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Abstract

Connecting an ever-expanding catalogue of products with suitable
manufacturers and suppliers is critical for resilient, efficient global
supply chains, yet traditional methods struggle to capture complex
capabilities, certifications, geographic constraints, and rich multi-
modal data of real-world manufacturer profiles. To address these
gaps, we introduce PMGraph, a public benchmark of bipartite and
heterogeneous multimodal supply-chain graphs linking 8,888 manu-
facturers, over 70k products, more than 110k manufacturer—product
edges, and over 29k product images. Building on this benchmark,
we propose the Cascade Multimodal Attributed Graph (C-MAG),
a two-stage architecture that first aligns and aggregates textual
and visual attributes into intermediate group embeddings, then
propagates them through a manufacturer—product heterograph
via multiscale message passing to enhance link prediction accu-
racy. C-MAG also provides practical guidelines for modality-aware
fusion, preserving predictive performance in noisy, real-world set-
tings.
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1 Introduction

Global supply chain disruptions[32] caused by pandemics, geopolit-
ical tensions, and material shortages have underscored the impor-
tance of leveraging small and medium-sized enterprises (SMEs) and
their potential capacities and capabilities more effectively. Beyond
simply matching existing production capabilities, accurately pre-
dicting SMEs’ potential to manufacture new products is essential
for developing resilient and adaptable supply networks[25, 39].

Three primary challenges complicate this objective. First, the
absence of scalable, structured supply chain datasets limits the
ability to model and analyze manufacturer-product relationships
effectively. In most cases, publicly available data on manufacturing
capabilities are sparse, heterogeneous, proprietary, and locked in
unstructured formats [14, 15]. As a result, large-scale computational
analysis becomes difficult. Without reliable data infrastructure, it is
challenging to train Al models that can accurately match production
requirements with suitable SME capabilities, let alone anticipate
their ability to scale or diversify into new manufacturing domains.

The second major challenge lies in the complexity and rapidly
evolving nature of manufacturing technologies. New processes,
equipment, and materials are continuously introduced, making it
difficult to maintain a current understanding of manufacturers’ ca-
pabilities [16, 40]. Often, multiple methods exist for producing the
same product, each requiring different technical resources and ex-
pertise. Effectively linking product requirements to manufacturers
thus demands deep knowledge of process selection, material prop-
erties, and production technologies. [44] This complexity presents
a significant barrier to automating the identification of capable
manufacturers, particularly among SMEs whose capabilities are
rarely documented in structured, accessible formats.

Third, manufacturers in real-world supply chain knowledge
graphs (SC-KG) exhibit extensive heterogeneity—spanning geo-
graphic location, certifications, production capacity, and technical
capabilities—which complicates the task of constructing unified
representations and predicting both present and future product
relationships [2, 3, 5]. At the same time, fusing multi-modal data
introduces its own set of challenges—misaligned embedding spaces,
varying noise characteristics, incomplete modality coverage, and
the risk of diluting key signals—demanding sophisticated align-
ment, weighting, and noise-robust fusion strategies to maintain
predictive performance [28].
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Figure 1: Overall architecture of the Cascade Multimodal
Attributed Graph.

To bridge these gaps, we propose three main contributions:

o We release a suite of public-use supply chain knowledge
graphs PMGraph! —including bipartite manufacturer—product
graphs and heterogeneous multimodal knowledge graphs,
and related variants—linking manufacturer metadata (capa-
bilities, certifications, geographic locations) and visual assets
to corresponding manufacturing products.

e We introduce Cascade Multimodal Attributed Graph (C-
MAG) for manufacturer—product link prediction (Fig. 1). In
the top-level graph, diverse manufacturer attribute nodes
and image nodes—are algined and fused into a single group
embedding. That embedding then flows into the lower het-
erograph, where it propagates between the manufacturer and
product nodes via multiscale message passing, substantially
boosting link-prediction accuracy.

e We present a graph-based link-prediction framework and
comprehensive evaluation suite for quantifying the impact of
visual features. Our benchmark reveals the trade-offs of mul-
timodal integration and delivers practical, modality-aware
fusion guidelines that safeguard predictive accuracy in noisy,
real-world supply-chain scenarios.

For the rest of the paper, we review the related work in Sec. 2. In
Sec. 3, the details of the proposed method are presented. In Sec. 4,
the experiments are conducted to demonstrate the effectiveness
of our method. In Sec. 5, the limitations and future work of our
method are concluded.

2 Related Work
2.1 Graph Datasets

Heterogeneous Graphs. Heterogeneous graphs (or heterographs)
extend standard graphs by allowing multiple node and edge types,
enabling more faithful modeling of complex domains—such as sup-
ply chains—where entities and their relationships carry distinct
semantics (7, 35]. Influential heterographs, like the Open Academic
Graph (OAG), which merges 0.7 billion entities and 2 billion re-
lations across papers, authors, venues, and institutions, and the

1 PMGraph is publicly available at https://huggingface.co/datasets/shawntzx/PMGraph.
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diverse, large-scale datasets of the Open Graph Benchmark (OGB)
demonstrate the scale and domain heterogeneity that heterographs
can capture [12, 51].

Multimodal Knowledge Graphs (MMKG). MMKGs extend het-
erogeneous graphs by enriching entities and relations with di-
verse data modalities—such as textual descriptions, images, and
region-level annotations—rather than relying solely on structured
triples [53]. While heterographs model multiple node and edge
types to capture domain heterogeneity, MMKGs embed unstruc-
tured or semi-structured content directly into the graph, enabling
joint reasoning over visual and textual signals [46]. For example,
Visual Genome [22] builds scene-level graphs from 100,000 images
annotated with region descriptions, Richpedia [45] links Wikidata
entities to images via RDF-based visual-semantic relations, and
MMEA-UMVM [6] provides 97 benchmark KGs with incomplete or
ambiguous images to evaluate multimodal entity alignment.

2.2 Attributed Graphs

Attributed Graph (AG) is a directed multigraph where nodes and
edges carry arbitrary key-value properties, enabling rich meta-
data annotation [34]. Unlike ontology-bound RDF triples in knowl-
edge graphs, AGs allow flexible property addition without a global
schema. This flexibility supports fine-grained entity-relation model-
ing and joint topology-feature reasoning for analytics and machine
learning. [37].

Text Attributed Graphs (TAG). Text-attributed graphs enrich nodes
(and optionally edges) with unstructured text. Key benchmarks in-
clude OGBN-arxiv [12], CS-TAG’s eight large-scale graphs across
diverse domains [49], and TEG-DB’s unified text-edge graph suite
with a modular evaluation pipeline [27].

Multimodal Attributed Graphs (MAG). A MAG enriches nodes
and edges with heterogeneous feature modalities (e.g., structured
data, text, images, audio). MAGB [50] provides the first benchmark
for MAG representation learning, and Kannan et al. [17] align sci-
entific papers with code and images to illustrate text-visual fusion
challenges. MMIEA [52] introduces a cross-modal entity alignment
model that addresses misalignment and missing-modality issues in
attributed graphs.

2.3 Graph Based Link Prediction

Link prediction (LP) in supply chain heterographs aims to infer miss-
ing or potential links by estimating the likelihood of connections
between node pairs based on observed topology and attributes. Ap-
proaches divide into two paradigms: Supervised methods train edge
classifiers with cross-entropy loss on known links using Graph Neu-
ral Network (GNNs) such as GCN [18], GraphSAGE [11], GAT [43],
and HGT [13]. Besides, unsupervised techiques, like GraphSAGE [11],
R-GCN [36], and Node2Vec [10],leverage contrastive objectives,
negative sampling, or random-walk embeddings to separate true
from false edges without labels.
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Figure 2: Overview of C-MAG pipeline

2.4 Supply-Chain Data Resources and GNN

Applications

Recent supply chain graph datasets include the SC-KG by Wich-
mann, Brintrup, and Baker et al., which models multi-type relations
(supplier-buyer, supplier—product, product-ingredient) across auto-
motive and energy sectors for over 40,000 companies [20]; the Listed
Companies Supply Chain Network of publicly traded Chinese firms
capturing procurement and sales links for industry classification
[48]; and SupplyGraph, a public FMCG production-planning bench-
mark with temporal node features from a Bangladeshi company
[47]. However, most of existing supply-chain graphs are propri-
etary or limited to homogeneous relations within narrow domains
or omit unstructured modalities (e.g., text, images)—underscoring
the need for a publicly available, scalable, multimodal SC-KG.
Recent GNN-based frameworks for manufacturer and supplier
prediction include a Manufacturing Service Knowledge Graph that
uses neighborhood aggregation and oversampling to handle im-
balanced capability classification [24]; an ontological Knowledge
Graph (KG) combined with Retrieval-Augmented Generation for
context-aware supplier discovery [23]; hidden-link prediction in au-
tomotive networks via GNNs augmented with Integrated Gradients
for interpretability [19]; and a large-scale automotive SC-KG lever-
aging structured and textual embeddings for alternative supplier
recommendation [42]. Despite their effectiveness, these frameworks
largely rely on structural and textual embeddings, neglecting the
rich visual assets and the alignment and noise challenges that arise
when fusing heterogeneous modalities in supply-chain graphs.

3 Methodology

To mitigate limitations of existing frameworks—which largely rely
on structural and textual embeddings, neglecting rich visual as-
sets and challenges of alignment and noise in multimodal SC-KGs,

we propose C-MAG, a two-stage multimodal graph construction
framework aimed at enhancing link prediction accuracy through
hierarchical representation learning. The overall pipeline of our
method is illustrated in Fig. 2, highlighting the integration of visual,
textual, categorical, and numeric attributes into node representa-
tions for LP.

3.1 Stage 1: Base MAG and Auxiliary Pretraining

In the first stage, we construct a base-MAG capturing relationships
among manufacturer nodes, attribute nodes (processes, certifica-
tions, materials, cities, states), and image nodes extracted directly
from manufacturer websites.

Unified CLIP embeddings. Manufacturer textual descriptions, at-
tribute labels, and product images are encoded into a unified 768-D
embedding space using Jina-CLIP-v1 [21]. Embeddings are then
compressed to 32-D via Truncated Singular Value Decomposition
(SVD) [1], effectively reducing noise and computational complexity.

Unsupervised graph embedding. Manufacturer embeddings are
pretrained on this top level MAG via unsupervised link predic-
tion. A two-layer GraphSAGE architecture (768 — 64 — 32) aggre-
gates neighbor embeddings, applying linear transformations and
ReLU activations. Positive edges (manufacturer — attribute/image)
are contrasted against sampled negative edges using binary cross-
entropy loss (BCE). An R-GCN variant is also validated to ensure
architecture-agnostic embedding quality.

3.2 Stage 2: Bipartite Manufacturer-Product
Graph Design

In the second stage, we construct the bipartite manufacturer—product
graph by initializing each node with the embeddings aggregated
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Table 1: PMGraph statistics.

Category Type #
Manufacturer 8,888
Product 72,789
Node types i ribute 2,918
Image 29,178
manufacturer—>product 112,597
Edge types manufacturer—attribute 83,105
manufacturer—image 29,178

from the first-stage attribute graph, thereby producing the final
C-MAG representation.

Textual and categorical embeddings. Manufacturer and product
textual attributes are processed with unified CLIP embeddings (768-
D), compressed to 32-D with truncated SVD. Categorical metadata
(business status, industry tags, certifications, NAICS codes) are
one-hot encoded, numeric features (employee counts, geographic
coordinates) are standardized, and the combined feature set is simi-
larly compressed into 32-D embeddings via SVD.

Fusion and final multimodal graph assembly. Manufacturer node
embeddings from Stage 1 (32-D) are concatenated with Stage 2 tex-
tual, categorical, and numeric embeddings (64-D), forming enriched
96-D vectors. SVD further compresses these embeddings back to
64-D. Product nodes retain their original 64-D embeddings derived
from textual and categorical data. The resulting a bipartite MAG
encodes comprehensive manufacturer—product features, integrat-
ing structural, textual, categorical, numeric, and visual information
for robust link prediction.

3.3 Link Prediction

With these enriched node embeddings, we perform link prediction
on manufacturer-product relationships using two heterogeneous
Graph Neural Networks (heteroGNNs): HeteroSAGE and Hetero-
GAT. Initially, reverse edges (product — manufacturer) are explicitly
added to complement the forward edges (manufacturer — product),
thus creating a bidirectional heterogeneous graph structure that
facilitates robust information propagation.

We implement two-layer architectures for both heteroGNN mod-
els, including intermediate nonlinear activations, dropout, and resid-
ual connections where applicable. Each model employs node-type-
specific linear projection layers for embedding dimensionality align-
ment. To manage class imbalance, we utilize Weighted BCE [30].

4 Experiments and Analysis

4.1 Data Preparation

4.1.1 Data sources. The raw graph corpus is assembled by merg-
ing (i) the SUDOKN SC-KG [4] and (ii) the manufacturer directory
and associated ontology of Li etal.[26]. Collectively, these sources
comprise 8,888 unique manufacturer URLs (each offering multi-
ple products) with extensive metadata, including employee counts,
business descriptions, industry tags (up to 30 per manufacturer),

Li et al.

Table 2: Variants of heterographs used in our experiments.

Variant ~ Hierarchy Text Embedding Images Bipartite
AGTFIDF Flat TF-IDF No Yes
AGjINA Flat Jina-CLIP No Yes
FAG, Flat Jina—CLIP No No
FMAG; Flat Jina-CLIP Yes No
C-MAG; 2-layer Jina—-CLIP No Yes
C-MAG; 2-layer Jina-CLIP Yes Yes

process and material capabilities (up to 50 each), certifications, geo-
graphic coordinates, NAICS codes, and detailed product catalogs.

Product images are scraped from the manufacturer websites
referenced in SUDOKN and then passed through a multimodal
LLM-based quality filter to remove off-topic or low-resolution
content (see Appendix A). After filtering, 145,888 images remain.
Since including all image nodes can introduce noise, we conducted
an ablation study to evaluate link-prediction performance under
different sampling ratios (See 4.5.2). In our main experiments, we
randomly sample 20% of the filtered images to enrich PMGraph.
The resulting graph statistics are presented in Table 1.

4.2 Graph Variants

All six heterographs share the same manufacturer—product topol-
ogy and compress node features to 64-D via truncated SVD. We
evaluate two baseline models, AGtrpr and AGyna, which use a
flat bipartite graph with TF-IDF or Jina-CLIP embeddings for tex-
tual features; two proposed cascade models, C-MAG; and C-MAGg;
and two ablation variants, FAG; (the flat counterpart of MAG1) and
FMAG; (the flat counterpart of MAG3). This setup allows us to
compare embedding methods, assess the benefit of a cascade archi-
tecture by contrasting FAG; versus C-MAG; and FMAG; versus
C-MAGg, and evaluate the impact of visual features by compar-
ing C-MAGg; versus C-MAG; and FMAG; versus FAG;. The six
variants are summarized in Table 2.

4.3 Experimental Setup

4.3.1 Unsupervised Pretraining. Following the auxiliary pretrain-
ing in Sec. 3.1, we conduct random-seed trials of a two-layer Graph-
SAGE encoder (768 — 64 — 32) for up to 1000 epochs with early
stopping (patience = 20). Optimization uses Adam (Ir = 1073,
weight decay = 107°), with batch sizes of 32 for attribute edges and
16 for image edges. To confirm architecture-agnosticism, we repeat
this procedure using a two-layer R-GCN under identical settings.

4.3.2  Supervised Link Prediction. Following most of the experimen-
tal setup of Lv et al. [29], we fine-tune two heteroGNN architec-
tures—HeteroSAGE and HeteroGAT (4 attention heads)—on both
the bipartite manufacturer—product graph and the full heterograph
including attribute and image relations. Each model consists of two
projection layers with 128 hidden units and applies a dropout rate
of 0.5. We split edges into train/validation/test sets in an 80/10/10%
ratio and use a 1:1 negative-sampling ratio. Training runs for up to
1,000 epochs with early stopping (patience = 20) monitored on the
validation ROC-AUC. For hyperparameter tuning, we grid-search
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Table 3: ROC-AUC and PR-AUC (%) for hetero-GNNs across
graph variants (with base-MAGs pre-trained on GraphSAGE).
Best and second-best scores in each column are highlighted
in bold and underline, respectively.

Variant HeteroSAGE HeteroGAT
ROC-AUC PR-AUC ROC-AUC PR-AUC

AGTEIDF 54.60 56.38 70.92 70.11
AGyNA 66.46 60.58 72.49 71.02
FAGq 63.63 58.20 72.49 70.94
FMAG, 57.11 51.90 71.55 69.63
C-MAG; 66.88 60.94 75.46 73.78
C-MAG; 70.58 66.09 73.49 74.30

the learning rate over {1,5} x {107°,107>,107%,1073,1072} and
optimize a weighted binary cross-entropy loss, selecting the con-
figuration that maximizes validation ROC-AUC.

Flat-graph ablations. While the bipartite link-prediction setup
uses only manufacturer—product edges, the flat-graph ablations
(FAG1, FMAG) trains on the full heterograph (manufacturers, prod-
ucts, attributes, images) but evaluates exclusively on the manufac-
turer—product relation. Concretely, we apply randomly link split to
manufacturer-product edges only, then strip attribute and image
edges from the validation and test graphs so that only bipartite
links are scored.

All experiments run on NVIDIA GPUs with fixed random seeds
for reproducibility.

4.3.3  Evaluation metrics. We assess link-prediction performance
on held-out product-manufacturer pairs using two threshold inde-
pendent metrics:

ROC-AUC. (AUCroc) The probability that a randomly chosen
true edge receives a higher dot-product score than a randomly
chosen non-edge:

AUCRoc = PI‘[S,’+ > Si_]a

where s; are model scores and y; € {0,1} are binary labels for
each test pair, and iy and i index a random positive and negative
example, respectively.

PR-AUC. (AUCpR) The area under the precision-recall curve,
summarizing the trade-off between precision and recall across
thresholds. Let

TP(t)
TP(t) + FP(t)’

TP(¢)

Recall(t) = m

Precision(t) =

then
1
AUCPR=/ Precision(Recall ! (r)) dr.
0

4.4 Link Prediction Performance

Table 3 shows that the cascade variants C-MAG; and C-MAG; oc-
cupy the top two positions for both HeteroSAGE and HeteroGAT,
clearly outperforming the flat AGjina and AGTrpr baselines. This
demonstrates that enriching the bipartite manufacturer—product
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Table 4: ROC-AUC and PR-AUC (%) for hetero-GNNs on
C-MAG; and C-MAG; (with base-MAGs pre-trained on R-
GCN). Best scores in each column are highlighted in bold.

Variant HeteroSAGE HeteroGAT
ROC-AUC PR-AUC ROC-AUC PR-AUC

C-MAG, 70.41 65.90 74.84 72.59

C-MAG: 67.97 62.15 74.42 72.70

graph with manufacturer-attribute relations via a cascade architec-
ture can improve link-prediction, and that Jina-CLIP embeddings
capture manufacturing semantics more effectively than TF-IDF.

C-MAGs also outperform their flat counterparts (FAG; and FMAGy)
due to their hierarchical design: they first aggregate attribute infor-
mation and manufacturer—attribute relations into the manufacturer
nodes via an unsupervised link-prediction step, and then propagate
these enriched partial embeddings into the manufacturer-product
prediction network. This two-stage integration captures both at-
tribute and topological context more effectively than the flat models,
which fuse all information in a single step.

We observe that adding product image nodes does not consis-
tently improve LP: the flat image-augmented model (FMAG;) un-
derperforms its non-visual counterpart (FAG1), and the cascade
variant C-MAG; does not always outperform C-MAG;. This likely
stems from residual noise in the filtered image set—despite remov-
ing irrelevant or low-quality images, spurious visual features can
still degrade the learned embeddings. Nevertheless, the hierarchical,
two-stage design of C-MAGg helps mitigate this issue: by first refin-
ing manufacturer node representations with image information and
then using those enriched embeddings for manufacturer—product
prediction, it achieves greater robustness to noisy vision data than
the flat FMAG, model.

4.5 Ablation Studies

4.5.1 Ablation of Auxiliary Pretraining Encoder. To assess whether
our gains derive from the GraphSAGE architecture or the graph
design itself, we compare unsupervised pretraining with two-layer
GraphSAGE against R-GCN on the MAG; variant. Table 4 reports
downstream ROC-AUC and PR-AUC for each hetero-GNN.

With R-GCN, the cascade models C-MAG; and C-MAGg; still
outperform all other variants; however, integrating multimodal fea-
tures can sometimes degrade LP performance, likely due to residual
noise in the filtered image data.

4.5.2 Ablation of Images Sampling Ratio. To evaluate how the
proportion of image nodes affects link-prediction in the cascade
model, we ablate the image sampling ratio for C-MAG; at 10%,
20%, and 50%. Figure 3 presents the ROC-AUC and PR-AUC trends
obtained with the HeteroSAGE and HeteroGAT encoders.
Performance for both architectures peaks at 20% sampling, with
HeteroGAT consistently outperforming HeteroSAGE. Increasing
sampling beyond 20% yields only marginal improvements—likely
a result of residual noise in the filtered images—but C-MAG2’s
hierarchical cascade maintains strong LP accuracy, outperforming
all flat variants and demonstrating robustness to noisy visual data.
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Figure 3: LP Performance with ROC-AUC(%) and PR-AUC(%)
under different image sampling rates on for C-MAG;.

5 Conclusion and Future Work

In this work, we introduce PMGraph, a large-scale, heterogeneous,
multimodal supply-chain benchmark linking 8,888 manufacturers,
over 70,000 products, and over 29,000 product images, and propose
C-MAG architecture customized for manufacturer—product LP. By
enriching the bipartite manufacturer—product graph with manufac-
turer—attribute relations in a two-stage cascade—first aggregating
textual and visual attributes into intermediate embeddings, then
propagating these through the full heterograph—C-MAG achieves
state-of-the-art ROC-AUC and PR-AUC under both HeteroSAGE
and HeteroGAT, substantially outperforming other graph variants.
Our ablations show that C-MAG’s hierarchical fusion is robust
to noisy visual data, peaking at moderate image sampling ratios
while maintaining strong performance even as image noise in-
creases. These results demonstrate the importance of modality-
aware, staged integration of heterogeneous information for robust
SC-KG modeling. Moreover, the C-MAG framework readily general-
izes beyond manufacturer—product matching to other supply-chain
inference tasks—such as component prediction, domain-specific LP,
and e-commerce recommendation system.

Future work will investigate adaptive image-filtering strategies
using advanced vision-language models (e.g., GPT-03 [31], Claude
Sonnet [33]) and explore dynamic cascade depths to better accom-
modate varying data quality [9, 41]. We will also extend evaluations
to a wider range of heterogeneous GNN architectures [8, 38] and
conduct systematic ablations over key hyperparameters to optimize
model performance in diverse, real-world supply-chain scenarios.
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A Visual Data Extraction

A.1 Image Collection

We develop a scalable, high-throughput pipeline to systematically
collect product images from a curated set of over 8,000 manufacturer
websites. Each target URL is first normalized to ensure syntactic
consistency before initiating HTTP requests to retrieve the cor-
responding webpage content. To robustly accommodate a wide
range of webpage structures—including malformed markup or em-
bedded binary artifacts—the retrieved HTML is processed using a
fault-tolerant, two-stage parsing strategy.

Following content extraction, all intra-domain hyperlinks are
identified and subjected to a lexical filtering mechanism. Specifically,
links are retained if they contain keywords indicative of product-
related content (e.g., “product”;‘item” “catalog”, “gallery”, “prod”)
and discarded if they correspond to non-product sections (e.g.,
“about”, “contact”, “blog”, “news”, “login”, “signup”). In cases where
few product-specific links are detected, a supplementary set of
additional internal pages is also explored to improve recall.

The homepage and selected product-relevant pages are then
scanned for image elements. All discovered image URLs are re-
solved to their absolute forms, downloaded as binary files, and
stored in structured subdirectories organized by domain. Filenames
are semantically generated based on associated textual metadata,
such as alt attributes, or default to the original filenames when de-
scriptive information is unavailable—ensuring contextual relevance
and traceability.

By integrating structured domain ingestion, robust HTML pars-
ing, keyword-driven link prioritization, and hierarchical image
storage, this pipeline enables efficient, scalable, and high-precision
harvesting of product imagery across a broad landscape of indus-
trial web sources.

» «

A.2 Image Filtering

Vision—Language Filtering. Subsequently, a vision-language fil-
tering step is introduced using the Gemini-2.0-Flash model. For
each image in a manufacturer’s directory, we issue the following
templated prompt (with product_list_str dynamically populated
from our dataset):
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® You are an image verification assistant. Given an image and e Reply “Yes” only if you are absolutely certain the image
alist of products (product_list_str), respond with exactly shows one of the listed products.
one word: “Yes” or “No.” e Reply “No” if you are uncertain, if the product is not in the

list, or if image quality is too low to decide.
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