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ABSTRACT

In this paper, we introduce MIO, a novel foundation model built on multimodal
tokens, capable of understanding and generating speech, text, images, and videos
in an end-to-end, autoregressive manner. While the emergence of large language
models (LLMs) and multimodal large language models (MM-LLMs) propels ad-
vancements in artificial general intelligence through their versatile capabilities, they
still lack true any-to-any understanding and generation. Recently, the release of
GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex
real-world tasks, enabling omnidirectional input and output across images, speech,
and text. However, it is closed-source and does not support the generation of multi-
modal interleaved sequences. To address this gap, we present MIO, which is trained
on a mixture of discrete tokens across four modalities using causal multimodal mod-
eling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2)
interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive
supervised fine-tuning on diverse textual, visual, and speech tasks. Our experi-
mental results indicate that MIO exhibits competitive, and in some cases superior,
performance compared to previous dual-modal baselines, any-to-any model base-
lines, and even modality-specific baselines. Moreover, MIO demonstrates advanced
capabilities inherent to its any-to-any feature, such as interleaved video-text gener-
ation, chain-of-visual-thought reasoning, visual guideline generation, instructional
image editing, etc. Anonymous codes and supplemental materials are available at
https://anonymous.4open.science/r/anonymous_MIO-DDE5.

1 INTRODUCTION

The advent of Large Language Models (LLMs) is commonly considered the dawn of artificial general
intelligence (AGI) (OpenAI et al., 2023; Bubeck et al., 2023), given their generalist capabilities such
as complex reasoning (Wei et al., 2022), role playing (Wang et al., 2023c), and creative writing (Wang
et al., 2024a). However, original LLMs lack multimodal understanding capabilities. Consequently,
numerous multimodal LLMs (MM-LLMs) have been proposed, allowing LLMs to understand
images (Li et al., 2023b; Alayrac et al., 2022), audio (Borsos et al., 2023; Rubenstein et al., 2023;
Tang et al., 2023; Das et al., 2024), and other modalities (Lyu et al., 2023; Zhang et al., 2023d;
Moon et al., 2023). These MM-LLMs typically involve an external multimodal encoder, such as
EVA-CLIP (Sun et al., 2023b) or CLAP (Elizalde et al., 2022), with an alignment module such as
Q-Former (Li et al., 2023b) or MLP (Liu et al., 2023b) for multimodal understanding. These modules
align non-textual-modality data features into the embedding space of the LLM backbone.

Another line of work involves building any-to-any and end-to-end MM-LLMs that can input and
output non-textual modality data. Typically, there are four approaches: (1) Discrete-In-Discrete-Out
(DIDO): Non-textual modality data is discretized using vector quantization techniques (van den Oord
et al., 2017; Esser et al., 2020) and then fed into LLMs (Ge et al., 2023b; Zhan et al., 2024; Liu
et al., 2024). (2) Continuous-In-Discrete-Out (CIDO): The LLM backbones intake densely encoded
non-textual modality data features and generate their quantized representations (Diao et al., 2023;
Team et al., 2023). (3) Continuous-In-Continuous-Out (CICO): The LLMs both understand and
generate non-textual modality data in their densely encoded representations (Sun et al., 2023c;a;
Dong et al., 2023; Zheng et al., 2023; Wu et al., 2023). (4) Autoregression + Diffusion (AR + Diff):
The autoregressive and diffusion modeling are integrated in a unified LLM (Zhou et al., 2024; Xie
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Table 1: The comparison between previous models and MIO (ours). I/O Consistency indicates
whether the model ensures that the input and output representations for the same data remain
consistent. Uni. Bi. SFT refers to whether the model undergoes a unified (Uni.) supervised fine-
tuning (SFT) for both multimodal understanding and generation (Bi.=Bidirectional). Multi-Task
SFT assesses whether the model undergoes a comprehensive SFT that includes diverse tasks, with at
least visual question answering tasks. MM. Inter. Output evaluates whether the model supports
the generation of multimodal interleaved (MM. Inter.) sequences. We refer readers to §1 for the
definitions of the different modeling approaches.

Models Emu1
(Sun et al.,
2023c)

Emu2
(Sun et al.,
2023a)

SEED-
LLaMA
(Ge et al.,
2023b)

AnyGPT
(Zhan et al.,
2024)

CM3Leon
(Yu et al., 2023),
Chameleon
(Team, 2024)

Gemini
(Reid et al.,
2024)

Transfusion
(Zhou et al.,
2024)

MIO
(ours)

I/O Consistency ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Uni. Bi. SFT ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Multi-Task SFT ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Speech I/O ✗/✗ ✗/✗ ✗/✗ ✓/✓ ✗/✗ ✓/✗ ✗ ✓/✓
Video I/O ✓/✓ ✓/✓ ✓/✓ ✗/✗ ✗/✗ ✓/✗ ✗ ✓/✓
Voice Output ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
MM. Inter. Output ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Modeling CICO CICO DIDO DIDO DIDO CIDO AR+Diff DIDO

et al., 2024; Li et al., 2024b). Although these works have succeeded in building MM-LLMs unifying
understanding and generation, they exhibit some drawbacks, as illustrated in Table 1. For example,
Emu1 (Sun et al., 2023c) and Emu2 (Sun et al., 2023a) explore the autoregressive modeling of
three modalities: text, images, and videos. SEED-LLaMA (Ge et al., 2023b) proposes a new image
quantizer aligned with LLMs’ embedding space and trains the MM-LLMs on images and videos.
However, neither considers the speech modality, which is heterogeneous from visual modalities
like videos and images. Although AnyGPT (Zhan et al., 2024) has explored settings involving four
modalities, including text, image, speech, and music, it lacks video-related abilities, voice synthesis,
and comprehensive multi-task supervised fine-tuning, leading to limited multimodal instruction-
following and reasoning capabilities. Furthermore, AR + Diff approaches, such as Transfusion (Zhou
et al., 2024), suffer from limited multimodal understanding capabilities because the multimodal inputs
are noised for denoising modeling, and the image tokenizer used (i.e., VAE (Kingma & Welling,
2013)) is suitable for image generation rather than image understanding.

Moreover, most of current MM-LLMs are typically dual-modal, combining text with another modality,
such as images. Although previous works, such as Meta-Transformer (Zhang et al., 2023d) and
Unified-IO 2 (Lu et al., 2023), have explored omni-multimodal understanding settings with more than
two non-textual modalities, they still lag significantly behind their dual-modal counterparts, especially
in terms of multimodal instruction-following capabilities. Moreover, these MM-LLMs are typically
focused on understanding only, neglecting the important aspect of multimodal generation. Several
works have enabled LLMs to call external tools to address this issue. For example, HuggingGPT (Shen
et al., 2023) generates textual image descriptions for external diffusion models to synthesize images.
GPT-4 (OpenAI et al., 2023) can utilize either an image generator like DALL-E 3 (Betker et al., 2024)
or a text-to-speech (TTS) tool like Whisper (Radford et al., 2022) to support multimodal generation.1
However, these methods are not end-to-end, relying on the text modality as an interface.

Recently, the release of GPT-4o has demonstrated the capabilities of any-to-any and end-to-end
foundation models.2 It is the first foundational model to accept multimodal tokens as inputs and
generate multimodal tokens within a unified model while also demonstrating strong abilities in
complex multimodal instruction-following, reasoning, planning, and other generalist capabilities.
Furthermore, as the continuous scaling up of LLMs in the community depletes high-quality language
tokens, GPT-4o verifies a new source of data for LLM training: multimodal tokens. This approach
suggests that the next generation AGI could derive more knowledge from multimodal tokens when
language tokens are exhausted. However, GPT-4o is closed source and focuses primarily on end-to-
end support for speech I/O, image I/O, 3D generation, and video understanding. Its recent open-source
“alternatives”, such as VITA (Fu et al., 2024), still lack the ability to generate data of all supported
modalities, particularly for the generation of multimodal interleaved sequences.

1https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
2https://openai.com/index/hello-gpt-4o/
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MIO

Are you happy, cat?

🔊Yes, I'm happy.

🔊Tell me a mystery story about

On a dark night, A detective ...

in an illustrated way.

🔊Yes, I'm happy. SpeechTokenizer

SEED-Tokenizer SEED-Tokenizer

SpeechTokenizer

🔊Yes, I'm happy. Training Recipe

Masked Packing

Stage I: Alignment Pre-Training

Stage II: Interleaved Pre-Training

Stage III: Speech-Enhanced Pre-Training


Expanded Vocabulary

Supervised Fine-Tuning


Figure 1: The framework of MIO and its training recipe.

To address the aforementioned issues, we introduce MIO (Multimodal Input and Output, or
Multimodal Interleaved Output), the first open-source any-to-any foundation model that unifies
multimodal understanding and generation across four modalities–text, image, speech (with voice),
and video, while enabling the generation of multimodal interleaved sequences. Specifically, MIO is
built on discrete multimodal tokens that capture both semantic representations through contrastive
loss and low-level features via reconstruction loss (Ge et al., 2023a; Zhang et al., 2023b) from raw
multimodal data. Due to the consistent data format shared with textual corpora, the model can treat
non-textual modalities as “foreign languages”, allowing it to be trained with the next-token-prediction.
Note that since the representation of an image remains the same whether it is used as an input or an
output, our model flexibly supports multimodal interleaved sequence generation, where an image
functions simultaneously for both understanding and generation. Moreover, we employ three-stage
pre-training with an additional SFT stage to effectively train the model for modality scaling.

Our experimental results show that MIO, trained on a mixture of four modalities, demonstrates com-
petitive performance compared to its dual-modal counterparts and previous any-to-any multimodal
language model baselines. Additionally, MIO is the first model to demonstrate interleaved video-text
generation, chain-of-visual-thought reasoning, and other emergent abilities relying on any-to-any and
multimodal interleaved output features (c.f.,§3.5).

2 METHOD

Firstly, we elaborate on our modeling approach, which supports multimodal token input and output,
as well as causal language modeling (CausalLM), in §2.1. Secondly, we describe our three-stage pre-
training procedures in §2.2. Thirdly, we provide details of our comprehensive supervised fine-tuning
on diverse multimodal understanding and generation tasks in §2.3.

2.1 MODELING

As illustrated in Figure 1, the framework of MIO involves three parts: (1) multimodal tokenization,
(2) causal multimodal modeling, and (3) multimodal de-tokenization.

Multimodal Tokenization. In our work, we use SEED-Tokenizer (Ge et al., 2023a) as our image
tokenizer and SpeechTokenizer (Zhang et al., 2023b) as our speech tokenizer. SEED-Tokenizer
encodes images using a ViT (Dosovitskiy et al., 2021) derived from BLIP-2 (Li et al., 2023b), and
then converts the encoded features into fewer tokens with causal semantics via Q-Former (Li et al.,
2023b). These features are subsequently quantized into discrete tokens that are well-aligned with
the language model backbone’s textual space. The codebook size for these discrete image tokens is
8192. SEED-Tokenizer transforms each image into a 224x224 resolution and quantizes it into 32
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tokens. We use two special tokens, <IMAGE> and </IMAGE>, to indicate the start and end of the
image tokens per image, respectively.

As for videos, we first apply specific frame-cutting methods to convert videos into image sequences.
In our training data processing procedures, the number of frames for each video is dynamically
determined by its duration, the length of its context, or its scene switching3 to (1) avoid exceeding
the LLM backbone’s context window limit, and (2) capture complete but concise information of the
video. Each frame is then tokenized in the same manner as an image.

In terms of speech, SpeechTokenizer (Zhang et al., 2023b) leverages an 8-layer RVQ (Lee et al.,
2022) to tokenize speech into tokens with 8 codebooks, with each codebook derived from one layer.
Since the first layer’s quantization output is distilled from HuBERT (Hsu et al., 2021), which encodes
more semantic information, SpeechTokenizer can separate content tokens and timbre tokens from a
quantized speech. The first-layer quantization is treated as content quantization, while the remaining
layers’ quantization is treated as timbre quantization. SpeechTokenizer encodes speech into 50 tokens
per second for each codebook, resulting in 400 tokens per second with all eight codebooks. To
improve context efficiency, we drop the last four layers’ codebooks and only use the content codebook
and the first three timbre codebooks. Our vocabulary size for the speech modality is 1024×4 = 4096.

Since the open-source pretraining-level speech data is collected from individuals with diverse voices,
the timbre tokens exhibit a relatively random and noisy pattern, while the content tokens are more
fixed-pattern and better aligned with the corresponding transcriptions. Given these priors in speech
tokens, it is important to choose the proper interleaving mode of speech tokens (Copet et al., 2023).
We denote the four codebooks as A, B, C, and D, where A is the codebook for content tokens and the
remaining three are for timbre tokens. For simplicity, assuming that we have only two tokens for each
codebook in a tokenized speech sequence (i.e., a1a2, b1b2, c1c2, and d1d2), there are two interleaving
patterns for causal multimodal modeling: (1) sequential interleaving pattern: a1a2b1b2c1c2d1d2 and
(2) alternating interleaving pattern: a1b1c1d1a2b2c2d2.

In our preliminary experiments, we observed that text-to-speech generation (TTS) training is difficult
to converge when using the alternating interleaving pattern because the noisy and random timbre
tokens (b1c1d1) tend to mislead the continuations. Moreover, the speech-to-text understanding (ASR)
performance improves much more slowly during training with the alternating interleaving pattern due
to the sparsity of semantic information in the timbre tokens. As a result, we drop the timbre tokens
for speech understanding and use the sequential interleaving pattern for speech generation. We use
<SPCH> and </SPCH> as special tokens to indicate the start and end of the speech token sequence.

Causal Multimodal Modeling. As illustrated in Figure 1, the speech and images, including video
frames, are tokenized by SpeechTokenizer (Zhang et al., 2023b) and SEED-Tokenizer (Ge et al.,
2023a), respectively. We add the 4096 speech tokens and 8192 image tokens to the LLM’s vocabulary.
In addition, we introduce four new special tokens, namely <IMAGE>, </IMAGE>, <SPCH>, and
</SPCH>, to the vocabulary. Consequently, the embedding layer of the LLM backbone and the
language modeling head are extended by 4096 + 8192 + 4 = 12292 to support the embedding and
generation of these new tokens. The image tokens contain causal semantics due to the use of a Causal
Q-Former (Ge et al., 2023a), and the speech tokens are intrinsically causal due to their temporal
nature. Therefore, these multimodal tokens are as suitable for autoregressive training as textual
tokens, allowing us to unify the training objectives for understanding and generation of multimodal
tokens into next-token-prediction with cross-entropy loss. The training objective is thus:

L = −
T∑

t=1

logP (xt | x<t; θ) (1)

where xt represents the discrete multimodal tokens, and θ denotes the parameters of the LLM
backbone. We use the pre-trained model, Yi-6B-Base (AI et al., 2024), for initialization.

Furthermore, to eliminate the computational inefficiency caused by <PAD> tokens, we use the masked
packing strategy (Lu et al., 2023; Liu et al., 2024; Dehghani et al., 2023). Specifically, the samples
are concatenated along the sequence length dimension until the context window is full. Then, we

3https://github.com/Breakthrough/PySceneDetect
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construct the causal attention mask for the tokens of each sample and mask out all the tokens of the
other samples.

Multimodal De-Tokenization. After the generation of multimodal tokens, it is essential to use
modality-specific decoders to reconstruct the images or speech from the codes. Specifically, for
image tokens, we directly utilize SEED-Tokenizer’s decoder, which involves an MLP projection
to convert the discrete codes into dense latents. These latents condition an off-the-shelf diffusion
model (Rombach et al., 2022) to generate the images in the pixel space (Ge et al., 2023a). The
vanilla SpeechTokenizer (Zhang et al., 2023b) involves generating timbre tokens through a non-
autoregressive model outside the language model, and then feeding the concatenated content and
timbre tokens into the SpeechTokenizer decoder to synthesize speech. In our work, to inject the
timbre priors into the multimodal language model itself, the timbre tokens are also generated by the
autoregressive language model.

2.2 PRE-TRAINING

As shown in Table 2, we use a three-stage strategy for pre-training, with each stage targeting different
objectives. The three stages are: (1) Alignment Pre-training: This stage focuses on learning a
multimodal representation more aligned with the language space. (2) Interleaved Pre-training: This
stage aims to obtain a multimodal representation with richer contextual semantics. (3) Speech-
enhanced Pre-training: This stage specifically enhances the model’s speech-related capabilities, while
concurrently replaying data from other modalities. For more details on the pre-training data and its
processing procedures, we refer the readers to Appendix A.

Table 2: Pre-training stages and their details. We use “Inter” to denote “Interleaved” for short. We
provide batch sizes for each data type per GPU in image-text pair data:language-only data:(image-text
interleaved data + video data):speech-text pair data. See Appendix A and Appendix B for more
details including pre-training data sources, data cleaning procedures, pre-training hyperparameters,
etc.

Pre-training Stage Stage I Stage II Stage III
Objective Multimodal Alignment Multimodal Interleaving Speech Enhancement

Image-Text Pair
SBU, CC3M,

LAION-COCO,
JourneyDB

SBU, CC3M,
LAION-COCO,

JourneyDB

CC3M
LAION-COCO

Language-Only RefinedWeb RefinedWeb RefinedWeb

Image-Text Inter - OBELICS,
MMC4-core-ff MMC4-core-ff

Video-Text Pair - WebVid-10M WebVid-10M

Video-Text Inter - HowTo-100M,
YT-Temporal-180M

HowTo-100M,
YT-Temporal-180M

Speech-Text Pair Libriheavy Libriheavy Libriheavy

GPUs 128 A800-80GB 128 A800-80GB 8 A800-80GB
Training Steps 24,800 12,800 32,200

Batch Size 12:2:0:2 2:2:6:6 2:1:1:12

Stage I: Alignment Pre-Training. To fully leverage the superior capabilities of the pre-trained
LLM backbone, it is essential to align the non-textual modality data representations with text. There
are two types of pre-training data for image-text multimodal learning: (1) Image-text paired data: This
data has well-aligned dependencies between images and text. (2) Image-text interleaved data: This
data features more natural and contextual dependencies but is less aligned. Note that in our setting,
video-text paired and interleaved data can be treated as image-text interleaved data, with videos
being sequential images interleaved with text. Therefore, in this stage, we exclude the image-text
interleaved data and video data to ensure the most aligned pattern between images and text.

Stage II: Interleaved Pre-Training. In this stage, we extend the data used for pre-training to
include image-text interleaved data (including video-text data) as a novel image-text dependency

5
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pattern. The image-text interleaving pattern has a different nature compared to pairing patterns.
Although Li et al. (2023b) and Sun et al. (2023c) argued that interleaved image-text data mainly
serves for multimodal in-context learning, we argue that it is also essential for context-aware image
generation where images are generated based on specific context, rather than a precise description of
the image content. For example, in image-text interleaved data, the text might serve as the image’s
preceding or continuing context, rather than its description. This pattern significantly differs from
the previous descriptive image generation demonstrated in image-text paired data, where images are
generated based on precise and detailed text that clearly describe the content of the images (Team
et al., 2023). Therefore, context-aware image generation is essential for tasks such as chain-of-visual-
thought reasoning or visual storytelling (Team et al., 2023; Huang et al., 2016), where images are
generated without textual descriptions. Due to the lack of benchmarks and evaluation metrics for
context-aware image generation, we provide some demonstrations in §3.5 to showcase the potential
of our model in visual storytelling, interleaved video-text generation, instructional image editing,
chain-of-visual-thought reasoning, multimodal in-context learning, etc.

Moreover, in this stage, due to the extensive training on image-text paired data in Stage I, we can
reduce its mixing ratio to the minimal essential scale for replay to avoid catastrophic forgetting. This
allows us to increase the batch size for image-text interleaved data, video data, and speech data.

Stage III: Speech-Enhanced Pre-Training. The speech tokenizer that we use generates 200 tokens
for each second of audio. Given that the duration of a speech sample can be 15 seconds, this results
in around 3,000 tokens per sample. In comparison, the image tokenizer produces only 32 tokens
per image. This creates a significant disparity in the number of tokens among different modalities.
Consequently, our training data is dominated by speech tokens. If we mix all the different modalities
according to their original proportions for training, the model would likely become overly focused on
speech, at the expense of other modalities.

To address this issue, we implement a three-stage strategy that gradually increases the proportion of
speech tokens. In Stage I, speech-text data accounts for 12.5% of the training tokens, which rises to
37.5% in Stage II, and finally reaches 75.0% in Stage III. This incremental increase in the proportion
of speech tokens ensures that the model’s performance in non-speech modalities is not compromised
by the speech modality, while also allowing for the optimization of the model’s speech capabilities.

Furthermore, we keep the data mixing ratio for other modalities of pre-training data at the minimal
essential scales for replay, and we only use the high-quality subsets of them in this stage. This stage
requires significantly fewer compute resources, due to the foundation laid in the previous stages.

We refer the reader to Appendix B for more details about the hyperparameters and prompt templates.

2.3 SUPERVISED FINE-TUNING

As shown in Table 9, our model undergoes comprehensive and systematic supervised fine-tuning
(SFT) with 16 different tasks and 34 diverse open-source datasets. The chat template used for SFT is
the same as that used for Yi-6B-Chat (AI et al., 2024), and only the assistant responses are supervised.
We refer the reader to Appendix C for more details about the hyperparameters and prompt templates.

3 EXPERIMENTS

In this section, we present our quantitative evaluation results across various domains: image-related
tasks (§3.1), speech-related tasks (§3.2), and video-related tasks (§3.3). Due to the lack of benchmarks
for several advanced and emergent abilities of any-to-any multimodal LLMs, we also provide
numerous qualitative demonstrations (§3.5) to demonstrate these capabilities. We refer the reader to
Appendix D for more details, including the decoding hyperparameters and prompt templates.

3.1 IMAGE-RELATED TASKS

Image Understanding. We compare our models with Emu (Sun et al., 2023c), SEED-LLaMA (Ge
et al., 2023b), AnyGPT (Zhan et al., 2024), Flamingo (Alayrac et al., 2022), Kosmos-1 (Huang
et al., 2023), MetaLM (Hao et al., 2022), IDEFICS (Laurençon et al., 2023), CM3Leon (Yu et al.,
2023), InstructBLIP (Dai et al., 2023), Qwen-VL-Chat (Bai et al., 2023), and LLaVA 1.5 (Liu
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Table 3: Experimental results for image understanding abilities. “Imagen” denotes whether the model
is capable of generating images. “Speech” denotes whether the model supports speech modality. “I”
denotes the instruction tuned version. The metrics used are CIDEr for COCO, MCQ accuracy for the
SEED Bench, and VQA accuracy for the other tasks, following the standard procedures. In all cases,
higher scores indicate better performance.

Models Imagen Speech COCO VQAv2 OKVQA VizWiz SEED Bench

Emu-Base (14B) ✓ ✗ 112.4 52.0 38.2 34.2 47.3
Emu-I (14B) ✗ ✗ 120.4 57.2 43.4 32.2 58.0

SEED-LLaMA-I (8B) ✓ ✗ 124.5 66.2 45.9 55.1 51.5
AnyGPT (8B) ✓ ✓ 107.5 - - - -
Flamingo (9B) ✗ ✗ 79.4 51.8 44.7 28.8 42.7

Flamingo (80B) ✗ ✗ 84.3 56.3 31.6 -
Kosmos-1 (1.6B) ✗ ✗ 84.7 51.0 - 29.2 -
MetaLM (1.7B) ✗ ✗ 82.2 41.1 11.4 - -

IDEFICS-I (80B) ✗ ✗ 117.2 37.4 36.9 26.2 53.2
CM3Leon (7B) ✓ ✗ 61.6 47.6 23.8 37.6 -

InstructBLIP (8.1B) ✗ ✗ - - - 34.5 58.8
Qwen-VL-Chat (13B) ✗ ✗ - 78.2 56.6 38.9 58.2

LLaVA 1.5 (7B) ✗ ✗ - 78.5 - 50.0 58.6

MIO-Instruct (7B) ✓ ✓ 120.4 65.5 39.9 53.5 54.4

et al., 2023a). We evaluate our models in diverse tasks, including: (1) image captioning on MS-
COCO (Lin et al., 2014) Karpathy test split with CIDEr score (Vedantam et al., 2014) as the metric,
(2) three visual question-answering benchmarks, i.e., VQAv2 (Goyal et al., 2016) (test-dev split),
OK-VQA (Marino et al., 2019) (val split), and VizWiz (Gurari et al., 2018), with VQA accuracy
as the metric, and (3) SEED-Bench (Li et al., 2023a), a comprehensive visual question-answering
benchmark including 9 dimensions with MCQ accuracy as the metric. The scores for all baselines are
copied from their reports. As shown in Table 3, our MIO-Instruct is ranked in the top group among all
baselines, demonstrating its competitive image understanding performance. Although SEED-LLaMA
achieved better scores compared to our model, we additionally support the speech modality. It is also
noteworthy that MIO, with a size of approximately 7 billion parameters, outperforms several larger
models such as Emu-14B and even IDEFICS-80B.

Table 4: Image generation evaluation by
CLIP-I score. “I” denotes the instruction
tuned version. Higher values are better.

Models MS-COCO Flickr30K

Emu-Base 66.46 64.82
SEED-LLaMA 69.07 65.54

SEED-LLaMA-I 70.68 66.55
GILL 67.45 65.16

AnyGPT 65.00 -

MIO-Base 64.15 62.71
MIO-Instruct 67.76 68.97

Image Generation. We compare our models with
Emu (Sun et al., 2023c), SEED-LLaMA (Ge et al.,
2023b), GILL (Koh et al., 2023), and AnyGPT (Zhan
et al., 2024) for image generation. We use two
benchmarks, i.e., MS-COCO (Lin et al., 2014) Karpa-
thy test split and Flickr30K (Plummer et al., 2015).
Following GILL (Koh et al., 2023) and SEED-
LLaMA (Ge et al., 2023b), we use CLIP-I as the
metric that evaluates the similarity between the gen-
erated images and the ground-truth images with the
image encoder in CLIP (Radford et al., 2021). As
shown in Table 4 and Table 12 the pre-trained model
and instruction-tuned model of MIO both have com-
petitive image generation capabilities. Note that beyond single image generation abilities, our
model can also exhibit multi-image generation capabilities such as generating visual stories, image
sequences, and even visual thoughts as illustrated in §3.5.

3.2 SPEECH-RELATED TASKS

We evaluate the speech understanding and generation abilities of MIO on ASR and TTS tasks.
Wav2vec 2.0 (Baevski et al., 2020), Whisper Large V2 (Radford et al., 2023), and AnyGPT (Zhan
et al., 2024) are the baselines for ASR tasks, while VALL-E (Wang et al., 2023a), USLM (Zhang
et al., 2023b) , and AnyGPT (Zhan et al., 2024) are the baselines for TTS tasks. The test set used for
ASR evaluation is LibriSpeech (Panayotov et al., 2015), while the test set used for TTS evaluation is
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VCTK (Veaux et al., 2017) following AnyGPT (Zhan et al., 2024)’s practice. The Whisper medium
model is used to transcribe the speech generated for the TTS task. The WER (word error rate) is
computed by comparing the generated transcribed text with the ground-truth transcription after text
normalization4.

Table 5: Speech ability evaluation. “WER” denotes
word error rate. Lower values are better.

Models ASR
WER

Models TTS
WER

Wav2vec 2.7 VALL-E 7.9
Whisper 2.7 USLM 6.5
AnyGPT 8.5 AnyGPT 8.5

MIO-Base 6.3 MIO-Base 12.0
MIO-Instruct 10.3 MIO-Instruct 4.2

As shown in Table 3.2, our models exhibit
speech performance comparable to the speech-
specific baselines and outperform the AnyGPT
baseline. It is important to note that although
AnyGPT is capable of generating content to-
kens for speech, it lacks the ability to generate
timbre tokens, which necessitates the use of an
additional voice cloning model. In contrast, our
models generate both content and timbre tokens,
making the TTS tasks more challenging for our models compared to AnyGPT. Nonetheless, after
instruction tuning, our model still achieves better TTS performance. More evaluations of the TTS
and Speech-to-Speech generation performance are provided in Appendix E.3 and E.2.

3.3 VIDEO-RELATED TASKS

Table 6: Video understanding evaluation using top-
1 accuracy for both benchmarks. “I” denotes the
instruction-tuned version.

Models MSVDQA MSRVTT-QA

Flamingo (9B) 30.2 13.7
BLIP-2 (4.1B) 33.7 16.2

InstructBLIP (8.1B) 41.8 22.1
Emu-Instruct (14B) 32.4 14.0

SEED-LLaMA-I (8B) 40.9 30.8

MIO-Instruct 42.6 35.5

We compare MIO with Flamingo (Alayrac
et al., 2022), BLIP-2 (Li et al., 2023b), In-
structBLIP (Dai et al., 2023), Emu (Sun et al.,
2023c), and SEED-LLaMA (Ge et al., 2023b)
for video understanding. The models are evalu-
ated on the MSVDQA (Chen & Dolan, 2011a)
and MSRVTT-QA (Xu et al., 2017). The results
are presented in Table 6. Our model achieves the
highest scores compared to all baselines. Due to
the lack of video (frame sequence) generation
benchmarks in our setting, we provide video
generation examples in §3.5. These results demonstrate the superior performance of our models in
both video understanding and video generation.

Table 7: Language-only evaluation. “I” denotes
the instruction-tuned version.

Models MMLU

LLAMA-1-7B-Base 33.0
LLAMA-2-7B-Chat 47.9
SEED-LLAMA-8B-I 36.1

AnyGPT-Base 26.4
AnyGPT-Chat 27.4

MIO-Instruct 45.7

Table 8: Results for trimodal comprehension
(text, image, and speech).

Models OmniBench

Gemini-1.5-Pro 42.67
Reka-Core-20240501 31.52

AnyGPT (8B) 17.77
video-SALMONN (13B) 34.11

Unified-IO 2 (6.8B) 34.24

MIO-Instruct (7B) 36.96

3.4 LANGUAGE-ONLY TASKS

We evaluate our models on MMLU (Hendrycks et al., 2021). The baselines are two LLaMA
variants (Touvron et al., 2023a;b), the instruction-tuned SEED-LLaMA (Ge et al., 2023b), and
AnyGPT (Zhan et al., 2024). For the MMLU benchmark, we conduct zero-shot evaluation experiments
using the official evaluation code. The experimental results are shown in Table 7. We can observe
that our models have superior language-only performance compared with all any-to-any MM-LLM
baselines and even surpass LLaMA-1-7B-Base, an advanced pure language model.

4https://github.com/openai/whisper/blob/main/whisper/normalizers/
english.py
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3.5 DEMONSTRATIONS

We illustrate the basic and advanced abilities of MIO in Figure 5 and 4. The basic abilities of MIO
involve image understanding and generation, video understanding and generation, ASR, and TTS.
The advanced abilities of MIO are based on its any-to-any and multimodal interleaved sequence
generation features. These abilities involve visual storytelling (i.e., interleaved video-text generation),
chain of visual thought, speech-in-speech-out, instructional image editing, visual guideline generation,
etc. We refer the readers to Appendix E.5 for more demonstrations including multimodal chain of
thought and multimodal in-context learning.

3.6 ABLATION STUDIES

Generality for Trimodal Understanding. We evaluate our model using the OmniBench (Li et al.,
2024d), which incorporates text, image, and speech modalities as inputs, requiring the model to
choose one of four options as the correct answer to determine accuracy. Although MIO acquires its
multimodal understanding capabilities through dual-modal training, the evaluation results in Table 8
indicate that MIO also exhibits superior trimodal comprehension abilities.

Effect of Different Image Tokenizers. The image tokenizer has a significant impact on image
modality alignment. In Figure 2, we compare the image generation performance under a controlled
setting after training for solely 3K steps in stage 1, using various image tokenizers. The image
tokenizers used for comparison include a VQGAN (Esser et al., 2020) with a vocabulary size of 1024
and a compression rate of 16 (VQGAN-1024), as well as the VQGAN-Gumbel with a vocabulary
size of 8192 (VQGAN-8192)5. Our results indicate that the SEED-Tokenizer, which captures more
semantic and higher-level image information, exhibits faster convergence. In contrast, both VQGAN
tokenizers show slower convergence due to their lower-level image information.

4 RELATED WORKS

4.1 MULTIMODAL LLMS

VQGAN-1024 VQGAN-8192 SEED-Tokenizer

An eagle flying away after eating fish
in a eagle-feeding session in an island near Langkawi.

Hundreds of people gathered around looking at motorcycles.

Figure 2: Comparing different image tokenizers
for image generation within a controlled setting
(limited to 3K training steps).

With the rapid success of Large Language Mod-
els (LLMs), current multimodal LLMs (MM-
LLMs) are typically built on a pre-trained LLM
backbone and are endowed with the ability to
understand multiple modalities (Li et al., 2019;
Lu et al., 2019; Kim et al., 2021; Zeng et al.,
2022; Zhou et al., 2022; Wang et al., 2023b;
2024e). Generally, these MM-LLMs align the
representations of images obtained from visual
encoders with the text embedding space, thereby
leveraging the powerful capabilities of the foun-
dational models. For example, BLIP-2 (Li et al.,
2023b) uses CLIP-ViT (Radford et al., 2021) to
extract high-level features from images and then
employs a Q-Former to compress the number
of image tokens and further align image tokens
with the LLM embeddings. In contrast, LLaVA (Liu et al., 2023b; Li et al., 2024a) utilizes a simple
linear projection or MLP as the connector between the image encoder and the LLM backbone. These
models demonstrate strong multimodal understanding abilities, achieving significant progress in tasks
such as visual question answering, visual commonsense reasoning, chart understanding, etc.

Additionally, beyond images, other MM-LLMs have also focused on modalities such as speech
and video. For instance, LLaSM (Shu et al., 2023) and InternVideo (Wang et al., 2022; 2024c) are
MM-LLMs designed for speech and video understanding, respectively. These models adopt a similar
architectural design to BLIP-2 or LLaVA but redesign modality-specific encoders.

5https://github.com/CompVis/taming-transformers
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Recently, increasing attention has been paid to unifying multiple modalities within a single MM-LLM.
For example, ImageBind (Girdhar et al., 2023) develops encoders suited for multiple modalities such
as images, videos, audio, heat maps, among others, while OmniBind (Wang et al., 2024d) trains an
omni-representation model by aligning encoders across four modalities: audio, language, images,
and 3D objects. OmniBench (Li et al., 2024d) is proposed to evaluate the models’ abilities for visual,
acoustic, and textual understanding.

However, these models focus primarily on multimodal understanding and often overlook the important
aspect of multimodal generation.

4.2 ANY-TO-ANY MM-LLMS

To enable multimodal generation in MM-LLMs, a straightforward approach is to allow these models
to call external multimodal generation tools, such as Stable Diffusion (Rombach et al., 2022) or
text-to-speech (TTS) tools (Shen et al., 2023; Li et al., 2024c; OpenAI et al., 2023). However, as
highlighted in the Gemini technical report (Team et al., 2023), relying on an intermediate natural
language interface can limit the model’s ability to express images. If a model cannot natively output
images, it will not be able to generate images with prompts of interleaved sequences of image and text.
This claim is in line with our distinction between descriptive image generation and context-aware
image generation, as discussed in §2.2.

As a result, recent works focus on the unification of multimodal understanding and generation in a
single model (i.e., any-to-any MM-LLMs), enabling the generation of multimodal tokens without
natural language as an interface. These models typically follow different approaches, depending
on how images are represented in both input and output sides. For example, the Discrete-In-
Discrete-Out (DIDO) approach has been explored in works such as SEED-LLaMA (Ge et al., 2023b),
AnyGPT (Zhan et al., 2024), and Chameleon (Team, 2024). Continuous-In-Discrete-Out (CIDO)
methods have been implemented in models like DaVinCi (Diao et al., 2023), Gemini (Team et al.,
2023), and Unified-IO 2 (Lu et al., 2023). The Continuous-In-Continuous-Out (CICO) approach is
used in models such as Emu (Sun et al., 2023c;a), and DreamLLM (Dong et al., 2023). Another
approach, the integration of autoregression and diffusion (AR + Diff), can be seen in models like
Transfusion (Zhou et al., 2024), Show-o (Xie et al., 2024), and Li et al. (2024b)’s.

However, these models face specific limitations. DreamLLM (CICI, Dong et al. (2023)) and CIDO
models suffer from inconsistencies between input and output forms for multimodal data, making
it difficult for them to natively support the generation of interleaved multimodal sequences where
an image functions in a coupled way as both input and output. Emu2 (CICO, Sun et al. (2023a))
struggles with the challenges of the mean square error (MSE) loss used for training continuous output
representations, as well as with the uni-modal assumption of the Gaussian distribution in the MSE
loss. Transfusion (AR + Diff, Zhou et al. (2024)) applies noise to images from the input side to
support multimodal generation with diffusion modeling, and relies on VAE (Kingma & Welling,
2013) features rather than CLIP (Radford et al., 2021) features for denoising, which largely trade off
the multimodal understanding abilities.

To mitigate these issues, we adopt the DIDO approach. A comprehensive comparison of our models
with other any-to-any MM-LLMs is presented in Table 1.

5 CONCLUSION

In conclusion, MIO represents an advancement in the realm of multimodal foundation models. By
employing a rigorous four-stage training process, MIO successfully integrates and aligns discrete
tokens across text, image, video, and speech modalities. This comprehensive approach enables MIO
to understand and generate multimodal content in an end-to-end, autoregressive manner, addressing
the limitations of current multimodal large language models. Our experimental results showcase its
competitive performance across a variety of benchmarks compared to the dual-modality baselines and
other any-to-any multimodal large language models. With the any-to-any and multimodal interleaved
output features, MIO exhibits novel emergent abilities such as interleaved video-text generation,
chain-of-visual-thought reasoning, etc.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin
Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and
Zonghong Dai. Yi: Open foundation models by 01.ai. arXiv preprint arXiv: 2403.04652, 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. Common voice: A massively-multilingual speech corpus. In Proceedings of
the 12th Conference on Language Resources and Evaluation (LREC 2020), pp. 4211–4215, 2020.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
ArXiv preprint, abs/2308.12966, 2023.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In IEEE International Conference on Computer Vision,
2021.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu, Yunxin Jiao,
and Aditya Ramesh. Improving image generation with better captions, 2024. URL https:
//cdn.openai.com/papers/dall-e-3.pdf.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv preprint
arXiv: 2311.15127, 2023.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghidour. Au-
diolm: A language modeling approach to audio generation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31:2523–2533, 2023. doi: 10.1109/TASLP.2023.3288409.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv: 2303.12712, 2023.

David Chen and William Dolan. Collecting highly parallel data for paraphrase evaluation. In
Dekang Lin, Yuji Matsumoto, and Rada Mihalcea (eds.), Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 190–
200, Portland, Oregon, USA, June 2011a. Association for Computational Linguistics. URL
https://aclanthology.org/P11-1020.

David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase evaluation.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics
(ACL-2011), Portland, OR, June 2011b.

11

https://cdn.openai.com/papers/dall-e-3.pdf
https://cdn.openai.com/papers/dall-e-3.pdf
https://aclanthology.org/P11-1020


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su,
Daniel Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, Sanjeev Khudanpur, Shinji Watanabe, Shuai-
jiang Zhao, Wei Zou, Xiangang Li, Xuchen Yao, Yongqing Wang, Yujun Wang, Zhao You, and
Zhiyong Yan. Gigaspeech: An evolving, multi-domain asr corpus with 10,000 hours of transcribed
audio. arXiv preprint arXiv: 2106.06909, 2021.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
Alexandre D’efossez. Simple and controllable music generation. Neural Information Processing
Systems, 2023. doi: 10.48550/arXiv.2306.05284. URL https://arxiv.org/abs/2306.
05284v3.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning. ArXiv preprint, abs/2305.06500, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv: 2307.08691, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, A. Rudra, and Christopher R’e. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Neural Information Processing Systems, 2022.

Nilaksh Das, Saket Dingliwal, Srikanth Ronanki, Rohit Paturi, David Huang, Prashant Mathur, Jie
Yuan, Dhanush Bekal, Xing Niu, Sai Muralidhar Jayanthi, Xilai Li, Karel Mundnich, Monica
Sunkara, Sundararajan Srinivasan, Kyu J Han, and Katrin Kirchhoff. Speechverse: A large-scale
generalizable audio language model. arXiv preprint arXiv: 2405.08295, 2024.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, J. Heek, Matthias Minderer, Mathilde Caron,
A. Steiner, J. Puigcerver, Robert Geirhos, Ibrahim M. Alabdulmohsin, Avital Oliver, Piotr
Padlewski, A. Gritsenko, Mario Luvci’c, and N. Houlsby. Patch n’ pack: Navit, a vision trans-
former for any aspect ratio and resolution. Neural Information Processing Systems, 2023. doi:
10.48550/arXiv.2307.06304.

Shizhe Diao, Wangchunshu Zhou, Xinsong Zhang, and Jiawei Wang. Write and paint: Generative
vision-language models are unified modal learners. In The Eleventh International Conference on
Learning Representations, 2023.

Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, and Li Yi.
Dreamllm: Synergistic multimodal comprehension and creation. arXiv preprint arXiv: 2309.11499,
2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap: Learning
audio concepts from natural language supervision. arXiv preprint arXiv: 2206.04769, 2022.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution
image synthesis. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 12868–12878, 2020. URL https://api.semanticscholar.org/
CorpusID:229297973.

Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
Seamless speech interaction with large language models. arXiv preprint arXiv:2409.06666, 2024.

Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen, Meng Zhao, Yifan Zhang, Xiong Wang, Di Yin,
Long Ma, Xiawu Zheng, et al. Vita: Towards open-source interactive omni multimodal llm. arXiv
preprint arXiv:2408.05211, 2024.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
Jianhua Han, Hang Xu, Zhenguo Li, and Lingpeng Kong. G-llava: Solving geometric problem
with multi-modal large language model. arXiv preprint arXiv: 2312.11370, 2023.

12

https://arxiv.org/abs/2306.05284v3
https://arxiv.org/abs/2306.05284v3
https://api.semanticscholar.org/CorpusID:229297973
https://api.semanticscholar.org/CorpusID:229297973


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuying Ge, Yixiao Ge, Ziyun Zeng, Xintao Wang, and Ying Shan. Planting a seed of vision in large
language model. arXiv preprint arXiv:2307.08041, 2023a.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making
llama see and draw with seed tokenizer. arXiv preprint arXiv:2310.01218, 2023b.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. arXiv preprint arXiv:
2305.05665, 2023.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering. International
Journal of Computer Vision, 2016. doi: 10.1007/s11263-018-1116-0.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people. arXiv
preprint arXiv: 1802.08218, 2018.

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, and
Furu Wei. Language models are general-purpose interfaces. ArXiv preprint, abs/2206.06336, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. arXiv preprint arXiv: 2106.07447, 2021.

Shaohan Huang, Li Dong, Wenhui Wang, Y. Hao, Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, O. Mohammed, Qiang Liu, Kriti Aggarwal, Zewen Chi, Johan Bjorck, Vishrav Chaudhary,
Subhojit Som, Xia Song, and Furu Wei. Language is not all you need: Aligning perception with
language models. Neural Information Processing Systems, 2023. doi: 10.48550/arXiv.2302.14045.

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya Agrawal,
Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra, C. Lawrence Zitnick,
Devi Parikh, Lucy Vanderwende, Michel Galley, and Margaret Mitchell. Visual storytelling.
In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1233–1239, 2016.

Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. Mantis:
Interleaved multi-image instruction tuning. arXiv preprint arXiv: 2405.01483, 2024.

Wei Kang, Xiaoyu Yang, Zengwei Yao, Fangjun Kuang, Yifan Yang, Liyong Guo, Long Lin, and
Daniel Povey. Libriheavy: a 50,000 hours asr corpus with punctuation casing and context, 2023.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 5583–5594, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:
1312.6114, 2013.

Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov. Generating images with multimodal language
models. NeurIPS, 2023.

LAION. Laion coco: 600m synthetic captions from laion-2b-en. https://laion.ai/blog/
laion-coco/, 2022.

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and
Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text documents,
2023.

13

https://laion.ai/blog/laion-coco/
https://laion.ai/blog/laion-coco/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization, 2022.

Bo Li*, Peiyuan Zhang*, Kaichen Zhang*, Fanyi Pu*, Xinrun Du, Yuhao Dong, Haotian Liu, Yuanhan
Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the development of
large multimoal models, March 2024. URL https://github.com/EvolvingLMMs-Lab/
lmms-eval.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension, 2023a.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
assistant for biomedicine in one day. Advances in Neural Information Processing Systems, 36,
2024a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. ArXiv preprint, abs/2301.12597,
2023b.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023c.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. ArXiv, 2019.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv: 2406.11838, 2024b.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv preprint arXiv:2403.18814, 2024c.

Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
Liu, Jian Yang, Siwei Wu, Xingwei Qu, Jinjie Shi, Xinyue Zhang, Zhenzhu Yang, Xiangzhou
Wang, Zhaoxiang Zhang, Zachary Liu, Emmanouil Benetos, Wenhao Huang, and Chenghua
Lin. Omnibench: Towards the future of universal omni-language models. arXiv preprint arXiv:
2409.15272, 2024d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv preprint, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. ArXiv
preprint, abs/2304.08485, 2023b.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. International Conference on
Learning Representations, 2017.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks, 2019. URL https://arxiv.org/abs/1908.
02265.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with vision,
language, audio, and action, 2023.

14

https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://arxiv.org/abs/1908.02265
https://arxiv.org/abs/1908.02265


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting Huang, Bingshuai Liu, Zefeng Du, Shuming
Shi, and Zhaopeng Tu. Macaw-llm: Multi-modal language modeling with image, audio, video,
and text integration. arXiv preprint arXiv:2306.09093, 2023.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. OK-VQA: A visual
question answering benchmark requiring external knowledge. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 3195–
3204, 2019.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated
video clips. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2630–2640, 2019.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In ICDAR, 2019.

Seungwhan Moon, Andrea Madotto, Zhaojiang Lin, Tushar Nagarajan, Matt Smith, Shashank Jain,
Chun-Fu Yeh, Prakash Murugesan, Peyman Heidari, Yue Liu, Kavya Srinet, Babak Damavandi,
and Anuj Kumar. Anymal: An efficient and scalable any-modality augmented language model.
arXiv preprint arXiv: 2309.16058, 2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report. arXiv preprint arXiv: 2303.08774, 2023.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew
Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko,
Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar,
Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob
McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan
Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris
Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine
McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis,
Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares,
Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong,
Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric
Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo
Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon,
Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu
Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde
de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell,
Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki,
James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia
Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne
Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John
Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook
Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua
Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan
Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen,
Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held,
Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke
Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat
Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick
Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia
Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov,
Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder,
Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel
Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara,
Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky
Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy
Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey,
Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas
Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash
Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin,
Yunxing Dai, and Yury Malkov. Gpt-4o system card. arXiv preprint arXiv: 2410.21276, 2024.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing images using 1 million
captioned photographs. Advances in neural information processing systems, 24, 2011.

Junting Pan, Keqiang Sun, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Journeydb: A benchmark
for generative image understanding, 2023.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.7178964.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: Outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv: 2306.01116, 2023.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE international conference on computer
vision, pp. 2641–2649, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp.
8748–8763, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv: 2212.04356,
2022.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on
Machine Learning, pp. 28492–28518. PMLR, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2022. doi: 10.1109/cvpr52688.2022.01042.
URL http://dx.doi.org/10.1109/cvpr52688.2022.01042.

Paul K. Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, Hannah
Muckenhirn, Dirk Padfield, James Qin, Danny Rozenberg, Tara Sainath, Johan Schalkwyk, Matt
Sharifi, Michelle Tadmor Ramanovich, Marco Tagliasacchi, Alexandru Tudor, Mihajlo Velimirović,
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A PRE-TRAINING DATA

Pre-training Data Sources. The pre-training data sources involve six types:

1. Image-text paired data: SBU (Ordonez et al., 2011), CC3M (Sharma et al., 2018), LAION-
COCO (LAION, 2022), and JourneyDB (Pan et al., 2023), where JourneyDB only serves
for image generation.

2. Language-only data: RefinedWeb (Penedo et al., 2023).

3. Image-text interleaved data: OBELICS (Laurençon et al., 2023), MMC4-core-ff (Zhu et al.,
2023).

4. Video-text paired data: WebVid-10M (Bain et al., 2021).

5. Video-text interleaved data: HowTo-100M (Miech et al., 2019), Youtube-Temporal-
180M (Zellers et al., 2021).

6. Speech-text paired data: Libriheavy (Kang et al., 2023).

Pre-training Data Processing. We have different data processing procedures for different data
types illustrated in §A following Emu (Sun et al., 2023c) and Qwen-VL (Bai et al., 2023):

1. Image-text paired data: we remove pairs with more than 2:1 aspect ratio or smaller than
224 × 224 resolution of the image. We remove pairs with more than 0.27 CLIP scores.
We remove non-English pairs. We randomly place the image or text at the forefront for
generating captions based on images and vice versa.

2. Language-only data: we use the same data processing pipeline as used in Yi (AI et al., 2024).

3. Image-text interleaved data: we filter the data using a CLIP score threshold of 0.25, and
follow the same procedure as illustrated in Emu (Sun et al., 2023c).

4. Video-text paired data: we randomly place the frames or text at the forefront for generating
captions based on frames and vice versa. 60% of the pairs are text-to-video, while 40% of
the pairs are video-to-text. We sample 4 to 8 frames of each video for training according to
the text lengths.

5. Video-text interleaved data: We first use PySceneDetect to extract key frames from the
video based on scene changes, following the practice of Stable Video Diffusion (Blattmann
et al., 2023). Then, for each video clip between two key frames, we extract a central frame
for textual caption generation with BLIP-2 (Li et al., 2023b). Additionally, the video clips
between key frames are processed using ASR (automatic speech recognition) tools to extract
subtitles. The ASR text and captions are then integrated and refined using Yi-34B-Chat (AI
et al., 2024), resulting in a single text segment. These text segments, along with the key
frames and central frames, form the video-text interleaved data.

6. Speech-text paired data: we remove speechs with more than 15 seconds.

B PRE-TRAINING DETAILS

Hyperparameters. We enable Flash Attention (Dao et al., 2022; Dao, 2023) during pre-training.
Gradient clipping is set to 1.0 for all stages. The maximum sequence length for training is 2800
tokens. We use a cosine learning rate scheduler with a peak learning rate of 3e-5 and a warmup ratio
of 0.03. The optimizer used is AdamW (Loshchilov & Hutter, 2017).

Prompt Templates. The prompt template is only necessary for paired datasets. For image-text
paired data, we use the prompt templates of “{image} The caption of this image is: {caption}” and
“Please generate an image of “{caption}”: {image}”. For video-text paired data: we use the prompt
templates of “Please describe the following video: {image} {description}” and “Please generate a
video for “{description}”: {video}”. For speech-text paired data: we use the prompt templates of
“{speech} Transcribe this speech: {transcription}” and “Please generate a speech of “{transcription}”:
{speech}” during Stage I and Stage II. While for Stage III, we change the ASR prompt template into
‘{speech} The transcription of this speech is: {transcription}”.
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C SUPERVISED FINE-TUNING DETAILS

Table 9: Supervised Fine-Tuning Data. “ICL” denotes In-Context Learning, and “CoT” denotes
Chain of Thought.

Task Dataset

Language Only OpenHermes (Teknium, 2023)

Multimodal ICL MMICL (Zhao et al., 2023)

Multimodal CoT ScienceQA (Lu et al., 2022)

Chart Understanding Geo170K (Gao et al., 2023)

Instructional Image
Generation InstructPix2Pix (Brooks et al., 2023), MagicBrush (Zhang et al., 2024)

ASR LibriSpeech (Panayotov et al., 2015), GigaSpeech (Chen et al., 2021),
Common Voice (Ardila et al., 2020)

Video Dialogue VideoChat2-IT (Li et al., 2023c)

Image QA

Vision-Flan (Xu et al., 2023), VizWiz (Gurari et al., 2018),
LAION-GPT4V6, LLaVAR (Zhang et al., 2023c),

OCR-VQA (Mishra et al., 2019), VQA (Goyal et al., 2016),
TextVQA (Singh et al., 2019), OK-VQA (Marino et al., 2019),

Mantis-Instruct (Jiang et al., 2024)

Speech Generation SpeechInstruct (Zhang et al., 2023a)

Speech Understanding SpeechInstruct (Zhang et al., 2023a)

Image Captioning Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

Descriptive Image
Generation Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

TTS GigaSpeech (Chen et al., 2021), Common Voice (Ardila et al., 2020)

Video Generation MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011b)

Video Understanding MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011b),
MSVD-QA (Chen & Dolan, 2011a), MSRVTT-QA (Xu et al., 2017)

Visual Storytelling VIST (Huang et al., 2016)

Supervised Fine-Tuning Data. As shown in Table 9, we use 16 tasks with 34 datasets for a
comprehensive supervised fine-tuning.

Prompt Templates. The chat template is the same as used in Yi (AI et al., 2024). The system
prompt is unified as: “You are MIO, an AI assistant capable of understanding and generating images,
text, videos, and speech, selecting the appropriate modality according to the context.” except for
speech generation and TTS whose system prompts are “You are MIO, an AI assistant capable of
understanding images, text, videos, and speech, and generating speech. Please respond to the user
with speech only, starting with <spch> and ending with </spch>.” to avoid randomness of the output
modality.

Hyperparameters. Similar to pre-training (c.f., Appendix B), we enable Flash Attention (Dao
et al., 2022; Dao, 2023) during supervised fine-tuning. Gradient clipping is set to 1.0. The maximum
sequence length for training is 2800 tokens. We use a cosine learning rate scheduler with a peak
learning rate of 3e-5 and a warmup ratio of 0.03. The optimizer used is AdamW (Loshchilov &
Hutter, 2017).

D EVALUATION DETAILS.

Hyperparameters. The decoding strategies and hyperparameters are quite important for a superior
performance. As shown in Table 10, we use different sets of parameters for different output modalities.
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Table 10: Decoding Hyperparameters.
Output Modality Text Image Speech Video

Beam size 5 1 1 1
Do Sampling False True True True

Top-P - 0.7 0.7 0.7
Repetition Penalty 1.0 1.0 1.15 1.15

Temperature 1.0 1.0 1.0 1.0
Guidance Scale 1.0 1.0 1.0 1.0

Table 11: Prompt templates used for evaluating instruction-tuned models.
Task Prompt Template

Image Captioning Provide a one-sentence caption for the provided image. {image}

Image QA (We use the prompt templates in LMMs-Eval (Li* et al., 2024)).

Image Generation Please generate an image according to the given description.
{description}

ASR Please transcribe this speech.{speech_token}

TTS Please generate a speech according to the given transcription. Start
with <spch>. {transcription}

Text-only The following are multiple choice questions (with answers) about
{subject} {question}

Video QA

The goal is to use the visual information available in the image to
provide an accurate answer to the question. This requires careful
observation, attention to detail, and sometimes a bit of creative

thinking.{video} Question: {question} Answer:

Prompt Templates. The prompt templates used for evaluating pre-training checkpoints are the
same as used during pre-training. For SFT checkpoint evaluation, we list the prompt templates in
Table 11.

E MORE EXPERIMENTS

E.1 IMAGE GENERATION EVALUATION

We compute two additional automatic metrics for evaluating image generation, i.e., SSIM (Wang
et al., 2004) and Aesthetic Predictor v2.57 for the evaluation of structural integrity and aesthetics,
respectively. SSIM (Structural Similarity Index Measure) evaluates the perceptual similarity between
the generated images and the ground-truth images, focusing on luminance, contrast, and structure,
with scores ranging from -1 (dissimilar) to 1 (identical). Aesthetic Predictor V2.5 is a SigLIP (Zhai
et al., 2023)-based predictor that evaluates the aesthetics of an image on a scale from 1 to 10 (10 is the
best). In addition, we randomly select 100 image descriptions from MS-COCO test set, and used each
model to generate images accordingly for human preference evaluation. We ask 3 annotators to rank
3 images generated by the 3 models: “given the image description, which image is preferred?” The
average ranking of MIO’s, AnyGPT’s, and Emu’s generated images are 1.2 (MIO), 2.9 (AnyGPT),
1.9 (Emu). MIO aligns the best with the human preference. The percentage agreement between the
three annotators (calculated as the number of cases with identical rankings by all annotators divided
by 100) is 82.3%, indicating a high consistency in the human evaluation.
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Dataset MS-COCO Flickr30K MS-COCO Subset
Metric SSIM (↑) Aesthetic (↑) SSIM (↑) Aesthetic (↑) Human Avg. Ranking (↓)

Emu 0.1749 3.733 0.1451 3.893 1.9
AnyGPT 0.1960 3.954 0.1585 4.251 2.9

MIO 0.2307 4.019 0.1727 4.326 1.2

Table 12: Image generation evaluation by SSIM, Aesthetic Predictor V2.5, and human preference.

Model Supported Workflow Content Score (1-5 points) (↑)

MIO s2s 1.4
LLaMA-Omni

(Fang et al., 2024) s2t→t2s 2.4

AnyGPT s2t→t2s 1.8

Table 13: Speech-to-Speech performance. “s2s” means “speech-to-speech”, while “s2t” and “t2s”
denote “speech-to-text” and “text-to-speech”, respectively.

E.2 SPEECH-TO-SPEECH EVALUATION

Since there is a lack of speech to speech evaluation benchmarks, we randomly sample some conversa-
tions from the moss-002-sft dataset8 and convert them into speech-to-speech format. Following the
evaluation procedures outlined in LLaMA-Omni (Fang et al., 2024), we use the content score metric
obtained from GPT-4o (OpenAI et al., 2024) to assess whether the model’s response effectively
addresses the user’s instructions. The results are shown in Table 13.

Though the content score of MIO is slightly lower than LLaMA-Omni and AnyGPT, both LLaMA-
Omni and AnyGPT first generate text replies and then convert these into voice. However, our model,
MIO, is capable of directly generating speech responses to speech queries.

E.3 TTS EVALUATION

Model GLOBE LibriSpeech test-clean
WER (↓) Speech Similarity (↑) WER (↓) Speech Similarity (↑)

MIO 9.8 67.8 10.3 75.1
AnyGPT 27.9 67.3 28.1 71.3

Table 14: More automatic evaluations for the TTS performance.

We select two additional benchmarks, LibriSpeech test-clean (Panayotov et al., 2015) and
GLOBE (Wang et al., 2024b), to evaluate the performance of TTS between our model and AnyGPT.
For fair comparison, we don’t specify the input voice prompt during evaluation of MIO and AnyGPT.
WER (Word Error Rate) and speaker similarity are employed as the automatic metrics. The results
are shown in Table 14. The results show that MIO performs significantly better than AnyGPT on
both WER and speaker similarity across both benchmarks.

Table 15: Human evaluation
for the TTS performance.

MIO Win 54%
Tie 25%

MIO Lose 21%

Additionally, we conduct a human evaluation to assess the speech
quality of the outputs from MIO and AnyGPT. In this evaluation,
participants are provided with the target speech, the speech gener-
ated by AnyGPT, and the speech generated by our model. They
are tasked with determining which one sounded more natural and
closer to the target speech. Evaluators could choose one of the two
generated speeches or indicate that they find them equally natural.

7https://github.com/discus0434/aesthetic-predictor-v2-5?tab=
readme-ov-file

8https://huggingface.co/datasets/fnlp/moss-002-sft-data
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Figure 3: Loss curves of pretraing stages.

Each evaluation is rated by three independent human evaluators, and we report the average scores.
The results are shown in Table 15. MIO significantly outperforms AnyGPT in the human evaluation,
consistent with the results from the automatic evaluation.

E.4 LOSS CURVES

We plot the loss curves for each stage in Figure 3. We can observe that when introducing a new
data type (i.e., image-text interleaved data) in stage 2, the training loss suddenly increases. However,
in the third pretraining stage, i.e., the speech-enhancement stage, the training loss transitions more
smoothly. Despite the fluctuations in loss between stages, which do have some impact on downstream
performance during the fluctuation periods, we find that with continued training, the model’s loss
quickly recovers to its previous convergence level and continues optimizing effectively.

E.5 MORE DEMONSTRATIONS.
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"Mike and Cheryl's Wedding" 
"Cheryl Leigh Jenkins and Michael David Nelson were married on Sunday, April 13, 2003, at

the Mountain Valley Chapel in Pigeon Forge, TN, in a really beautiful ceremony. They blended
their families from former marriages.".

Everyone came out
for the wedding.

Afterward everyone
celebrated by

throwing rice all over
each other.

The bride wore a long
dress that was

very pretty.

Everyone sat down
before they
walked out.
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How does photosynthesis work in plants?

A plant is seen growing and expanding its leaves as it uses sunlight for photosynthesis. this
process involves capturing light energy from the sun through chlorophyll, which then produces 
glucose (sugar) through carbon dioxide conversion. additionally, oxygen is released during the
process, helping support other life forms on earth.

                                 The image shows many different stages of growth throughout various         
                                  parts of the leaf, with green spots indicating the presence of chlorophyll     
                                  cells that absorb sunlight for photosynthesis.

 
                                 Finally, the energy produced by photosynthesis

  powers the plant's survival and supports other
  organisms in the ecosystem around it.

Overall, the entire scene illustrates the importance of photosynthesis
in supporting both plant growth and ecological balance. 
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Make the wolf a grizzly bear
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Make it a photograph.

What is the weather like today?🔊

How do you praise spring?
🔊

   Cloudy with a chance of rain. 

I love the flowers in bloom!

🔊

🔊

How to make a pizza, from preparing the ingredients to baking it at every step.

When I made my big
pepperoni pizza for

dinner last night,
all I needed

was some dough that
looked like cornbread

and toppings.

The whole process
went really well and
by now both pizzas
were done as they

had been left to bake
nicely. 

First I took a bowl of
flour out on the table.
After I added salt in a 
spoon and then two
tablespoons of milk

along with 2
teaspoons of oil

mixed until the dough
came together easily.

While waiting for the
dough to double, I got

a nice thick crust
going on another pan
but this one would be
topped with tomato

sauce instead of
cheese. 
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Figure 4: Demonstrations of MIO’s advanced abilities. Yellow : inputs; Green : outputs.
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Bird eye panoramic view of busiest Asian cargo port with hundreds of ships loading export and
import goods and thousands of containers in harbor.
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Life isn't about
waiting for the storm

to pass. It's about
learning to dance in

the rain.

Hundreds of people
gathered around

looking at
motorcycles.
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The Peter and Paul fortress on a winter morning. Aerial view.
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A train is parked at a
train station.

A man in a white
shirt is taking a

picture of a pastry.
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      They seem very ignorant poor things
said another in reply

🔊

      The queen gazed upon our friends with
evident interest.

🔊

 \"They seem very ignorant poor things,\"
said another in reply.

The queen gazed upon her friends with
evident interest.

🎥
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T)

Even so I was fortunate, for had they 
     gained the cave before I did, they would

have had me at their mercy.

🔊

      "Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. I am not a weak old
man!"

🔊

Even so I was fortunate, for had they
gained the cave before I did, they would

have had me at their mercy.

"Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. 
I am not a weak old man!"

Vi
de

o 
G

en
er

at
io

n

Bird eye panoramic view of busiest Asian cargo port with hundreds of ships loading export and
import goods and thousands of containers in harbor.

Im
ag

e 
G

en
er

at
io

n

Life isn't about
waiting for the storm

to pass. It's about
learning to dance in

the rain.

Hundreds of people
gathered around

looking at
motorcycles.

🎥
Vi

de
o 

U
nd

er
st

an
di

ng

The Peter and Paul fortress on a winter morning. Aerial view.

Im
ag

e
U

nd
er

st
an

di
ng

A train is parked at a
train station.

A man in a white
shirt is taking a

picture of a pastry.

Sp
ee

ch
U

nd
er

st
an

di
ng

(A
SR

)

      They seem very ignorant poor things
said another in reply

🔊
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Even so I was fortunate, for had they 
     gained the cave before I did, they would

have had me at their mercy.

🔊

      "Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. I am not a weak old
man!"

🔊

Even so I was fortunate, for had they
gained the cave before I did, they would

have had me at their mercy.

"Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. 
I am not a weak old man!"

Figure 5: Demonstrations of MIO’s basic abilities. Yellow : inputs; Green : outputs.
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  Please solve the closed choice problem with detailed explanation.
  Which property do these two objects have in common?
  A. colorful    B. stretchy

  The stretchy property is part of both object descriptions. Both descriptions mention that each     
  item can be stretched. So, the stretchy property is shared by both objects.
  The answer is B).
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g    Include information in your caption that is specific to image 0, and avoid using generic or       
   ambiguous descriptions.

One cow separates from the
rest othe group to go near
the fence
<image 0> <image 1>

 

  Be specific and detailed in your description of image 1, but also try to capture the essence of   
  the image 1 in a succinct way. 

A truck with two motorcycles parked on its flatbed trailer.

Figure 6: Multimodal Chain-of-Thought and Multimodal In-Context Learning Demos. Yellow :
inputs; Green : outputs.
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