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Abstract

Diffusion models have transformed image synthesis through iterative denoising,
by defining trajectories from noise to coherent data. While their capabilities are
widely celebrated, a critical challenge remains unaddressed: ensuring responsible
use by verifying whether an image originates from a model’s training set, its novel
generations or external sources. We introduce a framework that analyzes diffusion
trajectories for this purpose. Specifically, we demonstrate that temporal dynamics
across the entire trajectory allow for more robust classification and challenge
the widely-adopted "Goldilocks zone" conjecture, which posits that membership
inference is effective only within narrow denoising stages. More fundamentally,
we expose critical flaws in current membership inference practices by showing that
representative methods fail under distribution shifts or when model-generated data
is present. For model attribution, we demonstrate a first white-box approach directly
applicable to diffusion. Ultimately, we propose the unification of data provenance
into a single, cohesive framework tailored to modern generative systems.

1 Introduction

Generative modeling has seen major advancements with the rise of diffusion models (Ho et al., [2020).
These models have become the standard for image synthesis, achieving state-of-the-art performance
via trajectories from noise to coherent data (Karras et al., 2024). However, their growing prevalence
has raised significant concerns about privacy, security, and accountability. For instance, sensitive
or copyrighted data used during training can be memorized and inadvertently reproduced by the
model during inference (Carlini et al., [ 2023; |Somepalli et al.|, [2023}; |Gu et al., 2025)). Furthermore,
the lack of mechanisms to attribute content to specific models has made it easier to distribute harmful
or malicious outputs without repercussions (Wang et al., 2023; |Laszkiewicz et al.,|2024;|Liu et al.,
2025)). We are therefore broadly concerned with the following question regarding data provenance:

Given pretrained generative models and data points, what relationships, if any, exist between them?

Specifically, toward responsible generative modeling, our goal is to determine whether an image
is (i) part of a model’s training (member) set, (ii) a novel sample from the model (belonging) or
(iii) sourced externally (external). In doing so, we propose to unify two traditionally separate tasks:
Membership Inference Attacks (MIAs), which determine whether an image was part of a model’s
training set (Shokri et al.||2017; Yeom et al., 2018)), and Model Attribution (MA), which determines
whether an image was generated by a specific model (Wang et al.| 2023} [Laszkiewicz et al.|[2024).
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We begin our exploration of data forensics by first focusing on the MIA setting. The literature on
this task for diffusion models has largely converged to a likelihood thresholding approach, where
the model’s (negative) denoising loss is used as a proxy (Matsumoto et al.l [2023; |Duan et al.|
2023)). We identify two significant limitations with methods adopting this framework that, arguably,
render them unworkable for practical membership inference. In particular, we show that such MIAs
cannot distinguish between model-generated and training data, limiting their applicability to auditing
synthetic data (e.g., for identifying memorization) or data extraction attacks. More importantly, we
show that such threshold-based approaches may also underperform compared to naive baselines, that
have no access to the underlying diffusion model and hence no real predictive power. We therefore
argue that existing MIAs are, at best, strong non-membership inference attacks (Carlini et al., [2022).

The above-mentioned shortcomings of diffusion MIAs motivate us to depart from conventional
approaches. Specifically, we challenge the widely-adopted and influential "Goldilocks zone" conjec-
ture of |Carlini et al.| (2023)), which posits that representations at the intermediate steps of denoising
diffusion are most effective for membership inference. Intuitively, we expect that there is a wealth of
information that is encoded within diffusion trajectories and we hypothesize the existence of hidden
patterns in the temporal dynamics of diffusion that may be used for more robust classification.

Equipped with our proposed trajectory representations, we then revisit the problem of data provenance.
With our method, we demonstrate an application to data extraction, improved robustness to distribution
shifts and a first white-box model attribution method that is directly applicable to diffusion models.

2 Background

We give a brief overview of diffusion and the various data provenance tasks we are concerned with.
We refer the reader to Section [7]for a discussion on our work’s position within the broader literature.

2.1 Diffusion-based generative models

Continuous-time formulation Diffusion defines a mapping between the data distribution, p, and a
tractable distribution. Let z(+) : [0, 7] — R such that (0) ~ p and z(T') is normal. Specifically,
for time ¢ = 0 to t = T, we write the It6 Stochastic Differential Equation (SDE) (Song et al., 2021b):

de = f(x,t)dt + g(t)dw, (1
where f(-,t) : RP — RP, g(-) : R — R are appropriate drift, diffusion coefficients and w is the

standard Wiener process. Given the above forward process, sampling is performed from ¢t = 7' to
t = 0, by modeling trajectories with a reverse-time SDE (Anderson| |1982) as:

da = [f(z,t) — g(t)* Ve log pe(@)]dt + g(t)dw, @

where dt < 0 and w is the time-reversed standard Wiener process. Crucially, under this interpretation,
modeling the reverse diffusion trajectories requires knowledge of the score function V log p:(x).

Denoising diffusion probabilistic models In practice, one discretizes the above equations and
considers families of SDEs with a tractable forward process. A common parameterization is given by
DDPMs (Ho et al, 2020), which choose f(x,t) = —33(t)x and g(t) = \/(t) where the function
B(t) is some noise schedule. By discretizing (I) with DDPM, the forward probabilities become:

pe(xi|®) = N(2i; Vauz, (1 — ar)I), 3)
where the subscripts denote discretization, oy = 1 — 3; and a; = HZ:O as. As p(x¢|x) is normal,
the score may be approximated by application of Tweedie’s formula (Efron, [2011):

= @E(f e ;;f) —=, @)

where the expectation describes the minimum mean squared error Gaussian denoiser. Therefore,
by (3) and (@), Denoising Score Matching (DSM) may be performed via a noise-predicting neural
network, €g(-,t) : R? — RP, that minimizes the quantity £; = ||eg(v/arx + /1 — aye, t) — €3
for all t. The complete DDPM optimization objective is then expressed as follows:

Ve, log Pt(ﬂ’»'t)

mein Eiu{0,...7-1}),@~p.e~N(0,1) A Lt )

For appropriate A, the above is equivalent to the Negative Evidence Lower Bound (NELBO) of the
data (Ho et al., [2020). In this sense, DSM may also be also reframed as likelihood maximization.



2.2 Data provenance

Membership inference The aim of this task is to determine whether a given data point was used in
the training of a machine learning model, i.e., whether it is a member. Traditionally, one assumes
knowledge of the overall data distribution, p, but no knowledge of the specific training data. Moreover,
other training details of the model are also assumed. Given this setup, |Shokri et al.| (2017) proposed to
develop MIAs via surrogates, whose aim is to closely reproduce the target model without knowledge
of its member set. Since these surrogate models are trained by us, the attacker, it is then possible to
optimize the MIA in a supervised way, hoping that it will also be transferable to the target model.

Since then, follow-up work by Yeom et al.[(2018)) proposed MIAs via loss thresholding, where the
intuition is that training data will naturally achieve a smaller model loss compared to unseen data. In
practice, this approach simplifies the design space of the attacks, making them largely parameter-free.

Model attribution With the rise of increasingly capable generative models, the attribution of
synthetic data has become a problem of interest to the research community (Wang et al., 2023}
Laszkiewicz et al.| [2024; [Liu et al.|,|2025). Given such synthetic data, the aim here is to identify the
specific generative model that is responsible for producing it. Arguably, assuming the generators
adequately capture the underlying data such that there are no noticeable distribution shifts, this is a
task that may require white-box access to the systems. Representative works operating under this
assumption have converged to inversion or reconstruction based methods, where the idea is to estimate
model-specific, internal preimages of the samples that are more informative and distinguishable than
the final outputs (Wang et al., [2023; Laszkiewicz et al.| 2024)).

3 Threat model

We frame data forensics as a game between model developers, whose interest is to minimize liability,
and an adversary wishing to uncover data and its origins. The adversary’s goal is to extract meaningful
features, f, that couple the diffusion model, €g, and the data, «, in a way that reveals their underlying
relationship. To this end, we will consider a simple pipeline consisting of a feature extraction stage
from an off-the-shelf diffusion model and a learning stage. For a simple and standardized evaluation,
we will adopt a linear probing model for classification to assess the quality of feature representations:

l(z;e9) =W - f(xz;€9) + b. 6)

Here, I represents logits for binary or ternary classification, depending on the task we consider, and
W, b are parameters to be optimized based on the adversary’s capabilities. For clarity, we provide
complete implementation details in Appendix [A]and state such capabilities explicitly below:

» White-box access. Given well-trained generative systems, we argue that any black-box
method must fail to distinguish the various classes of data under a fair evaluation with no
distribution shifts, necessitating the use of internal model signals for reliable classification.

* Limited data access. Surrogate development, as proposed by [Shokri et al.|(2017), is often
unrealistic and the alternative of method refinement at evaluation leads to inflated metrics. To
properly develop forensics tools, we instead explicitly assume access to a small, potentially
imbalanced or otherwise uncurated fraction of the member set (we will use < 3.4%).

Note, the above-described threat model makes a non-standard assumption regarding data access and
trades this for the surrogate framework of |Shokri et al.|(2017). Our position is that, while ours is a
strong assumption, it is far milder than the alternative. We give two reasons to defend our choice.

On a practical level, we argue that surrogate development is computationally prohibitive for modern
generative systems, especially since competitive MIAs operating under this framework may train
several such surrogates to approximate the target’s behavior (Carlini et al., 2023} |Pang et al., [ 2025)).

More fundamentally, under the surrogate framework, it is difficult to justify or bound our assumptions.
In particular, to reproduce modern generative systems a detailed description of the training setup
may be required. However, important details such as pretraining, dataset composition, number of
iterations and regularization are often omitted or otherwise difficult to infer even in open source
releases. We therefore argue that data provenance via surrogate development involves several hidden
and intractable assumptions that make it harder to judge real data privacy and security risks.
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Table 1: TPRs / FPRs for MIA using (7). Top are FPRs on external and bottom are FPRs on
model-generated data. The latter (TPR, FPR) are below the y = x curve, i.e., worse than random.

Dataset t =50 t =100 t =150 t =200 t =250 t =300
46.4 44.7 41.7 42.8 42.4 45.6
CIFAR-10 56‘3/60.7 60.1 /64.3 61.1 /66.6 62'2/66.6 62'2/67.3 59‘6/65.7
48.3 41.5 34.2 31.0 29.2 29.2
CelebA-HQ 256 64.1 /92.4 72.9/ 943 789/ 95.7 83.5/ 96.5 85.1/ 96.4 85.9/ 96.7

4 Do membership inference attacks work?

It is instructive to first review existing approaches to MIAs on diffusion models. Under the assump-
tions established in Section [3] these attacks are, arguably, useful only as filters for data extraction
(Zhang et al.||[2025)). However, we will demonstrate that MIAs fail in the presence of model-generated
data, limiting their potential in auditing model outputs or extracting training data. Even worse,
we will highlight a further weakness and show how, under certain conditions, existing MIAs may
underperform relative to naive baselines that provably have no real predictive power.

To this end, we consider the representative threshold-based approach of|Yeom et al.| (2018])), which has
inspired several recent works on diffusion MIAs (Carlini et al.,|2023; [Duan et al., 2023} [Matsumoto
et al.,2023; Kong et al.|[2024; [Tang et al., 2024; Zhai et al.,|2024). For a given time-step, t, the idea
is to identify as members the samples that attain a denoising loss, £;, below a certain threshold 7:

M(z;€e9) = 1L < 7], Li:=|lea(Varx + V1 — avet) —€llz, e~N(0,I). (7)
Typically, 7 is chosen to demonstrate the True Positive Rate at a set False Positive Rate (TPR @ FPR)

or adjusted for other metrics, e.g., the Area Under the Curve (AUC) or Attack Success Rate (ASR). ¢
is reported to be a critical hyperparameter (Carlini et al., | 2023) and commonly tuned via surrogates.

4.1 Membership inference attacks are not viable for data extraction

For a DDPM trained on CelebA-HQ (Karras et al,[2018a)) at 256 x 256 resolution, we plot £; in
Figures|[I] [2a] It is clear that thresholding is not sufficient for reliable classification as synthetic data
consistently fools such detectors by attaining the lowest loss. We confirm our findings with further
experiments in Table [T] and also include a CIFAR-10 (Krizhevsky} [2009) DDPM in our analysis.
Fundamentally, we attribute this phenomenon to the maximum likelihood interpretation of DSM,
where the loss is equivalent to the NELBO of the DDPM (Ho et al.|[2020). As hinted in Figure @], this
limitation motivates us to explore more separable features, beyond thresholding later in Section [5



Table 2: MIA (member-external) AUC, TPRs @ 1% FPR and ASRs. For the CIFAR-10 experiment
we use CIFAR-10.1 as the external set, where the naive baseline is close to random guessing and there
are no distribution shifts. The CelebA-HQ experiment uses FFHQ as external data, where there are
clear distribution shifts, as reflected by the baseline’s performance. In the latter case, the representative
threshold-based approaches of Matsumoto et al.| (2023)); Kong et al.[(2024)) underperform.

Method CIFAR-10 CelebA-HQ 256
AUC TPR @ 1% FPR ASR AUC TPR @ 1% FPR ASR
Naive (model-blind) 52.2 0.0 520 944 60.1 86.6
Matsumoto et al. (2023)  63.2 33 597 852 26.4 76.2
Kong et al.|(2024) (PIA)  66.9 5.1 624 625 0.1 58.1
Pang et al|(2025) (GSA,) 82.7 12.5 73.5 100.0 99.6 92.5
0.03 0.03 15 33
0.00 /\ i = -
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Figure 3: Parameters from W in (6) correspond-  Figure 4: MIA performance as a function of the
ing to different features against ¢ for our MIAs. data budget (% of member set) on CIFAR-10.

Table 3: AUC for our MIAs (member-external) with {,Ct}tT:_Ol as features on CIFAR-10. We fix the
number of queries to the diffusion model and consider different sampling strategies for t. We observe
significant performance gains when the time-steps cover the entirety of the diffusion process.

t=0,...,249 ¢=250,...499 ¢=500,...,749 t=750,...,999 t=0,4,...,996
68.5 68.1 54.7 50.7 71.2

4.2 Blind baselines may beat most membership inference attacks

We now focus on attacks under distribution shifts, where the member and external data may be
distinguishable beyond the membership propertyE] For idealized external data, that is indistinguishable
from the members barring membership, the literature often reports a random baseline, i.e., 1% TPR
@ 1% FPR and 50% AUC, ASR. Here we propose a potentially stronger, data-driven baseline that
makes predictions without access to the diffusion model. In particular, we use a standard ResNet18
(He et al.,[2016) classifier that is otherwise developed under identical conditions and with the same
data budget as the other MIAs, i.e., 1000 members and 1000 external samples. Note, it is clear that
such a naive method cannot possibly generalize since the membership property is necessarily tied to
the model. Therefore, it is expected that tailored MIAs, with access to the model, will outperform it.

To our surprise, however, the results of Table[2|reveal that the representative threshold-based attacks
of Matsumoto et al.|(2023)); Kong et al.|(2024) are brittle to distribution shifts. In particular, while we
see reasonable performance on the CIFAR-10 DDPM when the external data is from CIFAR-10.1
(Recht et al., 2018 [Torralba et al., 2008)), the experiments on the CelebA-HQ DDPM with FFHQ
(Karras et al.|[2018b)) external data show that the naive baseline significantly outperforms them.

Note, the superior attack of|Pang et al.|(2025)), namely Gradient Subsampling and Aggregation (GSA),
is not based on loss thresholding and instead computes a more involved feature vector as follows:

fi(x;eq) = ]Et|\Vgi£tH§7 concat(...,0;,...) =0, 8)

where 0 is partitioned into subsets ¢. As GSA maintains competitive performance, our findings suggest
a failure specific to thresholding and further motivate us to investigate more robust representations.

'These are interclass shifts. There is also the possibility of intraclass shifts, e.g., the development budget
consists of "cat" members but at evaluation there exist "dog" members. See TableE]for some analysis on this.
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Figure 5: MIA TPRs @ 0.1% FPR as the data budget varies. See Appendix |[A|for details.

Table 4: TPR @ 1% FPR for the MIA of|Pang et al.|(2025) (GSA5) and our method (L, V4L, Vo L,
t=0,...,999). We report TPRs over ten random data splits that are not necessarily object-balanced,
i.e., there may be intraclass distribution shifts. The mean and standard deviation are on the right.

Method CIFAR-10 uwto

GSA; 97 96 11.7 80 98 82 7.1 88 11.1 6.6 9.1%1.64
Ours 183 109 113 145 94 119 113 13.0 124 74 12.0+2.93

CIFAR-100
GSA; 37 28 1.5 19 27 18 44 40 22 12 2.6+1.10
Ours 94 74 91 77 140 69 102 127 106 64 9.4+2.50

5 Rethinking the Goldilocks zone conjecture

Conjecture 1. If ¢ is too large, and so the noisy image is similar to Gaussian noise, then predicting
the added noise is easy regardless if the input was in the training set; if ¢ is too small, and so the
noisy image is similar to the original, then the task is too difficult. It is hypothesized that there
exists a "Goldilocks zone" for membership inference (Carlini et al., 2023).

Our experiments in Section [ justify an exploration of richer features for more robust classification,
beyond brittle thresholding. Inspired by the GSA method of |Pang et al.| (2025)), which extracts internal
network signals via gradient information, and contrary to the influential "Goldilocks zone" hypothesis
of [Carlini et al.| (2023), as stated in Conjecture[I] we propose to extract internal signals relating to
the underlying diffusion processes. In particular, we will now explore vulnerabilities arising due to
global temporal dynamics that would otherwise be discarded in previous approaches, hypothesizing
that the paths traversed in high-dimensional ambient spaces are distinct for different classes of data.

Carlini et al.|(2023)) validated their conjecture on CIFAR-10 MIAs, where they found that ¢ € [50, 300)
is optimal. To motivate our approach, we revisit this setting and demonstrate alternatives that make
use of temporal context. Specifically, given a fixed query budget to the diffusion model, we generalize
the thresholding approach via concatenation of {Et};‘;_ol into a feature vector meant to capture
evolutionE] The results using this proposed approach are in Table with the setup of Section
Interestingly, while there exists a locally optimal region for ¢, in line with previous observations, we
find that performance can be boosted significantly by uniformly distributing the time-steps over the
entirety of the diffusion process. We therefore propose the counterhypothesis that there exist global
patterns encoded in diffusion trajectories, containing valuable information for data provenance.

In particular, having freed ourselves from loss thresholding, we augment our MIAs with gradient
features, {||VLt||3, | VoL:||3} 125!, with our complete feature extraction given in Algorithm |1|and
visualizations in Figures 2] [5] Though we admittedly do not have a theoretical basis for including the
gradients, we intuitively expect that they capture curvature information that is useful for trajectory
modeling, given that £; measures the score matching error. Moreover, as explored in Appendix[B] we
find they greatly improve our MIAs, making them competitive with GSA in Figures [ [5]and Table ]

Note, our loss sequences are not native to DDPMs. The native forward process has independent Gaussian
increments with dependent overall noise at different ¢. Instead, our overall noise is completely independent of ¢.
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Figure 6: Our method. Given an image, we model its trajectory via features at different time-steps.
We train classifiers on these representations to distinguish member, belonging and external data.

Table 5: Hyperparameters of our linear clas-
sifier, defined in (6). We refer the reader to
Appendix [A] for further implementation details.

Algorithm 1: Trajectory feature extraction

Input: Data point «
Parameters: Trained DDPM, €, with {a;} 7}

Output: Trajectory features f batch_size 50
f<{} epochs 100
fort €{0,...,7—1}do .
e ~N(0,1) AdamW leérnlng_rate le-3
Li + |lea(vVarx + I — e, t) — €2 weight_decay 10
f e FULLL VL3, [IVeLel3} StepLR  Step-size 5 epochs
return f p learning_rate_decay 0.8

6 Toward origin attribution

Having investigated temporal dynamics in MIAs, we now generalize to Origin Attribution (OA),
aiming to unify data provenance under a cohesive framework. Arguably, in this context, there are two
fundamental relationships between models and data, i.e., membership and belongingness. To this end,
we elevate binary MIAs into ternary classification, with our overall implementation summarized in
FigureEl and Table In what follows, we conduct experiments toward this more ambitious goalEl

6.1 Stronger membership inference attacks

Here we show how our ternary OA may ad-
dress the limitation discussed in Section[4.1]by
including model-generated data during clas-
sifier training, maintaining compliance with
our stated assumptions in Section 3] With this
enhancement, we develop a method suited for
OA and benchmark its performance in Figure
[land Table[6] Importantly, we also demon-
strate an application to the more ambitious
task of data extraction. Specifically, by in-
specting our system’s misclassifications, we
collect a subset of model generations that are (a) Similarity histograms gf generated images to members
classified as members and investigate their
similarity to the training data of the model.
We report our findings with this approach in
Figure[7] where we filter 30k model-generated
samples down to 1.7k that resemble members, -

as quantified via the SSCD score (Pizzi et al], (b) Misclas
[2022). With reference to Figure|[7a] it is clear

that similarity is left-skewed for such misclas-
sified data, validating our method.

—— All generated

—— Misclassified

01 0.2 0.3 0.4 05 0.6
SSCD Cosine Similarity

L=\

y \
sified, generated (c) Similar members
Figure 7: We investigate generated data that is mis-

classified by our system and identify similar samples
to members (all unseen by the classifier in training).

3Following (2023)), we refer to novel model-generated data as belonging, noting potential overlap
of generated data and members when models memorize. Also note that we have overloaded their OA term.
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Table 6: Average AUC, TPRs @ 1% FPR and ASRs for OA methods (member-belonging-external).

Method CIFAR-10 CelebA-HQ 256

AUC TPR @ 1% FPR ASR AUC TPR @ 1% FPR ASR
Naive (model-blind) 51.5 1.2 347 90.0 32.1 744
Our method
time-steps  L; VgL: VoLl
0,1,...,999 v 71.6 6.9 549 952 527 84.4
0,3,...,99 vV v 85.0 143 694 98.8 79.5 92.7
0,1,...,999 v VvV v 86.5 159 711 993 86.5 94.1

6.2 Model attribution on diffusion models

Our analysis so far has centered around MIAs. We now specifically focus on attribution of synthetic
data: Beyond membership, do trajectories also capture fingerprints useful for robust MA? To
investigate, we train classifiers to distinguish DDPM, synthetic data and non-belonging, real data, with
the same budget of 1000 external samples as in Section[4.2] For assessing robustness, we evaluate on
non-belonging data produced by other generative models, i.e., DDIM (Song et al., 2021a), WaveDiff
(Phung et al., 2023)) and DDGAN (Xiao et al.,[2022). In this sense, this is a fine-grained task aiming
to extract features that are capable of attribution to a specific model. Crucially, other generators are
unseen during development, reflecting an open-world setting (Laszkiewicz et al., 2024).

The results using the above-described setup are in Table[7] While our approach works overall, note it
is not without limitations. In particular, we observe failure cases on DDGAN and DDIM samples,
where a model-blind baseline may achieve higher conditional accuracy. However, referencing class-
balanced accuracy in Table [/} the predictions of the model-blind classifiers are, overall, close to
random guesses. We therefore caution that conditional accuracy is not sufficient to judge performance.

Actually, our analysis here raises the question of whether black-box methods are even theoretically
viable. Arguably, sufficiently capable generative models should produce samples indistinguishable
from real data, necessitating access to model-internal signals. Despite this, we note that there are
recent works claiming promising results even in the black-box setting, by exploiting representations
from foundational models (Liu et al., 2025). However, we deem such approaches to be method-
ologically impure and outside our scope as their performance may be attributed to the underlying
pretraining. In particular, since foundation model development details are often opaque, it becomes
difficult to assess effectiveness when a method’s assumptions are unclear or otherwise unbounded.

It is also important to clarify that, while we are certainly not the first to explore the MA task in the
white-box setting (Wang et al.|, |2023}; [Laszkiewicz et al.,|2024), to our knowledge, we are the first to
demonstrate white-box MA directly on diffusion. We stress that the above-mentioned works rely on
reconstruction / inversion techniques that have only been shown to work indirectly on latent or distilled
models (Rombach et al., [2022; |Song et al., 2023)). Specifically for the former, attribution is performed
on autoencoders, saying nothing about the underlying diffusion model. Moreover, approaches based
on reconstruction error may be fundamentally doomed in DDPMs since perfect reconstruction is
theoretically always possible, regardless of the sample. For example, see the inversion in|Song et al.
(2021a) and also of [Huberman-Spiegelglas et al.|(2024), which is applicable to stochastic processes.



Table 7: Performance of DDPM MA. We show per model and average (class-balanced) accuracy.
During development, classifiers only see DDPM-generated samples and non-belonging, real samples.

CIFAR-10 CelebA-HQ 256
DDPM DDIM DDGAN WDiff Avg DDPM DDIM DDGAN WDiff Avg

Naive (model-blind) 60.8 39.1 419 44.051.2 88.3 20.2 226 27.055.8
Our method

time-steps Ly VL,

0,1,...,999 v 755 57.6 36.2 64.4 64.1 989 63 59.6 57.870.0
0,3,...,999 v Vv 86.0 724 18.1 76.170.8 100.0 7.9 742 76.9 76.5
0,1,...,999 v Vv 87.2 86.8 13.1 91.7755 100.0 3.5 86.8 68.9 76.5

Method

7 Discussion

We conclude with a discussion of our study’s limitations and with recommendations for future
research based on our findings. We have taken a first step towards addressing general origin attribution.
However, we believe that the task is far from solved and we hope our work inspires the community to
make further advancements toward more practical and robust data forensics tools.

7.1 Limitations

Our attacks’ times are comparable to diffusion inference, making our approach significantly slower
compared to existing membership inference attacks. However, as we are not concerned with real-time
application, this is not unworkable. More importantly, in our model attribution experiments of Section
[6.2] we observed failure cases that require further investigation. In general, our developed data
provenance tools and evaluation should be made more robust, especially since our benchmarking
was with controlled external sets. Other important aspects that warrant futher exploration include
robustness to intraclass shifts, common and adversarial data corruptions as well as our approach’s
generalization ability and extensions to large, foundational generative systems.

7.2 Recommendations

Revisit the threat models As we have argued in Section [3] the traditional surrogate approach to
membership inference (Shokri et al.,|2017)) is not viable for modern generative systems. Beyond the
issues relating to computational complexity, the core concern is the implicit and opaque assumptions
that this framework entails, which are not usually met in practice. Granted, our proposed threat model
also makes strong assumptions regarding data availability. However, we argue that ours are more
practical, better defined and quantified. In the same spirit, for the sake of methodological purity, we
also recommend against the use of foundational or otherwise pretrained models in the context of
resource constrained and sensitive applications such as model attribution.

Embrace distribution shifts It is important to contextualize metrics with suitable baselines. As
also shown in Section [4.2] distribution shifts may lift such baselines from random guessing to
seemingly high performing solutions (Das et al., [2025). While there is recent work that explores
data sanitization to mitigate these shifts (Dubinski et al.| [2024), this approach risks discarding a still
valuable, potentially informative part of the data and may end up crippling applicability. We therefore
argue for an alternative, simpler protocol, where distribution shifts are embraced and performance
must be judged relative to appropriate, naive baselines that are developed under a fair setting.

Focus on data extraction Ultimately, as also discussed in Section[d] our position is that MIAs in
the literature cannot prove membership since they do not bound the FPRs. Specifically, under our
stated assumptions in Section [3] [Zhang et al| (2025) argue that membership inference is only useful
as a subcomponent of a training data extraction attack (Carlini et al., 2023)). Indeed, while we have
also performed an evaluation via the standard AUC, TPR @ FPR and ASR metrics, we believe that
it is our experiment in Figure[/|that is most insightful about real privacy and security risks. Going
forward, we therefore advocate for the membership inference community to forego the conventional
benchmarks in favor of a more challenging and ambitious training data extraction task.
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Table 8: Ablation study on the choice of features for our MIAs. Weuse t = 0,1, ...,999.

CIFAR-10 CelebA-HQ 256
AUC TPR @ 1% FPR ASR AUC TPR @ 1% FPR ASR

PIA L; VL VoLl

v 73.3 6.5 68.1 99.1 954 964

v 74.9 6.1 685 993 975 973

v 77.0 3.1 71.6 100.0 99.5 93.7

v Vv 80.0 122 724  99.7 99.2 98.9

v v 80.5 10.5 72.8 100.0 99.9 984

v v 81.8 11.1 741 100.0 100.0 98.9

v v v 83.3 16.8 74.8 100.0 100.0 99.5

v v 69.5 52 642 99.2 89.4 955
v v 75.6 1.0 68.7  88.1 51.3 80.7
v v 71.7 33 645 97.1 40.2 92.8
v v v 75.3 52 686 993 89.6 95.7
v v v 72.9 9.8 66.8 992 89.0 96.3
v v v 75.6 1.6 68.6 975 46.0 93.3
v v v v 76.3 6.1 69.1 993 90.0 96.4

A Experimental setup

Sampling and feature extraction from the generative models was conducted on a Linux cluster with
Quadro RTX 6000 GPUs. We then developed our framework on a Windows laptop with a GTX 1650
GPU. All demonstrations are on off-the-shelf DDPMs, according to[Ho et al.|(2020). By default, we
budget 1000 (object-balanced) samples per class for classifier development and evaluate on separate,
similarly chosen datasets. CIFAR experiments use external sets (CIFAR-10.1/100 val) with minimal
interclass shifts whereas CelebA-HQ experiments use FFHQ as the external set with notable shifts.
After feature normalization to zero mean and unit variance based on training data statistics, we fix the
hyperparameters in Table [5]to optimize () via a cross entropy loss. Hyperparameters are optimal
(TPR @ 1% FPR on CIFAR-10) for |Pang et al.|(2025), we did not perform a search beyond that.

B The choice of features

We experiment with different features for

modeling diffusion .trajgctori.es. From Ta- Taple 9: CIFAR-10 classification with trajectory features.
ble 8] feature combination yields the best

results. When integrating PIA (Kong et al. time-steps L, ViL; Ve¢L; Accuracy
2024), we replace € ~ N(0,I) in £; with

€g(x,0), making the features determinis- 0,1,...,99 v 26.5
tic. However, we see that these features 0,3,...,999 v v v 31.4
0,1,...,999 Vv v v 31.6

are not as performant as their stochastic
counterparts. As a further exploration, we
investigate whether trajectories can reveal the object-class of samples on CIFAR-10 in Table[J] i.e.,
standard classification. Interestingly, this approach is much better than random guessing (~ 10%).

C Broader impact

The methods presented in this paper are developed to ensure accountability and transparency in
scenarios involving open-weight models with undisclosed training data. By enabling data owners
to determine whether their data was used in training a model, these techniques support ethical
development, protect intellectual property rights and enhance privacy by identifying memorization.
Furthermore, they allow for the attribution of harmful or malicious content to specific models,
contributing to greater safety and fostering trust in these technologies. The methods also present
potential risks, such as enabling the deanonymization of data, exploiting privacy vulnerabilities or
unfairly penalizing applications due to inaccurate attributions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We study membership inference, model attribution tasks in diffusion models
and propose to unify them for a more robust evaluation. We contribute a principled frame-
work for data provenance, explore patterns in diffusion trajectories for this purpose and
uncover flaws of existing approaches.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section[Z.1]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Tabled]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9.

10.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [C]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All existing assets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13.

14.

15.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See supplemental material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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