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ABSTRACT

Image classification and denoising suffer from complementary issues of lack of ro-
bustness or partially ignoring conditioning information. We argue that they can be
alleviated by unifying both tasks through a model of the joint probability of (noisy)
images and class labels. Classification is performed with a forward pass followed
by conditioning. Using the Tweedie-Miyasawa formula, we evaluate the denoising
function with the score, which can be computed by marginalization and back-
propagation. The training objective is then a combination of cross-entropy loss
and denoising score matching loss integrated over noise levels. Numerical experi-
ments on CIFAR-10 and ImageNet show competitive classification and denoising
performance compared to reference deep convolutional classifiers/denoisers, and
significantly improves efficiency compared to previous joint approaches. Our model
shows an increased robustness to adversarial perturbations compared to a stan-
dard discriminative classifier, and allows for a novel interpretation of adversarial
gradients as a difference of denoisers. 1

1 INTRODUCTION: CLASSIFICATION AND DENOISING

Image classification and denoising are two cornerstone problems in computer vision and signal
processing. The former aims to associate a label c ∈ {1, . . . , C} to input images x. The latter
involves recovering the image x from a noisy observation y = x+ σϵ. Before the 2010s, these two
problems were addressed with different kinds of methods but similar mathematical tools like wavelet
decompositions, non-linear filtering and Bayesian modeling. Since the publication of AlexNet
(Krizhevsky et al., 2012), deep learning (LeCun et al., 2015) and convolutional neural network
(CNNs) (LeCun et al., 1998) have revolutionized both fields. ResNets (He et al., 2016) and their
recent architectural and training improvements (Liu et al., 2022; Wightman et al., 2021) still offer
close to state-of-the-art accuracy, comparable with more recent methods like vision transformers
(Dosovitskiy et al., 2020) and visual state space models (Liu et al., 2024). In image denoising, CNNs
lead to significant improvements with the seminal work DnCNN (Zhang et al., 2017b) followed by
FFDNet (Zhang et al., 2018) and DRUNet (Zhang et al., 2021). Importantly, deep image denoisers
are now at the core of deep generative models estimating the gradient of the distribution of natural
images (Song & Ermon, 2019), a.k.a. score-based diffusion models (Ho et al., 2020).

However, some unsolved challenges remain in both tasks. For one, classifiers tend to interpolate
their training set, even when the class labels are random (Zhang et al., 2016), and are thus prone
to overfitting. They also suffer from robustness issues such as adversarial attacks (Szegedy, 2013).
Conversely, deep denoisers seem to neither overfit nor memorize their training set when it is suffi-
ciently large (Yoon et al., 2023; Kadkhodaie et al., 2023). On the other hand, when used to generate
images conditionally to a class label or a text caption, denoisers are known to occasionally ignore part
of their conditioning information (Conwell & Ullman, 2022; Rassin et al., 2022), requiring ad-hoc
techniques like classifier-free guidance (Ho & Salimans, 2022) or specific architecture and synthesis
modifications (Chefer et al., 2023; Rassin et al., 2024). Another issue is that optimal denoisers should
be conservative vector fields but DNN denoisers are only approximately conservative (Mohan et al.,
2020), and enforcing this property is challenging (Saremi, 2019; Chao et al., 2023).

We introduce a conceptual framework which has the potential to address these issues simultaneously.
We propose to learn a single model parameterizing the joint log-probability log p(y, c) of noisy
images y and classes c. Both tasks are tackled with this common approach, aiming to combine their

1We will release code upon acceptance.
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strengths while alleviating their weaknesses. First, the model gives easy access to the conditional
log-probability log p(c|y) by conditioning, allowing to classify images with a single forward pass.
Second, we can obtain the marginal log-probability log p(y) by marginalizing over classes c, and
compute its gradient with respect to the input y with a backward pass. The denoised image can then
be estimated using the Tweedie-Miyasawa identity (Robbins, 1956; Miyasawa et al., 1961; Raphan &
Simoncelli, 2011). We can also perform class-conditional denoising similarly using ∇y log p(y|c).
Previous related works in learning joint energy-based models (Grathwohl et al., 2019) or gradient-
based denoisers (Cohen et al., 2021; Hurault et al., 2021; Yadin et al., 2024) have faced two key
questions, respectively concerning the training objective and network architecture. Indeed, learning
a probability density over high-dimensional images is a very challenging problem due to the need
to estimate normalization constants, which has only been recently empirically solved with score-
matching approaches (Song et al., 2021). Additionally, different architectures, and therefore inductive
biases, are used for both tasks: CNN classifiers typically have a feedforward architecture which maps
an image x to a logits vector (log p(c|x))1≤c≤C , while CNN denoisers have a UNet encoder/decoder
architecture which outputs a denoised image x̂ with the same shape as the input image x. The joint
approach requires unifying these two architectures in a single one whose forward pass corresponds to
a classifier and forward plus backward pass corresponds to a denoiser, while preserving the inductive
biases that are known to work well for the two separate tasks.

Here, we propose principled solutions to these questions. As a result of our unifying conceptual
framework, we derive a new interpretation of adversarial classifier gradients as a difference of
denoisers, which complements previous connections between adversarial robustness and denoising.
Our approach also opens new research directions: having direct access to a log-probability density
log p(y, c) can be expected to lead to new applications, such as out-of-distribution detection or
improved interpretability compared to score-based models.

The contributions of this paper are the following:

• We introduce a framework to perform classification, class-conditional and unconditional
denoising with a single network parameterizing the joint distribution p(y, c). The two
training objectives naturally combine in a lower-bound on the likelihood of the joint model.
Further, our approach evidences a deep connection between adversarial classifier gradients
and (conditional) denoising. Pursuing this line of research thus has the potential to improve
both classifier robustness and denoiser conditioning.

• We propose an architecture to parameterize the joint log-probability density of images and
labels which we call GradResNet. It makes minimal modifications to a ResNet architecture
to incorporate inductive biases from UNet architectures appropriate to denoising (when
computing a backward pass), while preserving those for classification (in the forward pass).

• We validate the potential of our method on the CIFAR-10 and ImageNet datasets. In
particular, our method is significantly more efficient and scalable than previous approaches
(Grathwohl et al., 2019; Yang & Ji, 2021; Yang et al., 2023). Additionally, we show that the
denoising objective improves classification performance and robustness.

We motivate our approach through the perspectives of joint energy modeling and denoising score
matching in Section 2. We then present our method in detail in Section 3, and evaluate it numerically
in Section 4. We discuss our results in connection with the literature in Section 5. We conclude and
evoke future research directions in Section 6.

2 JOINT ENERGY-SCORE MODELS

Consider a dataset of labeled images (xi, ci)1≤i≤n with images xi ∈ Rd and class labels ci ∈
{1, . . . , C} of i.i.d. pairs sampled from a joint probability distribution p(x, c). Typical machine
learning tasks then correspond to estimating conditional or marginal distributions: training a classifier
amounts to learning a model of p(c|x), while (conditional) generative modeling targets p(x) or
p(x|c). Rather than solving each of these problems separately, this paper argues for training a single
model pθ(x, c) of the joint distribution p(x, c), following Hinton (2007); Grathwohl et al. (2019).

2
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Figure 1: Illustration of the generalization bounds b+ v
n in two idealized settings with stylized values

for b and v. Left: bias-dominated setting with bgen = 5, bdis = 1, vgen = 20, vdis = 100. Right:
variance-dominated setting with bgen = bdis = 1, vgen = 100, vdis = 10000.

The conditional and marginal distributions can then be recovered from the joint model with

pθ(c|x) =
pθ(x, c)∑C
c=1 pθ(x, c)

, pθ(x) =

C∑
c=1

pθ(x, c), pθ(x|c) =
pθ(x, c)

pθ(c)
. (1)

We note that pθ(c) is intractable to compute, but in the following we will only need the score of the
conditional distribution ∇x log pθ(x|c), which is equal to ∇x log pθ(x, c) independently of pθ(c).

In Section 2.1, we motivate the joint approach and detail its potential benefits over separate modeling
of the conditional distributions. We then extend this to the context of diffusion models in Section 2.2,
which leads to an interpretation of adversarial gradients as a difference of denoisers.

2.1 ADVANTAGES OF JOINT OVER CONDITIONAL MODELING

We first focus on classification. Models of the conditional distribution p(c|x) derived from a model
of the joint distribution p(x, c) are referred to as generative classifiers, as opposed to discriminative
classifiers which directly model p(c|x). The question of which approach is better goes back at least
to Vapnik (1999). It was then generally believed that discriminative classifiers were better: quoting
Vapnik (1999), “when solving a given problem, try to avoid solving a more general problem as an
intermediate step”. This has led the community to treat the modeling of p(x) and p(c|x) as two
separate problems, though there were some joint approaches (Ng & Jordan, 2001; Raina et al., 2003;
Ulusoy & Bishop, 2005; Lasserre et al., 2006; Ranzato et al., 2011). In the deep learning era, the joint
approach was revitalized by Grathwohl et al. (2019) with several follow-up works (Liu & Abbeel,
2020; Grathwohl et al., 2021; Yang & Ji, 2021; Yang et al., 2023). They showed the many benefits of
generative classifiers, such as better calibration and increased robustness to adversarial attacks. It was
also recently shown in Jaini et al. (2024) that generative classifiers are much more human-aligned in
terms of their errors, shape-vs-texture bias, and perception of visual illusions. We reconcile these
apparently contradictory perspectives by updating the arguments in Ng & Jordan (2001) to the modern
setting.

Consider that we have a parametrized family {pθ(x, c), θ ∈ Rm} (for instance, given by a neural
network architecture). Generative and discriminative classifiers are respectively trained to maximize
likelihood or minimize cross-entropy:

θgenn = argmax
θ

1

n

n∑
i=1

log pθ(xi, ci), θdisn = argmax
θ

1

n

n∑
i=1

log pθ(ci|xi). (2)

We measure the expected generalization error of the resulting classifiers in terms of the Kullback-
Leibler divergence on a test point x ∼ p(x):

ε(θ) = Ex∼p(x)[KL(p(c|x) ∥ pθ(c|x))]. (3)

We show that it can be described with “bias” and “variance” constants bgen, bdis, vgen, vdis:

E[ε(θgenn )] = bgen +
vgen

2n
+ o

(
1

n

)
, E[ε(θdisn )] = bdis +

vdis

2n
+ o

(
1

n

)
, (4)
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where the expected values average over the randomness of the training set. This is derived with
standard arguments in Appendix D, where the constants are explicited as functions of p and {pθ}.
The bias arises from model misspecification, while the variance measures the sample complexity
of the model, as we detail below. We note that these results are only asymptotic, and the constants
hidden in the little-o notation could be exponential in the dimension. Nevertheless, these results
provide evidence of the two distinct regimes found by Ng & Jordan (2001), as illustrated in Figure 1.

Which approach is better then depends on the respective values of the bias and variance constants.
The bias is the asymptotic error when n → ∞, and thus only depends on approximation properties.
It always holds that bdis ≤ bgen, as discriminative classifiers directly model p(c|x) and thus do not
pay the price of modeling errors on p(x). The variance measures the number of samples needed to
reach this asymptotic error. In the case of zero bias, we have vgen ≤ vdis (and further vdis = m the
number of parameters): generative classifiers learn faster (with fewer samples) as they exploit the
extra information in p(x) to estimate the parameters. With simple models with few parameters (e.g.,
linear models, as in Ng & Jordan (2001)), we can expect the bias to dominate, which has led the
community to initially favor discriminative classifiers. On the other hand, with complex expressive
models (e.g., deep neural networks) that have powerful inductive biases, we can expect the variance
to dominate. In this case, generative classifiers have the advantage, as can be seen in the recent
refocus of the community towards generative models and classifiers (Grathwohl et al., 2019; Jaini
et al., 2024). The success of self-supervised learning also indicates the usefulness of modeling p(x)
to learn p(c|x).
For similar reasons, a joint approach can also be expected to lead to benefits in conditional generative
modeling. For instance, Dhariwal & Nichol (2021) found that conditional generative models could
be improved by classifier guidance, and Ho & Salimans (2022) showed that these benefits could be
more efficiently obtained with a single model.

2.2 JOINT MODELING WITH DIFFUSION MODELS

The joint approach offers significant statistical advantages, but also comes with computational
challenges. Indeed, it requires to learn a model of a probability distribution over the high-dimensional
image x, while in a purely discriminative model it only appears as a conditioning variable (the
probability distribution is over the discrete class label c). In Grathwohl et al. (2019), the generative
model is trained directly with maximum-likelihood and Langevin-based MCMC sampling, which
suffers from the curse of dimensionality and does not scale to large datasets such as ImageNet. We
revisit their approach in the context of denoising diffusion models, which have empirically resolved
these issues. We briefly introduce them here, and explain the connections with adversarial robustness
in the context of generative classifiers.

Diffusion models and denoising. In high-dimensions, computing maximum-likelihood parameters
is typically intractable due to the need to estimate normalizing constants. As a result, Hyvärinen
proposed to replace maximum-likelihood with score matching (Hyvärinen & Dayan, 2005), which
removes the need for normalizing constants and is thus computationally feasible. However, its sample
complexity is typically much larger as a result of this relaxation (Koehler et al., 2022). Song et al.
(2021) showed that this computational-statistical tradeoff can be resolved by considering a diffusion
process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Kadkhodaie & Simoncelli,
2021), where maximum-likelihood and score matching become equivalent.

Denoising diffusion models consider the joint distribution pσ(y, c) of noisy images y together with
class labels c for every noise level σ. Formally, the noisy image y is obtained by adding Gaussian
white noise of variance σ2 to the clean image x:

y = x+ σϵ, ϵ ∼ N (0, Id). (5)
Note that the class label c becomes increasingly independent from y as σ increases.

Modeling p(y) or p(y|c) by score matching then amounts to performing unconditional or class-
conditional denoising (Vincent, 2011), thanks to an identity attributed to Tweedie and Miyasawa
(Robbins, 1956; Miyasawa et al., 1961; Raphan & Simoncelli, 2011):

∇y log p(y) =
E[x |y]− y

σ2 , ∇y log p(y|c) =
E[x |y, c]− y

σ2 , (6)

4
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see e.g. Kadkhodaie & Simoncelli (2021) for proof. Note that E[x |y] and E[x |y, c] are the best
approximations of x given y (and c) in mean-squared error, and are thus the optimal unconditional
and conditional denoisers. A joint model pθ(y, c) thus gives us access to unconditional and class-
conditional denoisers Du and Dc,

Du(y) = y + σ2∇y log pθ(y), Dc(y, c) = y + σ2∇y log pθ(y|c), (7)

which can be trained to minimize mean-squared error:

min E
[
∥x− y − σ2∇y log pθ(y)∥

2
]
, min E

[
∥x− y − σ2∇y log pθ(y|c)∥

2
]
. (8)

Adversarial gradients. In this formulation, the adversarial classifier gradients (on noisy images)
can be interpreted as a scaled difference of conditional and unconditional denoisers:

∇y log pθ(c|y) = ∇y log pθ(y|c)−∇y log pθ(y) =
1

σ2 (Dc(y, c)−Du(y)). (9)

The adversarial gradient on clean images is obtained by sending the noise level σ → 0, highlighting
potential instabilities. Equation (9) provides a novel perspective on adversarial robustness (which was
implicit in Ho & Salimans (2022)): adversarial gradients are the details in an infinitesimally noisy
image that are recovered when the denoiser is provided with the class information. Being robust to
attacks, which requires small adversarial gradients, thus requires the conditional denoiser to mostly
ignore the provided class information when it is inconsistent with the input image at small noise
levels. The denoising objective (8) thus directly regularizes the adversarial gradients. We discuss
other connections between additive input noise and adversarial robustness in Section 5.1.

Likelihood evaluation. We also note that modeling the log-probability rather than the score has
several advantages in diffusion models. First, it potentially allows to evaluate likelihoods in a
single forward pass, as done in Choi et al. (2022); Yadin et al. (2024). Second, it leads to generative
classifiers that can be evaluated much more efficiently than recent approaches based on score diffusion
models (Li et al., 2023; Clark & Jaini, 2023; Jaini et al., 2024).

3 ARCHITECTURE AND TRAINING

The previous section motivated the joint approach and led to a unification between classification and
denoising tasks. We now focus on these two problems, and describe our parameterization of the joint
log-probability density (Section 3.1), the GradResNet architecture (Section 3.2), and the training
procedure (Section 3.3).

3.1 PARAMETERIZATION OF JOINT LOG-PROBABILITY

We want to parameterize the joint log-probability density log p(c,y) over (noisy) images y ∈ Rd and
image classes c using features computed by a neural network f : Rd 7→ RK . In classification, the
class logits are parameterized as a linear function of the features

log pθ(c|y) = (Wf(y))c − LogSumExpc′
(
(Wf(y))c′

)
, (10)

with W a matrix of size C ×K where C is the number of classes. We propose to parameterize the
log-probability density of the noisy image distribution as a quadratic function of the features

log pθ(y) = −1

2
(wTf(y))2 − logZ(θ), (11)

where w ∈ RK and Z(θ) is a normalizing constant that depends only on the parameters θ. We thus
have the following parameterization of the joint log-density

log pθ(y, c) = −1

2
(wTf(y))2 + (Wf(y))c − LogSumExpc′

(
(Wf(y))c′

)
− logZ(θ). (12)

Finally, the log-density of noisy images y conditioned on the class c can be simply accessed with
log pθ(y|c) = log pθ(y, c)− log pθ(c), where log pθ(c) is intractable but not needed in practice, as
explained in Section 2. We chose the task heads to be as simple as possible, being respectively linear
(for classification) and quadratic (for denoising) in the features. Preliminary experiments showed that
additional complexity did not result in improved performance.

5
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Figure 2: Left: ResNet BasicBlock with bias parameters, batch-normalization (BN) layers and
ReLUs. Middle: GradResNet BasicBlock with bias-free convolutional layers, GELUs, and a single
group-normalization (GN) layer. Right: Illustration of the proposed side connections.

3.2 GRADRESNET ARCHITECTURE

We now specify the architecture of the neural network fθ. As discussed in Section 2, realizing the
potential of the joint modeling approach requires that the modeling bias is negligible, or in other
words, that the inductive biases of the architecture and training algorithm are well-matched to the
data distribution. Fortunately, we can rest on more than a decade of research on best architectures
for image classification and denoising. Architectures for these two tasks are however quite different,
and the main difficulty lies in unifying them: in particular, we want the computational graph of the
gradient of a classifier network to be structurally similar to a denoising network.

In a recent work, Hurault et al. (2021) presented a gradient-based denoiser for Plug-and-Play image
restoration, and they found that “directly modeling [the denoiser] as [the gradient of] a neural network
(e.g., a standard network used for classification) leads to poor denoising performance”. To remedy
this problem, we thus propose the following architectural modifications on a ResNet18 backbone:

Smooth activation function: Cohen et al. (2021) first proposed to use the gradient of a feedforward
neural network architecture as an image denoiser for Plug-and-Play image restoration. They write
“an important design choice is that all activations are continuously differentiable and smooth func-
tions”. We thus replace ReLUs with smooth GELUs, following recent improvements to the ResNet
architecture (Liu et al., 2022).

Normalization: Batch-normalization (Ioffe & Szegedy, 2015) is a powerful optimization technique,
but its major drawback is that it has different behaviors in train and eval modes, especially
for the backward pass. We hence replace batch-normalizations with group-normalizations (Wu
& He, 2018), leading to a marginal decrease in classification performance on ImageNet (Wu &
He, 2018). Moreover, we found that reducing the number of normalization layers is beneficial for
denoising performance. While ResNets apply a normalization after each convolutional layer, we
apply a group-normalization at the end of each basic block (see Figure 2).

Bias removal: Mohan et al. (2020) have shown that removing all bias parameters in CNN denoisers
enable them to generalize across noise levels outside their training range. We decide to adopt this
modification, removing all biases of convolutional, linear, and group-norm layers.

Mimicking skip connections: The computational graph of the gradient of a feedforward CNN can
be viewed as a UNet, where the forward pass corresponds to the encoder (reducing image resolution),
and the backward pass corresponds to the decoder (going back to the input domain). Zhang et al.
(2021) show that integrating residual connections in the UNet architecture is beneficial for denoising
performance. In order to emulate these residual connections in our gradient denoiser, we add side
connections to our ResNet as illustrated in Figure 2 c).

With all these modification, we end up with a new architecture that we name GradResNet, which
is still close to the original ResNet architecture. As we will show in the numerical experiments in
Section 4, this architecture retains a strong accuracy and obtains competitive denoising results.

6
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Table 1: CIFAR-10 experimental results. Training time is measured on a single NVIDIA A100 GPU,
except for JEM, whose results and training time are taken from Grathwohl et al. (2019). Best results
are highlighted in bold for each category of models.

Task Architecture Accuracy (%) PSNRσ=15 PSNRσ=25 PSNRσ=50 Training time (h)

Classification ResNet18 96.5 N.A. N.A. N.A. 0.7
GradResNet 96.1 N.A. N.A. N.A. 0.7

Denoising
DnCNN N.A. 32.05 29.07 25.23 0.8
DRUNet N.A. 32.12 29.20 25.52 0.9

GradResNet N.A. 32.21 29.28 25.51 1.3

Joint JEM (WideResNet) 92.9 N.A. N.A. N.A. 36
GradResNet 96.3 31.90 29.00 25.25 1.3

3.3 TRAINING

Training objectives. Our model of the joint log-distributions log pθ(y, c) is the sum of two terms,
log pθ(c|y) and log pθ(y). Our training objective is thus naturally a sum of two losses: a cross-
entropy loss for the class logits log pθ(c|y), and a denoising score matching loss for log pθ(y). Both
objectives are integrated over noise levels σ. For simplicity, we do not add any relative weighting of
the classification and denoising objectives. Our final training loss is thus

ℓ(θ) = E
[
− log pθ(c|y) +

∥∥σ∇y log pθ(y) + ϵ
∥∥2], (13)

where the expectation is over (x, c) ∼ p(x, c), ϵ ∼ N (0, Id), and σ ∼ p(σ) (described below). The
main advantage of the joint learning framework is that the two tasks (modeling p(x) and p(c|x))
naturally combine in a single task (modeling p(x, c)), thus removing the need for tuning a Lagrange
multiplier trading off the two losses (where we interpret the denoising objective as a lower-bound
on the negative-log-likelihood (Song et al., 2021)). Finally, we note that although redundant, one
can also add a conditional denoising objective

∥∥σ∇y log pθ(y|c) + ϵ
∥∥2, or use it to replace the

unconditional denoising objective. We have empirically found no difference between these choices.
Full experimental details can be found in Appendix A.

Training distributions. Data augmentation is used in both image classification and image denoising
to reduce overfitting, but with different augmentation strategies. On the one hand, state of the
art image classification models, e.g. Liu et al. (2022), are trained with the sophisticated MixUp
(Zhang et al., 2017a) and CutMix (Yun et al., 2019) augmentations which significantly improve
classification performance but introduce visual artifacts and thus lead to non-natural images. On the
other hand, state-of-the-art denoisers like Restormer (Zamir et al., 2022) or Xformer (Zhang et al.,
2023) use simple data-augmentation techniques like random image crops (without padding) and
random horizontal flips, which leave the distribution of natural images unchanged. We thus use these
different data-augmentation techniques for each objective, and thus the two terms in our objective are
computed over different image distributions. Though this contradicts the assumptions behind the joint
modeling approach, we found that the additional data-augmentations on the classification objective
significantly boosted accuracy without hurting denoising performance. We also found beneficial to
use different noise level distributions p(σ) for the two tasks. In both cases, σ is distributed as the
square of a uniform distribution, with σmin = 1 and σmax = 100 for denoising but σmax = 20 for
classification (relative to image pixel values in [0, 255]). On the ImageNet dataset, for computational
efficiency, we set the image and batch sizes for the denoising objective according to a schedule
following Zamir et al. (2022), explicited in Appendix A.

4 NUMERICAL RESULTS

4.1 CLASSIFICATION AND DENOISING VIA JOINT MODELING

With the proposed joint modeling framework, we can perform classification and denoising at the same
time. Training and implementation details are given in Section 3 and Appendix A. We measure the
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Table 2: ImageNet experimental results. Training time is measured on a single NVIDIA A100 GPU.

Task Architecture Accuracy (%) PSNRσ=15 PSNRσ=25 PSNRσ=50 Training time (h)

Classification ResNet18 69.8 N.A. N.A. N.A. 96

Joint GradResNet 68.6 34.59 31.94 27.17 208

Figure 3: Denoising experiment. Top, left-to-right: Original CIFAR-10 test image, noisy image
(σ = 50), denoised images with unconditional and conditional denoisers, and difference between them
(magnified 500x). Bottom, left-to-right: Eigenvectors corresponding to the three largest (2.71,2.16,
2.03) and two lowest (2.8× 10−5,−1.9× 10−5) magnitude eigenvalues of the unconditional denoiser
Jacobian. More examples are shown in Appendix C.

classification accuracy and the denoising PSNR averaged over the test set, compared with baselines.
The classification baseline is a standard ResNet18 (He et al., 2016). As denoising baselines, we use
two standard architectures, DnCNN (Zhang et al., 2017b) and DRUNet (Zhang et al., 2021). All
baselines are trained with the same setup as our joint approach (but on a single objective).

Results are shown in Table 1 for CIFAR-10 (Krizhevsky et al., 2009) and in Table 2 for ImageNet
(Russakovsky et al., 2015). We obtain classification and denoising performances that are competitive
with the baselines. Importantly, our method provides a big computational advantage to the previous
work JEM (Grathwohl et al., 2019), as can be seen from the training times in Table 1. JEM is
based on maximum-likelihood training, which is very challenging to scale in high dimensions (as the
authors of note, “training [...] can be quite unstable”), and therefore has been limited to 32× 32-sized
images, even in subsequent work (Yang et al., 2023). In contrast, denoising score matching is a
straightforward regression, which leads to a stable and lightweight training that scales much more
easily to ImageNet at full 224× 224 resolution.

In Table 1, we report results for GradResNet trained on a single task to separate the impact of each
objective. We remark that the denoising objective improves classification performance, confirming
the arguments in Section 2.1. The classification objective however slightly degrades denoising
performance. We also conduct several ablation experiments to validate our architecture choices
in Table 3 in Appendix B. All our choices are beneficial for both classification and denoising
performance, except for the removal for biases which very slightly affects denoising performance.

4.2 ANALYZING THE LEARNED DENOISERS

On the top row of Figure 3, we show an example of a noisy image denoised using the learned
unconditional and class-conditional denoisers. We also show the difference between the two denoised
images scaled by a factor of 500. The two denoised images look very similar, suggesting that the
class conditioning is not very informative here.

Importantly, as we removed all the bias terms from the convolutional layers, our denoisers are
bias-free. Mohan et al. (2020) have shown that bias-free deep denoisers D are locally linear operators,
i.e., D(y) = ∇yD(y)y, where ∇yD(y) is the Jacobian of the denoiser evaluated at y. To study
the effect of a denoiser on a noisy image y, one can compute the singular value decomposition of
the denoiser’s Jacobian evaluated at y (see Mohan et al. (2020) for details). The Jacobian of our
unconditional denoiser is

∇yDu(y) = Id + σ2∇2
y log pθ(y), (14)
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Figure 4: Adversarial attacks on CIFAR-10 test set. The baseline is a ResNet18 trained for classifi-
cation only, ours is a GradResNet trained for classification and denoising, and JEM is the method
proposed by Grathwohl et al. (2019). Left: ℓ∞ PGD attack. Right: ℓ2 PGD attack.

where ∇2 denotes the Hessian. Since our denoiser is a gradient field, its Jacobian is symmetric, and
can thus be diagonalized. The bottom row of Figure 3 shows the eigenvectors corresponding to the
three largest and two lowest magnitude eigenvalues. Interestingly, eigenvectors corresponding to
largest eigenvalues capture large scale features from the original image which are amplified by the
denoiser. Conversely, lowest eigenvectors correspond to noisy images without shape nor structure
that are discarded by the denoiser.

4.3 ADVERSARIAL ROBUSTNESS

In their seminal work on joint-modeling, Grathwohl et al. (2019) show that learning the joint
distribution over images and classes leads to increased robustness to adversarial attacks. We perform
projected gradient descent (PGD) adversarial attacks using the foolbox library (Rauber et al., 2020)
on our baseline classifier and the classifier optimized for joint-modeling. Results are shown in
Figure 4. We note that the proposed method increases adversarial robustness, but not as much as an
MCMC-trained joint energy-based model (Grathwohl et al., 2019).

5 DISCUSSION AND RELATED WORK

5.1 ROBUST CLASSIFIERS

Adversarial robustness. Adversarial robustness is deeply related to noise addition. Indeed, Gu
& Rigazio (2014) have shown that adding noise to adversarial attacks (referred to as randomized
smoothing) can mitigate their effect. Further, Lecuyer et al. (2019) and follow-ups (Li et al., 2019;
Cohen et al., 2019) showed that being robust to additive noise provably results in adversarial robust-
ness using this strategy. This was recently shown to be practical in Maho et al. (2022). Note that
noise addition at test time (as opposed to only during training) is critical to obtain robustness (Carlini
& Wagner, 2017), an observation also made in Su & Kempe (2023). This appears in the instability of
the σ → 0 limit in eq. (9), and indicates that robustness tests as in Figure 4 should be computed over
attack strength and noise levels.

Building classifiers that are robust to additive noise on the input image was considered in many works
(note that this is separate from the issue of learning from noisy labels). Dodge & Karam (2017) found
that fine-tuning standard networks on noisy images improve their robustness, but still falls short of
human accuracy at large noise levels. A common benchmark (which also include corruptions beyond
additive noise) was established in Hendrycks & Dietterich (2018). Effective approaches include
carefully designing pooling operators (Li et al., 2020) and iterative distillation (Xie et al., 2020).

Adversarial gradients and generative models. Several works use denoisers or other generative
models to improve adversarial or noise robustness, e.g., by denoising input images as a pre-processing
step (Roy et al., 2018), or by leveraging an off-the-shelf generative model to detect and “purify”
adversarial examples (Song et al., 2017). Grathwohl et al. (2019) unified the generative model and the
classifier in a single model and showed that joint modeling results in increased adversarial robustness.
Our work goes one step further by also making the connection to noise robustness and denoising
through diffusion models, warranting further work in this direction.
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5.2 SAMPLING AND ARCHITECTURE OF GRADIENT DENOISERS

Gradient denoiser architectures. Several works have studied the question of learning the score as a
gradient. Most similar to our setup is Cohen et al. (2021), where the authors introduce the GraDnCNN
architecture. When modeling directly the score with a neural network, Saremi (2019) show that the
learned score is not a gradient field unless under very restrictive conditions. Nonetheless, Mohan et al.
(2020) show that the learned score is approximately conservative (i.e., a gradient field), and Chao et al.
(2023) introduce an additional training objective to penalize the non-conservativity. Finally, Horvat
& Pfister (2024) demonstrate that the non-conservative component of the score is ignored during
sampling with the backward diffusion, though they find that a conservative denoiser is necessary for
other tasks such as dimensionality estimation. Our work provides several recommendations for the
design of gradient-based denoisers.

Sampling. Preliminary experiments indicate that sampling from the distributions p(x) and p(x|c)
learned by our model, e.g. with DDPM (Ho et al., 2020), is not on par with standard diffusion models.
Salimans & Ho (2021) noted that “specifying the score model by taking the gradient of an image
classifier has so far not produced competitive results in image generation.” While our changes to the
ResNet architecture significantly alleviate these issues, its gradient might not have the right inductive
biases to model the score function. Indeed, recent works (Salimans & Ho, 2021; Hurault et al.,
2021; Yadin et al., 2024) rather model log-probabilities with (the squared norm of) a UNet, whose
gradient is then more complicated (its computational graph is not itself a UNet). Understanding the
inductive biases of these different approaches is an interesting direction for future work. After the
completion of this work, we became aware of a related approach by (Guo et al., 2023). They tackle
classification and denoising with a UNet network, and demonstrate competitive sampling results.
This complements our conceptual arguments for the joint approach, confirms its potential, and calls
for an explanation between the discrepancies in performance between the two architectures.

Conditioning. We also note that the class information is used differently in classification and
conditional denoising. On the one hand, in classification, the class label is only used as an index
in the computed logits (which allows for fast evaluation of all class logits). On the other hand,
conditional denoisers typically embed the class label as a continuous vector, which is then used to
modify gain and bias parameters in group-normalization layers (which is more expressive). This
raises the question whether these two different approaches could be unified in the joint framework.
An area where we expect the joint approach to lead to significant advances is in that of caption
conditioning, where the classifier log p(c|y) is replaced by a captioning model. Training a single
model on both objectives has the potential to improve the correspondence between generated images
and the given caption. Another type of conditioning is with the noise level σ, also known as the time
parameter t. In a recent work, Yadin et al. (2024) propose classification diffusion models (CDM).
They model the joint distribution over images and discrete noise levels with denoising score matching
and noise level classification. Both approaches are orthogonal and could be combined in future work.

6 CONCLUSION

In this paper, we have shown that several machine-learning tasks and issues are deeply connected:
classification, denoising, generative modeling, adversarial robustness, and conditioning are unified by
our joint modeling approach. Our method is significantly more efficient than previous maximum-
likelihood approaches, and we have shown numerical experiments which give promising results on
image (robust) classification and image denoising, though not yet in image generation.

We believe that exploring the bridges between these problems through the lens of joint modeling as
advocated in this paper are fruitful research directions. For instance, can we understand the different
inductive biases of ResNet and UNet architectures in the context of joint energy-based modeling?
Can we leverage the connection between adversarial gradients and denoising to further improve
classifier robustness? We also believe that the joint approach holds significant potential in the case
where the class label c is replaced by a text caption. Indeed, modeling the distribution of captions p(c)
is highly non-trivial and should be beneficial to conditional generative models for the same reasons
than we used to motivate generative classifiers in Section 2.1. Finally, the joint approach yields a
model of the log-probability log p(y), as opposed to the score ∇y log p(y). We thus expect that this
model could be used to empirically probe properties of high-dimensional image distributions.
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A TRAINING AND IMPLEMENTATION DETAILS

Experiments on CIFAR-10. We implement the proposed network and the training script using the
PyTorch library (Paszke et al., 2019). We adapt the original ResNet18 (He et al., 2016) to 32× 32
images by setting the kernel size of the first convolutional layer to 3 (originally 7) and the stride of the
first two convolutional layers to 1. We also remove the max-pooling layer. To train our GradResNet,
we use the AdamW optimizer with the default parameters except for the weight decay (0.05) and the
learning rate (3× 10−4). We use a cosine annealing schedule for the learning rate, without warm-up.
We use a batch size of 64 for denoising and 128 for classification. The optimized loss is the sum of
the cross-entropy loss and the mean-squared denoising objective (eq. 13). We run the optimization
for 78k iterations, corresponding to 200 epochs for classification.

For classification, we use for data-augmentation random horizontal flips, padded random crops with
padding of 4 pixels, and MixUp (Zhang et al., 2017a) and CutMix (Yun et al., 2019) as implemented
in torchvision.transforms with the default parameters. We also add Gaussian white noise
scaled by σ that we draw from a squared uniform distribution in the range [0, 20]. For denoising, we
simply use random flips. We add Gaussian noise with σ ∈ [1, 100].

Experiments on ImageNet. We use the standard ResNet18 architecture, but without the max-
pooling layer. We set the learning rate to 2×10−4 and weight decay to 10−4. We train the network for
400 epochs with a batch size of 512 for classification. We replace the random crop data augmentation
with random resized crops of size 224× 224. For denoising, we gradually change the image size and
batch size across training, following Zamir et al. (2022). That is, we compute the denoising loss over
image batches of size 64× 128× 128 until epoch 150, then 40× 160× 160 until epoch 260, then
32× 192× 192 until epoch 340, and 16× 224× 224 until epoch 400. Smaller images are extracted
by taking random crops of the chosen size. Both objectives are computed with Gaussian noise with σ
the square of a uniform distribution supported in [1, 70]. All other hyperparameters are the same as
for the CIFAR-10 dataset.
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B ABLATION EXPERIMENTS

We present ablation experiments to validate our architecture choices of Section 3.2 in Table 3. Namely,
we replace the GeLU non-linearity with the original ReLU, replace GroupNorm layers with the
original BatchNorm, add biases to convolutional and GroupNorm layers, or remove side connections
(see Figure 2).

Table 3: Ablation experiments on CIFAR-10 dataset.
Task Architecture Accuracy (%) PSNRσ=15 PSNRσ=25 PSNRσ=50

Joint

GradResNet 96.3 31.90 29.00 25.25
(ReLU) 92.0 29.59 24.90 17.11

(BatchNorm) 11.9 24.33 20.84 18.06
(Biases) 95.9 31.95 29.03 25.30

(No side co.) 94.0 31.86 28.95 25.17

C DENOISING EXPERIMENTS

Additional denoising experiments are presented in Figure 5.

D BIAS-VARIANCE DECOMPOSITION OF THE GENERALIZATION ERROR

We sketch a derivation of the results. They can be rigorously proved under usual regularity conditions
by a straightforward generalization of the proofs of asymptotic consistency, efficiency, and normality
of the maximum-likelihood estimator (see, e.g., Hogg et al. (2013, Thereom 6.2.2)).

Given a function ℓ, a probability distribution p(x), and i.i.d. samples x1, . . . ,xn, consider the
minimization problems

θ⋆ = argmin
θ

E[ℓ(θ,x)], θn = argmin
θ

1

n

n∑
i=1

ℓ(θ,xi). (15)

We wish to estimate the fluctuations of the random parameters θn around the deterministic θ⋆ when
n → ∞.

The estimator θn is defined by
1

n

n∑
i=1

∇θℓ(θn,xi) = 0. (16)

A first-order Taylor expansion around θ⋆ gives

1

n

n∑
i=1

∇θℓ(θ⋆,xi) +
1

n

n∑
i=1

∇2
θℓ(θ⋆,xi)(θn − θ⋆) = 0, (17)

and thus

θn = θ⋆ −
1√
n

(
1

n

n∑
i=1

∇2
θℓ(θ⋆,xi)

)−1(
1√
n

n∑
i=1

∇θℓ(θ⋆,xi)

)
. (18)

By applying the law of large numbers to the first sum and the central limit theorem to the second sum
(by definition of θ⋆, E[∇θℓ(θ⋆,x)] = 0), it follows that as n → ∞ we have

θn ∼ N
(
θ⋆,

1

n
Σ

)
, (19)

with a covariance

Σ = E
[
∇2

θℓ(θ⋆, x)
]−1

Cov[∇θℓ(θ⋆,x)]E
[
∇2

θℓ(θ⋆, x)
]−1

. (20)
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Figure 5: Additional denoising experiments with σ = 50. See Figure 3 for details.

For the generative and discriminative modeling tasks, we have

θgen⋆ = argmin
θ

E[− log pθ(x, c)], θgenn = argmin
θ

1

n

n∑
i=1

− log pθ(xi, ci), (21)

θdis⋆ = argmin
θ

E[− log pθ(c|x)], θdisn = argmin
θ

1

n

n∑
i=1

− log pθ(ci|xi). (22)

In this setting, eq. (20) yields

Σgen = E
[
−∇2

θ log pθgen
⋆

(x, c)
]−1

Cov
[
−∇θ log pθgen

⋆
(x, c)

]
E
[
−∇2

θ log pθgen
⋆

(x, c)
]−1

, (23)

Σdis = E
[
−∇2

θ log pθdis
⋆
(c|x)

]−1

Cov
[
−∇θ log pθdis

⋆
(c|x)

]
E
[
−∇2

θ log pθdis
⋆
(c|x)

]−1

. (24)

Note that we do not recover the Fisher information since expected values are with respect to the true
distribution p, which is different from pθgen

⋆
and p

θ
dis
⋆

under model misspecification.
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These expressions can be plugged in a second-order Taylor expansion of the KL divergence: for any
θn asymptotically normally distributed around θ⋆ with covariance 1

nΣ,

E
[
KL
(
p(c|x)

∥∥ pθn(c|x))] = E
[
KL
(
p(c|x)

∥∥ pθ⋆(c|x))]︸ ︷︷ ︸
b

+
1

2n
Tr
(
ΣE
[
−∇2

θ log pθ⋆(c|x)
])

︸ ︷︷ ︸
v

+ o

(
1

n

)
. (25)

Finally, we obtain

bgen = E
[
KL
(
p(c|x)

∥∥ pθgen
⋆

(c|x)
)]
, vgen = Tr

(
Σgen E

[
−∇2

θ log pθgen
⋆

(c|x)
])

, (26)

bdis = E
[
KL
(
p(c|x)

∥∥∥ pθdis
⋆
(c|x)

)]
, vdis = Tr

(
Σdis E

[
−∇2

θ log pθdis
⋆
(c|x)

])
. (27)

By definition of θdis⋆ , we have bdis ≤ bgen (since maximizing likelihood is equivalent to minimizing
KL divergence). The variance terms can be compared when the model is well-specified, i.e., there
exists θ⋆ such that p = pθ⋆ . In this case, we have θgen⋆ = θdis⋆ = θ⋆, so that bgen = bdis = 0, and the
variances simplify to

vgen = Tr

(
E
[
−∇2

θ log pθ⋆(x, c)
]−1

E
[
−∇2

θ log pθ⋆(c|x)
])

≤ m, (28)

vdis = Tr(Id) = m, (29)

using the Fisher information relationship

E
[
−∇2

θ log pθ⋆(c|x)
]
= Cov

[
−∇θ log pθ⋆(c|x)

]
, (30)

and the decomposition

E
[
−∇2

θ log pθ⋆(x, c)
]
= E

[
−∇2

θ log pθ⋆(c|x)
]
+ E

[
−∇2

θ log pθ⋆(x)
]

︸ ︷︷ ︸
≽0

. (31)

We thus have vgen ≤ vdis in the well-specified case.
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