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ABSTRACT

Prompt tuning with large-scale pretrained vision-language models empowers
open-vocabulary predictions trained on limited base categories, e.g., object clas-
sification and detection. In this paper, we propose compositional prompt tuning
with motion cues: an extended prompt tuning paradigm for compositional pre-
dictions of video data. In particular, we present Relation Prompt (RePro) for
Open-vocabulary Video Visual Relation Detection (Open-VidVRD), where con-
ventional prompt tuning is easily biased to certain subject-object combinations
and motion patterns. To this end, RePro addresses the two technical challenges
of Open-VidVRD: 1) the prompt tokens should respect the two different seman-
tic roles of subject and object, and 2) the tuning should account for the diverse
spatio-temporal motion patterns of the subject-object compositions. Without bells
and whistles, our RePro achieves a new state-of-the-art performance on two Vid-
VRD benchmarks of not only the base training object and predicate categories, but
also the unseen ones. Extensive ablations also demonstrate the effectiveness of the
proposed compositional and multi-mode design of prompts. Code is available at
https://github.com/Dawn-LX/OpenVoc-VidVRD.

1 INTRODUCTION
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Figure 1: Examples of VidVRD. The relation
graphs are w.r.t the whole video clip. Dashed lines
denote unseen new categories in the training data.

Video visual relation detection (VidVRD)
aims to detect the visual relationships between
object tracklets in videos as <subject, predi-
cate, object> triplets (Shang et al., 2017; Chen
et al., 2021; 2023; Gao et al., 2021; 2022),
e.g., dog-towards-child shown in Fig-
ure 1. Compared to its counterpart in still im-
ages (Chen et al., 2019; Li et al., 2022b;c;d;e),
due to the extra temporal axis, there are usu-
ally multiple relationships with different tem-
poral scales, and a subject-object pair can have
several predicates with ambiguous boundaries.
For example, as shown in Figure 1, the action
feed of child to dog co-occurs with sev-
eral other predicates (e.g., away, towards).
This characteristic makes VidVRD have more plentiful and diverse relations between objects than
its image counterpart. As a result, it is impractical to collect sufficient annotations for all categories
for VidVRD. Therefore, to make VidVRD practical, we should know how to generalize the model,
trained on limited annotations, to new object and predicate classes unseen in training data.

∗Long Chen is the corresponding author. Part of the work was done when Kaifeng Gao served as a visiting
Ph.D. student at Singapore Management University.
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Figure 2: Comparisons of different prompt tuning methods for Open-VidVRD.

To this end, we propose a new task: Open-vocabulary VidVRD (Open-VidVRD). In particular,
“open” does not only mean unseen relationship combinations, e.g., dog-sit on-floor, but also
unseen objects and predicates, e.g., bread and feed, as shown in Figure 1. Recent works on such
generalization only focus on the unseen combinations (Chen et al., 2021; Shang et al., 2021) in Vid-
VRD, or zero-shot transfer among semantically related objects in zero-shot object detection (Huang
et al., 2022), e.g., the seen dog class can help to recognize the unseen wolf. However, they fail
to generalize to the categories totally unrelated to the limited seen ones, where the transfer gap is
unbridgeable, e.g., bread in testing has no visual similarity with dog and child in training.

Thanks to the encyclopedic knowledge acquired by large vision-language models (VLMs) pre-
trained on big data (Radford et al., 2021; Li et al., 2022a), we can achieve open-vocabulary relation
detection with only training data of limited base categories. To bridge the gap between the pre-
trained and downstream tasks without extra fine-tuning the whole VLM model, a trending technique
named prompt tuning is widely adopted (Liu et al., 2021; Jin et al., 2022; Zhou et al., 2022b).
For example, we can achieve zero-shot relation classification for the tracklets pair in Figure 2. We
first crop the object tracklet regions in the video, and feed them into the visual encoder of VLM to
obtain corresponding visual embeddings. Then we use a simple prompt like “a video of [CLASS]”,
feed it to the VLM’s text encoder to obtain the text embedding, and classify the object based on the
similarities between visual and text embeddings. Based on the tracklet classification results, for the
example of the pair dog and child, we can craft a prompt like “a video of dog [CLASS] child”,
as shown in Figure 2(a), and similarly classify their predicates based on the predicate text embed-
dings. Furthermore, we can replace the fixed prompt tokens with learnable continuous tokens, as
shown in Figure 2(b), known as prompt representation learning, which has been widely applied to
open-vocabulary object detection (Gu et al., 2021; Du et al., 2022; Ma et al., 2022).

Learning the prompt representation is actually introducing some priors for describing the context of
target classes, and it excludes some impossible classes with the constraint of the context. However,
the prompt representations (either handcrafted or learned) in above approaches are monotonous and
static, and learning the prompt sometimes might break the “open” knowledge due to overfitting to
the base category training data. Modeling the prompt representation for video visual relations has
some specific characteristics that need to be considered:

• Compositional: The prompt context for predicates is highly related to the semantic roles of
subject and object. A holistic prompt representation might be sub-optimal for predicates. For
example, as shown in Figure 1, even the same predicate (sit on) in different relation triplets
(dog-sit on-floor and child-sit on-stool) have totally different visual context.

• Motion-related: Predicates with different motion patterns naturally should be prompted with
different context tokens. The naive prompt representation fails to consider the spatio-temporal
motion cues of tracklet pairs. For example, the predicate towards shown in Figure 1 can be
prompted as “a relation of [CLASS], moving closer”. In contrast, eat and sit on can be
prompted as “a relation of [CLASS], relative static”.

In this paper, we propose a compositional and motion-based Relation Prompt learning framework:
RePro, as shown in Figure 2(c). To deal with the compositional characteristic of visual relations,
we set compositional prompt representations specified with subject and object respectively. With
this design, we can model the prompt context w.r.t. semantic roles (i.e., subject or object). For
example, a possible prompt can be “sth. doing [CLASS]” for the subject and “sth. being [CLASS]”
for the object. To consider the motion-related characteristic of predicate contexts, we design multi-
mode prompt groups, where each group (i.e., each mode) is assigned with a certain motion pattern,
and has its own compositional prompts for the subject and object. During the implementation, we
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select a proper group according to the motion cues (patterns) in the subject-object tracklet pairs (cf.
Sec. 3.3). Compared to some prompt tuning works which focus on category-based context (Zhou
et al., 2022b) or instance-conditioned context (Zhou et al., 2022a; Ni et al., 2022), our motion-cue-
based grouping has better cross-category generalization ability, and can avoid the over-fitting to base
categories. We evaluate our RePro on the VidVRD (Shang et al., 2017) and VidOR (Shang et al.,
2019) benchmarks. Our experiment results show that RePro trained with only the samples of base
relation categories has a good generalizability to detect novel relations, and achieves the new state-
of-the-art. For example, it outperforms the top-performing method, i.e., VidVRD-II (Shang et al.,
2021), by 2.54% and 3.91% absolute mAP for SGDet and SGCls settings, respectively.

Our contributions in this paper are thus three-fold. 1) A new open-vocabulary setting for video vi-
sual relation detection task, i.e., Open-VidVRD. 2) A compositional prompt representation learning
method that models the prompt contexts for the subject and object separately. 3) A motion-cue-based
multi-mode prompt groups that achieve a strong generalization ability.

2 RELATED WORK

Video Visual Relation Detection (VidVRD) was defined in Shang et al. (2017; 2019) together with
the proposals of the VidVRD and VidOR benchmarks. The task aims to spatio-temporally localize
visual relations between object tracklets. Existing methods mainly focus on modeling better visual
or spatio-temporal contexts (Qian et al., 2019; Shang et al., 2021; Cong et al., 2021), and detect-
ing visual relations with more granularity either by sliding windows (Liu et al., 2020) or temporal
grounding (Gao et al., 2022). They mainly worked on the pre-defined (closed) sets of object and
predicate categories. In contrast, our work is the first one to study the open-vocabulary VidVRD
setting, where some object and predicate categories are unseen in the training set.

Zero-Shot Setting in Image and Video VRD. Existing VRD works, either in image domain (Tang
et al., 2020; Kan et al., 2021) or video domain (Shang et al., 2021), only achieve zero-shot transfer
on the unseen triplet combinations, where the objects and predicates are seen in the training set.
They ignore the model’s generalization ability to unseen object/predicate categories. There is one
concurrent work (He et al., 2022) proposes the open-vocabulary setting in image VRD. However,
they put the main emphasis on unseen object categories. Different from them, RePro generalizes the
model to recognize both object and predicate categories totally unrelated to the seen training ones.

Prompt Tuning for Open-vocabulary Visual Recognition. Prompt tuning (Liu et al., 2021) has
been widely adopted in both image (e.g., open-vocabulary object detection (OV-Det) (Gu et al.,
2021; Du et al., 2022; Ma et al., 2022)) and video (e.g., zero-shot video action recognition (Lin
et al., 2022; Ni et al., 2022; Ju et al., 2022; Nag et al., 2022)) domains. For OV-Det, recent works
mainly focus on knowledge distillation from VLM and simply using handcrafted prompt (Gu et al.,
2021; Ma et al., 2022), or focus on prompt representation learning for object regions (Du et al., 2022;
Feng et al., 2022). For video action recognition, existing works mainly use fixed prompt (Nag et al.,
2022), conventional learnable prompt (Ju et al., 2022), or prompt conditioned on the input video
contexts (Ni et al., 2022), and they all focus on the cross-frame attention or feature interaction. In
contrast, our RePro learns the compositional prompt by leveraging the motion cues of subject-object
pairs, and has better cross-category generalization ability to detect novel visual relations in videos.

3 METHOD

To build the Open-VidVRD setting, we first divide the categories of a dataset into base and novel
splits. Specifically, we denote COb and COn as the sets of base and novel object categories, respec-
tively. We use CPb and CPn to denote the sets of base and novel predicate categories, respectively. In
the training stage, we use all visual relation triplet samples from COb ×CPb ×COb . In the testing stage,
we evaluate the model with the triplets sampled from all categories, i.e., COb ∪ COn and CPb ∪ CPn .

Based on this new setting, we first briefly introduce the preliminaries for open-vocabulary classifi-
cation with pre-trained VLMs (Sec. 3.1). Then, we introduce the proposed Open-VidVRD method
RePro, as illustrated in Figure 3, in which we first extend open-vocabulary object detection meth-
ods (Gu et al., 2021; Du et al., 2022) to open-vocabulary tracklet detection (Sec. 3.2), and then
perform open-vocabulary relation classification for each tracklet pair (Sec. 3.3).
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Figure 3: The overall pipeline of RePro. The visual embeddings (vi,vi,j) are only used at training
time, in which we train two V2L project modules (i.e., φo and φp) to transfer the knowledge from the
pre-trained VLM. At test time, only RoI features (fi,fi,j) and position features (fs

i,j) are used. For
tracklet detection (a), the knowledge is transferred by aligning v′i to vi. For relation classification (b),
the knowledge is transferred by the prompt representations learned in the supervision of vi,j .

3.1 PRELIMINARIES: OPEN-VOCABULARY CLASSIFICATION WITH PROMPT

Fixed Prompt. Pre-trained VLMs have a strong open-vocabulary classification ability (Li et al.,
2022a). They first extract text embeddings for all categories by feeding handcrafted prompt (e.g., “a
video of [CLASS]”) into the text encoder of VLM, where [CLASS] can be replaced with the class
name of an arbitrary object or predicate. Their output text embedding tc ∈ Rd for each class c is

tc = VLMtxt(Wc), Wc = [w1, . . . ,wL, w̃c],∀c ∈ COb ∪ COn or CPb ∪ CPn , (1)

where Wc is the prompt representation with L context token vectors and the class token vector w̃c.
Then, for each object tracklet with cropped video region, the corresponding visual embedding can
be extracted by the visual encoder of VLM, denoted as vi ∈ Rd. Similarly, the visual embedding of
tracklet pair (i, j) can also be extracted (e.g., based on the union region), denoted as vi,j . Therefore,
the i-th region (generally denoted as vi) can be classified by the cosine similarities w.r.t {tc}:

ĉi = argmax
c

cos(vi, tc), ∀c ∈ COb ∪ COn or CPb ∪ CPn , where cos(x,y) = xTy/(‖x‖‖y‖). (2)

Learnable Prompt. Manually tuning the words in the prompt requires domain expertise and is
time-consuming or not robust (Radford et al., 2021). The substitute method is to learn the prompt
representations from the training data (Zhou et al., 2022b;a). Specifically, the context vector wi in
Wc can be set as a learnable vector while w̃c is kept as fixed. In the training stage, samples and
{w̃c} are from base categories. In the testing stage, the L learned vectors in each Wc are fixed and
then the model performs classification in the same way as Eq. (2).

3.2 OPEN-VOCABULARY OBJECT TRACKLET DETECTION

Tracklet Proposal Generation. Given a video, we first detect all the class-agnostic object tracklets
using a pre-trained tracklet detector, denote as T = {Ti}Ni=1, as shown in Figure 3(a). Specifi-
cally, each tracklet Ti is characterized with a bounding box sequence and the corresponding RoI
Aligned (He et al., 2017) visual feature, To reduce the computational overhead, we average the RoI
features of all bounding boxes (i.e., along the temporal axis of the tracklet) following (Shang et al.,
2021), and denote it as fi ∈ R2048.

Tracklet Classification. Instead of directly classifying object tracklets using VLM as Eq. (2), we
train a visual-to-language (V2L) projection module φo(·) to further utilize the annotations of base
classes. In particular, φo(·) maps the RoI Aligned feature fi of each tracklet to the same semantic
space Rd, i.e., v′i = φo(fi). Let toc be the text embedding of object class c ∈ COb . The probability of
tracklet Ti being classified as class c can be calculated as

pi(c) =
exp(cos(v′i, t

o
c)/τ)∑

c′∈COb
exp(cos(v′i, t

o
c′)/τ)

,∀c ∈ COb , (3)

where τ is a temperature parameter for softmax.
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Training Objectives. To train the object tracklet classification module, we assign base category
labels to detected tracklets according to the IoU w.r.t ground-truth tracklets. We call those tracklets
with assigned labels as positive tracklets, otherwise negative tracklets. Note that two cases can be
recognized as negative tracklets: 1) the content is background; and 2) the content contains a novel
object category. For these negative tracklets, we follow the loss used by Du et al. (2022) that forces
the prediction (from any negative tracklet) on each base class to be 1/|COb |, i.e., unlike any base
category. Therefore, the classification loss for positive and negative tracklets can be calculated as:

Lcls-pos = −
1

|Tp|
∑

Ti∈Tp

∑
c∈COb

1{c=c∗i } log pi(c), Lcls-neg = − 1

|Tn|
∑

Ti∈Tn

∑
c∈COb

1

|COb |
log pi(c), (4)

where Tp and Tn are the sets of positive and negative tracklets, respectively (i.e., Tp ∪ Tn = T ),
and c∗i is the ground-truth label for the i-th positive tracklet. We empirically found (in Sec. 3.2) that
using the above negative tracklet loss works better than using the loss with a unique “background”
class (Zareian et al., 2021; Gu et al., 2021). Besides, following (Gu et al., 2021), we distill the
knowledge from a pre-trained visual encoder to φo(·) by aligning v′i to vi using l1 loss, i.e.,

Ldistill = (1/N)
∑N

i=1‖v
′
i − vi‖1 (5)

Therefore, the overall loss for object tracklet classification is Lcls = Lcls-pos + Lcls-neg + λLdistill,
where λ is a hyper-parameter to weight the classification and distillation.

3.3 OPEN-VOCABULARY VISUAL RELATION CLASSIFICATION

Based on the classified object tracklets, we perform open-vocabulary relation classification for each
tracklet pair, as shown in Figure 3(b). First, we learn the prompt representations based on the pre-
extracted visual embeddings of tracklet pairs, for which we introduce the compositional prompt rep-
resentations and the motion-based prompt groups. Second, we utilize the pre-extracted RoI Aligned
features to train a visual-to-language (V2L) projection module based on the learned prompt repre-
sentations. Finally, for testing, we extract all predicate text embeddings and classify the predicates
of each tracklet pair by using the RoI Aligned features and the trained V2L projection module.

Compositional Prompt Representations. The compositional prompt consists learnable prompt
representations Sc and Oc (of predicate class c) for subject and object, respectively:

Sc = [s1, . . . , sL, w̃c], Oc = [o1, . . . ,oL, w̃c], (6)

where si and oi are the learnable context vectors and w̃c is the fixed class token for predicate c (for
c ∈ CPb in training phase and for all c in testing phase). Then, the predicate text embedding tpc is
generated by concatenating the two outputs of VLM given two prompts (respectively) as inputs, i.e.,

tpc = [VLMtxt(Sc),VLMtxt(Oc)], and tpc ∈ R2d. (7)

Motion-based Prompt Groups. We vary the prompt contexts based on the motion cues, i.e., the
relative spatio-temporal motion patterns, between each pair of subject and object. In specific, we
take the generalized IoU Rezatofighi et al. (2019) (i.e., GIoU) as the metric to calculate the motion
patterns. For each tracklet pair <Ti, Tj>, we use a vector to represent a motion pattern:

mi,j = sign([Gs
i,j − γ,Ge

i,j − γ,Ge
i,j −Gs

i,j ]), and mi,j ∈ {+,−}3, (8)

where Gs
i,j , G

e
i,j are the GIoU between subject-object for the start and end bounding boxes of their

temporal intersection, respectively, and γ is a threshold for GIoU. This definition considers two
perspectives: 1) whether the two tracklets are near or far (i.e., the first two terms of Eq. (8)), and 2)
whether they move toward or away to each other (i.e., the third term of Eq. (8). Overall, we have
6 motion patterns (cf. Sec. A.2 for more details) and build 6 prompt groups correspondingly. Each
group consists its own compositional prompt representations Sc and Oc as defined in Eq. (6).

It’s worth noting that we aim to build a framework for learning motion-based multi-mode prompts.
The used GIoU-based approach (in our framework) is a simple and intuitive way to calculate motion
cues. This approach is not perfect, e.g., it is poor to capture the motion pattern of tracklets moving
back and forth. We leave other fancier (motion capturing) approaches as future work.

Training Objectives. Based on the above definition, we train the prompt representations with vi-
sual embeddings and relative position features. For simplicity, we show the training process of a
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single group (and in the end, we derive the final loss by averaging the losses across all groups).
For each tracklet pair <Ti, Tj>, we first calculate its motion cue, select the corresponding prompt
group, and extract the class text embeddings tpc for each predicate class c ∈ CPb . Then, we take the
pre-extracted visual embeddings vi and vj , and concatenate them as the pair’s visual embedding
vi,j = [vi,vj ] ∈ R2d. Following Shang et al. (2021), we additionally compute the relative position
feature between bounding boxes of Ti and Tj , denoted as fs

i,j ∈ R12 (cf. Sec. A.2 in the Appendix
for more details). The predicted probability of predicate class c in this tracklet pair is thus

pi,j(c) = Sigmoid(cos(vi,j + φpos(f
s
i,j), t

p
c)), ∀c ∈ CPb . (9)

where φpos projects fs
i,j to the same dimension as vi,j . Going through all base classes (in CPb ),

the probability vector of tracklet pair <Ti, Tj> is generated and can be denoted as pi,j , i.e., each
dimension is calculated by Eq. (9). In the training time, we assign the predicate labels according to
the IoU for each tracklet pair w.r.t the ground-truth tracklet pair by following Shang et al. (2021).
We denote the sets of positive and negative tracklet pairs as Pp and Pn, respectively. Due to the
multi-label setting of VidVRD, we use binary cross-entropy loss for relation classification. The
ground truth for positive tracklet pair in Pp is a binary vector of dimension |CPb |, denoted as p∗i,j .
For those negative tracklet pairs in Pn, we optimize the probability of each base class to zero, i.e.,
the ground truth is an all-zero vector. The classification loss is thus calculated as

Lpred-cls = (1/|Pp|)
∑

(Ti,Tj)∈Pp
BCE(pi,j ,p

∗
i,j) + (1/|Pn|)

∑
(Ti,Tj)∈Pn

BCE(pi,j ,0). (10)

Training V2L Projection Module. Once the prompt representations are learned, we train a visual-
to-language (V2L) projection module to use RoI Aligned features {fi} as training data, and get rid
of VLM’s visual encoder at inference time. Given the learned prompt representations, we pre-extract
the predicate class text embeddings (denoted as {t̃pc}) for each prompt group and fix them. Formally,
for each tracklet pair <Ti, Tj>, we concatenate their RoI features as fi,j = [fi,fj ] ∈ R4096. Then,
we use a V2L projection module φp to project it to the same dimension as text embeddings. Similar
to Eq. (9), the probability of predicate class c is predicted as

pi,j(c) = Sigmoid(cos(φp(fi,j) + φpos(f
s
i,j), t̃

p
c)), ∀c ∈ CPb . (11)

where φpos is the learned spatio-temporal projection layer and is fixed. Then, we apply the same loss
as defined in Eq. (10), and compute the final total loss by averaging across all groups.

Discussions. Intuitively, we can train the prompt representations together with the V2L projection
module φp, and use the l1 loss to align φp(fi,j) to vi,j , i.e., distill the knowledge from the pre-trained
visual encoder to the V2L module. We name this variant as RePro†. We justify that our RePro works
better than RePro† due to: 1) directly using the teacher (i.e., vi,j) to train the prompt is intuitively
better than using student (i.e., projected visual embedding), and 2) the distillation makes the V2L
module focus too much on the static visual alignment, rather than the dynamic relation information
learned in the prompt. In experiments, we empirically show the superiority of RePro over RePro†.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. We evaluated our method on the VidVRD (Shang et al., 2017) and VidOR (Shang et al.,
2019) benchmarks: 1) VidVRD consists of 1,000 videos, and covers 35 object categories and 132
predicate categories. We used official splits: 800 videos for training and 200 videos for testing. 2)
VidOR consists of 10,000 videos, which covers 80 object categories and 50 predicate categories. We
used official splits: 7,000 videos for training, 835 videos for validation, and 2,165 videos for testing.
Since the annotations of VidOR-test are not released, we only evaluated models on validation set.

Evaluation Settings. To build the open-VidVRD setting, we manually split base and novel cate-
gories by selecting the common object and predicate categories as the base split, and selecting the
rare ones as the novel split. The detailed splits are given in Sec. A.8 of the Appendix. We trained the
model on the triplet samples of both base object and predicate categories in the training set. During
testing, we evaluated the model on two settings: 1) Novel-split: triplet samples with all object cate-
gories and novel predicate categories, and 2) All-splits: triplet samples with all object and predicate
categories, in the testing set of VidVRD (or the validation set of VidOR).
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Table 1: Performance (%) of tracklet detection on objects with novel categories.

Methods Distillation BG-Embd VidVRD-test VidOR-val
R@5 R@10 R@5 R@10

ALPro (Li et al., 2022a) - - 41.38 53.81 34.26 41.72

RePro

#1 × × 2.17 3.71 2.33 3.48
#2 × X 32.43 33.36 7.58 12.37
#3 X X 43.84 53.00 12.61 16.85
#4 X × 46.34 50.42 31.62 37.08

Metrics. We follow three standard evaluation tasks in scene graph generation (Zellers et al., 2018):
scene graph detection (SGDet), scene graph classification (SGCls), and predicate classification
(PredCls). We apply these metrics to VidVRD: a detected triplet is considered to be correct if there
is the same triplet tagged in the ground truth, and both subject and object tracklets have a sufficient
volume IoU (e.g., 0.5) with the ground truth. Following the standard setting (Shang et al., 2017), we
use mAP and Recall@K (R@K, K=50,100) as evaluation metrics.

4.2 IMPLEMENTATION DETAILS

Tracklet Detector & Pre-trained VLM. We used the Faster-RCNN (Ren et al., 2015)-based VinVL
model (Zhang et al., 2021) to detect frame-level object bounding boxes and extracted corresponding
RoI Alinged features, and then adopted Seq-NMS (Han et al., 2016) to generate class-agnostic object
tracklets. The VinVL model was trained on out-of-domain image data without seeing any VidVRD
data. For pre-trained VLM, we used ALPro (Li et al., 2022a), which was pre-trained on a wide range
of video-language data, and learned the fine-grained visual region to text entity alignment.

Relation Detection Details. Following the popular segment-based methods (Qian et al., 2019;
Shang et al., 2017; 2021), we first detected visual relations in short video segments, and then adopted
greedy relation association algorithm (Shang et al., 2017) to merge the same relation triplets. The
detailed hyperparameter settings are left in Sec. A.3 of the Appendix.

4.3 EVALUATE OPEN-VOCABULARY OBJECT TRACKLET DETECTION

We evaluated the tracklet detection part of RePro on novel object categories, as shown in Table 1.

Comparison to ALPro. A straightforward baseline to achieve open-vocabulary tracklet detection is
directly applying the pre-trained VLM (ALPro in our case) by inputting the tracklet regions into its
visual encoder to perform classification, as in Eq. (2). However, this has a significant computational
overhead due to the heavy pipeline of ALPro’s visual encoder. In contrast, our RePro requires
much less computational cost, since we only use one projection layer (i.e., φo). We thus compare
our RePro with the above ALPro baseline. The results in row #4 show that RePro can achieve
comparable performances on both datasets, with the projection layer φo.

Negative Tracklet Classification. How to model the negative sample is a key challenge as widely
discussed in many open-vocabulary object detection works. There are usually two approaches: 1)
using a unique background embedding (BG-Embd) in addition to the class text embeddings (Zareian
et al., 2021; Gu et al., 2021), and 2) only using the class text embeddings, and computing the
loss of negative sample as Lcls-neg in Eq. (4) (Gu et al., 2021). By comparing rows #3 and #4 of
Table 1, we find that without using background embedding (i.e., asLcls-neg) achieves better recall, and
outperforms the other by a large margin, especially on the more challenging VidOR benchmark. This
is because the tracklets recognized as negative may be due to the fact that they contain novel objects
(rather than backgrounds), and aligning their embeddings (i.e., different novel class embeddings) to
a unique background embedding hurts the model’s recognition ability on novel objects.

Distillation. We verified the effectiveness of visual distillation (i.e., Eq. (5)) by comparing rows #2
and #3 of Table 1. Obviously, the distillation helps RePro improve the detection recall by a large
margin, especially for the more challenging VidOR benchmark. For row #1, we can observe that
computing the negative tracklet classification loss as Lcls-neg without distillation has extremely low
performance. This is because forcing the classification probability of negative tracklet to be 1/|Cb|
(i.e., by Lcls-neg) and without the guidance from the teacher (i.e., without distillation) make the model
has poor generalize ability to novel categories.
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Table 2: Performance (%) comparision to conventional methods on VidVRD-test. Relation Tagging
(RelTag) only considers the precision of relation triplets and ignores the localization of tracklets.

Methods Training Data SGDet RelTag
mAP R@50 R@100 P@1 P@5 P@10

Su et al. (2020) base+novel 19.03 9.53 10.38 57.50 41.40 29.45
Liu et al. (2020) base+novel 18.38 11.21 13.69 60.00 43.10 32.24
Li et al. (2021) base+novel 22.97 12.40 14.46 68.83 49.87 35.57
Gao et al. (2022) base+novel 17.67 9.63 11.29 56.00 43.80 32.85
RePro (Ours) base 21.33 12.92 15.94 59.00 41.09 28.87
RePro (Ours) base+novel 25.55 13.83 17.33 62.50 45.80 32.05

Table 3: Performance (%) comparision of Open-VidVRD methods on VidVRD-test.

Split Methods SGDet SGCls PredCls
mAP R@50 R@100 mAP R@50 R@100 mAP R@50 R@100

Novel

ALPro 1.05 3.14 4.62 3.69 7.27 8.92 4.09 9.42 10.41
VidVRD-II 3.57 8.59 12.39 5.70 13.22 18.34 7.35 18.84 26.44
RePro† 2.56 8.26 11.73 8.63 15.04 18.84 9.34 18.67 24.13
RePro 6.10 13.38 16.52 10.32 19.17 25.28 12.74 25.12 33.88

All

ALPro 3.20 2.62 3.18 3.92 3.88 4.75 4.97 4.50 5.79
VidVRD-II 12.74 9.90 12.59 17.26 14.93 19.68 19.73 18.17 24.90
RePro† 16.21 11.14 14.56 22.37 16.83 21.71 25.43 21.36 28.04
RePro 21.33 12.92 15.94 30.15 19.75 25.00 34.90 25.50 32.49

4.4 EVALUATE OPEN-VOCABULARY RELATION CLASSIFICATION

The relation classification part of our RePro was trained separately by keeping the results of tracklet
detection fixed. All of our experiments for relation classification used the same tracklet detection
results (which is row #4 in Table 1).

Comparison to Conventional VidVRD SOTA Methods. We compared our RePro with several
SOTA methods in the conventional VidVRD setting, and showed the results in Table 2. The object
tracklets and features used in SOTA methods are not uniform since VidVRD is a very challenging
task (see Sec. A.6 for details). We can observe that even when our RePro is trained with only base
category samples (while others are with both base and novel category samples), our performance on
SGDet tasks is comparable to others’. When trained with both base and novel category samples, our
RePro outperforms all other SOTA methods in all SGDet tasks and most RelTag tasks.

Comparisons in the Setting of Open-VidVRD. We compared the model performances in the set-
ting of Open-VidVRD and showed results in Table 3. Since our RePro is the first Open-VidVRD
method, we compared it to ALPro (implemented as Eq. (2)). We also re-implemented the SOTA
method VidVRD-II (Shang et al., 2021) and trained it on base category samples. We replaced its
classifier with text embeddings extracted by ALPro’s text encoder. For both ALPro and VidVRD-II,
we used a fixed (handcrafted) prompt “a video of relation [CLASS]”. In addition, we reported the
results of RePro’s intuitive variant RePro† as mentioned in the “Discussion” of Sec. 3.3.

From the results in Table 3, we can observe that our RePro outperforms ALPro, VidVRD-II and
RePro† by a large margin on both Novel-split and All-splits. By comparing RePro to ALPro, we
show that, unlike that in tracklet classification, directly applying pre-trained VLM to relation clas-
sification is sub-optimal and achieves poor performance. By comparing RePro to VidVRD-II, we
demonstrate the superiority of our prompt tuning framework over the fixed prompt design. By com-
paring RePro to RePro†, we validate the effectiveness of our training scheme for RePro.

4.5 ABLATION STUDIES

We conducted careful ablation studies as shown in Table 4. Since the compositional and motion-
based prompt design is one of our main contributions, we conducted ablations w/o either of them
(rows #1, #2 and #5). To further show the effectiveness of our motion pattern design, we designed
two variants, i.e., rows #3 (Ens) and #4 (Rand). Their detailed settings are enumerated as follows:
#1: It learns a single prompt representation Wc as in Eq. (1). The obtained predicate text embedding
has the half dimensions of tpc in Eq. (6). So we calculated the visual embeddings of a tracklet
pair as vi,j = vi − vj (different from the concatenated vector vi,j in Eq. (9)). #2: Training with
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Table 4: Ablations (%) for RePro with different prompt design in VidVRD-test, where C stands for
Compositional, and M stands for Motion cues. Ens: ensemble all the learned prompts by averaging
their representations. Rand: reandomly select a prompt without considering motion cues.

C M SGDet SGCls PredCls
mAP R@50 R@100 mAP R@50 R@100 mAP R@50 R@100

N
ov

el
-s

pl
it #1 × × 3.50 9.91 13.88 7.21 14.54 19.83 8.63 20.33 27.43

#2 X × 5.57 11.40 14.87 10.31 16.52 21.81 11.83 22.31 30.90
#3 X Ens 6.24 11.57 15.20 10.77 16.03 21.98 12.36 21.32 29.91
#4 X Rand 7.14 11.90 14.87 10.85 16.52 23.30 12.42 22.64 30.90
#5 X X 6.10 13.38 16.52 10.32 19.17 25.28 12.74 25.12 33.88

A
ll-

sp
lit

s #1 × × 19.73 12.26 15.36 26.80 18.24 23.06 30.80 23.70 30.42
#2 X × 18.47 11.95 15.28 25.52 18.13 23.12 29.45 23.39 30.17
#3 X Ens 20.15 12.38 15.61 27.93 18.61 23.55 31.68 23.61 30.29
#4 X Rand 21.72 12.71 15.78 29.15 19.15 24.13 33.11 24.38 31.49
#5 X X 21.33 12.92 15.94 30.15 19.75 25.00 34.90 25.50 32.49

compositional prompt but without motion cues. #3 & #4: Training with compositional prompt, but
the prompt is randomly selected from the 6 groups without considering motion cues. For testing, the
prompts are ensembled by averaging (Ens) or randomly selected (Rand). #5: The proposed RePro.

Table 5: Ablations (%) on VidOR-val.

C M SGCls PredCls
R@50 R@100 R@50 R@100

N
ov

el
-s

pl
it × × 0.86 0.86 2.30 2.88

X × 1.72 2.59 6.62 8.06
X Ens 2.30 2.59 7.20 8.35
X Rand 2.01 2.30 5.76 7.20
X X 2.01 2.30 7.20 8.35

A
ll-

sp
lit

s × × 9.49 12.85 25.62 34.83
X × 10.06 13.40 27.00 36.73
X Ens 9.49 12.68 25.66 35.16
X Rand 10.03 13.13 26.94 36.48
X X 10.03 12.91 27.11 35.76

Compositional Prompt. By comparing the
results in #1 and #2, we can observe that the
compositional prompt can effectively improve
the performance on Novel-split. Meanwhile,
the improvement on All-splits is not signifi-
cant. We conjecture that the base relations,
the majority of All-splits, require less compo-
sitional semantic contexts for prompt learning.

Motion-based Prompt Groups. By compar-
ing our RePro (#5) vs. #2, we can observe
that with the help of motion cues, our RePro
achieves significant improvements of recall on
all tasks, and also achieves considerable im-
provements in mAP on most tasks. We can see
that the improvement on Novel-split is more
significant than that on All-splits, e.g., 14.87%→16.52% vs. 15.28%→15.94% on R@100 of SGDet,
showing that the motion-based prompt has a better generalizability for detecting novel relations. Be-
sides, if comparing RePro (#5) to Ens (#3), we can see that RePro outperforms Ens in Novel-split
on most tasks, and achieves considerable improvements for All-splits on all tasks. Compared to
Rand (#4), RePro achieves clear improvements on most metrics for both Novel-split and All-splits.

Ablations on VidOR. We conducted the same ablation studies on VidOR-val, as shown in Table 5.
Firstly, we can observe that the compositional prompt representation shows its efficiency on both
Novel-split and All-splits, e.g., 0.86%→1.72% and 9.49%→10.06% on R@50 of SGCls. For the
motion-based prompt groups, the improvement of RePro is small due to the biased data distribu-
tion (Li et al., 2021), i.e., the predicate categories strongly depend on the visual cues of subject and
object tracklets, making the model predict relations simply based on object appearances without
considering motion cues. More results on VidOR are left in the Appendix (Sec. A.7).

5 CONCLUSIONS

In this paper, we introduced the challenging Open-VidVRD task. We analyzed two key charac-
teristics, i.e., compositional and motion-related, when applying prompt tuning in this new task.
We proposed a novel method called RePro that learns compositional prompt representations while
considering motion-based contexts. Our evaluations on both conventional and open-vocabulary
datasets show a clear superiority of RePro for tackling video visual relation detection tasks.
Acknowledgement: This work was supported by the National Key Research & Development Project of China
(2021ZD0110700), the National Natural Science Foundation of China (U19B2043, 61976185), and the Fun-
damental Research Funds for the Central Universities (226-2022-00051). This work was also supported by
A*STAR under its AME YIRG grant (Project No. A20E6c0101), and Singapore MOE Tier 2.
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ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics statement. The open-vocabulary video visual relation detection (Open-VidVRD) that we
introduced in this paper is a general extension of conventional VidVRD, and there are no known
extra ethical issues in terms of the Open-VidVRD task and the proposed RePro model. As for
the pre-trained visual-language model (VLM) used for Open-VidVRD, the large-scale pre-training
data might contain some videos and captions involved with discrimination/bias issues. When ap-
plying pre-trained VLM to Open-VidVRD, the model tends to predict relations based more on the
pre-trained knowledge, and focus less on the visual cues. For example, when the pre-trained data
involved with unethical videos and captions, a model might predict “person-punch-dog” given a
video of person caressing dog, which implies a person is abusing animals. To avoid the potential
ethical issues, we can design algorithms to filter out those unethical training data for VLMs. For
Open-VidVRD models, we can also introduce some common sense knowledge and design some
rule-based methods to filter out those unreasonable relation triplets that involve ethical issues.

Reproducibility Statement. Our RePro is mainly implemented based on the realsed code of AL-
Pro (Li et al., 2022a), VinVL (Zhang et al., 2021), and VidVRD-II (Shang et al., 2021). We first
modified the code of VinVL to fit the video data and to extract object tracklets in each video. Then
We modified the code of VidVRD-II to be compatible with the visual and text encoder of ALPro, and
to fit the Open-VidVRD setting. We provide the the detailed base/novel split information of object
and predicate categories in the Appendix (Sec. A.8) to ensure all experiments can be reproduced.
When training the RePro model and its variants, we manually set the random seed and fixed the seed
for all experiments to ensure they can be reproduced. We also provide the code of our RePro model
and the training/evaluate scripts in the supplementary materials.
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A APPENDIX

This Appendix has the following contents:

• More details about the relative position feature are in Sec. A.1.
• More details about the motion pattern are in Sec. A.2.
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• More details about the hyperparameters are given in Sec. A.3.
• Analysis of the performance improvement in different predicate groups are in Sec. A.4.
• Potential improvements of the motion pattern design are introduced in Sec. A.5.
• The detailed experiment settings of the compared SOTA methods are introduced in Sec. A.6.
• More experiment results on VidOR are provided at Sec. A.7.
• The detailed base/novel split information of object and predicate categories are in Sec. A.8.

A.1 RELATIVE POSITION FEATURE FOR TRACKLET PAIRS

We compute the relative position between bounding boxes of subject-object tracklet pair <Ti, Tj>
by following Shang et al. (2021). Specifically, we compute the relative position feature between
subject-object for the beginning and ending bounding boxes of their temporal intersection. For the
beginning bounding boxes of the subject and object, the position feature is calculated as:

fB
i,j =

[
xi − xj
xj

,
yi − yj
yj

, log
wi

wj
, log

hi
hj
, log

wihi
wjhj

,
ti − tj
Lseg

.

]
, (12)

where (xi, yi) is the central coordinates of Ti’s beginning bounding box, (wi, hi) is its width and
height, and ti is the frame ID of this beginning bounding box. (xj , yj , wj , hj , tj) is defined similarly
for Tj . Lseg is the number of frames in each video segment, and following Shang et al. (2021), we set
Lseg = 30. The relative position feature between the ending bounding boxes of <Ti, Tj> is defined
similarly as fB

i,j , and is denoted as fE
i,j . The final relative position of <Ti, Tj> is concatenated as

fs
i,j = [fB

i,j ,f
E
i,j ], and fs

i,j ∈ R12.

A.2 DETAILS ABOUT THE MOTION PATTERNS

We provide a schematic of the motion patterns defined in Eq. (8), as shown in Figure 4. According to
the definition in Eq. (8), mi,j has only 6 possible values, i.e., [+,−,+] and [−,+,−] are impossible.

𝒎𝒎𝑖𝑖,𝑗𝑗 = [+, +,−]
“close, close, away”

𝒎𝒎𝑖𝑖,𝑗𝑗 = [+, +, +]
“close, close, towards”

𝒎𝒎𝑖𝑖,𝑗𝑗 = [+,−,−]
“close, far, away”

𝒎𝒎𝑖𝑖,𝑗𝑗 = [−, +, +]
“far, close, towards”

𝒎𝒎𝑖𝑖,𝑗𝑗 = [−,−, +]
“far, far, towards”

𝒎𝒎𝑖𝑖,𝑗𝑗 = [−,−,−]
“far, far, away”

end framestart frame start frame end frame

subject box

object box

Figure 4: The schematic of the 6 motion patterns defined in Eq. (8).

A.3 HYPERPARAMETERS

We set φo, φp and φpos all as two-layer MLPs with hidden dimension 768. The λ for weighting
the distillation loss (i.e., Eq. (5)) was set as 5.0. The prompt length L was set as 10. The softmax
temperature τ was set as learnable. The GIoU threshold γ was chosen based on the statistics of the
training set, by making the tracklet pairs evenly distributed w.r.t different motion patterns. In our
implementation, γ was set as -0.3 for VidVRD and -0.25 for VidOR. We trained our RePro using
Adam (Kingma & Ba, 2014) with a learning rate 1e-4, and stopped the training when SGDet mAP
drops.

A.4 ANALYSIS OF THE PERFORMANCE IMPROVEMENT IN DIFFERENT PREDICATE GROUPS

We evaluated the Recall@100 in the PredCls setting of some predicate groups (grouped by the
prefix of predicate words) at the novel-split of the VidVRD dataset. We compared our RePro with
the mean ensemble (Ens) and random select (Rand) variants of RePro (refer to Sec. 4.5). The results
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show that the improvements of motion-related predicates are much larger than other context-related
predicates. For example, we have 9.68% absolute improvements on “run” (e.g., “run past”, “run next
to”). While for those predicates that can be roughly inferred by the context (e.g., “fly”, “swim”), our
approach has limited contributions. This indicates that the performance improvements of our RePro
are largely attributed to motion cues.

Table 6: Recall@100 (%) of PredCls on the test set of VidVRD w.r.t different predicate groups.

Methods move sit run walk stop stand fly swim
Ens 34.48 50.92 12.90 18.30 37.03 35.51 37.50 15.38

Rand 37.93 51.85 16.12 18.30 44.44 36.44 50.00 15.38
RePro 44.82 55.55 25.80 18.95 40.47 41.12 50.00 12.82

A.5 POTENTIAL IMPROVEMENTS OF THE MOTION PATTERN DESIGN

The current proposed GIoU-based motion pattern design can be further improved. Based on our pro-
posed motion-pattern based prompt group learning framework, we can design other fancier motion
capturing approaches, e.g., automatically learning the motion primitives from the training set. Then
for each test sample, the motion pattern can be decomposed as the weighted combination of motion
primitives. Consequently we can use the weighted combination of the prompt representations as the
desired prompt representation. We leave this as future work.

A.6 DETAILED EXPERIMENTAL SETTINGS OF THE COMPARED SOTA METHODS

Since VidVRD is a very challenging task, The object tracklets and features used in SOTA methods
in Table 2 are not uniform. The object tracking algorithms for tracklet generation include Seq-
NMS (Han et al., 2016) and deepSORT (Wojke et al., 2017). The features include RoI Aligned
features, I3D features (Carreira & Zisserman, 2017), and improved dense trajectory (iDT) fea-
tures (Shang et al., 2017) Here we enumerate their details as follows:

• Su et al. (2020) uses Seq-NMS for tracklets generation, and improved dense trajectory (iDT)
feature and relative motion feature of tracklet pairs for relation classification.

• Liu et al. (2020) uses deepSORT for tracklets generation, and uses RoI feature, I3D feature, and
relative motion feature of tracklet pairs for relation classification.

• Li et al. (2021) uses Seq-NMS for tracklets generation, and uses RoI feature and relative motion
feature of tracklet pairs for relation classification.

• Gao et al. (2022) uses deepSORT for tracklets generation, and uses RoI feature, I3D feature for
relation classification.

• Our RePro uses Seq-NMS for tracklets generation, and uses RoI feature and relative motion
feature of tracklet pairs for relation classification.

A.7 MORE EXPERIMENT RESULTS ON VIDOR

Table 7: Performance (%) on the validation set of VidOR.

Methods
Novel-split All-splits

SGCls PredCls SGCls PredCls
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

ALPro 3.17 3.74 8.35 9.79 0.95 1.32 2.61 3.66
VidVRD-II 1.44 2.01 4.32 4.89 9.40 12.78 24.81 34.11
RePro† 1.72 2.30 6.62 8.06 8.88 11.52 23.84 31.57
RePro 2.01 2.30 7.20 8.35 10.03 12.91 27.11 35.76

We provide more experiment results for our RePro on the validation set of VidOR, as shown in
Table 7. We first compare our RePro with using ALPro directly perform relation classification as
Eq. (2). We find that ALPro performs slightly better than RePro on novel-split, because ALPro
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doesn’t have the trend of fitting base categories. However, ALPro performs much worse than Re-
Pro in All-splits due to not trained on base categories. Furthermore, we also compare RePro with
the VidVRD-II (Shang et al., 2021) baseline and the variant RePro†. We can observe that RePro
outperfoms both VidVRD-II and RePro† by a large margin on both novel-split and all-split.

A.8 DETAILED BASE/NOVEL CATEGORIES OF OBJECT AND PREDICATE FOR VIDVRD AND
VIDOR

We list the base/novel categories of object and predicate for training and evaluating our RePro and
other baselines in all experiments. We also provide more statistics information in the supplementary
materials

VidVRD Object

25 base object categories:

“airplane”, “bicycle”, “bird”, “bus”, “car”, “dog”, “domestic cat”, “elephant”, “hamster”,
“lion”, “monkey”, “rabbit”, “sheep”, “snake”, “squirrel”, “tiger”, “train”, “turtle”, “whale”,
“zebra”, “ball”, “frisbee”, “sofa”, “skateboard”, “person”

10 novel object categories

“horse”, “watercraft”, “giant panda”, “fox”, “red panda”, “cattle”, “motorcycle”, “bear”,
“antelope”, “lizard”

VidVRD Predicate

71 base predicate categories:

“behind”, “chase”, “creep behind”, “creep beneath”, “creep front”, “creep left”,
“creep right”, “fall off”, “faster”, “fly above”, “fly next to”, “fly past”, “fly toward”,
“fly with”, “follow”, “front”, “jump beneath”, “jump front”, “jump left”, “jump next to”,
“jump right”, “jump toward”, “larger”, “left”, “lie behind”, “lie front”, “lie left”,
“lie next to”, “lie right”, “move behind”, “move beneath”, “move front”, “move left”,
“move right”, “move with”, “next to”, “play”, “ride”, “right”, “run behind”, “run front”,
“run left”, “run past”, “run right”, “run with”, “sit above”, “sit front”, “sit left”,
“sit right”, “stand behind”, “stand front”, “stand left”, “stand next to”, “stand right”,
“stop behind”, “stop front”, “stop left”, “stop right”, “swim front”, “swim left”,
“swim right”, “swim with”, “taller”, “touch”, “walk behind”, “walk front”, “walk left”,
“walk next to”, “walk right”, “walk with”, “watch”

61 novel predicate categories:

“above”, “away”, “beneath”, “bite”, “creep above”, “creep away”, “creep next to”,
“creep past”, “creep toward”, “drive”, “feed”, “fight”, “fly away”, “fly behind”,
“fly front”, “fly left”, “fly right”, “hold”, “jump above”, “jump away”, “jump behind”,
“jump past”, “jump with”, “kick”, “lie above”, “lie beneath”, “lie inside”, “lie with”,
“move above”, “move away”, “move next to”, “move past”, “move toward”, “past”,
“pull”, “run above”, “run away”, “run beneath”, “run next to”, “run toward”,
“sit behind”, “sit beneath”, “sit inside”, “sit next to”, “stand above”, “stand beneath”,
“stand inside”, “stand with”, “stop above”, “stop beneath”, “stop next to”, “stop with”,
“swim behind”, “swim beneath”, “swim next to”, “toward”, “walk above”, “walk away”,
“walk beneath”, “walk past”, “walk toward”

VidOR Object

50 base object categories:

“adult”, “child”, “toy”, “dog”, “baby”, “car”, “chair”, “table”, “sofa”, “ball/sports ball”,
“screen/monitor”, “cup”, “bicycle”, “guitar”, “bottle”, “backpack”, “handbag”,
“baby seat”, “camera”, “cat”, “cellphone”, “bird”, “sheep/goat”, “laptop”, “ski”, “stool”,
“watercraft”, “duck”, “bus/truck”, “bench”, “fruits”, “baby walker”, “horse”, “bat”, “dish”,
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“electric fan”, “kangaroo”, “motorcycle”, “lion”, “hamster/rat”, “refrigerator”, “elephant”,
“faucet”, “cake”, “penguin”, “sink”, “piano”, “microwave”, “cattle/cow”, “aircraft”

30 novel object categories:

“antelope”, “vegetables”, “panda”, “rabbit”, “fish”, “train”, “snowboard”, “suitcase”,
“squirrel”, “leopard”, “chicken”, “skateboard”, “traffic light”, “surfboard”, “camel”,
“racket”, “bread”, “bear”, “oven”, “scooter”, “frisbee”, “stop sign”, “turtle”, “stingray”,
“pig”, “crab”, “crocodile”, “toilet”, “tiger”, “snake”

VidOR Predicate

30 base predicate categories:

“next to”, “in front of”, “watch”, “behind”, “away”, “towards”, “beneath”, “above”,
“hold”, “lean on”, “speak to”, “ride”, “hug”, “touch”, “carry”, “hold hand of”, “bite”,
“push”, “pull”, “play(instrument)”, “grab”, “release”, “pat”, “inside”, “lift”, “caress”,
“point to”, “press”, “hit”, “use”

20 novel predicate categories:

“kick”, “chase”, “wave”, “smell”, “throw”, “feed”, “kiss”, “wave hand to”, “shout at”,
“drive”, “clean”, “lick”, “squeeze”, “shake hand with”, “get off”, “knock”, “cut”, “open”,
“get on”, “close”
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