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Figure 1: Direct image alignment is a technique for aligning scenes based on image intensities.
Recent learning-based methods seek to improve its success rate by increasing the convergence basin.
We derive an analytical solution to the core idea of such methods, the Gauss-Newton loss, enabling
fine-grained control over the basin of convergence. As a result, we can successfully align two
scenes despite a highly imprecise initialization. From left to right, the example above illustrates the
convergence of the reprojected keypoints (red) to the ground truth (green) by optimizing the SE(3)
camera pose with our analytical solution. The blue color is the re-projection in the first iteration.

ABSTRACT

Direct image alignment is a widely used technique for relative 6DoF pose estima-
tion between two images, but its accuracy strongly depends on pose initialization.
Therefore, recent end-to-end frameworks increase the convergence basin of the
learned feature descriptors with special training objectives, such as the Gauss-
Newton loss. However, the training data may exhibit bias toward a specific type of
motion and pose initialization, thus limiting the generalization of these methods.
In this work, we derive a closed-form solution to the expected optimum of the
Gauss-Newton loss. The solution is agnostic to the underlying feature representa-
tion and allows us to dynamically adjust the basin of convergence according to our
assumptions about the uncertainty in the current estimates. These properties allow
for effective control over the convergence in the alignment process. Despite using
self-supervised feature embeddings, our solution achieves compelling accuracy
w. r. t. the state-of-the-art direct image alignment methods trained end-to-end with
pose supervision, and demonstrates improved robustness to pose initialization. Our
analytical solution exposes some inherent limitations of end-to-end learning with
the Gauss-Newton loss, and establishes an intriguing connection between direct
image alignment and feature-matching approaches.

1 INTRODUCTION

Visual localization refers to estimating the camera pose of a query image w. r. t. a reference image
where the underlying 3D structure (e. g. a point cloud) is available. Traditionally, solutions to visual
localization primarily relied on estimating correspondences between 2D features in the query image
and 3D features in the reference point cloud (Liu et al., 2017; Sarlin et al., 2019; Sattler et al., 2017;
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Svarm et al., 2017; Toft et al., 2018). Challenging this approach, recent deep learning frameworks
implement direct image alignment by re-projecting the 3D points onto the feature map (Sarlin et al.,
2021; von Stumberg et al., 2020a;b). Using end-to-end training, deep networks learn dense feature
maps suitable for regressing the pose between an image and a point cloud. In analogy to photometric
image alignment (Delaunoy and Pollefeys, 2014; Engel et al., 2016), this family of methods is referred
to as featuremetric image alignment (von Stumberg et al., 2020b).

The feature representation learned by featuremetric image alignment is not only discriminative, but is
also spatially smooth for improved convergence (von Stumberg et al., 2020a). A training process
enforces the smoothness either explicitly through a specific loss, such as the Gauss-Newton loss (von
Stumberg et al., 2020a), or implicitly, by backpropagating through an optimization algorithm, such
as Levenberg-Marquardt (Sarlin et al., 2021). In both cases, the resulting feature map embeds the
bias of the initial poses in the training data. This may lead to poor generalization, since the training
poses can differ substantially from the test scenario. We here take a less bias-prone approach: we use
generic feature descriptors (e. g. obtained with self-supervision) and instead control the smoothness
of the feature map dynamically at test time.

This work investigates the connection between feature descriptor networks and featuremetric image
alignment. The main contribution is the analytical (closed-form) solution to the Gauss-Newton loss.
On the one hand, this leads to a novel technique, which can utilize any feature descriptor to generate a
dense feature map suitable for direct image alignment. Importantly, it allows us to dynamically adjust
the smoothness of the feature map, which effectively controls the trade-off between the basin of
convergence and the alignment accuracy. We empirically verify our derivation using self-supervised
feature descriptors, such as SuperPoint (DeTone et al., 2018), and demonstrate on-par or even superior
alignment accuracy compared to supervised frameworks. On the other hand, the analysis of our
closed-form solution reveals inherent limitations of feature learning with backpropagation through
Gauss-Newton optimization: featuremetric alignment merely learns a form of interpolation between
feature descriptors in the points of interest. Although we demonstrate this in the context of direct
image alignment, a similar argument extends to other methods, even beyond computer vision, which
backpropagate through Gauss-Newton or Levenberg-Marquardt optimization.

2 PRELIMINARIES

Image Alignment. Given two images (reference Ir and query Iq) with known camera models and
an overlapping field of view, and a 3D point cloud {p(i)} in the coordinate system of Ir, the problem
of image alignment is to estimate the relative camera pose T ∈ SE(3).

Gauss-Newton Optimization. Given a set of functions {r(1)(x), ..., r(m)(x)} called residuals,
Gauss-Newton (GN) optimization finds the parameters minimizing the sum of squared residuals:

f(x) =
∑
i

∥r(i)(x)∥22. (1)

Each residual r(i)(x) could either be a vector or a single-valued function. In both scenarios, the total
residual r(x) is a stacked vector of m residuals. The Gauss-Newton method seeks to minimize f(x)
by iteratively updating the parameter estimate x̃. Each iteration linearizes the residuals around the
current estimate and computes an update step ∆GN (r(x̃)):

∆GN[r(x̃)] = (J⊺J)
−1

J⊺r(x̃), J :=
∂r

∂x

∣∣∣
x=x̃

, (2)

where J is the Jacobian matrix. The estimate x̃ evolves until convergence as

x̃← x̃⊟∆GN[r(x̃)]. (3)

Here, the operator ⊟ denotes a specific update procedure, which depends on the nature of the
optimization space. For linear spaces, ⊟ simplifies to the standard subtraction operation; in the
context of a rigid-body transformation SE(3), operator ⊟ applies a tangential update.

Photometric and featuremetric image alignment. Photometric image alignment estimates the
relative 6DoF pose by minimizing the difference between pixel intensities of points in Ir and the
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corresponding points in Iq. Recalling p(i) as a 3D point in the coordinate frame of the reference
image, we seek a transformation T ∈ SE(3) minimizing the following residuals:

r(i)(T ) = Ir
(
⟨p(i)⟩

)
− Iq

(
⟨Tp(i)⟩

)
. (4)

Here, ⟨·⟩ is a 2D projection operator of a 3D point onto the image plane. The projection implicitly
uses the corresponding camera intrinsic parameters, assumed to be available for both Ir and Iq.
We omit them in the notation for clarity. Comprising rotation R ∈ SO(3) and translation t ∈ R3,
the target transformation T is typically found by minimizing Eq. (4) with non-linear least-squares
optimization, such as Gauss-Newton or Levenberg-Marquardt (LM) methods (Levenberg, 1944;
Marquardt, 1963; Nocedal and Wright, 1999).

The success of photometric image alignment critically depends on a favorable initialization of the pose,
especially in the conditions of varying illumination and occlusion. As a partial remedy, featuremetric
image alignment (Tang and Tan, 2019) uses feature maps instead of pixel intensities. Obtained with
deep learning, such feature maps have increased convergence basin compared to that derived from
image intensities, which improves robustness to pose initialization.

3 RELATED WORK

Direct and indirect image alignment. Estimating the relative camera pose from two images
is a fundamental problem in computer vision, with applications in structure from motion (SfM)
(Schönberger and Frahm, 2016), SLAM and relocalization. To address this problem, indirect (feature-
based) approaches detect and match interest points (Bay et al., 2006; Lowe, 2004) in both images, and
then estimate the pose using PnP (Persson and Nordberg, 2018) or by minimizing the reprojection
errors (Triggs et al., 1999). In contrast, direct methods sidestep the matching process and minimize
the photometric error instead (Horn and Jr., 1988; Irani and Anandan, 1999). This means that they can
leverage the entire image (Kerl et al., 2013; Newcombe et al., 2011), or focus on pixels with sufficient
gradient (Engel et al., 2014; 2016). The foundation behind these approaches is Lucas-Kanade tracking
(Baker and Matthews, 2004; Lucas and Kanade, 1981). However, direct methods, which are central
to this work, optimize for a 6DoF pose instead of individual pixel displacements (i. e. optical flow).

Pose estimation with deep learning. The advent of deep learning revitalized interest in improving
pose estimation with deep networks. While some approaches are holistic (Jatavallabhula et al.,
2020), there are broadly three categories of learning-based methods. i) Fully end-to-end pose
estimation methods (Kendall et al., 2016; Ummenhofer et al., 2017; Zhou et al., 2017) directly regress
pose estimates with deep neural networks, instead of test-time optimization. ii) Learning-based
indirect methods (DeTone et al., 2018; Dusmanu et al., 2019; Revaud et al., 2019; Yi et al., 2016)
replace handcrafted detectors and descriptors with deep representations in an indirect pipeline. Some
approaches further extend the traditional way of obtaining correspondences. SuperGlue (Sarlin
et al., 2020) learns feature matching with a graph neural network. LoFTR (Sun et al., 2021) directly
regresses correspondences instead of relying on separate feature detection and matching. Similar to
indirect methods, iii) learning-based direct image alignment enhances classical direct methods with
deep features. This category is the most similar to our work and we discuss it in more detail next.

Learned features for direct image alignment. Previous work differs in their approach to model
training and in the final task. For example, Czarnowski et al. (2017) leverage off-the-shelf CNN
features to improve optical flow tracking. A number of methods (Han et al., 2018; Lv et al., 2019;
Sarlin et al., 2021; Tang and Tan, 2019; Xu et al., 2021) train feature descriptors end-to-end with
ground-truth poses and backpropagate the gradient through a non-linear optimization process. At test
time, these methods employ a feature pyramid and refine the initial camera pose in a coarse-to-fine
fashion using GN or LM optimization. In addition to the feature pyramid, some methods predict
additional properties for image alignment, such as uncertainty (Xu et al., 2021) (Sarlin et al., 2021),
Jacobians (Han et al., 2018), or optimization parameters (e. g. damping factors (Lv et al., 2019; Sarlin
et al., 2021)). In the same spirit, our formulation leads to a continuous image pyramid, where each
level of the pyramid can be generated on-the-fly based on the input level of uncertainty.

Another line of work (von Stumberg et al., 2020a;b) trains a deep network directly on the ground-
truth pixel correspondences. GN-Net (von Stumberg et al., 2020a) minimizes two loss functions.
The first is a contrastive loss (Schmidt et al., 2017) facilitating discriminative properties of the
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feature representation. The second loss function accounts for a likely displacement in the initial
correspondence, implemented by adding random 2D offsets to the ground-truth correspondences at
training time. By learning to minimize the feature discrepancy after a Gauss-Newton step, the model
learns to cope with the initially noisy estimates. We revisit this work in detail in the Sec. 4.

The learning-based approaches (e. g. (Germain et al., 2021; Sarlin et al., 2021; von Stumberg et al.,
2020a)) achieve impressive accuracy of pose estimation. Nevertheless, they require pose supervision
for training and struggle in scenarios of large-baseline localization. Indeed, GN-Net (von Stumberg
et al., 2020a) and PixLoc (Sarlin et al., 2021) tend to exhibit a strong bias toward the noise assumptions
of the training process, which cannot be easily reversed. For example, PixLoc trained on the CMU
dataset exhibits a strong bias toward horizontal movement as illustrated in Appendix A.

Our work takes a different approach. We rely on existing feature descriptors obtained with self-
supervision, which contribute no explicit motion bias to the alignment process. We next derive a
closed-form solution to the Gauss-Newton loss (von Stumberg et al., 2020a) as a functional of a
probability density governing the noise assumptions of the current pose estimate. This allows us to
adjust the noise assumptions in the alignment process, thus effectively controlling the convergence
basin at test time, much akin to the coarse-to-fine strategy, exemplified by Fig. 2.

4 THE GAUSS-NEWTON LOSS

In this section, we recap the GN-Net (von Stumberg et al., 2020a) and introduce the notation. GN-Net
is a convolutional neural network E( · ;θ) trained on a sparse set of ground-truth correspondences.
Given coordinates on the image plane, let f : R× R→ Rd continuously map those coordinates to a
descriptor from a feature grid Rd×w×h produced by E( · ;θ), e. g. using bilinear interpolation. We
define fr := E(Ir;θ) and fq := E(Iq;θ) to denote feature representations of reference and query
images. GN-Net learns parameters θ to minimize the expected value of the following loss function,

LGN-Net(Ir, Iq) = Lcontrastive(fr, fq) + LGN(fr, fq), (5)
which comprises a contrastive loss, Lcontrastive(·, ·), and the Gauss-Newton loss, LGN(·, ·). The
contrastive loss minimizes the distance between the features of two corresponding points while
maximizing the distance between non-corresponding pairs (Schmidt et al., 2017). The contrastive
loss facilitates spatially discriminative features, and its particular instantiation has little significance
for the following discussion (e. g. GN-Net uses the triplet loss).

The Gauss-Newton loss LGN ensures that the feature map is sufficiently smooth for direct image
alignment, thus enlarging the convergence basin. GN-Net implements this by adding a random offset
to the ground-truth correspondences and encouraging a single Gauss-Newton step to recover the
original location. Let us formalize this process.

Given a ground-truth correspondence (x(i),y(i)) between images Ir and Iq , the assumption behind
the Gauss-Newton loss is that the initial estimate x̃(i) at test time falls in the vicinity of the ground
truth x(i), i. e. x̃(i) = x(i)+ϵ, where ϵ follows some predefined distribution p(ϵ), such as a Gaussian
with zero mean. At training time, the Gauss-Newton loss aims at recovering the ground-truth location
x(i) from a noisy initial location x̃(i) by minimizing the residual w. r. t. x:

r(i)(x̃(i)) := fr(x̃
(i))− fq(y

(i)), (6)

The original Gauss-Newton loss for one point x(i), as introduced by von Stumberg et al. (2020a), is

L(i)
GNo

(fr, fq, ϵ) := ∥J(ϵ−∆GN[r
(i)(x(i) + ϵ)])∥22 − logdetJ⊺J . (7)

From a probabilistic standpoint (von Stumberg et al., 2020a), the loss balances between the accuracy
of the Gauss-Newton step and the direction uncertainty. Here, J⊺J represents the inverse covariance
matrix propagated through the photometric residuals. The loss function corresponds to the negative
log-likelihood of residuals distributed as N

(
0, (J⊺J)−1

)
. In this work, we consider a variant of the

Gauss-Newton loss, in which the covariance matrix is assumed to be identity. Thus, Eq. (7) becomes

L(i)
GN(fr, fq, ϵ) = ∥ϵ−∆GN[r

(i)(x(i) + ϵ)]∥22. (8)
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Although this simplified version does not account for the trade-off between uncertainty and accuracy
of the prediction, it admits a closed-form minimizer of the expected value, as we show in Sec. 5. We
also find that the simplified version does not differ from the original one empirically in a significant
way (see Appendix C). Henceforth, we will refer to the simplified version as the Gauss-Newton loss.

The training process calculates the Gauss-Newton loss stochastically by sampling ϵ from p(ϵ).
Therefore, it minimizes a Monte-Carlo approximation to the expected value of L(i)

GN summed over all
ground-truth correspondences,

LGN(fr, fq; p) = Eϵ∼p

[∑
i

L(i)
GN(fr, fq, ϵ)

]
. (9)

Hereafter, we use the notation LGN(fr, fq; p) to emphasize the dependence of the Gauss-Newton loss
on the noise distribution p, and omit this parametarization otherwise to avoid clutter.

Note that the GN-Net’s training stage addresses the problem of optical flow, not pose estimation.
The underlying assumption is that accurate optical flow facilitates pose estimation, as each pixel will
contribute to the final pose estimate. At test time, the pose is determined by solving the featuremetric
image alignment problem (equivalent to Eq. (4)) using Gauss-Newton optimization in SE(3).

5 CLOSED-FORM GAUSS-NEWTON STEP

Decoupling the contrastive and Gauss-Newton losses. The contrastive loss provides a sparse
constraint on the feature embeddings, since we can only use sparse ground-truth correspondences, the
interest points, for supervision. By contrast, the Gauss-Newton loss enforces a pre-defined basin of
convergence around each interest point (modeled by p(ϵ)) with little effect on the feature descriptors
in the interest points. This is because the residual in Eq. (6) between the corresponding interest points
will be negligible, if the contrastive loss for those points is minimized. It follows that the contrastive
and the Gauss-Newton loss essentially optimize over a disjoint set of feature locations. Therefore, we
can decouple the Gauss-Newton loss from the joint optimization objective in Eq. (5). Let us formalize
this reasoning. We aim to solve:

f∗
q = argmin

fq

[Lcontrastive(fr, fq) + LGN(fr, fq)] . (10)

We denote the values of fr, fq in the interest points as Fr, Fq: F (i)
r := fr(x

(i)), F (i)
q := fq(y

(i)).
The contrastive loss only depends on Fr and Fq, while the Gauss-Newton loss depends on all the
query feature values fq and the interest points in the reference map Fr. By eliminating unused parts,
we introduce an equivalent problem:

{F ∗
q , f

∗
q } = argmin

Fq,fq

[Lcontrastive(Fr, Fq) + LGN(Fr, fq)] . (11)

Next, we approximate Fr with Fq in the second term. This is permissible as the contrastive loss acts
as a soft constraint, ensuring that Fr and Fq are close at the optimum of the joint loss function. This
allows us to decouple the minimization problem as follows:

F ∗
q = argmin

Fq

[
Lcontrastive(Fr, Fq) + min

fq
LGN(Fq, fq)

]
,

f∗
q = argmin

fq

LGN(F
∗
q , fq).

(12)

We denote
G(Fq; p) := argmin

fq

LGN(Fq, fq; p),

L∗
GN(Fq; p) := min

fq
LGN(Fq, fq; p) = LGN(Fq, G(Fq; p); p).

(13)
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Image σ = 10 σ = 30 σ = 80 σ = 200

Figure 2: Controlling the basin of convergence. Image samples and the corresponding feature maps
f̃q (PCA) for different values of σ and isotropic Gaussian distribution p.

G(Fq; p) is the optimal reconstruction of a feature map under sparse feature descriptors Fq and noise
density p(ϵ). L∗

GN(Fq; p) is the corresponding value of the Gauss-Newton loss under Fq. We will
refer to G(Fq; p) as f̃q to denote an optimal reconstruction under an arbitrary sparse input Fq . Note
the difference to f∗

q , which is an optimal reconstruction under the joint loss, i. e. G(F ∗
q ; p). Our main

contribution, detailed shortly, is a closed-form solution for both G(Fq; p) and L∗
GN(Fq; p). It reveals

that the original problem in Eq. (10) actually depends only on the feature values in the interest points:

F ∗
q = argmin

Fq

[Lcontrastive(Fr, Fq) + L∗
GN(Fq; p)] . (14)

This means that in training a feature extractor only the features of interest points matter, while the
representation of other pixels approximates our analytical solution. As the empirical validation, we
demonstrate compelling results in our experiments by using feature descriptors for the interest points
from a self-supervised method, while employing our analytical solution for the remaining pixels.

An analytical solution to the Gauss-Newton loss. We propose to calculate the expectation of the
Gauss-Newton loss in Eq. (9) as a functional of fq , and analytically find its closed-form minimizer.

Consider the query image Iq as a set {(x(j), F
(j)
q )} containing locations of interest points x(j) and

the corresponding feature descriptors F (j)
q := fq(x

(j)). The locations x(j) can be extracted by an
off-the-shelf feature detector (e. g. SuperPoint (DeTone et al., 2018)), while a network trained with
the contrastive loss in Eq. (5) can produce the corresponding descriptors F (j)

q .

Let us first re-write the expectation in Eq. (9) using Eq. (8) and Eq. (2) in the decoupled formulation
of the Gauss-Newton loss (cf. Eq. (12)):

LGN(Fq, fq; p) =
∑
j

∫
Ω

∥∥∥ϵ− (J⊺J)
−1

J⊺
(
fq(x

(j) + ϵ)− F (j)
q

)∥∥∥2
2
p(ϵ)dϵ. (15)

Substituting ϵ = x̃− x(j), we obtain

LGN(Fq, fq; p) =
∑
j

∫
Ω

∥∥∥x̃− (J⊺J)
−1

J⊺
(
fq(x̃)− F (j)

q

)
− x(j)

∥∥∥2
2
p(x̃− x(j))dx̃. (16)

We first consider all x̃ ∈ Ω independently and relax the problem by eliminating the constraint
J =

∂fq
∂x̃ . This allows us to derive analytical solutions for minimizers f̃q(·) and J̃q(·) as functions
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p(·) ∼ Scheduler

Algorithm 1

Interest points & descriptors

highbasin of convergencelow

Featuremetric alignment

Our analytical solution G(·, p)Query image Iq

feature extraction

Reference image Ir Point cloud {p(i)}

fr

f̃q = G(·, p)

Figure 3: Image alignment with continuous probabilistic feature pyramids. Given reference image
with a 3D point cloud and a query image paired with an initial coarse pose, we start by estimating
interest points and their features on the query image, along with features from the projections of the
3D point cloud onto the reference image. Next, we perform featuremetric alignment between the 3D
point features and derived analytical continuous image pyramid.

of x̃. We then observe that ∂
∂x̃ f̃q(·) coincides with J̃q(·) for a uniform distribution, which confirms

that in this case, our derived solution is the solution to the original problem. As a side note, in the
context of direct image alignment, it has been suggested that decoupling and predicting the Jacobian
independently from the function value may yield superior convergence and results (Han et al., 2018).
Appendix B provides the full derivation. Below, we summarize the closed-form minimizer to Eq. (16):

f̃q(x̃) = J̃q(x̃)
(
x̃− xm(x̃)

)
+ ym(x̃), (17)

J̃q(x̃) =
(
Covxy(x̃)Covy(x̃)

−1
)+

, (18)

ym(x̃) =
∑
j

F (j)
q p(x̃− x(j))/

∑
j

p(x̃− x(j)), (19)

xm(x̃) =
∑
j

x(j)p(x̃− x(j))/
∑
j

p(x̃− x(j)), (20)

Covxy(x̃) =
∑
j

(
x(j) − xm(x̃)

)(
F (j)
q − ym(x̃)

)⊺
p(x̃− x(j)), (21)

Covy(x̃) =
∑
j

(
F (j)
q − ym(x̃)

)(
F (j)
q − ym(x̃)

)⊺
p(x̃− x(j)), (22)

where (+) denotes the Moore–Penrose pseudo-inverse operator. The optimal point is G(Fq; p) := f̃q
and the loss value at this point (cf. Eq. (13)) is

L∗
GN (Fq) =

∫
Ω

1

2
Tr
[
Covx(x̃)− Covxy(x̃)Covy(x̃)

−1Covyx(x̃)
]
dx̃. (23)

Our derivation of the optimal embeddings G(Fq; p) using fixed interest points Fq provides an inter-
esting insight into end-to-end learning frameworks. Jointly training both losses requires inverting a
high-dimensional matrix Covy(x̃) in Eq. (23), which poses high numerical instability and disconti-
nuities. Since previous work (von Stumberg et al., 2020a) can be seen as stochastic approximations
to our solution, this may explain the reported training instability and divergence in those works.
Additionally, the form of f̃q in Eq. (17) suggests that end-to-end pipelines may not necessarily yield
any sophisticated representation, as they merely interpolate between features in the interest points.

Featuremetric Image Alignment. As a case study, we employ the analytical form of f̃q and J̃q
for featuremetric image alignment. Algorithm 1 and Fig. 3 provide an overview. Fig. 1 illustrates
stages of direct alignment using our probabilistically reconstructed feature maps. We first extract the
interest points {x(j)} and the corresponding feature descriptors {F (j)

q } from Iq to reconstruct f̃q and
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Require: Ir, Iq, {p(i)},T (0)

1: {x(j)} ← InterestPoints(Iq)
2: {F (j)

q } ← E(Iq;θ) ◦ {x(j)}
3: {o(i)} ← E(Ir;θ) ◦ {⟨p(i)⟩}
4: T ← T (0)

5: for n from 0 to Nmax do
6: p← Scheduler(n)
7: f̃q ← G({F (j)

q }; p)
8: {p̃(i)} ← {Tp(i)}
9: δ ← ∆GN (f̃q ◦ {⟨p̃(i)⟩} − {o(i)})

10: T ← T ⊟ δ
11: end for
12: return T

⟨·⟩ denotes 2D projection.
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Algorithm 1: Image alignment.
Figure 4: Robustness to initialization. Our closed-
form solution exhibits significantly greater robustness
compared to PixLoc.

J̃q using Eqs. (17) and (18). The sparse set of 3D points {p(i)} is projected onto the reference image
to obtain reference descriptors. We obtain feature descriptors for these points using the same feature
embedding network E( · ;θ). Starting with the initial camera pose T (0) ∈ SE(3), at every iteration
we perform Gauss-Newton steps minimizing the residuals r(i), w. r. t. the camera transform T :

r(i)(T ) := F (i)
r − f̃q(⟨Tp(i)⟩). (24)

p(ϵ) explicitly controls the basin of convergence. In practice, we can use any distribution with high
initial variance based on the inaccuracy assumed in the initial point projections. As our estimates
improve over the course of optimization, we gradually decrease the variance. Notably, the choice of
p(ϵ) lets us define values for points outside of the image boundaries. Fig. 2 illustrates examples of
the feature maps f̃q with p following a Gaussian distribution of increasing variance.

Comparison to previous work. Our derivation is agnostic to the underlying feature extractor
and can operate with off-the-shelf feature descriptors. An interesting property of the derived f̃q is
that it enables continuous coarse-to-fine alignment. By adjusting the noise prior p in the scheduler
(cf. Algorithm 1), we can control the basin of convergence dynamically at runtime. We can adjust
the distribution p either by choosing a different parameter set of a pre-defined distribution, or by
changing the distribution itself to another family. In practice, we start the optimization with a uniform
distribution and then switch to the Gaussian distribution with a slowly decreasing variance.

A uniform distribution with a wide support offers a large basin of convergence, which sacrifices
accuracy for robustness. The ensuing Gaussian distribution with decreasing variance refines the pose
and leads to a more accurate solution. Appendix E provides implementation details of the scheduler.

Connection between feature matching and featuremetric image alignment. Note that the
computation of f̃q using Eq. (17) only depends on the feature descriptors of the interest points in the
query image. This observation suggests an interesting interpretation of minimizing the residual in
Eq. (24) using f̃q with Gauss-Newton optimization as feature matching. The Gauss-Newton step is
fully determined by the neighboring points of interest. Consequently, it implies that the effectiveness
of such optimization-based methods may be limited in comparison to alternative optimization-inspired
approaches, which learn the optimization step (Teed and Deng, 2020).

6 EXPERIMENTS

Datasets. We evaluate our approach on two most popular datasets for large-scale image localization,
namely the Aachen Day-Night dataset (Sattler et al., 2018), extended CMU seasons (Toft et al., 2022)
and 7Scenes dataset (Shotton et al., 2013). Aachen Day-Night consists of 98 night and 824 day query
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Table 1: Camera localization on Aachen Day-Night and CMU Seasons. Our evaluation shows an
overall improved accuracy in diverse scenarios despite using self-supervised SuperPoint descriptors.
We compare to the state-of-the-art methods supervised with pose: GN-Net (von Stumberg et al.,
2020a), LM-Reloc (von Stumberg et al., 2020b) and PixLoc (Sarlin et al., 2021).

Method Aachen CMU Seasons

Day Night Urban Suburban Park

GN-Net 62.4 / 69.4 / 76.9 49.0 / 58.2 / 66.3 75.4 / 79.9 / 92.6 64.7 / 67.0 / 81.4 46.7 / 48.3 / 65.3
LM-Reloc 60.4 / 68.0 / 76.3 37.8 / 46.9 / 59.2 76.6 / 82.5 / 93.4 67.3 / 72.0 / 82.8 49.1 / 53.4 / 66.9
PixLoc 64.3 / 69.3 / 77.4 51.0 / 55.1 / 67.3 88.3 / 90.4 / 93.7 79.6 / 81.1 / 85.2 61.0 / 62.5 / 69.4
Ours (SuperPoint) 66.3 / 72.5 / 78.8 43.9 / 50.0 / 56.1 86.0 / 90.6 / 95.2 79.8 / 85.0 / 92.4 63.4 / 67.9 / 77.5

images. Extended CMU seasons consists of 14 slices, 5 for urban environment, 5 for suburban and 4
for park. Each slice contains between 3000 and 5000 query images. The 7Scenes dataset comprises
seven distinct scenes, each containing multiple sequences of 500 to 1000 frames. For our ablation
study in Appendix D we used Cambridge Landmarks dataset (Kendall et al., 2016).

Results. Table 1 presents the results for camera localization on Aachen Day-Night (Sattler et al.,
2018) and the extended CMU Seasons (Toft et al., 2022). We use SuperPoint (DeTone et al.,
2018) as the feature descriptor in these experiments. In each setting (Day/Night for Aachen; Ur-
ban/Suburban/Park for CMU Seasons), we report three numbers, which indicate the percentage of the
query images that were successfully localized within the specified translation and rotation thresholds.
We adopt the standard threshold values defined by the benchmarks (translation, rotation): (0.25m,
2◦) / (0.5m, 5◦) / (5m, 10◦). We adopted the implementation from PixLoc (Sarlin et al., 2021) to run
these benchmarks.1 A comparison with PixLoc on the 7Scenes dataset is presented in Appendix F.

We observe that our solution, despite using self-supervised descriptors from SuperPoint (DeTone
et al., 2018), achieves an overall strong localization accuracy across diverse settings in comparison to
supervised frameworks. Aachen Day-Night has significant occlusions, hence many outliers. Since
the Gauss-Newton loss does not incorporate any outlier filtering, we do not expect high accuracy
for our approach on this dataset. Nevertheless, we were surprised to find that on Aachen Day our
approach even slightly surpassed previous state of the art. On Aachen Night, our accuracy is inferior
to previous work, however. This is somewhat expected, since SuperPoint feature descriptors were
not directly trained on day-night correspondences. By contrast, PixLoc was trained with supervision
on day-night image pairs, which provides an obvious advantage. On CMU Seasons, our approach
demonstrates a clear improvement over previous featuremetric alignment methods.

The proposed approach demonstrates notable robustness to initialization noise. We compared the
proposed scheme and PixLoc on the Cambridge Landmarks dataset, varying the levels of random
noise applied to the ground-truth pose as illustrated in Fig. 4 and Appendix G.

Overall, these results empirically confirm the validity of our closed-form derivation. Furthermore,
the comparison suggests a limited benefit of end-to-end learning with the Gauss-Newton loss. By
contrast, a dynamic convergence basin offered by our analytical solution provides versatility w. r. t.
the underlying feature descriptors and improves robustness to pose initialization, as a result.

7 CONCLUSION

We derived a closed-form solution to the Gauss-Newton loss in the context of direct image alignment,
which offers two main advantages. First, it allows for dynamic control of the convergence basin,
which improves robustness of the alignment to pose initialization. Furthermore, despite using self-
supervised descriptors, such control leads to compelling accuracy of pose estimates in comparison to
supervised pipelines on established benchmarks. Second, our derivation exposes intrinsic limitations
of employing the Gauss-Newton loss in deep learning, as it only leads to a form of interpolation
between the feature descriptors in the interest points. This insight offers an interesting connection
between direct image alignment and feature matching, and leads to a novel perspective on learning
robust features end-to-end, which we will investigate in future work.

1https://github.com/cvg/pixloc
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A OPTICAL FLOW BIAS
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Figure 5: The final error of the PixLoc solution
along X/Y - axes w. r. t. the initial error. PixLoc
remains accurate only along X-axis on CMU, re-
flecting the dominant motion in the training set.

We demonstrate that PixLoc exhibits bias inher-
ited from the training dataset. Fig. 5 illustrates
the average translation error after optimization
when evaluated on the Cambridge dataset, high-
lighting the impact of different initial displace-
ments along the image axes. To solely evaluate
the bias learned by the feature maps, we dis-
abled dataset-specific learned movement priors
denoted as λ in PixLoc (Sarlin et al., 2021). Our
results demonstrate that when trained on the
CMU dataset, the network predicts optical flow
along the X axis more accurately. This increased
accuracy is directly linked to the structure of
the CMU dataset. Specifically, the dataset com-
prises image pairs captured by a camera inside a
moving car, pointed towards the side of the road.
Consequently, this positioning results in the net-
work predominantly learning horizontal optical
flow patterns, reflecting the lateral movement
observed in the images of the training dataset.

B DERIVATION OF THE ANALYTICAL SOLUTION

In this section, we provide a solution to minimizing Eq. (16) from the main text. Let Ω be the
coordinate domain of an image plane [0, 1]× [0, 1], and let E ⊆ Rd define the feature space. We aim
to find f̃ : Ω→ E:

f̃ = argmin
f

∑
j

∫
Ω

∥∥∥x̃− (J(x̃)⊺J(x̃))
−1

J(x̃)⊺
(
f(x̃)− F (j)

q

)
− x(j)

∥∥∥2
2
p(x̃− x(j))dx̃. (25)

We start by relaxing the constraint∇f(x) = J(x). This makes every value of f(x) and J(x) locally
independent and, therefore, the minimum is achieved by minimizing Eq. (25) independently over
every point in Ω:

{f̃(x̃), J̃(x̃)} = argmin
f̂ ,Ĵ

∑
j

∥∥∥∥x̃− (Ĵ⊺Ĵ
)−1

Ĵ⊺
(
f̂ − F (j)

q

)
− x(j)

∥∥∥∥2
2

p(x̃− x(j)). (26)

Note that the only significant part of f̂ is a part which is spanned by columns of Ĵ . This can be easily
seen by observing that Ĵ⊺f̂ is a non-normalized projection onto Ĵ . More formally, let us find f̂ as
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Ĵa + Ĵ⊥b, where Ĵ⊥ is a basis for an orthogonal complement for span(Ĵ). By substituting this
into Eq. (26), we obtain:

{ã(x̃), J̃(x̃)} = argmin
a,Ĵ

∑
j

∥∥∥∥x̃− x(j) − a+
(
Ĵ⊺Ĵ

)−1

Ĵ⊺F (j)
q

∥∥∥∥2
2

p(x̃− x(j)),

f̃(x̃) ∈
{
J̃(x̃)ã(x̃) + J̃(x̃)⊥b | b ∈ Rd−2

}
.

(27)

Observe that this problem is a linear least squares in a and
(
Ĵ⊺Ĵ

)−1

Ĵ⊺ and recall that p(·) ≥ 0 (by

definition), hence the problem is convex. Minimality conditions for Eq. (27) for a and
(
Ĵ⊺Ĵ

)−1

Ĵ⊺

are:

d

da
:
∑
j

(
x̃− x(j) − a+

(
Ĵ⊺Ĵ

)−1

Ĵ⊺F (j)
q

)
p(x̃− x(j)) = 0, (28)

d

d
(
Ĵ⊺Ĵ

)−1

Ĵ⊺
:
∑
j

(
x̃− x(j) − a+

(
Ĵ⊺Ĵ

)−1

Ĵ⊺F (j)
q

)
F (j)⊺
q p(x̃− x(j)) = 0. (29)

From Eq. (28), we have:

a = x̃− xm(x̃) +
(
Ĵ⊺Ĵ

)−1

Ĵ⊺ym(x̃), (30)

where
ym(x̃) :=

∑
j

F (j)
q p(x̃− x(j))/

∑
j

p(x̃− x(j)),

xm(x̃) :=
∑
j

x(j)p(x̃− x(j))/
∑
j

p(x̃− x(j)).
(31)

Substituting a into Eq. (29), we obtain

∑
j

(
xm(x̃)− x(j) +

(
Ĵ⊺Ĵ

)−1

Ĵ⊺
(
F (j)
q − ym(x̃)

))
F (j)⊺
q p(x̃− x(j)) = 0, (32)

−
∑
j

(
x(j) − xm(x̃)

)
F (j)⊺
q p(x̃− x(j))+

(
Ĵ⊺Ĵ

)−1

Ĵ⊺
∑
i

(
F (j)
q − ym(x̃)

)
F (j)⊺
q p(x̃− x(j)) = 0, (33)

−Covxy(x̃) +
(
Ĵ⊺Ĵ

)−1

Ĵ⊺Covy(x̃) = 0, (34)

where

Covxy(x̃) :=
∑
j

(
x(j) − xm(x̃)

)(
F (j)
q − ym(x̃)

)⊺
p(x̃− x(j)), (35)

Covy(x̃) :=
∑
j

(
F (j)
q − ym(x̃)

)(
F (j)
q − ym(x̃)

)⊺
p(x̃− x(j)). (36)

Solving Eq. (34) for J and substituting the solution into Eq. (27) results in

J̃(x̃) =
(
Covxy(x̃)Covy(x̃)

−1
)†
, (37)
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Figure 6: Comparison of rotation and translation recalls for our simplified version of GN-loss and
probabilistic one

f̃(x̃) = J̃(x̃)a = J̃(x̃)
(
x̃− xm(x̃)

)
+ J̃(x̃)

(
J̃(x̃)⊺J̃(x̃)

)−1

J̃(x̃)⊺ym(x̃). (38)

J̃(x̃)
(
J̃(x̃)⊺J̃(x̃)

)−1

J̃(x̃)⊺ym(x̃) can be simplified. Note that in the Gauss-Newton step we

are projecting f̃(x̃) onto J̃(x̃). J̃(x̃)
(
J̃(x̃)⊺J̃(x̃)

)−1

J̃(x̃)⊺ is a projection operator, so we are
projecting two times. Therefore, there is another equivalent solution which we will further use for the
sake of simplicity:

f̃(x̃) = J̃(x̃)
(
x̃− xm(x̃)

)
+ ym(x̃). (39)

Observe that substituting f̃ from Eq. (39) and Eq. (38) into Eq. (26) yields the same loss value.

Notably, ∇f̃(x̃) = J̃(x̃) for a uniform distribution p(·).

C PROBABILISTIC vs. SIMPLIFIED GAUSS-NEWTON LOSS

In this section, we compare our simplified Gauss-Newton loss formulation,

argmin
f̂ ,Ĵ

∑
j

∥∥∥∥x̃− (Ĵ⊺Ĵ
)−1

Ĵ⊺
(
f̂ − F (j)

q

)
− x(j)

∥∥∥∥2
2

p(x̃− x(j)), (40)

to the original loss, which was derived through the maximum likelihood estimation (MLE),

argmin
f̂ ,Ĵ

∑
j

(∥∥∥∥Ĵ (x̃− (Ĵ⊺Ĵ
)−1

Ĵ⊺
(
f̂ − F (j)

q

)
− x(j)

)∥∥∥∥2
2

− logdet(Ĵ⊺Ĵ)

)
p(x̃− x(j)).

(41)

We note that the solution to the probabilistic loss is much more complicated and computationally
expensive. Derivatives for this formulation are high-order polynomials in elements of f̂ and Ĵ .
It could be solved by general methods of algebraic geometry like Gröbner basis or Homotopy
continuation, but the existence of a closed-form solution is not guaranteed, and we were not able to
find one.

Nevertheless, in order to compare the two formulations, we approached the problem numerically.
Fig. 6 presents the results. We used the Aachen dataset with hloc poses to plot the recall of query
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images as a function of rotation and translation errors. We observe that the accuracy difference
between these two formulations is negligible in practice. However, the simplified version admits a
closed-form solution and can be computed several orders of magnitudes more efficiently.

D A STUDY OF FEATURE DESCRIPTORS

We show that our approach is agnostic to the choice of the underlying feature de-
scriptor. To analyze the accuracy of our algorithm in terms of the localization error,
we use Cambridge Landmarks (Kendall et al., 2016), which provides ground-truth poses.
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Figure 7: We study our approach with different
feature descriptors on Cambridge Landmarks.

We experiment with four popular feature de-
scriptors: SIFT (Lowe, 2004), SOLD2 (Pau-
trat et al., 2021), SuperPoint (DeTone et al.,
2018) and the recent SiLK (Gleize et al., 2023).
We plug them in as the embeddings for inter-
est points detected by SuperPoint. Fig. 7 plots
recall (the percentage of successfully localized
queries) as a function of the tolerated translation
error.

We observe that SuperPoint outperforms all
other feature descriptors. SOLD2 (Pautrat et al.,
2021) is substantially more inferior in terms of
accuracy of the pose estimates. Since it is de-
signed to be a line descriptor, its representation
of non-linear structures is not well-defined, thus
such outcome is somewhat expected. Interest-
ingly, SuperPoint and SIFT both surpass the
more recent SiLK on this benchmark. In com-
parison to SuperPoint, SiLK has 128-D descrip-
tor, which suggests that it may be less expressive than the 256-D SuperPoint descriptors.

E IMPLEMENTATION DETAILS.

We implement our approach in PyTorch (Paszke et al., 2019). The primary focus of our implementa-
tion is the experimental validation of our derived results. Therefore, we did not optimize the runtime
performance, which heavily depends on the number of interest points and 3D points involved in the
computation. On average, the code takes approximately 6 seconds and 10 seconds per alignment on
CMU and Aachen, respectively, on a single NVIDIA A4000. The scheduler in Algorithm 1 adapts
the distribution p(·) as follows. We initialize p(·) with a truncated uniform distribution of a fixed
radius around all interest points. The radius decreases from 50% of the image diagonal to 5% in the
first 30 iterations. Afterward, the scheduler switches to the normal distribution around each interest
point with standard deviation σ. Initially, we define σ such that 99% of the distribution covers 10%
of the image around the point, and we decrease the coverage ratio to 1%.

Since our formulation does not have any outlier removal, we adopt the cut-off from the coarse tracker
of DSO (Engel et al., 2016). The idea is to define a threshold that discards all but 20% of the residuals
with the lowest norm. In our experiments with SuperPoint, we set the threshold value to 0.4.

F EVALUATION ON 7SCENES

Here, we complement our evaluation with the 7Scenes dataset. This dataset features substantial blur
and distortions in some scenes, as it was captured with a rolling-shutter Kinect camera. Although
SuperPoint features were not trained with such distortions, direct alignment with our closed-form
solution remains competitive with PixLoc, both in terms of the median error and the recall Table 2.
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Table 2: 7Scenes (Shotton et al., 2013) evaluation and comparison to PixLoc. We report the
median rotation and translation errors, as well as recall values at the specified thresholds of translation
and rotation.

Scene Method Median error Recall

(1cm,1◦) (5cm,5◦) (25cm,2◦) (50cm,5◦)

Heads Ours 0.013m, 1.006◦ 24.80% 93.0% 86.30% 92.0%
Pixloc 0.013m, 0.863◦ 36.40% 85.60 % 84.00% 85.90%

Office Ours 0.028m, 0.941◦ 6.12 % 80.25% 92.55% 99.00%
Pixloc 0.026m, 0.792◦ 7.95% 80.70 % 93.12 % 96.85%

Redkitchen Ours 0.037m, 1.444◦ 1.56 % 64.42% 71.88% 90.16%
Pixloc 0.034m, 1.217◦ 3.74% 67.78 % 76.56 % 89.48%

Pumpkin Ours 0.049m, 1.555◦ 1.60 % 51.65% 62.65% 85.35%
Pixloc 0.041m, 1.173◦ 2.80% 59.75 % 71.00 % 84.40%

Stairs Ours 0.154m, 3.685◦ 1.90 % 19.90 % 25.60 % 60.50 %
Pixloc 0.048m, 1.268◦ 2.60% 51.10 % 59.10 % 74.70%

Chess Ours 0.026m, 0.904◦ 5.50 % 91.95% 95.45% 98.45%
Pixloc 0.024m, 0.812◦ 7.75% 90.75 % 94.95% 96.15%

Fire Ours 0.021m, 0.978◦ 10.40 % 90.65% 94.05% 98.45%
Pixloc 0.019m, 0.781◦ 15.85% 87.50 % 87.20% 90.10%

G QUALITATIVE EXAMPLES

Fig. 8 visualizes convergence examples of one scene with different pose initializations. The examples
consistently demonstrate successful alignment despite suboptimal initialization of varying degree.
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Iteration 0 Iteration 2 Iteration 54 Iteration 89

Figure 8: Examples of convergence from random initial poses. The green points are projections of
3D points using the current pose estimate; the red points are projections of the 3D points with the
initial pose, and the yellow points denote the locations of interest points. It can be seen that despite
these highly inaccurate initial poses, our approach converges to the correct solution.
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