® > Eq.
12: Obtain multi-semantic probability: py, pi., Pip > Eq.
13: Compute individual objectives L1, Lo, L3 > Eq. E]
14: Compute total loss Lo With uncertainty-aware weighting o > Eq.
15: Compute final loss: £ = L + A - LEwe > Eq.
16: Update P!, R?, ot, and ® via gradient descent

17: end for

18: end for
19: Update Fisher Information using EMA
20: end for

Algorithm 2 Inference phase

Require: Test data D' and textual inputs W = {w; } M, for all classes; frozen image encoder fy(-),
text encoder gy (+); current trained parameters Py = {PI(M), P;M), P}l‘t) }, R &, and
o(:); current calculated prototypes Z (1)

1: for z € D" do

2 Extract image feature I = fy(z), text features T = g4 (W)

3 Compute initial prediction § = argmax p,(x)

4: Compute similarity matrix S between I and Z (1)

5: if y € C%¢°™ then

6

7

8

9

Determine the most likely task ¢ via S > Eq. E]
Compute prompt-conditioned features: I = fy(X; Pf), T = gs(W P})
Compensate prototypes: Z1t) « Z(1:t) + R(1:t) > Eq. [§]
: Compute enhanced features f, T, Z from I1,T, ZM), P[S“), and ® > Eq. E
10: Compute final prediction with ot > Eq.
11: else
12: Aggregate historical prompts Pvias > Eq.
13: Compute prompt-conditioned features: I = fo(X; Py), T = g4(W; Pr)
14: Calculate final prediction via probability fusion > Eq.[0]
15: end if
16: end for

15
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A.4 PROOF OF THEOREMS

A.4.1 PROOF OF THEOREM[I]

Proof. The CLIP model aligns visual and textual representations through contrastive learning by
jointly optimizing image and text encoders. In this discussion, we focus specifically on the CLIP and,
for simplicity, assume that the prompt P are applied solely on the text encoder side.

Binary classification. For an input image feature v € R? and a prompt P, the text encoder
generates a text feature t(P) € R%. The output probability is:

p(z;P)=o0 (th(P)) ,

where o(2) = is the sigmoid function.

Fe=s
In prompt tuning, ¢(P) is linear or approximately linear:
t(P) = WP + b,
where W, € RY*™ and b, € R%. Then the logits become:
z=v t(P)~w'P+c,
with w = W, v and ¢ = v " b;. The second derivative of the sigmoid function o (z) is:
0"(2) = 0(2)(1 = 0(2))(1 = 20(2)).

In practice, the logit z in CLIP are typically positive due to the use of cosine similarity and a learnable
temperature parameter, which amplifies similarity between image and text embeddings. Thus, p(z; P)
is approximately concave in P within this regime.

Multi-class classification. In this task, the probability of class ¢ is given by:

e*e
pe(; P) = ———
C( ) Zj(zl ezj

where z; = vt;(P) and ¢, (P) is the text feature for class j from the prompt P.

The gradient of p. is:
K

- Opc Oz,
Vere=2 5. P

First-order derivatives of softmax:

apc‘: pc(l_pc)a k=c
azk —DPcPk, k 7é c
Derivative of z,, w.r.t. P:
6Zk
P = wg, Wi = WtTkv.
Final gradient:
K
Vppe = pe (wc - me) = pe(we — w),
k=1

where w = 2521 prwy.. Now, we compute the Hessian matrix V5p, € R™*™:

0
Vipe = 55 (Vepe)

Differentiate each term:

V%J (Pewe) = w, - VPZD;r =w, - [pe (we — w)}'l' )

K K
Ve <chpkwk> = Z [PV ppe + peVepE] - w) .

k=1 k=1
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Hence,
K

V2Ppc = W - [pc (wc - 'LD)]T - Z [kaPpc +pcVPpk:} . wl—gr
k=1

When the CLIP is highly confident in class ¢, i.e., p. ~ 1, px = 0 for k # c. Then:

Vipe & =Y peprwiwy =< 0.
k+#c

V%p, is negative semi-definite and p..(z; P) is locally concave in P.

Now, p(z; P) is concave in P, with weights ¢’ > 0 and ), ¢* = 1. By Jensen’s inequality:

p (x;ﬁ) >3 ¢ p(mP) > ¢ p(; PY), j=argmax;c g {¢'}.

Note that: _ _ '
argmax, p(x; P’) = argmax, ¢’ p(x; P?).

Thus, weighted aggregation outperforms single prompt in expectation.

A.4.2 PROOF OF THEOREM[?]

Proof. In general, it is assumed that the training and test data are drawn from the same underlying
distribution, implying that the noise characteristics observed during both phases remain consistent.
Now, suppose there exists a ground-truth logit value z ~ A (j, 03), and each semantic objective &

observes a noisy version zj, of this true value:
2
2k =2z+¢€, € ~N(0,0}).

where each z;, ~ N(z,0}) is independently observed. By Bayesian rule, the posterior is:

K
p(z]z1,..0,2K) ocp(z)Hp(zk | 2).
k=1

Substituting the normal distribution forms:

p(z) = \/%UXP<‘(;;)) plor | 2) = \/%ak“p(‘(zka;{y)'

To find the MAP estimate z, one minimizes the negative log posterior:

(1) | g~ (G 2)"

202 202
0 pat k

—logp(z|z1,...,2K) = — constant,

Let us expand and gather the terms in z2:

1 G| I AR i K2
J2) = [ — )29 R0 Zk o Zk )
o= (F+3g) -2 (ke 2 s) - (e

Taking the derivative w.r.t. z and setting it to zero:

solving for 2
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Hence,
s po /o8 + Yy Zk/U;%.
/o3 + 3, 1/0?
Under a uniform prior p(2) 1, i.e., o’% — 00, the posterior reduces to the likelihood:

K
p(z| 21, ,2K) X Hp(zk|z)
k=1

The term p/0? and 1/0¢ vanish, producing:

Thus, the theorem is proved. O

A.5 EFFECTIVE OF PROTOTYPE-BASED TASK SELECTION

We leverage class-wise image prototypes to model the task-wise distributional space. As illustrated
in Figure[5] we report the prototype-based task selection accuracy as training progresses. Despite
the limited 16-shot setting used to compute prototypes, it still achieves remarkably high selection
accuracy on most domains, reaching up to 99.0% or even 100.0% (e.g., MNIST). This demonstrates
the strong capability of our approach to preserve task-specific distributional characteristics over time,
which is critical for accurate task identification in CL.

100
i100.00

~98

-96

Accuracy (%)

-94

mmﬁﬁﬁ@lﬁﬁl
2 3 4 5 6 7 8
Figure 5: Task selection accuracy based on prototypes across domains during training.

A.6 EFFECTIVE OF BAYESIAN UNCERTAINTY-AWARE SEMANTIC FUSION
Figure [6]illustrates the relative contributions of different semantics in the 16-shot X-TAIL setting.

Combined with Figure[d] we observe that with increased training data, the model learns more reliable
vision-language alignment patterns.

A.7 MORE COMPARISON RESULTS
A.7.1 COMPARISON OF DIFFERENT CL METHODS

Table [§] compares our method with existing baselines in the 16-shot X-TAIL setting with order-II
across three evaluation metrics. Ours consistently outperforms prior methods, including the strong
baseline Dual-RAIL.
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Task Semantics Visual semantics Textual semantics
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Figure 6: Relative contributions of different semantic objectives on 16-shot X-TAIL.

Table[7] presents a detailed comparison in the full-shot X-TAIL setting with order-I. Primal-RAIL
fails to generalize effectively in this setting. In contrast, our method consistently outperforms it in
terms of the Average score across all domains. Similarly, significant improvements are observed in
both Average and Last metrics. Notably, on the Aircraft, DTD, and EuroSAT domains, our method
surpasses Primal-RAIL by 6.7%, 6.0%, and 2.7% in Average, and by 12.7%, 15.3%, and 4.7% in
Last, respectively. Dual-RAIL is omitted due to its substantial computational overhead, as it stores
all historical representations and replays them during training. This underscores the efficiency and
scalability of our lightweight design in complex CL scenarios.

Table[8] [} [I0]and [IT]report the per-domain performance of our method under different settings. In
each table, the diagonal entries represent the performance during the learning of the corresponding
task, the upper-diagonal entries correspond to the model’s generalization performance on unseen
domains, and the lower-diagonal entries reflect the performance on previously seen domains, measur-
ing the model’s ability to retain knowledge across tasks. Beyond this, We visualize the change in
accuracy across all domains as the progresses through different learning stages, as shown in Figure[9]

75.0

Table 5: Ablation studies on the contribution of e

each component on 16-shot X-TAIL.

70.0

o
N
n

Accuracy (%)
o
&
o

Method | EWC | Transfer ~Average Last
CLIP | - - - - | 642 603 603 62:3
wPT _ | &2 706 794 60.0
v 64.9 71.2 79.4 575 —e— Transfer
wPT&CA | v v 64.9 730 821 Average
v o v 64.9 73.5 83.0 >0 00 0.2 0.4 0.6 0.8 1.0
v v v 64.8 73.2 82.3 Fusion Hyperparameter (a)
v v v 64.9 73.7 83.2
v v v v 64.9 73.7 833

Figure 7: Fusion hyperparameter vs. Transfer
and Average (%) across all domains.

A.7.2 FUSION HYPERPARAMETER

Figure /] illustrates the impact of the fusion hyperparameter o on the Transfer and Average. The
best performance is observed at o = 0.8, indicating an optimal balance between pre-trained and
incremental knowledge. A lower a may underutilize the generalization ability of the pre-trained
model, while a higher o could overemphasize pre-trained representations, both leading to suboptimal
alignment. These results highlight the importance of appropriately weighting prior and accumulated
knowledge to enhance cross-domain generalization.

A.7.3 PROMPT LENGTH AND INSERTED LAYERS

We evaluate the impact of different prompt length and the number of inserted transformer layers
on overall performance, as illustrated in Figure [§] Specifically, we report the averaged results of
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Transfer, Average, and Last under each setting. Our default setting adopts a prompt length of 4 and
prompts inserted into 9 layers, which achieves the best performance on the Lasz. While a larger
configuration (prompt length of 6 with 12 inserted layers) yields better overall results, it incurs higher

computational overhead.
[740 o | 816 82.4 82.6 83.1 r“
73.8 73.9
73.7 73.7
~ 65.0 ﬂ 64.8 64.9 leAn ~ 72.9 72.7 73.4 735 l7zn ~ 81.7 82.1 82.7 82.9 lE]
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Figure 8: Averaged Accuracy (%) across metrics under different prompt lengths and inserted layers.

A.7.4 MORE ABLATION STUDIES

We also conduct ablation studies in the 16-shot X-TAIL setting to complement earlier experiments
as shown in Table[5} Consistent with the results in Section 4.3} the effectiveness of our method is
further validated. Besides, EWC provides only a marginal gain (+0.1%) in the few-shot setting. This
suggests that our design is inherently stable against forgetting.

Notably, comparing Table [8a] and Table [8b] shows that the dynamic aggregation (DA) enhances
domain discrimination during inference by leveraging accumulated knowledge from seen tasks.
Specifically, this improves CLIP’s ability to distinguish seen domains such as Caltech101 and DTD,
increasing accuracy from 83.8% to 86.8% and from 63.0% to 64.2%, respectively, thus reducing
misclassification of seen domains as unseen. Besides, The fidelity of prototypes improves as data
increasing, and the contribution of residual prototypes is correspondingly diminished.

A.8 LIMITATION

While our method achieves state-of-the-art performance in cross-modal CL, several limitations
remain. Our method is primarily designed for classification tasks with CLIP, and its applicability to
other paradigms (e.g., generation) remains unexplored. As the number of tasks grows, task-specific
prompt tuning introduces modest computational overhead and may lead to redundant learning of
similar knowledge. In addition, both domain discrimination and prototype construction rely on
CLIP’s zero-shot capabilities, which may fail to generalize to entirely novel concepts outside its
pretraining scope. Nevertheless, this work demonstrates the adaptability and forgetting-resilience
of vision-language models in more complex CL scenarios, encouraging the community to explore
lifelong learning in realistic applications.
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Table 6: Comparison of different CL methods on 16-shot X-TAIL for each domain with order-II in
terms of Transfer, Average, and Last scores (%). The best and second results are highlighted with
bold and underline styles, respectively. RAIL" includes both Primal- and Dual-RAIL, as they adopt
the same domain discriminator technique. Dual-RAIL" stores and replays all historical data.

S =

= S = 2 = < &

© o [72] 5} Q [75] <

¢ 5 ¢ T Z 2 & @ =2 % §

< -5 5] 5] =} K= = < =] >

Method o < o = 17 = — o) o Lu <
Zero-shot 64.0 248 88.8 88.0 602 425 71.0 375 738 520 60.3
LwF (Li & Hoiem|[2017) - 16.2 812 79.5 60.1 326 52.1 312 675 20.1 489
iCaRL (Rebuth et al.|[2017) - 204 73.1 67.8 50.5 299 428 242 578 13.6 422
% WISE-FT (Wortsman et al.|[2022) - 21.0 83.8 80.8 57.1 350 582 327 654 310 517
“g‘ ZSCL (Zheng et al.|[|[2023) - 222 86.8 83.0 626 322 69.0 39.0 742 437 575
&  MoE-Adapter (Yu et al.|[2024b) - 11.7 88.8 88.0 60.2 425 711 370 738 52.0 583
B RAIL" (Xu et al.[2024) - 248 88.8 88.0 60.2 425 71.0 375 738 520 59.8
Ours - 246 89.6 883 627 457 710 383 741 542 609
LwF (Li & Hoiem/2017) 434 352 739 759 655 653 658 374 720 257 560
iCaRL (Rebuffi et al.[[2017) 344 336 743 63.0 532 639 588 334 61.7 187 495
° WiSE-FT (Wortsman et al.|[2022) 58.3 439 857 80.7 653 663 702 41.1 70.7 367 619
8 ZSCL (Zheng et al.|2023) 759 399 89.7 88.8 694 59.7 792 462 756 482 673
5 MoE-Adapter (Yu et al.|[2024b) 80.4 419 889 87.8 683 683 8l.1 465 756 546 693
% Primal-RAIL (Xu et al.|2024) 809 43.1 91.8 893 679 586 809 465 779 555 69.2
Dual-RAIL" (Xu et al.|[2024) 822 440 916 893 68.1 599 812 473 78.0 556 69.7
Ours 828 46.2 92.7 832 69.7 617 814 482 779 579 70.7
LwF (Li & Hoiem/2017) 248 222 59.7 683 667 978 76.1 475 895 76.1 629
iCaRL (Rebutfi et al.[[2017) 320 355 802 683 60.8 981 79.0 542 767 647 649
WiSE-FT (Wortsman et al.|[2022) 41.5 303 78.1 76.6 689 963 816 579 91.6 878 7I.1
- ZSCL (Zheng et al.][[2023) 723 36.0 87.5 889 733 836 93.6 615 81.0 89.1 76.7
ki MoE-Adapter (Yu et al.|[2024b) 80.5 453 889 87.7 737 942 962 688 827 779 79.6
Primal-RAIL (Xu et al.| 2024} 80.6 449 927 90.1 733 91.0 957 677 943 86.7 817
Dual-RAIL" (Xu et al.|[2024) 823 459 926 903 737 944 964 702 949 884 829
Ours 82.6 48.7 935 832 742 925 971 718 938 90.8 83.3

Table 7: Comparison of different CL methods on full-shot X-TAIL for each domain with order-I in
terms of Transfer, Average, and Last scores (%). The best and second results are highlighted with
bold and underline styles, respectively. Dual-RAIL is excluded due to its prohibitive computational
cost.

= = o~ P

%‘ < < 4 = o )

22 %2 o3 2, o E &

e £ 8 8 £ % z g 5 58 3

Method < O [} M [ = = [ O 7 <
Zero-shot 248 739 375 520 710 880 425 888 640 602 60.3
LwF (Li & Hoiem/[2017) - 69.9 302 262 50.6 731 340 71.6 321 532 490
iCaRL (Rebutfi et al.|[2017) - 474 20.0 16.1 358 557 203 57.6 151 440 34.7
= WiSE-FT (Wortsman et al.[[2022) - 634 289 293 478 68.6 289 64.1 272 49.7 453
E ZSCL (Zheng et al.[[2023) - 764 373 469 68.6 879 355 865 592 643 625
&  MoE-Adapter (Yu et al.|[2024b) - 739 334 28.1 673 88.0 459 888 582 572 60.1
&= Primal-RAIL (Xu ot al.| 2024} ~ 739 375 520 710 880 425 888 64.0 602 64.2
Ours - 754 377 519 709 88.0 438 892 638 62.8 64.8
LwF (Li & Hoiem|[2017) 327 839 50.0 572 574 743 602 765 424 559 59.1
iCaRL (Rebufti et al.|[2017) 36.7 69.1 43.6 50.0 538 608 520 679 282 476 51.0
% WiSE-FT (Wortsman et al.|[2022) 239 839 478 488 56.7 717 572 728 385 528 554
&  ZSCL (Zheng et al.[[2023) 46.4 79.8 587 773 822 899 588 888 64.6 658 712
£ MoE-Adapter (Yu et al.|[2024b) 51.8 89.1 622 722 848 882 657 888 628 59.1 725
< Primal-RAIL (Xu et al.|[2024) 479 889 576 813 833 90.0 647 903 67.7 622 734
Ours 54.6 89.7 63.6 84.0 859 903 66.1 90.7 684 64.7 758
LwF (Li & Hoiem|[2017) 21.8 792 58.1 648 67.0 836 995 892 82.1 802 725
iCaRL (Rebutt et al.|[2017) 428 77.8 60.1 712 79.5 83.6 99.5 92.1 788 793 765
WiSE-FT (Wortsman et al.|[2022) 30.5 873 574 634 740 880 99.6 925 804 800 753
g ZSCL (Zheng et al.[[2023) 39.7 813 62.0 858 902 91.6 959 937 855 788 80.5
=~ MoE-Adapter (Yu et al.||2024b) 519 904 682 906 963 883 950 889 813 76.5 82.7
Primal-RAIL (Xu et al.|[2024) 42,1 947 598 938 86.6 919 97.8 934 8I.1 799 82.1
Ours 548 942 751 985 96.0 927 995 941 867 82.0 874
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Table 8: Accuracy (%) of our method on 16-shot X-TAIL with order-I. Each row reports the model’s
performance on all domains after training the corresponding task.

(a) Our method with dynamic aggregation (DA).

S =
§ 3 5 5 7 2 B
S 3 ) o 3 = — » » Z f
.5 = = 5 ) 8 Z & g @
S 3 B 4 £ &£ 5 & 5 3
Transfer 75.7 372 521 711 883 437 892 637 629 64.9
Aircraft 489 757 36.8 517 712 884 446 895 645 623
Caltech101 504 86.8 377 52.0 709 884 457 89.1 639 629
DTD 499 878 642 524 711 883 421 89.0 638 629
EuroSAT 50.0 87.6 64.1 90.2 712 882 431 89.0 638 62.6
Flowers 50.0 89.0 652 896 97.1 88.0 429 890 635 628
Food 495 89.1 653 896 971 88.6 437 893 63.1 629
MNIST 497 89.1 657 903 972 887 949 895 635 633
Pets 49.1 90.0 653 906 97.1 88.6 942 934 638 63.1
Cars 49.1 913 656 902 970 887 941 937 831 63.0
SUN397 (Last) 49.1 929 700 90.7 97.2 885 939 935 83.0 742 833
Average 496 88.0 60.0 787 86.7 884 639 905 676 64.0 73.7
(b) Our method without dynamic aggregation (w/o DA).
S
= >
§ % 5 8 2 3 B
s £ B8 & % B Z =z & & 8
2 8§ a2 & E £ =5 & Jd = =
Transfer 739 375 520 710 88.0 425 888 640 602 64.2
Aircraft 489 739 375 520 710 88.0 425 888 640 60.2
Caltech101 504 838 375 520 71.0 88.0 425 888 64.0 60.2
DTD 499 852 63.0 520 710 88.0 425 888 640 602
EuroSAT 50.0 853 63.1 90.0 71.0 88.0 425 888 64.0 60.2
Flowers102 50.0 873 64.1 894 971 88.0 425 888 64.0 60.2
Food101 495 87.6 647 893 971 88.6 42.5 888 640 602
MNIST 497 87.6 650 90.1 972 887 949 888 64.0 60.2
OxfordPets 49.1 89.1 649 904 971 88.6 942 934 640 602

StanfordCars 49.1 905 651 90.0 970 887 941 937 831 60.2
SUN397 (Last) 49.1 929 70.0 90.7 972 885 939 935 830 742 833

Average 49.6 863 595 786 867 883 632 902 678 61.6 73.2
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Table 9: Accuracy (%) of our method on 16-shot X-TAIL with order-II. Each row reports the model’s
performance on all domains after training the corresponding task.

~ § 5 o

E 2 7 8 T 5 7

e & =« B & Z & B 2 g &

o <

S < & £ =» S £ a § 4 <=

Transfer 246 89.6 883 627 457 710 383 741 542 60.9
Cars 833 246 893 883 623 453 707 382 754 515
Aircraft 83.0 483 89.8 883 629 440 70.1 387 750 536
Pets 83.0 488 933 884 630 474 71.1 385 737 546
Food 82.5 489 933 883 626 458 713 37.8 744 553
SUN397 827 488 93.6 882 742 461 714 380 736 545
MNIST 83.0 488 934 884 745 559 712 38.1 736 554
Flowers 827 478 937 88.1 744 558 971 388 734 556
DTD 82.5 486 93.6 879 741 913 972 700 733 548
Caltech101 82.6 485 934 881 746 932 97.1 718 932 528

EuroSAT (Last) 82.6 487 935 882 742 925 971 718 938 90.8 833

Average 82.8 462 927 882 697 617 814 482 719 579 70.7

Table 10: Accuracy (%) of our method on full-shot X-TAIL with order-I. Each row reports the
model’s performance on all domains after training the corresponding task.

= > e

g 3 3 5 Z 2

c £ B £ &8 B Zz =z & & &8

< & a &4 & &€ 5 & & =& <

Transfer 754 377 519 709 880 438 892 63.8 628 64.8
Aircraft 549 754 372 510 71.1 883 451 892 646 619
Caltech101 550 89.8 382 526 709 882 489 894 642 627
DTD 549 904 693 519 715 881 433 892 639 63.0
EuroSAT 545 892 678 974 70.1 876 420 889 628 624
Flowers 542 907 692 972 959 877 417 89.1 632 627
Food 543 91.1 701 97.0 959 928 421 893 635 632
MNIST 545 910 69.8 983 958 927 994 892 639 629
Pets 545 921 69.6 983 958 926 995 943 o641 629
Cars 547 93.6 695 982 96.1 927 995 942 872 63.1

SUN397 (Last) 54.8 942 751 985 960 927 995 941 867 820 874

Average 546 89.7 636 840 859 903 66.1 90.7 684 647 758
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Table 11: Accuracy (%) of our method on 5-shot MTIL with order-I. Each row reports the model’s
performance on all domains after training the corresponding task.

§ g = o~ o

£ £ 5 5 2 Q

5 £ < A o : 32 = " e Z 5

k= = = E 5 ) 38 Z 8 5 5 g

< O O [ ) ) i P ~ O 7 <

Transfer 94.1 694 437 554 713 89.0 578 89.5 640 64.1 69.8
Aircraft 384 94.1 689 432 550 713 889 603 89.7 645 63.1
Caltech101 389 958 700 437 549 714 89.0 59.1 896 642 642
CIFAR100 385 956 753 440 562 712 89.1 583 892 634 64.1
DTD 38.6 958 752 664 553 714 89.1 569 895 637 64.1
EuroSAT 383 958 751 666 818 712 89.1 587 894 643 642
Flowers 386 958 750 662 822 951 89.0 559 89.7 64.1 64.1
Food 385 953 755 669 812 954 874 554 896 638 643
MNIST 38.6 956 754 673 823 953 874 852 895 641 642
Pets 38.6 96.1 760 665 824 955 873 868 90.7 639 645
Cars 38.1 96.1 757 67.1 817 956 87.8 87.1 909 772 645

SUN397 (Last) 38.6 958 75.6 67.1 826 956 876 877 90.8 772 731 79.2

Average 385 956 743 605 723 845 883 683 899 664 649 73.0
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Figure 9: Accuracy (%) on all domains throughout the training process. For example, (a) illustrates
the accuracy of Aircraft progression at each learning stage.
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