
CHAMELEON: A Flexible Data-mixing Framework
for Language Model Pretraining and Finetuning

Wanyun Xie 1 Francesco Tonin 1 Volkan Cevher 1

Abstract

Training data mixtures greatly impact the gen-
eralization performance of large language mod-
els. Existing domain reweighting methods often
rely on costly weight computations and require
retraining when new data is introduced. To this
end, we introduce a flexible and efficient data
mixing framework, CHAMELEON, that employs
leverage scores to quantify domain importance
within a learned embedding space. We first con-
struct a domain affinity matrix over domain em-
beddings. The induced leverage scores determine
a mixture that upweights domains sharing com-
mon representations in embedding space. This
formulation allows direct transfer to new data by
computing the new domain embeddings. In ex-
periments, we demonstrate improvements over
three key scenarios: (i) our computed weights im-
prove performance on pretraining domains with
a fraction of the compute of existing methods;
(ii) CHAMELEON can adapt to data changes with-
out proxy retraining, boosting few-shot reason-
ing accuracies when transferred to new data; (iii)
our method enables efficient domain reweight-
ing in finetuning, consistently improving test per-
plexity on all finetuning domains over uniform
mixture. Our code is available at https://
github.com/LIONS-EPFL/Chameleon.

1. Introduction
Pretraining large language models (LLMs) relies heavily
on vast and diverse datasets, encompassing sources such as
academic papers, books, and code repositories (Brown et al.,
2020; Dubey et al., 2024). The composition of these datasets

1Laboratory for Information and Inference Systems, École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Corre-
spondence to: Wanyun Xie <wanyun.xie@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

significantly influences the generalization capabilities and
downstream performance of LLMs.

Domain reweighting, which involves adjusting the relative
contributions of different domains in the training dataset,
has emerged as a critical aspect of LLM training (Gao et al.,
2020; Du et al., 2022). However, obtaining optimal domain
weights is a challenging problem due to factors such as data
quality, diversity, inter-domain overlap, and task-specific
complexities (Shen et al., 2023; Longpre et al., 2024).

Early domain reweighting methods relied on manual selec-
tion, often favoring high-quality sources like Wikipedia and
academic texts (Brown et al., 2020; Gao et al., 2020). While
intuitive, these approaches are neither optimal nor scalable.

Recent work explores computational strategies for optimiz-
ing domain mixtures, such as DoReMi (Xie et al., 2023) and
DoGE (Fan et al., 2024b), which use a small proxy model
to derive domain weights for training a larger base model.
Though effective, these methods are computationally expen-
sive and have limited practical applicability.

We contend that an ideal data-mixing method should (i)
improve universal generalization, the fundamental goal of
domain reweighting; (ii) adapt to domain modifications –
data naturally evolves between preparation and LLM train-
ing, making frequent recalibration impractical; (iii) handle
different training stages such as pertaining and fine-tuning.
Most existing methods are limited to pretraining scenarios
and do not consider either domain changes or the fine-tuning
stage where domain specificity often plays a larger role.

In this work, we introduce CHAMELEON, a novel and effi-
cient framework for data mixing that addresses these chal-
lenges. Our method computes domain weights directly
from learned embeddings using kernel ridge leverage scores
(KRLS), which quantify the importance of each domain
based on its contribution to the overall embedding space.

Unlike existing approaches, CHAMELEON reduces the data-
mixing compute and eliminates the need for frequent re-
training of proxy models when domains change. Instead, it
constructs a domain affinity matrix to capture relationships
between domains and computes leverage scores that guide
domain reweighting. Our data-centric approach enables

1

https://github.com/LIONS-EPFL/Chameleon
https://github.com/LIONS-EPFL/Chameleon

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

seamless adaptation to new data and flexibility across both
pretraining and fine-tuning stages.

Specifically, our contributions are summarized as follows:

• We propose CHAMELEON, an efficient data-mixing
framework that leverages KRLS to quantify do-
main representativeness from embedded data. In-
verse KRLS-based domain weights emphasize general
knowledge for pertaining. We empirically demonstrate
that CHAMELEON matches DoReMi and DoGE in pre-
training performance at a fraction of their cost.

• As a data-centric method, CHAMELEON can flexibly
adapt to changes in domain composition without re-
training proxy models, enhancing its practicality in
real scenarios. It outperforms baselines at 1% of the
retraining cost, even as domains double.

• We extend domain reweighting to fine-tuning, where
KRLS-based weights emphasize domain-specific
uniqueness. Empirical results show consistent perplex-
ity improvements across all domains on both natural
language and code datasets.

From a practical standpoint, CHAMELEON significantly
lowers the computational burden associated with domain
reweighting, making advanced LLM training pipelines more
accessible to researchers with limited resources.

Indeed, our KRLS-based scores are computationally inex-
pensive, hyperparameter-robust, and converge quickly. This
efficiency is particularly advantageous when incorporating
new data, where our method can be applied directly without
re-running the entire proxy pipeline. By bridging the gap
between pretraining and fine-tuning, our method provides a
unified and agile framework for efficient as well as effective
data mixing across all stages of LM training.

2. Related Work
Domain Reweighting. Domain reweighting improves
LLM pretraining by balancing data contributions from dif-
ferent sources. In this setting, online adaptation strategies
require frequent recalibration and monitoring (Albalak et al.,
2023; Jiang et al., 2024; Fan et al., 2024a).

Two closely related approaches are DoReMi (Xie et al.,
2023) and DoGE (Fan et al., 2024b). DoReMi trains both
a reference and a proxy model using Group DRO (Sagawa
et al., 2020) to mitigate excess domain loss, while DoGE
tracks domain-specific gradients during proxy training.

Both methods are inefficient: DoReMi depends on the refer-
ence model’s quality and requires training two models, while
DoGE incurs high gradient tracking costs. Their domain
weights fluctuate significantly during training (Figure 3).

Table 1: Data-mixing methods capabilities comparison.

DoReMi DoGE CHAMELEON

Generalization ✓ ✓ ✓
Downstream ✓ ✓ ✓
New data ✗ ✗ ✓
Finetuning ✗ ✗ ✓

In this setting, our work develops an offline method that
achieves uniformly strong performance across domains with-
out relying on downstream task knowledge. Other offline
methods, such as Data Mixing Laws (Ye et al., 2024) and
RegMix that–in contrast to ours–requires access to the down-
stream tasks (Liu et al., 2024), use multiple proxy models
to search for optimal data mixtures, revealing that domain
weights transfer across model sizes.

Additionally, studies on data and model scaling laws
provide further insights into domain weighting strategies
(Kang et al., 2024; Ye et al., 2024). However, they critically
rely on the scaling strategy and do not have an easy way
of adapting to domain expansion.

Kernel Ridge Leverage Scores (KRLS). The notion of
statistical leverage score (Gareth et al., 2013) is used in best-
rank approximation to define an importance score for the
rows in a matrix by their influence on the optimal low-rank
approximation (Mahoney & Drineas, 2009), with approxi-
mation error guarantees for sampling (Li et al., 2013).

Ridge leverage scores are also proposed with additional
regularization term (Cohen et al., 2015; 2017; Rudi et al.,
2018). Leverage scores are extended to the kernel setting in
(Bach, 2013), namely kernel ridge leverage scores.

KRLS sampling is extensively used to accelerate kernel
methods (Alaoui & Mahoney, 2015; Musco & Musco,
2017; Rudi et al., 2017; 2018). Inverse KRLS have been
related to Christoffel functions (Pauwels et al., 2018),
which in machine learning are used for, e.g., landmark
sampling (Fanuel et al., 2022), density estimation (Pauwels
et al., 2018), and outlier detection (Lasserre & Pauwels,
2019; Beckermann et al., 2021; Ducharlet et al., 2024).

3. Data Mixing via CHAMELEON

Setup. We consider a dataset D = {D1, . . . , Dk} consist-
ing of k distinct domains, each represented by its metadata
(e.g., source, topic). Our objective is to determine a domain
weight vector α ∈ ∆k, where ∆k is the probability simplex,
enhancing the performance of LMs. Following prior work
(Xie et al., 2023; Fan et al., 2024b), we adopt a two-stage
strategy: (1) training a small proxy model to infer domain
weights and (2) training a large base model using the com-

2

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and FinetuningCHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

0 10

�5

0

5

10

42 �17 �15 �14 6 3 �5

�17 27 12 15 �21 �16 1

�15 12 24 19 �20 �13 �6

�14 15 19 22 �22 �17 �2

6 �21 �20 �22 46 31 �19

3 �16 �13 �17 31 29 �17

�5 1 �6 �2 �19 �17 49

Arxi
v

Boo
k CC C4

Gith
ub

Stac
k

W
iki

.00

.03

.05

.08

.10

K
R

L
S

S
�

Pretraining
Domain Weights: ↵PT

i = softmax(S�1
�)

Transfer to New Data
Domain Weights: ↵ND

i = softmax(S�1
�)

Finetuning
Domain Weights: ↵FT

i = softmax(S�)

Learn Domain Embeddings

1

Compute Domain Affinity

2

Compute KRLS Scores

3

Train base LMs

4

Figure 1: Pipeline of domain reweighting via CHAMELEON. The given data is first embedded through the proxy model,
previously trained on a corpus D with uniform weights. Domain embeddings are then determined by averaging the
embeddings for each domain. The domain affinity matrix ⌦D is computed as the pairwise inner products between domain
embeddings. Finally, (KRLS) is applied to ⌦D to obtain score S� indicating the degree of inter-domain independency. A
resampling non-uniform distribution ↵ is obtained by softmax normalizing the scores. Finally, the target base language
model is trained with the obtained data mixture, where the inverse KRLS S�1

� is used during pretraining of initial or new data
to promote general knowledge learning and the KRLS S� is used during finetuning to emphasize task-specific knowledge.

We approach the data mixture problem from a data-centric
perspective. Unlike prior works such as DoReMi (Xie et al.,
2023) and DoGE (Fan et al., 2024b), which derive domain
weights based on the optimization process of a proxy model,
we focus instead on the intrinsic properties of the data itself.

To characterize domain characteristics, we extract embed-
dings from hidden layers of the proxy model. These embed-
dings encapsulate rich semantic and structural information
about the input data in a continuous, high-dimensional space.
As a result, the embeddings not only represent the individual
domains but also capture their inter-domain relationships.

Figure 4 presents a two-dimensional UMAP (McInnes et al.,
2018) projection of mid-layer embeddings derived from the
SlimPajama dataset using a proxy language model. The
visualization highlights the following key characteristics:
(i) semantic distinctiveness: similar domains cluster closely,
while unique domains stand apart; (ii) centrality and cov-
erage: broad domains like "CC" and "C4" create dominant
regions, covering shared semantic space, while more spe-
cific domains like "Arxiv" are more distinct.

Our observations lead to two central questions:

1. How can we precisely quantify domain characteristics?

2. How can such properties inform domain reweighting?

We tackle these questions in the sequel.

3.1. Quantifying domain characteristics

We first introduce domain embeddings capturing domain-
level characteristics, representing each domain Di as the

embedding vector xi 2 Rp, with p being the embedding
dimension. This embedding is computed by averaging the
LM embeddings of data points in the domain:

xi =
1

|Di|
X

a2Di

h
(L)
✓p

(a),

where h
(L)
✓p

(a) denotes the L-th layer embedding of the
proxy model h✓p

. In practice, using a sufficiently large,
randomly sampled batch Bi ✓ Di provides a robust
approximation of the domain embedding and is used in
experiments. The proxy is trained on D with uniform
domain weights, i.e., ↵i = 1/k, following (Xie et al.,
2023; Fan et al., 2024b). We define the resulting domain
embedding matrix as X = [x1, . . . , xk]> 2 Rk⇥p.

To quantify properties across domains, we exploit Kernel
Ridge Leverage Scores (KRLS) (Alaoui & Mahoney, 2015).
KRLS measure the contribution of each domain to the over-
all embedding space. First, we define a kernel function
(xi, xj) = x>

i xj , which captures the similarity between
domains Di and Dj . Using this kernel, we construct the
domain affinity matrix:

⌦D = [(xi, xj)]
k
i,j=1 = XX>.

The domain affinity matrix ⌦D captures pairwise rela-
tionships between domains, with higher values indicating
a higher degree of semantic similarity. Note that we
employ the linear kernel as the LM itself already introduces
significant non-linearity. An example domain affinity
matrix is visualized in Figure 5. While ⌦D captures

3

Figure 1: Pipeline of domain reweighting via CHAMELEON. The given data is first embedded through the proxy model,
previously trained on a corpus D with uniform weights. Domain embeddings are then determined by averaging the
embeddings for each domain. The domain affinity matrix ΩD is computed as the pairwise inner products between domain
embeddings. Finally, (KRLS) is applied to ΩD to obtain score Sλ indicating the degree of inter-domain independency. A
resampling non-uniform distribution α is obtained by softmax normalizing the scores. Finally, the target base language
model is trained with the obtained data mixture, where the inverse KRLS S−1

λ is used during pretraining of initial or new data
to promote general knowledge learning and the KRLS Sλ is used during finetuning to emphasize task-specific knowledge.

puted weights. Note that many studies have empirically
shown that domain weights transfer across different model
sizes (Xie et al., 2023; Fan et al., 2024b; Liu et al., 2024).

We approach the data mixture problem from a data-centric
perspective. Unlike prior works such as DoReMi (Xie et al.,
2023) and DoGE (Fan et al., 2024b), which derive domain
weights based on the optimization process of a proxy model,
we focus instead on the intrinsic properties of the data itself.

To characterize domain characteristics, we extract embed-
dings from hidden layers of the proxy model. These embed-
dings encapsulate rich semantic and structural information
about the input data in a continuous, high-dimensional space.
As a result, the embeddings not only represent the individual
domains but also capture their inter-domain relationships.

Figure 1 ➀ presents a two-dimensional UMAP (McInnes
et al., 2018) projection of mid-layer embeddings derived
from the SlimPajama dataset using a proxy language model.
The visualization highlights the following key characteris-
tics: (i) semantic distinctiveness: similar domains cluster
closely, while unique domains stand apart; (ii) centrality
and coverage: broad domains like "CC" and "C4" create
dominant regions, covering shared semantic space, while
more specific domains like "Arxiv" are more distinct.

Our observations lead to two central questions:

1. How can we precisely quantify domain characteristics?

2. How can such properties inform domain reweighting?

We tackle these questions in the sequel.

3.1. Quantifying domain characteristics

We first introduce domain embeddings capturing domain-
level characteristics, representing each domain Di as the
embedding vector xi ∈ Rp, with p being the embedding
dimension. This embedding is computed by averaging the
LM embeddings of data points in the domain:

xi =
1

|Di|
∑

a∈Di

h
(L)
θp

(a),

where h
(L)
θp

(a) denotes the L-th layer embedding of the
proxy model hθp . In practice, using a sufficiently large,
randomly sampled batch Bi ⊆ Di provides a robust
approximation of the domain embedding and is used in
experiments. The proxy is trained on D with uniform
domain weights, i.e., αi = 1/k, following (Xie et al.,
2023; Fan et al., 2024b). We define the resulting domain
embedding matrix as X = [x1, . . . , xk]

⊤ ∈ Rk×p.

To quantify properties across domains, we exploit Kernel
Ridge Leverage Scores (KRLS). KRLS is a well-established
tool in data analysis quantifying the influence or importance
of data points (Alaoui & Mahoney, 2015). KRLS measure
the contribution of each domain to the overall embedding
space. First, we define a kernel function κ(xi, xj) = x⊤

i xj ,
which captures the similarity between domains Di and Dj .
Using this kernel, we construct the domain affinity matrix:

ΩD = [κ(xi, xj)]
k
i,j=1 = XX⊤.

The domain affinity matrix ΩD captures pairwise rela-
tionships between domains, with higher values indicating
a higher degree of semantic similarity. Note that we

3

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

employ the linear kernel as the LM itself already introduces
significant non-linearity. An example domain affinity
matrix is visualized in Figure 1 ➁. While ΩD captures
inter-domain relationships, it does not directly provide a
measure of individual domain importance for data mixing.

To address this, we propose to employ KRLS defined on ΩD
to quantify the influence of each domain within the overall
embedding space. We compute the scores as defined below.

Definition 3.1 (Domain KRLS). For a given regularization
parameter λ > 0, the KRLS for domain Di is defined as:

Sλ(Di) = [ΩD(ΩD + kλI)−1]ii, (KRLS)

where I is the k × k identity matrix.

The KRLS Sλ(Di) quantifies the importance of domain Di

in the embedding space. Specifically, these scores corre-
spond to the diagonal entries of the hat matrix ΩD(ΩD +
kλI)−1 of Kernel Ridge Regression (KRR) (Hastie et al.,
2005). They are proportional to the weights assigned to each
domain in the dual KRR estimator, and they depend only
on the inputs xi and constant λ independently of specific
target values (Calandriello et al., 2016; Chen & Yang, 2021).
Inputs with higher KRLS indicate higher contribution to
the KRR estimator, i.e., they are more unique in the kernel
representation. More discussions on the KRLS and the role
of regularization are provided in Appendix A.1 and A.2,
respectively.

In data mixing, a high KRLS value for domain Di indicates
that its embedding xi cannot be well-approximated as a
combination of embeddings from other domains, implying
that Di is relatively distinct or unique in its characteristics.
Conversely, a low KRLS value suggests that Di is highly
well-represented, as it can be readily reconstructed from
other domain embeddings, representing broader or more
widely shared characteristics across domains.

3.2. Incorporating KRLS into LM training

An essential question is thus: Which domains should be pri-
oritized: the general ones with higher degree of dependency
with others or independent ones with more unique charac-
teristics? Prior work suggests that data mixing strategies
should adapt to different training phases (Ma et al., 2023;
Feng et al., 2024). Therefore, we address this by consider-
ing pretraining and fine-tuning separately, as their objectives
differ fundamentally (Parthasarathy et al., 2024).
Remark 3.2 (Theoretical motivation). Before introducing
our weights, we provide a theoretical motivation for our
approach. It is well established that the inverse KRLS S−1

λ

is proportional to the Christoffel function (Pauwels et al.,
2018), which is a common measure of density of the data
in embedding space. Christoffel functions precisely charac-
terize the local density of the data distribution in the feature

Algorithm 1 Domain Weighting via CHAMELEON.

1: Input: Training data from k domains D =
{D1, . . . , Dk}, regularization parameter λ, embedding
layer index L.

2: if Pretraining then
3: Train proxy hθp(a) with uniform weights αi =

1
k .

4: end if
5: Extract domain embeddings: xi =

1
|Di|

∑
a∈Di

h
(L)
θp

(a)

for each domain Di.
6: Construct the feature matrix: X = [x⊤

1 , . . . , x
⊤
k].

7: Compute the domain affinity matrix: ΩD = XX⊤.
8: Compute KRLS Sλ(Di) for each domain Di using ΩD.
9: if Pretraining then

10: Domain weights αPT
i =

exp(S−1
λ (Di))∑k

j=1 exp(S−1
λ (Dj))

.

11: else if Fine-Tuning then
12: Domain weights αFT

i = exp(Sλ(Di))∑k
j=1 exp(Sλ(Dj))

.

13: end if
14: Output: Domain weights αPT or αFT.

space, where higher values indicate denser regions. Detailed
remarks are provided in Appendix A.2.

Pretraining. During pretraining, assigning higher sam-
pling probability to domains with high S−1

λ upweights high-
density data regions, which are most influential on base
LMs’ performance (Mallen et al., 2023; Feng et al., 2024).
To achieve this, we determine domain weights using the
inverse of KRLS:

αPT
i =

exp
(
S−1
λ (Di)

)
∑k

j=1 exp
(
S−1
λ (Dj)

) ,

where we convert the scores S−1
λ into the probability distri-

bution αPT by appliying softmax normalization exp(·)∑k
j=1 exp(·) .

Importantly, the domain weights obtained by CHAMELEON
focus on the intrinsic properties of the data and our method
does not affect the proxy model’s training process. This al-
lows to compute importance weights αND

i of new domains
directly without requiring retraining of the proxy model
by applying it to the new data. The proxy is used to obtain
the new domain embeddings, from which the new (KRLS)
score is calculated. In contrast, existing data mixture
methods couple domain reweighting with the proxy model’s
optimization, necessitating costly retraining whenever
domains are added. This dependency not only increases
computational overhead but also contradicts the goal of im-
proving efficiency in large-scale dynamic training pipelines.

Finetuning. Finetuning aims to specialize on a novel spe-
cific task (Yang et al., 2024), requiring the model to learn
differential features not fully captured during pretraining,

4

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

so we instead prioritize the domains with high KRLS Sλ:

αFT
i =

exp (Sλ(Di))∑k
j=1 exp (Sλ(Dj))

.

Note that the key difference between finetuning and pretrain-
ing in the data mixture problem is that, during finetuning,
we do not need to train a separate proxy model. Instead,
we directly use the pre-trained model for finetuning. This
allows us to extract the embeddings from the pre-trained
model for the relevant domains, which are then used to
compute the domain weights.

Algorithm and complexity analysis. The overall domain
reweighting process is summarized in Algorithm 1. Our
phase-specific strategy ensures that it well adapts to the
differing demands of pretraining and fine-tuning. Obtaining
embeddings xi requires a single forward pass for each
sample a ∈ Di through the proxy; inference is fast as the
proxy is a small model. Given the typically small number
of domains k, the KRLS computation in Definition 3.1
is cheap in O(k3). We do not add any overhead in proxy
training. Our approach is therefore efficient and contrasts
with prior methods requiring domain-specific iterative
optimization (Xie et al., 2023; Fan et al., 2024b).

4. Experiments
We show CHAMELEON improves the model’s performance
through data mixture with less computational costs (Sec-
tion 4.1). In addition, CHAMELEON is scalable and can
be applied to larger datasets without the need to retrain a
proxy model (Section 4.2). Moreover, it can easily applied
to fine-tuning tasks (Section 4.3).

4.1. Universal Generalization

Considering universal generalization, the main goal is to im-
prove the general performance of the model across domains
in the training set and also in various downstream tasks. For
the performance on the in-distribution data, we measure
the perplexity across all domains. For downstream tasks,
we follow RegMix (Liu et al., 2024) selecting 13 tasks that
cover various realistic scenarios.

Training setup. We experiment on the SlimPajama-627B
dataset (Soboleva et al., 2023) consisting of 7 data domains.
We choose Uniform with uniform domain weights, DoReMi,
and DoGE as our baselines, which are downstream task
agnostic offline methods same as CHAMELEON. We include
RegMix as an additional reference, as it instead leverages
prior knowledge of downstream tasks. Specifically, RegMix
optimizes domain weights using the validation loss of the
domain most correlated with downstream performance,
identified as “CC” in their work (Liu et al., 2024).

Arxi
v

Boo
k CC C4

Gith
ub

Stac
kE

xc
ha

ng
e

W
iki

pe
dia

.00

.05

.10

.15

.20

.25

D
om

ai
n

W
ei

gh
t

DoReMi

DoGE

CHAMELEON

Figure 2: Domain weights on SlimPajama. We compare
weights computed by data-mixing methods on SlimPajama.

Table 4: GPU hours for obtaining domain weight.

DoReMi DoGE CHAMELEON 684M base model

7.4h 6.3h 0.8h 56h

Following DoGE (Fan et al., 2024b), we use a small 82M
decoder-only transformer (Vaswani et al., 2017) as the aux-
iliary models for CHAMELEON, DoReMi, and DoGE. Aux-
iliary models for both DoGE and DoReMi are trained for
10k iterations, and the proxy model of CHAMELEON is only
trained for 2k steps and we use 4k samples for embedding
computation per domain. Detailed training setup is demon-
strated in Appendix B.2. Domain weight obtained through
different methods is reported in Figure 2. Through train-
ing small auxiliary models, domain weights are obtained to
train larger base models with the size of 684M. Note that we
employ the simple, linear kernel κ(xi, xj) = x⊤

i xj , which
does not need further kernel hyperparameter tuning.

Perplexity and computational cost. Table 2 shows per-
domain perplexity on the held-out test dataset for 684M
base models. CHAMELEON outperforms Uniform and
DoReMi, achieving similar performance to DoGE but
with significantly lower computational cost. Specifically,
DoReMi trains two auxiliary models, while DoGE computes
k = 7 gradients per iteration with roughly 1.7× wall-clock
time per iteration, both of which are costly. In contrast,
CHAMELEON achieves competitive results with just 2k steps
of training, and its inference cost is minimal compared to
the training. In our setting, training an 82M proxy model
requires 1017–1018 FLOPs, and extracting embeddings re-
quires only 1015 FLOPs (< 1% of proxy training). As a re-
sult, the total FLOPs of CHAMELEON, including both train-
ing and inference for embeddings, is only 10% of DoReMi

5

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 2: Universal generalization - perplexity. Per-domain test perplexity for the universal generalization compared with
the uniform baseline, DoReMi, DoGE, and RegMix with 684M parameter models. Note that, unlike other methods, RegMix
knows the target downstream tasks for optimization. We report the compute (in FLOPs) required to arrive at the data mixture.
CHAMELEON boosts generalization at a fraction of the computational cost.

Domain Uniform DoReMi DoGE CHAMELEON RegMix

Arxiv 8.16 9.16 9.07 8.31 11.35
Book 42.55 46.48 40.30 39.23 41.52
CC 45.26 40.62 38.99 40.11 37.32
C4 49.00 43.92 40.65 42.59 43.85
Github 3.99 4.10 4.09 4.20 4.99
Stackexchange 7.99 8.35 7.39 7.94 10.63
Wikipedia 12.42 10.78 15.74 13.90 20.88

Average PPL (↓) 24.20 23.34 22.32 22.31 24.36
Domains Over Uniform - 3/7 4/7 4/7 3/7
FLOPs 0 1.34× 1018 6.68× 1017 1.36× 1017 1.20× 1018

(10×) (5×) (1×) (9×)

Table 3: Universal generalization - reasoning. Accuracy
of downstream tasks in the same settings as Table 2.

Benchmark Unif. DoReMi DoGE CH. RegMix

ARC-E 36.8 37.6 38.0 37.8 39.1
COPA 55.7 59.3 62.3 61.9 63.0
HellaSwag 26.5 27.0 27.2 27.1 27.0
Lambada 13.5 13.6 14.7 15.1 16.5
LogiQA 21.7 21.9 22.4 22.6 21.4
MultiRC 57.2 55.7 57.3 57.2 56.6
OpenBook 14.1 13.3 14.6 14.4 14.7
PiQA 59.2 59.5 60.0 60.5 57.6
QQP 36.8 36.8 36.8 39.2 37.1
RACE 26.1 25.3 26.4 26.5 27.3
SciQ 61.8 62.5 64.9 64.3 64.1
Social IQA 35.0 35.5 35.7 35.7 35.6
WinoGrande 50.5 51.3 52.0 52.1 50.9

Average (↑) 37.9 38.4 39.4 39.6 39.3

and 20% of DoGE. In addition, we demonstrate GPU hours
in Table 4 and discuss its details in Appendix B.4, high-
lighting the efficiency and lower computational overhead of
CHAMELEON.

Evaluation on downstream tasks. We apply our method
on realistic downstream tasks. We follow RegMix (Liu
et al., 2024) selecting 13 tasks that cover various realistic
tasks: ARC-E (Clark et al., 2018), COPA (Sarlin et al.,
2020), HellaSwag (Zellers et al., 2019), Lambada (Paperno
et al., 2016), LogiQA (Liu et al., 2020), MultiRC (Khashabi
et al., 2018), OpenBookQA (Mihaylov et al., 2018), PiQA
(Bisk et al., 2020), QQP (Wang, 2018), RACE (Lai et al.,

Table 5: Universal generalization with 1.2B model - rea-
soning. Large-scale pretraining experiments.

Benchmark Unif. DoReMi DoGE CH. RegMix

ARC-E 39.4 41.2 41.9 42.4 43.0
COPA 64.0 66.0 63.0 61.0 66.0
HellaSwag 27.5 27.7 28.2 28.4 27.6
Lambada 17.9 17.3 18.7 21.6 20.7
LogiQA 22.0 24.0 22.0 21.2 20.7
MultiRC 57.2 57.2 57.2 57.2 56.9
OpenBookQA 15.0 13.6 13.8 16.4 17.4
PIQA 61.5 61.9 61.8 63.8 58.7
QQP 36.8 36.8 36.9 36.9 36.8
RACE 26.0 26.7 27.8 29.1 28.4
SciQ 69.7 68.3 69.0 72.6 72.0
SocialIQA 36.2 36.5 35.9 37.2 36.1
WinoGrande 52.8 49.6 48.9 51.5 50.0

Average (↑) 40.5 40.5 40.4 41.5 41.1

2017), SciQ (Welbl et al., 2017), Social IQA (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021). The reported
accuracy in Table 3 is the average from 0-shot to 5-shot
evaluations following (Liu et al., 2024), scored using the
lm-eval-harness evaluation framework (Gao et al., 2024).

These benchmarks cover a diverse range of tasks, en-
abling a comprehensive evaluation of the real-world im-
pact of CHAMELEON. For each benchmark, we use nor-
malized accuracy as the evaluation metric if provided by
lm-eval-harness else we use regular accuracy. Notably,
CHAMELEON also shows competitive performance across
all downstream tasks even compared with RegMix, a task-
aware method.

6

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 6: Universal generalization with 1.2B model - perplexity. Large-scale experiments in the same settings of Table 5.

Domain Uniform DoReMi DoGE CHAMELEON RegMix

Arxiv 6.30 7.09 7.07 6.33 10.61
Book 28.25 32.66 27.83 24.63 27.55
CC 31.19 29.96 28.11 26.95 24.70
C4 34.74 33.05 31.06 29.58 31.94

Github 2.91 3.03 3.07 2.94 4.08
Stackexchange 6.01 6.44 5.80 5.76 9.54

Wikipedia 8.65 7.93 10.88 9.03 20.08

Average PPL (↓) 16.86 17.17 16.26 15.03 18.36
Domains Over Uniform - 3/7 4/7 4/7 3/7

Scale to 1.2B model. Prior works (Xie et al., 2023; Fan
et al., 2024b; Liu et al., 2024) have shown that domain
weights transfer effectively across different model scales. To
validate this for CHAMELEON, we extended our experiments
to 1.2B models. The detailed results for perplexity and
downstream task performance are presented in Table 6 and
Table 5, respectively. Our findings confirm such transferabil-
ity: the weights derived from an 82M proxy model proved
effective when applied to both the 684M and 1.2B models.
Importantly, we observed that CHAMELEON yielded even
more significant improvements on larger models.

Stability and Practicality. We show that domain weights
obtained by CHAMELEON remain stable across different
training steps of the proxy model, whereas DoReMi and
DoGE are sensitive or converge slowly as shown in Figure 3.
Additionally, our method is robust to variations in proxy
model size, the hyperparameter λ, and the number of sam-
ples computing embeddings, as detailed in Appendix B.5.
This stability significantly reduces the need for extensive
hyperparameter tuning, making CHAMELEON more prac-
tical and resource-efficient for real-world applications. In
addition, we report GPU hours in Table 4 for domain weight
computation and for training 684M base model, showing
that the proxy training cost is non-negligible. Compared to
DoReMi and DoGE, we reduce computational overhead to
less than 2% of final training cost. This reduction is crucial
for academic labs and smaller-scale training. More details
are given in Appendix B.4.

4.2. Scalable to Pile

It is common for new data to be introduced during the offi-
cial training of large base models, particularly when training
on diverse and evolving datasets. However, existing meth-
ods including DoReMi, DoGE and RegMix require retrain-
ing a new proxy model from scratch whenever domains are
added or removed, making them both inefficient and incon-
venient for dynamic data environments. This process not

only incurs significant computational costs but also delays
the adaptation to changes in domain composition. How can
we develop a scalable method to reliably compute domain
weights when domain composition changes?

CHAMELEON has such scalability. Unlike DoReMi and
DoGE, CHAMELEON’s algorithm does not alter the proxy
model’s optimization, instead it focuses more on the intrin-
sic data characteristics, where the trained proxy model can
already capture domain features, even for new unseen data.

.0

.1

.2

.3

D
om

ai
n

W
ei

gh
t DoReMi

1k
2k
5k
10k

.0

.1

.2

.3

D
om

ai
n

W
ei

gh
t DoGE

1k
2k
5k
10k

Arxi
v

Boo
k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

.0

.1

.2

.3

D
om

ai
n

W
ei

gh
t CHAMELEON

1k
2k
5k
10k

Figure 3: KRLS scores converge quickly. Domain weights
across methods during proxy training. DoReMi and DoGE
require more iterations to stabilize, while CHAMELEON con-
verges quickly after 1k iterations. The detailed discussion is
in Appendix B.5.

7

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 7: Transfer to new domains - perplexity. Per-domain test perplexity when adapting to new data. The Human baseline
is (Gao et al., 2020). When domain composition changes, the other methods need to retrain proxy models from scratch and
re-run domain weight optimization, while we can directly compute the KRLS of the new domains by extending the proxy
model trained on previous data. We report the extra compute (in FLOPs) required to adapt the data mixture to the Pile.

Domain Human DoReMi DoGE CHAMELEON RegMix

Arxiv 9.76 14.11 10.78 9.73 16.19
Dm_mathematics 5.52 6.27 4.52 5.31 19.26
Enron_emails 12.82 9.96 9.39 7.77 12.06
Europarl 34.69 24.77 11.62 28.18 131.80
Freelaw 14.12 16.20 17.99 15.04 18.66
Github 5.92 5.84 4.90 6.16 9.95
Gutenberg_pg_19 39.36 38.36 39.57 33.28 34.43
Hackernews 35.94 29.68 29.87 27.02 29.80
Nih_exporter 22.93 25.89 26.81 24.12 28.69
Philpapers 47.59 36.43 44.56 34.63 51.71
Pile_cc 43.19 32.85 58.17 34.90 32.30
Pubmed_abstracts 17.87 24.19 25.62 21.87 23.20
Pubmed_central 9.76 9.43 8.10 7.36 13.80
Stackexchange 10.41 11.48 11.79 11.25 18.96
Ubuntu_irc 36.12 32.10 23.20 29.34 20.71
Uspto_backgrounds 17.22 21.19 20.08 18.25 22.05
Wikipedia_en 28.70 25.95 40.42 24.68 29.32

Average PPL (↓) 23.05 21.45 22.79 19.94 30.17
Domains Over Human - 9/17 10/17 11/17 4/17
Extra FLOPs 0 1.34× 1018 6.68× 1017 4.62× 1015 3.5× 1018

(290×) (145×) (1×) (758×)

Table 8: Transfer to new domains - reasoning. Accuracy
of downstream tasks in the same settings as Table 7.

Benchmark Hum. DoReMi DoGE CH. RegMix

ARC-E 37.5 39.3 35.3 39.2 39.5
COPA 56.8 61.5 54.7 60.9 61.2
HellaSwag 26.7 27.3 26.1 27.4 27.3
Lambada 12.5 15.8 9.3 15.9 15.4
LogiQA 22.5 21.2 22.1 23.8 21.9
MultiRC 56.7 56.5 57.2 57.3 56.2
OpenBook 13.3 13.1 13.1 14.2 14.5
PiQA 57.8 59.3 55.9 59.7 60.4
QQP 37.5 36.8 36.8 37.2 37.6
RACE 25.8 27.2 24.9 26.8 27.2
SciQ 64.1 65.7 58.1 66.0 67.1
Social IQA 35.0 36.0 34.2 36.6 36.3
WinoGrande 50.7 51.2 49.8 50.9 49.9

Average (↑) 38.2 39.3 36.7 39.7 39.6

To test its scalability, we employ the proxy model trained on
Slimpajama in Section 4.1 to Pile dataset (Gao et al., 2020)
directly. Both SlimPajama and Pile are large-scale datasets

used for pretraining LMs, with overlapping data sources
such as books, scientific texts, web content, and codebases.
The Pile dataset includes more domains than Slimpajama
and its data is more diverse. Note that the original Pile
dataset includes 22 domains but only 17 are now available
due to copyright issues.

To obtain domain weights of Pile, we input 4k samples per
domain of Pile to the proxy model trained on Slimpajama
in Section 4.1 and infer embeddings for computing domain
weights through (KRLS). The computed domain weights
are reported in Table 19, where we use the domain weights
reported in their respective papers for DoReMi and RegMix.
We use Human as baseline that is selected manually as in
the Pile paper (Gao et al., 2020). As in Section 4.1, we
report per-domain perplexity in Table 7 and downstream
accuracy in Table 8.

CHAMELEON outperforms DoReMi, DoGE and even Reg-
Mix in both cases. Importantly, FLOPs of CHAMELEON is
marginal compared with DoReMi and DoGE (only 1% of
training a new proxy model from scratch) since we can reuse
the previous proxy model and our extra FLOPs only include
inference cost for extracting embeddings, while DoReMi
DoGE, and RegMix require retraining the proxy models.

8

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 9: Finetuning. Per-domain test perplexity compared
with the uniform baseline for finetuning on the 7 languages
in Wiki40b. CHAMELEON can flexibly be extended to the
finetuning pipeline by computing the KRLS of the finetun-
ing domains, improving performance across all domains.

Domain Uniform CHAMELEON

French 6.86 6.51
German 10.12 8.78
Italian 13.29 12.42
Spanish 8.41 8.04
Portuguese 8.00 7.78
Dutch 13.98 12.30
Polish 5.07 4.21

Average PPL (↓) 9.43 8.58
Domains Over Uniform - 7/7

Note that as the number of domains increases, DoGE com-
putes k = 17 gradients per iteration, resulting in approxi-
mately 2.5× wall-clock time per iteration on this dataset.

4.3. Finetuning

Besides pertaining, CHAMELEON interestingly allows data-
mixture optimization during finetuning. We take advantage
of the existing pretrained model and can extract embeddings
on finetuning data directly for domain weight computation.
As discussed in Section 3.2, the goals of pretraining and
fine-tuning are distinct, with pretraining aiming for broad
generalization and fine-tuning focusing on specialization.
Therefore, we directly use leverage scores for computing
domain weights, as described in Section 3.2.

We fine-tune a pretrained model trained on the Pile (from
Section 4.2) for 10k steps on two separate datasets: (i)
Wiki40b (Guo et al., 2020), which includes multiple lan-
guages, for which we select 7 Latin languages, and (ii)
Stack-decup (Kocetkov et al., 2022), which covers various
programming languages, from which we use 7. The results
are shown in Table 9 and Table 10. CHAMELEON outper-
forms the uniform weights baseline across all domains in
both tasks, showing our data mixture can greatly benefit
finetuning. Remarkably, our weight computation is compu-
tationally cheap in finetuning, as we simply need forward
passes through the pretrained model to compute domain
embeddings and we can then directly apply (KRLS).

Additionally, we present fine-tuning results using αPT in-
stead of αFT in Appendix B.9 for reference. The results
demonstrate that fine-tuning with KRLS-based domain
weights outperforms using their inverse. This indicates
that data-mixing strategies should be tailored to different
training phases.

Table 10: Finetuning. Per-domain test PPL vs. the uniform
baseline for finetuning on the 7 programming languages in
Stack dataset. CHAMELEON improves across all domains.

Domain Uniform CHAMELEON

Python 19.98 16.53
Java 19.27 15.53
C 28.24 22.58
C++ 25.16 21.09
Go 30.25 19.26
Ruby 21.78 17.83
PHP 9.45 7.43

Average PPL (↓) 22.02 17.18
Domains Over Uniform - 7/7

5. Conclusion
We introduce CHAMELEON, a novel and efficient framework
for data mixing that leverages KRLS to quantify the repre-
sentativeness of data domains. We demonstrate that inverse
KRLS-based domain weights effectively identify highly im-
portant domains for pretraining LMs. CHAMELEON can
adapt to new domains without retraining proxy models, out-
performing baselines in downstream tasks. Given that it
is computationally inexpensive and stable, CHAMELEON
lowers the overall cost of the expensive LLM pretraining
pipeline, which can be useful both in industry and within
academic budgets. We also extend domain reweighting to
fine-tuning with KRLS-based weights, demonstrating con-
sistent improvements.

This work highlights the need to tailor data-mixing strate-
gies to different training phases. In future work, we aim to
extend our approach to online settings for dynamic optimiza-
tion during training. Additionally, we will extend to target
specific downstream tasks by modifying the identity matrix
within the KRLS to emphasize relevant domains, enhancing
our method’s flexibility for specific downstream tasks.

Acknowledgements
We thank the reviewers for their constructive feedback.
Thanks to Simin Fan for the helpful discussion. This work
was supported as part of the Swiss AI Initiative by a grant
from the Swiss National Supercomputing Centre (CSCS)
under project ID a06 on Alps. This work was supported
by the Swiss National Science Foundation (SNSF) under
grant number 200021_205011. This work was supported by
Hasler Foundation Program: Hasler Responsible AI (project
number 21043). Research was sponsored by the Army Re-
search Office and was accomplished under Grant Number
W911NF-24-1-0048.

9

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Impact Statement
The approach presented in this paper aims at advancing the
field of Machine Learning. No other potential societal con-
sequences of our work are deemed necessary to specifically
highlight here.

References
Alaoui, A. E. and Mahoney, M. W. Fast Random-

ized Kernel Methods With Statistical Guarantees, 2015.
arXiv:1411.0306.

Albalak, A., Pan, L., Raffel, C., and Wang, W. Y. Efficient
online data mixing for language model pre-training. In R0-
FoMo: Robustness of Few-shot and Zero-shot Learning
in Large Foundation Models Workshop, 2023.

Bach, F. Sharp analysis of low-rank kernel matrix approxi-
mations. In Conference on Learning Theory, pp. 185–209.
PMLR, 2013.

Beckermann, B., Putinar, M., Saff, E. B., and Stylianopou-
los, N. Perturbations of christoffel–darboux kernels: De-
tection of outliers. Foundations of Computational Mathe-
matics, 21(1):71–124, 2021.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In
AAAI Conference on Artificial Intelligence, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 1877–1901, 2020.

Calandriello, D., Lazaric, A., and Valko, M. Analysis of
nyström method with sequential ridge leverage score sam-
pling. In Uncertainty in Artificial Intelligence Conference,
2016.

Chen, Y. and Yang, Y. Fast statistical leverage score ap-
proximation in kernel ridge regression. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), pp. 2935–2943. PMLR, 2021.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cohen, M. B., Musco, C., and Musco, C. Ridge lever-
age scores for low-rank approximation. arXiv preprint
arXiv:1511.07263, 6, 2015.

Cohen, M. B., Musco, C., and Musco, C. Input sparsity
time low-rank approximation via ridge leverage score

sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1758–
1777. SIAM, 2017.

De Marchi, S., Sommariva, A., and Vianello, M. Mul-
tivariate christoffel functions and hyperinterpolation.
Dolomites Research Notes on Approximation, 7(Special
Issue), 2014.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing (ICML), pp. 5547–5569. PMLR, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Ducharlet, K., Travé-Massuyès, L., Lasserre, J.-B., Le Lann,
M.-V., and Miloudi, Y. Leveraging the christoffel func-
tion for outlier detection in data streams. International
Journal of Data Science and Analytics, 2024.

Dunkl, C. F. and Xu, Y. Orthogonal polynomials of sev-
eral variables, volume 155. Cambridge University Press,
2014.

Fan, S., Grangier, D., and Ablin, P. Dynamic gradi-
ent alignment for online data mixing. arXiv preprint
arXiv:2410.02498, 2024a.

Fan, S., Pagliardini, M., and Jaggi, M. DOGE: Domain
reweighting with generalization estimation. In Interna-
tional Conference on Machine Learning (ICML), 2024b.

Fanuel, M., Schreurs, J., and Suykens, J. A. Nyström land-
mark sampling and regularized christoffel functions. Ma-
chine Learning, 111(6):2213–2254, 2022.

Feng, S., Prabhumoye, S., Kong, K., Su, D., Patwary, M.,
Shoeybi, M., and Catanzaro, B. Maximize your data’s
potential: Enhancing llm accuracy with two-phase pre-
training. arXiv preprint arXiv:2412.15285, 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
2024.

10

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Gareth, J., Daniela, W., Trevor, H., and Robert, T. An
introduction to statistical learning: with applications in
R. Spinger, 2013.

Guo, M., Dai, Z., Vrandečić, D., and Al-Rfou, R. Wiki-40b:
Multilingual language model dataset. In Proceedings of
the Twelfth Language Resources and Evaluation Confer-
ence, 2020.

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. The
elements of statistical learning: data mining, inference
and prediction. The Mathematical Intelligencer, 27(2):
83–85, 2005.

Jiang, Y., Zhou, A., Feng, Z., Malladi, S., and Kolter, J. Z.
Adaptive data optimization: Dynamic sample selection
with scaling laws. arXiv preprint arXiv:2410.11820,
2024.

Kang, F., Sun, Y., Wen, B., Chen, S., Song, D., Mah-
mood, R., and Jia, R. Autoscale: Automatic prediction
of compute-optimal data composition for training llms.
arXiv preprint arXiv:2407.20177, 2024.

Khashabi, D., Chaturvedi, S., Roth, M., Upadhyay, S., and
Roth, D. Looking beyond the surface: A challenge set for
reading comprehension over multiple sentences. In Pro-
ceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2018.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
et al. The stack: 3 tb of permissively licensed source
code. arXiv preprint arXiv:2211.15533, 2022.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. arXiv preprint arXiv:1704.04683, 2017.

Lasserre, J. B. and Pauwels, E. The empirical christoffel
function with applications in data analysis. Advances in
Computational Mathematics, 45(3):1439–1468, 2019.

Li, M., Miller, G. L., and Peng, R. Iterative row sampling.
In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 127–136, 2013.

Liu, J., Cui, L., Liu, H., Huang, D., Wang, Y., and Zhang,
Y. Logiqa: A challenge dataset for machine reading
comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Liu, Q., Zheng, X., Muennighoff, N., Zeng, G., Dou, L.,
Pang, T., Jiang, J., and Lin, M. Regmix: Data mixture
as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024.

Longpre, S., Yauney, G., Reif, E., Lee, K., Roberts, A.,
Zoph, B., Zhou, D., Wei, J., Robinson, K., Mimno, D.,
and Ippolito, D. A pretrainer‘s guide to training data:
Measuring the effects of data age, domain coverage, qual-
ity, & toxicity. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pp. 3245–3276. Association for Computational Linguis-
tics, 2024.

Ma, Y., Liu, Y., Yu, Y., Zhang, Y., Jiang, Y., Wang, C., and
Li, S. At which training stage does code data help llms
reasoning? arXiv preprint arXiv:2309.16298, 2023.

Mahoney, M. W. and Drineas, P. CUR matrix decompo-
sitions for improved data analysis. Proceedings of the
National Academy of Sciences, 106(3):697–702, 2009.

Mallen, A., Asai, A., Zhong, V., Das, R., Khashabi, D., and
Hajishirzi, H. When not to trust language models: Inves-
tigating effectiveness of parametric and non-parametric
memories. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), Toronto, Canada, July 2023.
Association for Computational Linguistics.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Musco, C. and Musco, C. Recursive sampling for the nys-
trom method. In Advances in Neural Information Process-
ing Systems (NeurIPS), volume 30. Curran Associates,
Inc., 2017.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word predic-
tion requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Parmar, J., Prabhumoye, S., Jennings, J., Liu, B., Jhunjhun-
wala, A., Wang, Z., Patwary, M., Shoeybi, M., and Catan-
zaro, B. Data, data everywhere: A guide for pretraining
dataset construction. arXiv preprint arXiv:2407.06380,
2024.

Parthasarathy, V. B., Zafar, A., Khan, A., and Shahid, A.
The ultimate guide to fine-tuning llms from basics to
breakthroughs: An exhaustive review of technologies,
research, best practices, applied research challenges and
opportunities. arXiv preprint arXiv:2408.13296, 2024.

11

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Pauwels, E., Bach, F., and Vert, J.-P. Relating leverage
scores and density using regularized christoffel functions.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 31, 2018.

Rudi, A., Carratino, L., and Rosasco, L. Falkon: An opti-
mal large scale kernel method. In Advances in Neural
Information Processing Systems (NeurIPS), volume 30.
Curran Associates, Inc., 2017.

Rudi, A., Calandriello, D., Carratino, L., and Rosasco, L.
On fast leverage score sampling and optimal learning.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 31. Curran Associates, Inc., 2018.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks. In International
Conference on Learning Representations (ICLR), 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64, 2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social interac-
tions. arXiv preprint arXiv:1904.09728, 2019.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. Superglue: Learning feature matching with graph
neural networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Schölkopf, B., Herbrich, R., and Smola, A. J. A generalized
representer theorem. In Conference on Learning Theory,
pp. 416–426. Springer, 2001.

Shen, Z., Tao, T., Ma, L., Neiswanger, W., Liu, Z., Wang,
H., Tan, B., Hestness, J., Vassilieva, N., Soboleva, D.,
et al. Slimpajama-dc: Understanding data combinations
for llm training. arXiv preprint arXiv:2309.10818, 2023.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of RedPa-
jama, 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Vapnik, V. N. An overview of statistical learning theory.
IEEE Transactions on Neural Networks, 10(5):988–999,
1999.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, A. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourc-
ing multiple choice science questions. arXiv preprint
arXiv:1707.06209, 2017.

Xie, S. M., Pham, H., Dong, X., Du, N., Liu, H., Lu, Y.,
Liang, P., Le, Q. V., Ma, T., and Yu, A. W. DoReMi:
Optimizing data mixtures speeds up language model pre-
training. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Yang, Y., Mishra, S., Chiang, J. N., and Mirzasoleiman,
B. SmallToLarge (S2L): Scalable Data Selection for
Fine-tuning Large Language Models by Summarizing
Training Trajectories of Small Models. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

Ye, J., Liu, P., Sun, T., Zhou, Y., Zhan, J., and Qiu, X.
Data mixing laws: Optimizing data mixtures by pre-
dicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 4791–4800, 2019.

12

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Appendix

Table of Contents

A Additional discussions on the KRLS 14

A.1 Details of leverage scores . 14

A.2 Discussions . 15

B Additional experiments 16

B.1 Additional figures for Figure 1 . 16

B.2 Experimental setup. 16

B.3 Domain weights on Slimpajama . 17

B.4 Temporal cost . 17

B.5 Stable domain weights of CHAMELEON . 17

B.6 Additional baseline: Data Mixing Laws . 18

B.7 Domain weights on Pile . 19

B.8 Domain weights for finetuning . 19

B.9 PPL of finetuning. 19

13

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

A. Additional discussions on the KRLS
A.1. Details of leverage scores

In this work, we employ KRLS to assign scores to data domains, and we focus on the leverage scores as a measure of
domain importance, both in pretraining and finetuning language models. The KRLS (Alaoui & Mahoney, 2015) is a
kernelized-version of the ridge leverage scores, which are used to quantify the importance of the rows in a matrix for the
best-rank approximation with approximation error guarantees (Mahoney & Drineas, 2009; Li et al., 2013). The KRLS for
the i-th domain is defined as

Si =
(
ΩD(ΩD + kλI)−1

)
ii
, (1)

with kernel matrix ΩDij = κ(xi, xj) and regularization constant λ > 0. In our data-centric approach, we rank domains
based on the degree of inter-domain dependency. To better see this, we establish the equivalence of RLS computed in
the feature space induced by the finite-dimensional feature map ϕ and KRLS when employing the corresponding kernel
κ(xi, xj) = ϕ(xi)

⊤ϕ(xj), where we use ϕ(x) = x in Section 3.1. This result provides insights into the behavior of the
employed KRLS for domain reweighting. Let the set of k domain embeddings {xi}ki=1, where xi ∈ Rp. Let ϕ : Rp → Rd

be a finite-dimensional feature map with associated p.s.d. kernel κ(xi, xj) = ϕ(xi)
Tϕ(xj) by kernel trick (Vapnik, 1999),

and Φ(X) ∈ Rk×d be the matrix whose rows are the feature mappings ϕ(xi)
⊤. The ridge regression hat matrix in feature

space is Hϕ
λ = Φ(X)(Φ(X)TΦ(X) + λI)−1Φ(X)T , with ridge leverage scores diag(Hϕ

λ). In kernel ridge regression, the
kernel ridge hat matrix is Hκ = ΩD(ΩD + λI)−1 and the kernel ridge leverage scores are given by diag(Hκ).

Lemma A.1. With kernel κ(x, y) = ϕ(x)Tϕ(y), where ϕ : Rd → Rp is a finite-dimensional feature map, the RLS in feature
space induced by ϕ and the KRLS are s.t. diag(Hϕ

λ) = diag(Hκ).

Proof. With the kernel κ(x, y) = ϕ(x)Tϕ(y), we have ΩD = Φ(X)Φ(X)T . Substituting into Hκ:

Hκ = (Φ(X)Φ(X)T)(Φ(X)Φ(X)T + λI)−1.

We utilize the following matrix identity: for matrices A ∈ Rm×n and B ∈ Rn×m and a scalar λ ̸= 0,

A(BA+ λI)−1 = (AB + λI)−1A.

This identity can be verified by multiplying both sides by (BA + λI) from the right, then by (AB + λI) from the left,
which yields the same result on both sides.

Let A = Φ(X) and B = Φ(X)T . Then:

Φ(X)(Φ(X)TΦ(X) + λI)−1 = (Φ(X)Φ(X)T + λI)−1Φ(X).

Therefore,

Hϕ
λ = Φ(X)(Φ(X)TΦ(X) + λI)−1Φ(X)T = (Φ(X)Φ(X)T + λI)−1Φ(X)Φ(X)T = Hκ.

Thus, the diagonal elements, and hence the leverage scores, are equivalent: diag(Hϕ
λ) = diag(Hκ).

The above lemma establishes the equivalence of the ridge leverage scores computed in the feature space induced by the
finite-dimensional feature map ϕ and the KRLS when employing the corresponding kernel κ(xi, xj) = ϕ(xi)

⊤ϕ(xj). It is
possible to relate the RLS to the ridgless solution, where the regularized solution converges to the least-norm solution as
λ → 0. Let the eigendecomposition of ΩD = UΣU⊤, then the KRLS of domain i, i = 1, . . . , k can be written as

Sλ(Di) =

k∑

j=1

σj

σj + λ
U2
ij ,

where σj is the j-th eigenvalue of ΩD. Therefore, the KRLS is a weighted version of the standard statistical leverage
(Gareth et al., 2013), i.e.,

∑k
j=1 U

2
ij , with weights depending on the regularization and the eigenspectrum of ΩD. We now

recall the relationship between the least-norm solution of a system of equations to the (ridgless) statistical leverage score
ℓi = ϕ(xi)

⊤(Φ(X)⊤Φ(X))+ϕ(xi) (Mahoney & Drineas, 2009).

14

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Lemma A.2. The least-norm solution characterizes ℓi as follows:

ℓi = min
Φ(X)⊤y=ϕ(xi)

∥y∥22 . (2)

The leverage score of domain i measures how important it is in composing the row space of Φ(X). If a row (domain) has a
component orthogonal to all other rows (domains), its leverage score is 1. In data mixture, (2) seeks a linear combination
of features that best approximates the embedding xi of the i-th domain. Intuitively, ℓi is highest when xi is linearly
independent from the other domain embeddings. In our approach, we use the KRLS to assign scores to data domains both in
pretraining and finetuning language models. High scores indicate data domains that are difficult to approximate with a linear
combination of other domains, and are thus more unique. On the other hand, low scores indicate data domains that show
higher degree of dependency with other domains, identifying more common data characteristics. During pretraining, we rank
domains with lower KRLS as more important, as they are more common and thus more useful for learning general-purpose
language representations. During finetuning to a specific task, we upweight domains with higher KRLS, as they are more
unique and therefore better suited for learning task-specific representations.

A.2. Discussions

We now discuss additional theoretical insights and properties of our methodology.

• Role of regularization. Adding λI to ΩD in (1) reduces the influence of the small principal components, resulting in
proportionately lower sampling probability. A large λ soft-thresholds the low part of the spectrum of ΩD and amplifies
the contribution of the top eigenvectors of the kernel matrix, focusing on the most dominant domains. In practice, due
to the relatively small number of domains, we observe that our algorithm is robust to the choice of λ, where small
regularization is sufficient and larger values do not significantly alter the computed domain weights.

• Adaptability to larger models. Our approach can robustly transfer domain weights obtained from a small proxy
model hθp to a larger target model hθt thanks to its use of domain affinities. Specifically, our method computes
domain weights based on the kernel matrix ΩD, which captures pairwise inner products between domain embeddings.
While the absolute embeddings xi may vary between the proxy and target model, their inner products show a higher
degree of consistency across model sizes. For instance, if the proxy learns that the “github” and “stackexchange”
domains are semantically close, a larger, more powerful model typically also maintains this proximity in embedding
space. Consequently, the pairwise similarities encoded in ΩD, and therefore the resulting KRLS scores (1) and domain
weights, are robust across different model scales. Empirical evidence is presented in Table 16.

• Relation with Christoffel functions. In machine learning literature, the Christoffel function is a key concept that
characterizes the local density of the data distribution in feature space (Pauwels et al., 2018). Christoffel functions are
known in orthogonal polynomials (Dunkl & Xu, 2014) and approximation theory (De Marchi et al., 2014). They are
extended to machine learning (Pauwels et al., 2018), where it makes the connection between inverse leverage scores
and the kernelized Christoffel function. In machine learning, they are mainly used for landmark sampling (Fanuel et al.,
2022), density estimation (Pauwels et al., 2018), and outlier detection (Lasserre & Pauwels, 2019; Beckermann et al.,
2021; Ducharlet et al., 2024). Given samples {zi}nj=1, the kernelized Christoffel function is defined as the following
regularized minimization over a reproducing kernel Hilbert space (RKHS) H with associated kernel κH:

Cλ,η(z) = inf
g∈H

n∑

j=1

ηj
n
g(zi)

2 + λ ∥g∥2H s.t. g(z) = 1, (3)

where λ > 0 is a regularization constant, ∥g∥H denotes the RKHS norm of g, and ηj > 0. The Christoffel function is
linked to the ridge leverage scores (RLS) (Alaoui & Mahoney, 2015; Cohen et al., 2017; Rudi et al., 2018), which
quantify the influence of each sample on the learned model. Specifically, the Christoffel function at a point is
proportional to the inverse of its RLS. High RLS values indicate data points that are difficult to represent as linear
combinations of other points in the feature space. Conversely, a high Christoffel function value (and thus a low RLS)
suggests a data point lies in a region of high data density and can be better expressed in terms of other points. In our
work, focusing on domains with high degree of linear dependency, i.e., high Christoffel function, is shown to enable
improved generalization and transfer learning capabilities. The following lemma details the closed-form expression for
the regularized kernelized Christoffel function at each sample.

15

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Lemma A.3 ((Pauwels et al., 2018)). The regularized kernelized Christoffel function takes the following value at
sample j, for j = 1, . . . , n:

Cλ,η(zj) =
ηj
n

(
K

(
K + nλ diag(η)−1

)−1
)−1

jj
, (4)

where K ∈ Rn×n is the kernel matrix with entries Kij = κH(zi, zj), and diag(η) = diag(η1, . . . , ηn) is a diagonal
matrix with entries ηj on the diagonal.

This is derived from the representer theorem applied to (3) (Schölkopf et al., 2001; Pauwels et al., 2018). Lemma A.3
reveals the connection between the Christoffel function and the KRLS (1). The Christoffel function Cλ,1(zj) is
therefore inversely proportional to KRLS of sample zj with η = 1.

B. Additional experiments
B.1. Additional figures for Figure 1

0 5 10 15

−5

0

5

10

UMAP1

U
M

A
P2

wikipedia book cc c4 arxiv github stackexchange

Figure 4: Domains in embedding space. 2D UMAP vi-
sualization of embeddings of SlimPajama learned by the
proxy model. Semantically similar domains occupy sim-
ilar regions in embedding space, creating high-density
clusters.

Arxi
v

Boo
k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

Arxi
v

Boo
k

CC

C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

42.2 −16.9 −14.5 −14.5 5.6 2.9 −4.9

−16.9 26.7 12 14.6 −21.2 −16.1 0.9

−14.5 12 23.9 18.7 −20.3 −13.3 −6.4

−14.5 14.6 18.7 22.1 −21.8 −16.7 −2.3

5.6 −21.2 −20.3 −21.8 45.7 31.1 −19

2.9 −16.1 −13.3 −16.7 31.1 29 −16.9

−4.9 0.9 −6.4 −2.3 −19 −16.9 48.6 −20

0

20

40

R
el

at
io

ns
hi

p
St

re
ng

th

Figure 5: Domain affinity matrix. The matrix shows the
relationship strength between domains in SlimPajama.

B.2. Experimental setup.

We follow the experimental setup of DoGE (Fan et al., 2024b), using a small 82M decoder-only Transformer (Vaswani et al.,
2017) as the auxiliary model for CHAMELEON, DoReMi, and DoGE. Additionally, we use a 684M model as the base model
for pretraining. Moreover, we set the batch size 128, the cosine learning rate scheduler, weight decay 0.01, and gradient
clipping 1.0 for all models. For the training on Slimpajama, Wiki40b, and Stack datasets, we set batch size 128. We increase
the batch size to 512 on the Pile dataset since it is more noisy and has a larger number of domains.

In CHAMELEON, a temperature factor τ in the softmax normalization for domain weights is additionally applicable:
αi = exp(zi/τ)/

∑k
j=1 exp(zj/τ), where z = S−1

λ (D) for pretraining and z = Sλ(D) for fine-tuning. In our experiments, we
typically set τPT ∈ [5, 10] and τFT ∈ [0.2, 0.5].

For the ablation study of CHAMELEON, we also evaluate proxy models with other sizes (60M, 124M, and 210M). The
model architectures and their corresponding learning rates are reported in Table 11.

For the setup of RegMix on the Slimpajama dataset, we follow its original setup (Liu et al., 2024) and train 200 1M proxy
models with 1k steps to fit a regression model.

16

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 11: Architecture hyperparameters for various model scales.

Layers Attention heads Embed dim Hidden dim Max. learning rate (min.)

60M 3 6 768 3072 5× 10−4 (1× 10−4)
82M 6 12 768 3072 5× 10−4 (1× 10−4)
124M 12 12 768 3072 5× 10−4 (1× 10−4)
210M 24 16 768 3072 5× 10−4 (1× 10−4)
684M 36 24 1200 4800 1.5× 10−4 (5× 10−5)
1.2B 36 25 1600 6400 1.5× 10−4 (5× 10−5)

B.3. Domain weights on Slimpajama

We report our final domain weights for base model training in Table 12. Specifically, DoReMi and DoGE use domain
weights through training proxy models with 10k steps. CHAMELEON use the model with 2k steps. For RegMix, we follow
its paper (Liu et al., 2024) using “CC” as the target domain and train 200 1M proxy models to get the domain weights.

Table 12: Final domain weights.

Domain DoReMi DoGE CHAMELEON RegMix

Arxiv 0.057 0.041 0.083 0.001
Book 0.002 0.078 0.164 0.025
CC 0.237 0.268 0.202 0.924
C4 0.237 0.283 0.247 0.024

Github 0.130 0.059 0.082 0.019
Stackexchange 0.101 0.230 0.149 0.006

Wikipedia 0.236 0.041 0.073 0.001

B.4. Temporal cost

In Table 13, we report the required GPU (H100) hours for obtaining domain weight regarding the experiments in Table 2. We
also show GPU hours of training 684M base model for a reference. We claim that improving the efficiency of determining
the domain mixture is essential because the associated computational cost of proxy training is non-negligible. Compared to
DoReMi and DoGE, which add over 10% to base model training costs, we reduce computational overhead to less than 2%
of final training cost. This reduction is crucial for academic labs and smaller-scale training.

More importantly, the computational cost reported is often an optimistic lower bound for the baselines even for larger base
models, since DoReMi and DoGE require extensive hyperparameter tuning. It has been shown that DoReMi’s weights
are unstable or difficult to reproduce (Fan et al., 2024b; Parmar et al., 2024) and DoGE approximations make it more
sensitive to learning rate (Kang et al., 2024). Such sensitivity necessitates repeated validation on base models. Nevertheless,
CHAMELEON is insensitive to hyperparameters and a detailed discussion is in Appendix B.5.

Table 13: GPU hours for obtaining domain weight.

DoReMi DoGE CHAMELEON 684M base model

7.4h 6.3h 0.8h 56h

B.5. Stable domain weights of CHAMELEON

Table 14 corresponds to Figure 3 and reports the specific domain weights obtained by the proxy model with the different
number of steps. CHAMELEON is more stable and converges faster than DoReMi and DoGE. In addition, we report
perplexity using domain weights derived from a proxy model trained for 2k steps for DoReMi and DoGE in Table 15. This
further demonstrates that DoReMi and DoGE converge slower than CHAMELEON.

17

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Furthermore, Table 16 demonstrates that CHAMELEON is also very stable across different model sizes, λ values, and
number of samples for embedding computations.

Table 14: Domain weights at different steps.

Domain DoReMi DOGE CHAMELEON
1k 2k 5k 10k 1k 2k 5k 10k 1k 2k 5k 10k

Arxiv 0.251 0.172 0.095 0.057 0.116 0.092 0.060 0.041 0.088 0.083 0.072 0.096
Book 0.003 0.008 0.004 0.002 0.139 0.131 0.102 0.078 0.149 0.164 0.174 0.158
CC 0.080 0.114 0.153 0.237 0.177 0.209 0.247 0.268 0.174 0.202 0.188 0.195
C4 0.080 0.115 0.154 0.237 0.176 0.210 0.259 0.283 0.281 0.247 0.220 0.251

Github 0.215 0.138 0.241 0.130 0.121 0.101 0.074 0.059 0.096 0.082 0.094 0.083
Stackexchange 0.095 0.146 0.118 0.101 0.155 0.167 0.200 0.230 0.137 0.149 0.137 0.136

Wikipedia 0.276 0.308 0.235 0.236 0.116 0.090 0.058 0.041 0.074 0.073 0.082 0.080

Table 15: Perplexity using domain weights derived from a proxy model trained for 2k steps.

Domain DoReMi DoGE CHAMELEON

Arxiv 8.08 8.49 8.31
Book 52.07 40.38 39.23
CC 48.69 41.31 40.11
C4 52.98 44.54 42.59

Github 3.99 4.05 4.20
Stackexchange 7.98 7.81 7.94

Wikipedia 10.57 13.98 13.90

Average PPL (↓) 26.34 23.01 22.31

Table 16: Domain weights across different model sizes, λ values, and number of samples.

Domain Model Sizes λ Values Number of Samples
60M 82M 124M 210M λ = 1 λ = 10 λ = 100 2k 4k 8k

Arxiv 0.084 0.083 0.087 0.093 0.080 0.083 0.087 0.079 0.083 0.081
Book 0.158 0.164 0.157 0.165 0.159 0.164 0.173 0.165 0.164 0.170
CC 0.170 0.202 0.169 0.170 0.178 0.202 0.201 0.193 0.202 0.209
C4 0.271 0.247 0.288 0.259 0.243 0.247 0.258 0.253 0.247 0.241

Github 0.073 0.082 0.072 0.089 0.097 0.082 0.057 0.079 0.082 0.066
Stackexchange 0.152 0.149 0.153 0.145 0.152 0.149 0.128 0.138 0.149 0.143

Wikipedia 0.072 0.073 0.074 0.078 0.081 0.073 0.095 0.093 0.073 0.090

B.6. Additional baseline: Data Mixing Laws

We add an additional baseline, Data Mixing Laws (Ye et al., 2024), for comparison. It derives domain weights by leveraging
scaling laws of training steps, model sizes, and data mixtures to predict the performance of large models trained on diverse
data from small-scale training. This requires training multiple small proxy models with varying domain weights, making it
more computationally expensive than ours, which trains just one proxy model.

We use their reported domain weights to train a 684M model on Slimpajama. Since their weights are optimized with the Pile
as the target, they may be suboptimal for SlimPajama. However, given the alignment of their objectives and overlap in data
sources, we consider the comparison meaningful.

As shown in Table 17 and Table 18, CHAMELEON outperforms Data Mixing Laws in both perplexity and downstream tasks

18

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

at a fraction of the cost. Data Mixing Laws’ FLOPs is calculated for 4 different proxy sizes and 20 separate mixtures, where
our cost is 2 orders of magnitude lower.

Table 17: Data Mixing Laws - perplexity. Perplexity in the same settings as Table 2.

Domain CHAMELEON Data Mixing Laws

Arxiv 8.31 7.55
Book 39.23 45.06
CC 40.11 44.21
C4 42.59 45.79
Github 4.20 4.01
Stackexchange 7.94 7.96
Wikipedia 13.90 16.20

Average PPL (↓) 22.31 24.40
Domains Over Uniform 4/7 4/7
FLOPs 1.36× 1017 5.36× 1019

(1×) (394×)

Table 18: Data Mixing Laws - reasoning. Accuracy of downstream tasks in the same settings as Table 2.

Benchmark CHAMELEON Data Mixing Laws

ARC-E 37.8 34.5
COPA 61.9 59.0
HellaSwag 27.1 27.4
Lambada 15.1 14.7
LogiQA 22.6 26.0
MultiRC 57.2 57.2
OpenBook 14.4 25.2
PiQA 60.5 58.5
QQP 39.2 36.8
RACE 26.5 26.4
SciQ 64.3 57.2
Social IQA 35.7 36.1
WinoGrande 52.1 48.4

Average (↑) 39.6 39.0

B.7. Domain weights on Pile

We report the domain weights we use on the Pile dataset in Table 19. Note that CHAMELEON and DoGE are from our
own experiments, Human is suggested in (Gao et al., 2020), DoReMi uses the same as (Xie et al., 2023), and RegMix uses
weights from (Liu et al., 2024).

B.8. Domain weights for finetuning

We report the αFT on Wiki40b and Stack datasets separately below, which corresponds to Section 4.3.

B.9. PPL of finetuning.

We report the results of fine-tuning with αPT in Table 22 and Table 23 for reference. It is clear to see that fine-tuning with
KRLS-based domain weights is better than the one with the inverse of KRLS-based weights.

19

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 19: Domain weights on Pile.

Domain Human DoReMi DoGE RegMix CHAMELEON

Arxiv 0.134 0.004 0.0608 0.001 0.0386
Dm_mathematics 0.025 0.002 0.0280 0.000 0.0538
Enron_emails 0.004 0.009 0.0239 0.002 0.0085
Europarl 0.005 0.008 0.0407 0.000 0.0048
Freelaw 0.049 0.005 0.0293 0.001 0.0147
Github 0.054 0.022 0.0693 0.000 0.0099
Gutenberg_pg_19 0.025 0.009 0.0283 0.002 0.0115
Hackernews 0.010 0.016 0.3949 0.012 0.0637
Nih_exporter 0.007 0.008 0.180 0.001 0.0424
Philpapers 0.003 0.034 0.0266 0.000 0.0226
Pile_cc 0.142 0.743 0.0348 0.870 0.4519
Pubmed_abstracts 0.107 0.014 0.0398 0.024 0.0104
Pubmed_central 0.136 0.006 0.0251 0.003 0.1207
Stackexchange 0.118 0.019 0.0266 0.000 0.0226
Ubuntu_irc 0.009 0.011 0.0474 0.064 0.0123
Uspto_backgrounds 0.053 0.004 0.0366 0.002 0.0212
Wikipedia_en 0.117 0.086 0.0425 0.016 0.1075

Table 20: Wiki40b Domain Weights.

Domain CHAMELEON

French 0.115
German 0.163
Italian 0.127
Spanish 0.109
Portuguese 0.090
Dutch 0.140
Polish 0.257

Table 21: Stack Dataset Training Weights.

Domain CHAMELEON

Python 0.125
Java 0.129
C 0.102
C++ 0.088
Go 0.241
Ruby 0.118
PHP 0.197

Table 22: Per-domain perplexity compared with the Uniform baseline for fine-tuning with 684M parameter models
on the 7 languages in the Wiki40b dataset.

Domain Uniform CHAMELEON (αFT) CHAMELEON (αPT)

French 6.86 6.51 7.14
German 10.12 8.78 10.85
Italian 13.29 12.42 14.42
Spanish 8.41 8.04 8.70
Portuguese 8.00 7.78 8.14
Dutch 13.98 12.30 15.05
Polish 5.07 4.21 5.31

Average PPL (↓) 9.43 8.58 9.94

20

CHAMELEON: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning

Table 23: Per-domain perplexity compared with the Uniform baseline for fine-tuning with 684M parameter models
on the 7 languages in the Stack dataset.

Domain Uniform CHAMELEON (αFT) CHAMELEON (αPT)

Python 19.98 16.53 20.11
Java 19.27 15.53 19.32
C 28.24 22.58 25.02
C++ 25.16 21.09 23.83
Go 30.25 19.26 28.66
Ruby 21.78 17.83 21.75
PHP 9.45 7.43 9.47

Average PPL (↓) 22.02 17.18 21.17

21

	Introduction
	Related Work
	Data Mixing via Chameleon
	Quantifying domain characteristics
	Incorporating KRLS into LM training

	Experiments
	Universal Generalization
	Scalable to Pile
	Finetuning

	Conclusion
	Additional discussions on the KRLS
	Details of leverage scores
	Discussions

	Additional experiments
	Additional figures for fig:pipeline
	Experimental setup.
	Domain weights on Slimpajama
	Temporal cost
	Stable domain weights of Chameleon
	Additional baseline: Data Mixing Laws
	Domain weights on Pile
	Domain weights for finetuning
	PPL of finetuning.

