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ABSTRACT

In this paper, we introduce MIO, a novel foundation model built on multimodal
tokens, capable of understanding and generating speech, text, images, and videos
in an end-to-end, autoregressive manner. While the emergence of large language
models (LLMs) and multimodal large language models (MM-LLMs) propels ad-
vancements in artificial general intelligence through their versatile capabilities, they
still lack true any-to-any understanding and generation. Recently, the release of
GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex
real-world tasks, enabling omnidirectional input and output across images, speech,
and text. However, it is closed-source and does not support the generation of multi-
modal interleaved sequences. To address this gap, we present MIO, which is trained
on a mixture of discrete tokens across four modalities using causal multimodal mod-
eling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2)
interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive
supervised fine-tuning on diverse textual, visual, and speech tasks. Our experi-
mental results indicate that MIO exhibits competitive, and in some cases superior,
performance compared to previous dual-modal baselines, any-to-any model base-
lines, and even modality-specific baselines. Moreover, MIO demonstrates advanced
capabilities inherent to its any-to-any feature, such as interleaved video-text gener-
ation, chain-of-visual-thought reasoning, visual guideline generation, instructional
image editing, etc. Anonymous codes and supplemental materials are available at
https://anonymous.4open.science/r/anonymous_MIO-DDE5.

1 INTRODUCTION

The advent of Large Language Models (LLMs) is commonly considered the dawn of artificial general
intelligence (AGI) (OpenAI et al., 2023; Bubeck et al., 2023), given their generalist capabilities such
as complex reasoning (Wei et al., 2022), role playing (Wang et al., 2023c), and creative writing (Wang
et al., 2024a). However, original LLMs lack multimodal understanding capabilities. Consequently,
numerous multimodal LLMs (MM-LLMs) have been proposed, allowing LLMs to understand
images (Li et al., 2023b; Alayrac et al., 2022), audio (Borsos et al., 2023; Rubenstein et al., 2023;
Tang et al., 2023; Das et al., 2024), and other modalities (Lyu et al., 2023; Zhang et al., 2023d;
Moon et al., 2023). These MM-LLMs typically involve an external multimodal encoder, such as
EVA-CLIP (Sun et al., 2023b) or CLAP (Elizalde et al., 2022), with an alignment module such as
Q-Former (Li et al., 2023b) or MLP (Liu et al., 2023b) for multimodal understanding. These modules
align non-textual-modality data features into the embedding space of the LLM backbone.

Another line of work involves building any-to-any and end-to-end MM-LLMs that can input and
output non-textual modality data. Typically, there are four approaches: (1) Discrete-In-Discrete-Out
(DIDO): Non-textual modality data is discretized using vector quantization techniques (van den Oord
et al., 2017; Esser et al., 2020) and then fed into LLMs (Ge et al., 2023b; Zhan et al., 2024; Liu
et al., 2024). (2) Continuous-In-Discrete-Out (CIDO): The LLM backbones intake densely encoded
non-textual modality data features and generate their quantized representations (Diao et al., 2023;
Team et al., 2023). (3) Continuous-In-Continuous-Out (CICO): The LLMs both understand and
generate non-textual modality data in their densely encoded representations (Sun et al., 2023c;a;
Dong et al., 2023; Zheng et al., 2023; Wu et al., 2023). (4) Autoregression + Diffusion (AR + Diff):
The autoregressive and diffusion modeling are integrated in a unified LLM (Zhou et al., 2024; Xie

1

https://anonymous.4open.science/r/anonymous_MIO-DDE5


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: The comparison between previous models and MIO (ours). I/O Consistency indicates
whether the model ensures that the input and output representations for the same data remain
consistent. Uni. Bi. SFT refers to whether the model undergoes a unified (Uni.) supervised fine-
tuning (SFT) for both multimodal understanding and generation (Bi.=Bidirectional). Multi-Task
SFT assesses whether the model undergoes a comprehensive SFT that includes diverse tasks, with at
least visual question answering tasks. MM. Inter. Output evaluates whether the model supports
the generation of multimodal interleaved (MM. Inter.) sequences. We refer readers to §1 for the
definitions of the different modeling approaches.

Models Emu1
(Sun et al.,
2023c)

Emu2
(Sun et al.,
2023a)

SEED-
LLaMA
(Ge et al.,
2023b)

AnyGPT
(Zhan et al.,
2024)

CM3Leon
(Yu et al., 2023),
Chameleon
(Team, 2024)

Gemini
(Reid et al.,
2024)

Transfusion
(Zhou et al.,
2024)

MIO
(ours)

I/O Consistency ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Uni. Bi. SFT ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Multi-Task SFT ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Speech I/O ✗/✗ ✗/✗ ✗/✗ ✓/✓ ✗/✗ ✓/✗ ✗ ✓/✓
Video I/O ✓/✓ ✓/✓ ✓/✓ ✗/✗ ✗/✗ ✓/✗ ✗ ✓/✓
Voice Output ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
MM. Inter. Output ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Modeling CICO CICO DIDO DIDO DIDO CIDO AR+Diff DIDO

et al., 2024; Li et al., 2024b). Although these works have succeeded in building MM-LLMs unifying
understanding and generation, they exhibit some drawbacks, as illustrated in Table 1. For example,
Emu1 (Sun et al., 2023c) and Emu2 (Sun et al., 2023a) explore the autoregressive modeling of
three modalities: text, images, and videos. SEED-LLaMA (Ge et al., 2023b) proposes a new image
quantizer aligned with LLMs’ embedding space and trains the MM-LLMs on images and videos.
However, neither considers the speech modality, which is heterogeneous from visual modalities
like videos and images. Although AnyGPT (Zhan et al., 2024) has explored settings involving four
modalities, including text, image, speech, and music, it lacks video-related abilities, voice synthesis,
and comprehensive multi-task supervised fine-tuning, leading to limited multimodal instruction-
following and reasoning capabilities. Furthermore, AR + Diff approaches, such as Transfusion (Zhou
et al., 2024), suffer from limited multimodal understanding capabilities because the multimodal inputs
are noised for denoising modeling, and the image tokenizer used (i.e., VAE (Kingma & Welling,
2013)) is suitable for image generation rather than image understanding.

Moreover, most of current MM-LLMs are typically dual-modal, combining text with another modality,
such as images. Although previous works, such as Meta-Transformer (Zhang et al., 2023d) and
Unified-IO 2 (Lu et al., 2023), have explored omni-multimodal understanding settings with more than
two non-textual modalities, they still lag significantly behind their dual-modal counterparts, especially
in terms of multimodal instruction-following capabilities. Moreover, these MM-LLMs are typically
focused on understanding only, neglecting the important aspect of multimodal generation. Several
works have enabled LLMs to call external tools to address this issue. For example, HuggingGPT (Shen
et al., 2023) generates textual image descriptions for external diffusion models to synthesize images.
GPT-4 (OpenAI et al., 2023) can utilize either an image generator like DALL-E 3 (Betker et al., 2024)
or a text-to-speech (TTS) tool like Whisper (Radford et al., 2022) to support multimodal generation.1
However, these methods are not end-to-end, relying on the text modality as an interface.

Recently, the release of GPT-4o has demonstrated the capabilities of any-to-any and end-to-end
foundation models.2 It is the first foundational model to accept multimodal tokens as inputs and
generate multimodal tokens within a unified model while also demonstrating strong abilities in
complex multimodal instruction-following, reasoning, planning, and other generalist capabilities.
Furthermore, as the continuous scaling up of LLMs in the community depletes high-quality language
tokens, GPT-4o verifies a new source of data for LLM training: multimodal tokens. This approach
suggests that the next generation AGI could derive more knowledge from multimodal tokens when
language tokens are exhausted. However, GPT-4o is closed source and focuses primarily on end-to-
end support for speech I/O, image I/O, 3D generation, and video understanding. Its recent open-source
“alternatives”, such as VITA (Fu et al., 2024), still lack the ability to generate data of all supported
modalities, particularly for the generation of multimodal interleaved sequences.

1https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
2https://openai.com/index/hello-gpt-4o/
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MIO

Are you happy, cat?

🔊Yes, I'm happy.

🔊Tell me a mystery story about

On a dark night, A detective ...

in an illustrated way.

🔊Yes, I'm happy. SpeechTokenizer

SEED-Tokenizer SEED-Tokenizer

SpeechTokenizer

🔊Yes, I'm happy. Training Recipe

Masked Packing

Stage I: Alignment Pre-Training

Stage II: Interleaved Pre-Training

Stage III: Speech-Enhanced Pre-Training 

Expanded Vocabulary

Supervised Fine-Tuning 

Figure 1: The framework of MIO and its training recipe.

To address the aforementioned issues, we introduce MIO (Multimodal Input and Output, or
Multimodal Interleaved Output), the first open-source any-to-any foundation model that unifies
multimodal understanding and generation across four modalities–text, image, speech (with voice),
and video, while enabling the generation of multimodal interleaved sequences. Specifically, MIO is
built on discrete multimodal tokens that capture both semantic representations through contrastive
loss and low-level features via reconstruction loss (Ge et al., 2023a; Zhang et al., 2023b) from raw
multimodal data. Due to the consistent data format shared with textual corpora, the model can treat
non-textual modalities as “foreign languages”, allowing it to be trained with the next-token-prediction.
Note that since the representation of an image remains the same whether it is used as an input or an
output, our model flexibly supports multimodal interleaved sequence generation, where an image
functions simultaneously for both understanding and generation. Moreover, we employ three-stage
pre-training with an additional SFT stage to effectively train the model for modality scaling.

Our experimental results show that MIO, trained on a mixture of four modalities, demonstrates com-
petitive performance compared to its dual-modal counterparts and previous any-to-any multimodal
language model baselines. Additionally, MIO is the first model to demonstrate interleaved video-text
generation, chain-of-visual-thought reasoning, and other emergent abilities relying on any-to-any and
multimodal interleaved output features (c.f.,§3.5).

2 METHOD

Firstly, we elaborate on our modeling approach, which supports multimodal token input and output,
as well as causal language modeling (CausalLM), in §2.1. Secondly, we describe our three-stage pre-
training procedures in §2.2. Thirdly, we provide details of our comprehensive supervised fine-tuning
on diverse multimodal understanding and generation tasks in §2.3.

2.1 MODELING

As illustrated in Figure 1, the framework of MIO involves three parts: (1) multimodal tokenization,
(2) causal multimodal modeling, and (3) multimodal de-tokenization.

Multimodal Tokenization. In our work, we use SEED-Tokenizer (Ge et al., 2023a) as our image
tokenizer and SpeechTokenizer (Zhang et al., 2023b) as our speech tokenizer. SEED-Tokenizer
encodes images using a ViT (Dosovitskiy et al., 2021) derived from BLIP-2 (Li et al., 2023b), and
then converts the encoded features into fewer tokens with causal semantics via Q-Former (Li et al.,
2023b). These features are subsequently quantized into discrete tokens that are well-aligned with
the language model backbone’s textual space. The codebook size for these discrete image tokens is
8192. SEED-Tokenizer transforms each image into a 224x224 resolution and quantizes it into 32
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tokens. We use two special tokens, <IMAGE> and </IMAGE>, to indicate the start and end of the
image tokens per image, respectively.

As for videos, we first apply specific frame-cutting methods to convert videos into image sequences.
In our training data processing procedures, the number of frames for each video is dynamically
determined by its duration, the length of its context, or its scene switching3 to (1) avoid exceeding
the LLM backbone’s context window limit, and (2) capture complete but concise information of the
video. Each frame is then tokenized in the same manner as an image.

In terms of speech, SpeechTokenizer (Zhang et al., 2023b) leverages an 8-layer RVQ (Lee et al.,
2022) to tokenize speech into tokens with 8 codebooks, with each codebook derived from one layer.
Since the first layer’s quantization output is distilled from HuBERT (Hsu et al., 2021), which encodes
more semantic information, SpeechTokenizer can separate content tokens and timbre tokens from a
quantized speech. The first-layer quantization is treated as content quantization, while the remaining
layers’ quantization is treated as timbre quantization. SpeechTokenizer encodes speech into 50 tokens
per second for each codebook, resulting in 400 tokens per second with all eight codebooks. To
improve context efficiency, we drop the last four layers’ codebooks and only use the content codebook
and the first three timbre codebooks. Our vocabulary size for the speech modality is 1024×4 = 4096.

Since the open-source pretraining-level speech data is collected from individuals with diverse voices,
the timbre tokens exhibit a relatively random and noisy pattern, while the content tokens are more
fixed-pattern and better aligned with the corresponding transcriptions. Given these priors in speech
tokens, it is important to choose the proper interleaving mode of speech tokens (Copet et al., 2023).
We denote the four codebooks as A, B, C, and D, where A is the codebook for content tokens and the
remaining three are for timbre tokens. For simplicity, assuming that we have only two tokens for each
codebook in a tokenized speech sequence (i.e., a1a2, b1b2, c1c2, and d1d2), there are two interleaving
patterns for causal multimodal modeling: (1) sequential interleaving pattern: a1a2b1b2c1c2d1d2 and
(2) alternating interleaving pattern: a1b1c1d1a2b2c2d2.

In our preliminary experiments, we observed that text-to-speech generation (TTS) training is difficult
to converge when using the alternating interleaving pattern because the noisy and random timbre
tokens (b1c1d1) tend to mislead the continuations. Moreover, the speech-to-text understanding (ASR)
performance improves much more slowly during training with the alternating interleaving pattern due
to the sparsity of semantic information in the timbre tokens. As a result, we drop the timbre tokens
for speech understanding and use the sequential interleaving pattern for speech generation. We use
<SPCH> and </SPCH> as special tokens to indicate the start and end of the speech token sequence.

Causal Multimodal Modeling. As illustrated in Figure 1, the speech and images, including video
frames, are tokenized by SpeechTokenizer (Zhang et al., 2023b) and SEED-Tokenizer (Ge et al.,
2023a), respectively. We add the 4096 speech tokens and 8192 image tokens to the LLM’s vocabulary.
In addition, we introduce four new special tokens, namely <IMAGE>, </IMAGE>, <SPCH>, and
</SPCH>, to the vocabulary. Consequently, the embedding layer of the LLM backbone and the
language modeling head are extended by 4096 + 8192 + 4 = 12292 to support the embedding and
generation of these new tokens. The image tokens contain causal semantics due to the use of a Causal
Q-Former (Ge et al., 2023a), and the speech tokens are intrinsically causal due to their temporal
nature. Therefore, these multimodal tokens are as suitable for autoregressive training as textual
tokens, allowing us to unify the training objectives for understanding and generation of multimodal
tokens into next-token-prediction with cross-entropy loss. The training objective is thus:

L = −
T∑

t=1

logP (xt | x<t; θ) (1)

where xt represents the discrete multimodal tokens, and θ denotes the parameters of the LLM
backbone. We use the pre-trained model, Yi-6B-Base (AI et al., 2024), for initialization.

Furthermore, to eliminate the computational inefficiency caused by <PAD> tokens, we use the masked
packing strategy (Lu et al., 2023; Liu et al., 2024; Dehghani et al., 2023). Specifically, the samples
are concatenated along the sequence length dimension until the context window is full. Then, we

3https://github.com/Breakthrough/PySceneDetect
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construct the causal attention mask for the tokens of each sample and mask out all the tokens of the
other samples.

Multimodal De-Tokenization. After the generation of multimodal tokens, it is essential to use
modality-specific decoders to reconstruct the images or speech from the codes. Specifically, for
image tokens, we directly utilize SEED-Tokenizer’s decoder, which involves an MLP projection
to convert the discrete codes into dense latents. These latents condition an off-the-shelf diffusion
model (Rombach et al., 2022) to generate the images in the pixel space (Ge et al., 2023a). The
vanilla SpeechTokenizer (Zhang et al., 2023b) involves generating timbre tokens through a non-
autoregressive model outside the language model, and then feeding the concatenated content and
timbre tokens into the SpeechTokenizer decoder to synthesize speech. In our work, to inject the
timbre priors into the multimodal language model itself, the timbre tokens are also generated by the
autoregressive language model.

2.2 PRE-TRAINING

As shown in Table 2, we use a three-stage strategy for pre-training, with each stage targeting different
objectives. The three stages are: (1) Alignment Pre-training: This stage focuses on learning a
multimodal representation more aligned with the language space. (2) Interleaved Pre-training: This
stage aims to obtain a multimodal representation with richer contextual semantics. (3) Speech-
enhanced Pre-training: This stage specifically enhances the model’s speech-related capabilities, while
concurrently replaying data from other modalities. For more details on the pre-training data and its
processing procedures, we refer the readers to Appendix A.

Table 2: Pre-training stages and their details. We use “Inter” to denote “Interleaved” for short. We
provide batch sizes for each data type per GPU in image-text pair data:language-only data:(image-text
interleaved data + video data):speech-text pair data. See Appendix A and Appendix B for more
details including pre-training data sources, data cleaning procedures, pre-training hyperparameters,
etc.

Pre-training Stage Stage I Stage II Stage III
Objective Multimodal Alignment Multimodal Interleaving Speech Enhancement

Image-Text Pair
SBU, CC3M,

LAION-COCO,
JourneyDB

SBU, CC3M,
LAION-COCO,

JourneyDB

CC3M
LAION-COCO

Language-Only RefinedWeb RefinedWeb RefinedWeb

Image-Text Inter - OBELICS,
MMC4-core-ff MMC4-core-ff

Video-Text Pair - WebVid-10M WebVid-10M

Video-Text Inter - HowTo-100M,
YT-Temporal-180M

HowTo-100M,
YT-Temporal-180M

Speech-Text Pair Libriheavy Libriheavy Libriheavy

GPUs 128 A800-80GB 128 A800-80GB 8 A800-80GB
Training Steps 24,800 12,800 32,200

Batch Size 12:2:0:2 2:2:6:6 2:1:1:12

Stage I: Alignment Pre-Training. To fully leverage the superior capabilities of the pre-trained
LLM backbone, it is essential to align the non-textual modality data representations with text. There
are two types of pre-training data for image-text multimodal learning: (1) Image-text paired data: This
data has well-aligned dependencies between images and text. (2) Image-text interleaved data: This
data features more natural and contextual dependencies but is less aligned. Note that in our setting,
video-text paired and interleaved data can be treated as image-text interleaved data, with videos
being sequential images interleaved with text. Therefore, in this stage, we exclude the image-text
interleaved data and video data to ensure the most aligned pattern between images and text.

Stage II: Interleaved Pre-Training. In this stage, we extend the data used for pre-training to
include image-text interleaved data (including video-text data) as a novel image-text dependency

5
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pattern. The image-text interleaving pattern has a different nature compared to pairing patterns.
Although Li et al. (2023b) and Sun et al. (2023c) argued that interleaved image-text data mainly
serves for multimodal in-context learning, we argue that it is also essential for context-aware image
generation where images are generated based on specific context, rather than a precise description of
the image content. For example, in image-text interleaved data, the text might serve as the image’s
preceding or continuing context, rather than its description. This pattern significantly differs from
the previous descriptive image generation demonstrated in image-text paired data, where images are
generated based on precise and detailed text that clearly describe the content of the images (Team
et al., 2023). Therefore, context-aware image generation is essential for tasks such as chain-of-visual-
thought reasoning or visual storytelling (Team et al., 2023; Huang et al., 2016), where images are
generated without textual descriptions. Due to the lack of benchmarks and evaluation metrics for
context-aware image generation, we provide some demonstrations in §3.5 to showcase the potential
of our model in visual storytelling, interleaved video-text generation, instructional image editing,
chain-of-visual-thought reasoning, multimodal in-context learning, etc.

Moreover, in this stage, due to the extensive training on image-text paired data in Stage I, we can
reduce its mixing ratio to the minimal essential scale for replay to avoid catastrophic forgetting. This
allows us to increase the batch size for image-text interleaved data, video data, and speech data.

Stage III: Speech-Enhanced Pre-Training. The speech tokenizer that we use generates 200 tokens
for each second of audio. Given that the duration of a speech sample can be 15 seconds, this results
in around 3,000 tokens per sample. In comparison, the image tokenizer produces only 32 tokens
per image. This creates a significant disparity in the number of tokens among different modalities.
Consequently, our training data is dominated by speech tokens. If we mix all the different modalities
according to their original proportions for training, the model would likely become overly focused on
speech, at the expense of other modalities.

To address this issue, we implement a three-stage strategy that gradually increases the proportion of
speech tokens. In Stage I, speech-text data accounts for 12.5% of the training tokens, which rises to
37.5% in Stage II, and finally reaches 75.0% in Stage III. This incremental increase in the proportion
of speech tokens ensures that the model’s performance in non-speech modalities is not compromised
by the speech modality, while also allowing for the optimization of the model’s speech capabilities.

Furthermore, we keep the data mixing ratio for other modalities of pre-training data at the minimal
essential scales for replay, and we only use the high-quality subsets of them in this stage. This stage
requires significantly fewer compute resources, due to the foundation laid in the previous stages.

We refer the reader to Appendix B for more details about the hyperparameters and prompt templates.

2.3 SUPERVISED FINE-TUNING

As shown in Table 9, our model undergoes comprehensive and systematic supervised fine-tuning
(SFT) with 16 different tasks and 34 diverse open-source datasets. The chat template used for SFT is
the same as that used for Yi-6B-Chat (AI et al., 2024), and only the assistant responses are supervised.
We refer the reader to Appendix C for more details about the hyperparameters and prompt templates.

3 EXPERIMENTS

In this section, we present our quantitative evaluation results across various domains: image-related
tasks (§3.1), speech-related tasks (§3.2), and video-related tasks (§3.3). Due to the lack of benchmarks
for several advanced and emergent abilities of any-to-any multimodal LLMs, we also provide
numerous qualitative demonstrations (§3.5) to demonstrate these capabilities. We refer the reader to
Appendix D for more details, including the decoding hyperparameters and prompt templates.

3.1 IMAGE-RELATED TASKS

Image Understanding. We compare our models with Emu (Sun et al., 2023c), SEED-LLaMA (Ge
et al., 2023b), AnyGPT (Zhan et al., 2024), Flamingo (Alayrac et al., 2022), Kosmos-1 (Huang
et al., 2023), MetaLM (Hao et al., 2022), IDEFICS (Laurençon et al., 2023), CM3Leon (Yu et al.,
2023), InstructBLIP (Dai et al., 2023), Qwen-VL-Chat (Bai et al., 2023), and LLaVA 1.5 (Liu
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Table 3: Experimental results for image understanding abilities. “Imagen” denotes whether the model
is capable of generating images. “Speech” denotes whether the model supports speech modality. “I”
denotes the instruction tuned version. The metrics used are CIDEr for COCO, MCQ accuracy for the
SEED Bench, and VQA accuracy for the other tasks, following the standard procedures. In all cases,
higher scores indicate better performance.

Models Imagen Speech COCO VQAv2 OKVQA VizWiz SEED Bench

Emu-Base (14B) ✓ ✗ 112.4 52.0 38.2 34.2 47.3
Emu-I (14B) ✗ ✗ 120.4 57.2 43.4 32.2 58.0

SEED-LLaMA-I (8B) ✓ ✗ 124.5 66.2 45.9 55.1 51.5
AnyGPT (8B) ✓ ✓ 107.5 - - - -
Flamingo (9B) ✗ ✗ 79.4 51.8 44.7 28.8 42.7

Flamingo (80B) ✗ ✗ 84.3 56.3 31.6 -
Kosmos-1 (1.6B) ✗ ✗ 84.7 51.0 - 29.2 -
MetaLM (1.7B) ✗ ✗ 82.2 41.1 11.4 - -

IDEFICS-I (80B) ✗ ✗ 117.2 37.4 36.9 26.2 53.2
CM3Leon (7B) ✓ ✗ 61.6 47.6 23.8 37.6 -

InstructBLIP (8.1B) ✗ ✗ - - - 34.5 58.8
Qwen-VL-Chat (13B) ✗ ✗ - 78.2 56.6 38.9 58.2

LLaVA 1.5 (7B) ✗ ✗ - 78.5 - 50.0 58.6

MIO-Instruct (7B) ✓ ✓ 120.4 65.5 39.9 53.5 54.4

et al., 2023a). We evaluate our models in diverse tasks, including: (1) image captioning on MS-
COCO (Lin et al., 2014) Karpathy test split with CIDEr score (Vedantam et al., 2014) as the metric,
(2) three visual question-answering benchmarks, i.e., VQAv2 (Goyal et al., 2016) (test-dev split),
OK-VQA (Marino et al., 2019) (val split), and VizWiz (Gurari et al., 2018), with VQA accuracy
as the metric, and (3) SEED-Bench (Li et al., 2023a), a comprehensive visual question-answering
benchmark including 9 dimensions with MCQ accuracy as the metric. The scores for all baselines are
copied from their reports. As shown in Table 3, our MIO-Instruct is ranked in the top group among all
baselines, demonstrating its competitive image understanding performance. Although SEED-LLaMA
achieved better scores compared to our model, we additionally support the speech modality. It is also
noteworthy that MIO, with a size of approximately 7 billion parameters, outperforms several larger
models such as Emu-14B and even IDEFICS-80B.

Table 4: Image generation evaluation by
CLIP-I score. “I” denotes the instruction
tuned version. Higher values are better.

Models MS-COCO Flickr30K

Emu-Base 66.46 64.82
SEED-LLaMA 69.07 65.54

SEED-LLaMA-I 70.68 66.55
GILL 67.45 65.16

AnyGPT 65.00 -

MIO-Base 64.15 62.71
MIO-Instruct 67.76 68.97

Image Generation. We compare our models with
Emu (Sun et al., 2023c), SEED-LLaMA (Ge et al.,
2023b), GILL (Koh et al., 2023), and AnyGPT (Zhan
et al., 2024) for image generation. We use two
benchmarks, i.e., MS-COCO (Lin et al., 2014) Karpa-
thy test split and Flickr30K (Plummer et al., 2015).
Following GILL (Koh et al., 2023) and SEED-
LLaMA (Ge et al., 2023b), we use CLIP-I as the
metric that evaluates the similarity between the gen-
erated images and the ground-truth images with the
image encoder in CLIP (Radford et al., 2021). As
shown in Table 4 and Table 12 the pre-trained model
and instruction-tuned model of MIO both have com-
petitive image generation capabilities. Note that beyond single image generation abilities, our
model can also exhibit multi-image generation capabilities such as generating visual stories, image
sequences, and even visual thoughts as illustrated in §3.5.

3.2 SPEECH-RELATED TASKS

We evaluate the speech understanding and generation abilities of MIO on ASR and TTS tasks.
Wav2vec 2.0 (Baevski et al., 2020), Whisper Large V2 (Radford et al., 2023), and AnyGPT (Zhan
et al., 2024) are the baselines for ASR tasks, while VALL-E (Wang et al., 2023a), USLM (Zhang
et al., 2023b) , and AnyGPT (Zhan et al., 2024) are the baselines for TTS tasks. The test set used for
ASR evaluation is LibriSpeech (Panayotov et al., 2015), while the test set used for TTS evaluation is
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VCTK (Veaux et al., 2017) following AnyGPT (Zhan et al., 2024)’s practice. The Whisper medium
model is used to transcribe the speech generated for the TTS task. The WER (word error rate) is
computed by comparing the generated transcribed text with the ground-truth transcription after text
normalization4.

Table 5: Speech ability evaluation. “WER” denotes
word error rate. Lower values are better.

Models ASR
WER

Models TTS
WER

Wav2vec 2.7 VALL-E 7.9
Whisper 2.7 USLM 6.5
AnyGPT 8.5 AnyGPT 8.5

MIO-Base 6.3 MIO-Base 12.0
MIO-Instruct 10.3 MIO-Instruct 4.2

As shown in Table 3.2, our models exhibit
speech performance comparable to the speech-
specific baselines and outperform the AnyGPT
baseline. It is important to note that although
AnyGPT is capable of generating content to-
kens for speech, it lacks the ability to generate
timbre tokens, which necessitates the use of an
additional voice cloning model. In contrast, our
models generate both content and timbre tokens,
making the TTS tasks more challenging for our models compared to AnyGPT. Nonetheless, after
instruction tuning, our model still achieves better TTS performance. More evaluations of the TTS
and Speech-to-Speech generation performance are provided in Appendix E.3 and E.2.

3.3 VIDEO-RELATED TASKS

Table 6: Video understanding evaluation using top-
1 accuracy for both benchmarks. “I” denotes the
instruction-tuned version.

Models MSVDQA MSRVTT-QA

Flamingo (9B) 30.2 13.7
BLIP-2 (4.1B) 33.7 16.2

InstructBLIP (8.1B) 41.8 22.1
Emu-Instruct (14B) 32.4 14.0

SEED-LLaMA-I (8B) 40.9 30.8

MIO-Instruct 42.6 35.5

We compare MIO with Flamingo (Alayrac
et al., 2022), BLIP-2 (Li et al., 2023b), In-
structBLIP (Dai et al., 2023), Emu (Sun et al.,
2023c), and SEED-LLaMA (Ge et al., 2023b)
for video understanding. The models are evalu-
ated on the MSVDQA (Chen & Dolan, 2011a)
and MSRVTT-QA (Xu et al., 2017). The results
are presented in Table 6. Our model achieves the
highest scores compared to all baselines. Due to
the lack of video (frame sequence) generation
benchmarks in our setting, we provide video
generation examples in §3.5. These results demonstrate the superior performance of our models in
both video understanding and video generation.

Table 7: Language-only evaluation. “I” denotes
the instruction-tuned version.

Models MMLU

LLAMA-1-7B-Base 33.0
LLAMA-2-7B-Chat 47.9
SEED-LLAMA-8B-I 36.1

AnyGPT-Base 26.4
AnyGPT-Chat 27.4

MIO-Instruct 45.7

Table 8: Results for trimodal comprehension
(text, image, and speech).

Models OmniBench

Gemini-1.5-Pro 42.67
Reka-Core-20240501 31.52

AnyGPT (8B) 17.77
video-SALMONN (13B) 34.11

Unified-IO 2 (6.8B) 34.24

MIO-Instruct (7B) 36.96

3.4 LANGUAGE-ONLY TASKS

We evaluate our models on MMLU (Hendrycks et al., 2021). The baselines are two LLaMA
variants (Touvron et al., 2023a;b), the instruction-tuned SEED-LLaMA (Ge et al., 2023b), and
AnyGPT (Zhan et al., 2024). For the MMLU benchmark, we conduct zero-shot evaluation experiments
using the official evaluation code. The experimental results are shown in Table 7. We can observe
that our models have superior language-only performance compared with all any-to-any MM-LLM
baselines and even surpass LLaMA-1-7B-Base, an advanced pure language model.

4https://github.com/openai/whisper/blob/main/whisper/normalizers/
english.py
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3.5 DEMONSTRATIONS

We illustrate the basic and advanced abilities of MIO in Figure 5 and 4. The basic abilities of MIO
involve image understanding and generation, video understanding and generation, ASR, and TTS.
The advanced abilities of MIO are based on its any-to-any and multimodal interleaved sequence
generation features. These abilities involve visual storytelling (i.e., interleaved video-text generation),
chain of visual thought, speech-in-speech-out, instructional image editing, visual guideline generation,
etc. We refer the readers to Appendix E.5 for more demonstrations including multimodal chain of
thought and multimodal in-context learning.

3.6 ABLATION STUDIES

Generality for Trimodal Understanding. We evaluate our model using the OmniBench (Li et al.,
2024d), which incorporates text, image, and speech modalities as inputs, requiring the model to
choose one of four options as the correct answer to determine accuracy. Although MIO acquires its
multimodal understanding capabilities through dual-modal training, the evaluation results in Table 8
indicate that MIO also exhibits superior trimodal comprehension abilities.

Effect of Different Image Tokenizers. The image tokenizer has a significant impact on image
modality alignment. In Figure 2, we compare the image generation performance under a controlled
setting after training for solely 3K steps in stage 1, using various image tokenizers. The image
tokenizers used for comparison include a VQGAN (Esser et al., 2020) with a vocabulary size of 1024
and a compression rate of 16 (VQGAN-1024), as well as the VQGAN-Gumbel with a vocabulary
size of 8192 (VQGAN-8192)5. Our results indicate that the SEED-Tokenizer, which captures more
semantic and higher-level image information, exhibits faster convergence. In contrast, both VQGAN
tokenizers show slower convergence due to their lower-level image information.

4 RELATED WORKS

4.1 MULTIMODAL LLMS

VQGAN-1024 VQGAN-8192 SEED-Tokenizer

An eagle flying away after eating fish
in a eagle-feeding session in an island near Langkawi.

Hundreds of people gathered around looking at motorcycles.

Figure 2: Comparing different image tokenizers
for image generation within a controlled setting
(limited to 3K training steps).

With the rapid success of Large Language Mod-
els (LLMs), current multimodal LLMs (MM-
LLMs) are typically built on a pre-trained LLM
backbone and are endowed with the ability to
understand multiple modalities (Li et al., 2019;
Lu et al., 2019; Kim et al., 2021; Zeng et al.,
2022; Zhou et al., 2022; Wang et al., 2023b;
2024e). Generally, these MM-LLMs align the
representations of images obtained from visual
encoders with the text embedding space, thereby
leveraging the powerful capabilities of the foun-
dational models. For example, BLIP-2 (Li et al.,
2023b) uses CLIP-ViT (Radford et al., 2021) to
extract high-level features from images and then
employs a Q-Former to compress the number
of image tokens and further align image tokens
with the LLM embeddings. In contrast, LLaVA (Liu et al., 2023b; Li et al., 2024a) utilizes a simple
linear projection or MLP as the connector between the image encoder and the LLM backbone. These
models demonstrate strong multimodal understanding abilities, achieving significant progress in tasks
such as visual question answering, visual commonsense reasoning, chart understanding, etc.

Additionally, beyond images, other MM-LLMs have also focused on modalities such as speech
and video. For instance, LLaSM (Shu et al., 2023) and InternVideo (Wang et al., 2022; 2024c) are
MM-LLMs designed for speech and video understanding, respectively. These models adopt a similar
architectural design to BLIP-2 or LLaVA but redesign modality-specific encoders.

5https://github.com/CompVis/taming-transformers
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Recently, increasing attention has been paid to unifying multiple modalities within a single MM-LLM.
For example, ImageBind (Girdhar et al., 2023) develops encoders suited for multiple modalities such
as images, videos, audio, heat maps, among others, while OmniBind (Wang et al., 2024d) trains an
omni-representation model by aligning encoders across four modalities: audio, language, images,
and 3D objects. OmniBench (Li et al., 2024d) is proposed to evaluate the models’ abilities for visual,
acoustic, and textual understanding.

However, these models focus primarily on multimodal understanding and often overlook the important
aspect of multimodal generation.

4.2 ANY-TO-ANY MM-LLMS

To enable multimodal generation in MM-LLMs, a straightforward approach is to allow these models
to call external multimodal generation tools, such as Stable Diffusion (Rombach et al., 2022) or
text-to-speech (TTS) tools (Shen et al., 2023; Li et al., 2024c; OpenAI et al., 2023). However, as
highlighted in the Gemini technical report (Team et al., 2023), relying on an intermediate natural
language interface can limit the model’s ability to express images. If a model cannot natively output
images, it will not be able to generate images with prompts of interleaved sequences of image and text.
This claim is in line with our distinction between descriptive image generation and context-aware
image generation, as discussed in §2.2.

As a result, recent works focus on the unification of multimodal understanding and generation in a
single model (i.e., any-to-any MM-LLMs), enabling the generation of multimodal tokens without
natural language as an interface. These models typically follow different approaches, depending
on how images are represented in both input and output sides. For example, the Discrete-In-
Discrete-Out (DIDO) approach has been explored in works such as SEED-LLaMA (Ge et al., 2023b),
AnyGPT (Zhan et al., 2024), and Chameleon (Team, 2024). Continuous-In-Discrete-Out (CIDO)
methods have been implemented in models like DaVinCi (Diao et al., 2023), Gemini (Team et al.,
2023), and Unified-IO 2 (Lu et al., 2023). The Continuous-In-Continuous-Out (CICO) approach is
used in models such as Emu (Sun et al., 2023c;a), and DreamLLM (Dong et al., 2023). Another
approach, the integration of autoregression and diffusion (AR + Diff), can be seen in models like
Transfusion (Zhou et al., 2024), Show-o (Xie et al., 2024), and Li et al. (2024b)’s.

However, these models face specific limitations. DreamLLM (CICI, Dong et al. (2023)) and CIDO
models suffer from inconsistencies between input and output forms for multimodal data, making
it difficult for them to natively support the generation of interleaved multimodal sequences where
an image functions in a coupled way as both input and output. Emu2 (CICO, Sun et al. (2023a))
struggles with the challenges of the mean square error (MSE) loss used for training continuous output
representations, as well as with the uni-modal assumption of the Gaussian distribution in the MSE
loss. Transfusion (AR + Diff, Zhou et al. (2024)) applies noise to images from the input side to
support multimodal generation with diffusion modeling, and relies on VAE (Kingma & Welling,
2013) features rather than CLIP (Radford et al., 2021) features for denoising, which largely trade off
the multimodal understanding abilities.

To mitigate these issues, we adopt the DIDO approach. A comprehensive comparison of our models
with other any-to-any MM-LLMs is presented in Table 1.

5 CONCLUSION

In conclusion, MIO represents an advancement in the realm of multimodal foundation models. By
employing a rigorous four-stage training process, MIO successfully integrates and aligns discrete
tokens across text, image, video, and speech modalities. This comprehensive approach enables MIO
to understand and generate multimodal content in an end-to-end, autoregressive manner, addressing
the limitations of current multimodal large language models. Our experimental results showcase its
competitive performance across a variety of benchmarks compared to the dual-modality baselines and
other any-to-any multimodal large language models. With the any-to-any and multimodal interleaved
output features, MIO exhibits novel emergent abilities such as interleaved video-text generation,
chain-of-visual-thought reasoning, etc.
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Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew
Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko,
Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar,
Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob
McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan
Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris
Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine
McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis,
Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares,
Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong,
Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric
Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo
Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon,
Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu
Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde
de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell,
Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki,
James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia
Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne
Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John
Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook
Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua
Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan
Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen,
Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held,
Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke
Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat
Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick
Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia
Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov,
Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder,
Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel
Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara,
Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky
Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy
Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey,
Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas
Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash
Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin,
Yunxing Dai, and Yury Malkov. Gpt-4o system card. arXiv preprint arXiv: 2410.21276, 2024.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing images using 1 million
captioned photographs. Advances in neural information processing systems, 24, 2011.

Junting Pan, Keqiang Sun, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Journeydb: A benchmark
for generative image understanding, 2023.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.7178964.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: Outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv: 2306.01116, 2023.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE international conference on computer
vision, pp. 2641–2649, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp.
8748–8763, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv: 2212.04356,
2022.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on
Machine Learning, pp. 28492–28518. PMLR, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2022. doi: 10.1109/cvpr52688.2022.01042.
URL http://dx.doi.org/10.1109/cvpr52688.2022.01042.

Paul K. Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, Hannah
Muckenhirn, Dirk Padfield, James Qin, Danny Rozenberg, Tara Sainath, Johan Schalkwyk, Matt
Sharifi, Michelle Tadmor Ramanovich, Marco Tagliasacchi, Alexandru Tudor, Mihajlo Velimirović,
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Chimoto, Hanna Klimczak-Plucińska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria
Mendolicchio, Lexi Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth
Odoom, Lucia Loher, Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina,
Tom Duerig, Antonio Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Lynette Webb,
Sahil Dua, Dong Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal, Tomer Shani,
Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale,
Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan Lee, Pandu
Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, Martin Wicke, Xiao Ma,
Evgenii Eltyshev, Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong,
Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver
Wang, Joshua Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai
Sheng, Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei Li, Anoop Sinha, Weiren Wang,
Julia Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark
Goldenson, Parashar Shah, MK Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki,
Chrisantha Fernando, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria
Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee, Denny Zhou, Komal Jalan,
Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr, Kieran Milan, Vladimir Mikulik, Juliana
Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma Mahendru, Andrea Hu, Joshua Howland, Ben
Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang, Ke Ye, Jean Michel
Sarr, Melanie Moranski Preston, Madeleine Elish, Steve Li, Aakash Kaku, Jigar Gupta, Ice Pasupat,
Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun Chen, Aida Amini, Alex Fabrikant, Eric Chu,
Xuanyi Dong, Amruta Muthal, Senaka Buthpitiya, Sarthak Jauhari, Nan Hua, Urvashi Khandelwal,
Ayal Hitron, Jie Ren, Larissa Rinaldi, Shahar Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal
Godhia, Uli Sachs, Anthony Chen, Yicheng Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, James
Wang, Chen Liang, Jenny Hamer, Chun-Sung Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vít
Listík, Mathias Carlen, Jan van de Kerkhof, Marcin Pikus, Krunoslav Zaher, Paul Müller, Sasha
Zykova, Richard Stefanec, Vitaly Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico
Xu, Chetan Ahuja, Beth Tsai, Anca Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal,
Akshay Gupta, Atharva Parulekar, Divya Pitta, Jing Zhao, Vivaan Bhatia, Yashodha Bhavnani,
Omar Alhadlaq, Xiaolin Li, Peter Danenberg, Dennis Tu, Alex Pine, Vera Filippova, Abhipso
Ghosh, Ben Limonchik, Bhargava Urala, Chaitanya Krishna Lanka, Derik Clive, Yi Sun, Edward
Li, Hao Wu, Kevin Hongtongsak, Ianna Li, Kalind Thakkar, Kuanysh Omarov, Kushal Majmundar,
Michael Alverson, Michael Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo Pelagatti,
Rohan Kohli, Saurabh Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi Ramachandruni,
Xiangkai Zeng, Ben Bariach, Laura Weidinger, Amar Subramanya, Sissie Hsiao, Demis Hassabis,
Koray Kavukcuoglu, Adam Sadovsky, Quoc Le, Trevor Strohman, Yonghui Wu, Slav Petrov,
Jeffrey Dean, and Oriol Vinyals. Gemini: A family of highly capable multimodal models. arXiv
preprint arXiv: 2312.11805, 2023.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023b.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
ArXiv, abs/1711.00937, 2017. URL https://api.semanticscholar.org/CorpusID:
20282961.

Christophe Veaux, Junichi Yamagishi, and Kirsten MacDonald. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit. 2017.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. arXiv preprint arXiv: 1411.5726, 2014.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
synthesizers. arXiv preprint arXiv:2301.02111, 2023a.

Tiannan Wang, Wangchunshu Zhou, Yan Zeng, and Xinsong Zhang. EfficientVLM: Fast and
accurate vision-language models via knowledge distillation and modal-adaptive pruning. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, pp. 13899–13913, Toronto, Canada, July 2023b.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.873. URL https:
//aclanthology.org/2023.findings-acl.873.

22

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://api.semanticscholar.org/CorpusID:20282961
https://api.semanticscholar.org/CorpusID:20282961
https://aclanthology.org/2023.findings-acl.873
https://aclanthology.org/2023.findings-acl.873


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao,
Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei
Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang,
Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu
Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang,
Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen,
Yuchen Eleanor Jiang, and Wangchunshu Zhou. Weaver: Foundation models for creative writing.
arXiv preprint arXiv: 2401.17268, 2024a.

Wenbin Wang, Yang Song, and Sanjay Jha. Globe: A high-quality english corpus with global accents
for zero-shot speaker adaptive text-to-speech. arXiv preprint arXiv: 2406.14875, 2024b.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu,
Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang, and
Yu Qiao. Internvideo: General video foundation models via generative and discriminative learning.
arXiv preprint arXiv:2212.03191, 2022.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Chenting Wang, Guo Chen, Baoqi Pei,
Rongkun Zheng, Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for
multimodal video understanding. arXiv preprint arXiv:2403.15377, 2024c.

Zehan Wang, Ziang Zhang, Hang Zhang, Luping Liu, Rongjie Huang, Xize Cheng, Hengshuang Zhao,
and Zhou Zhao. Omnibind: Large-scale omni multimodal representation via binding spaces. arXiv
preprint arXiv: 2407.11895, 2024d. URL https://arxiv.org/abs/2407.11895v1.

Zekun Wang, Jingchang Chen, Wangchunshu Zhou, Haichao Zhu, Jiafeng Liang, Liping Shan,
Ming Liu, Dongliang Xu, Qing Yang, and Bing Qin. SmartTrim: Adaptive tokens and attention
pruning for efficient vision-language models. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 14937–14953, Torino, Italia, May 2024e. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.1300.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan
Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang,
Ke Xu, Wenhu Chen, Jie Fu, and Junran Peng. Rolellm: Benchmarking, eliciting, and enhancing
role-playing abilities of large language models. arXiv preprint arXiv: 2310.00746, 2023c.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error vis-
ibility to structural similarity. IEEE Transactions on Image Processing, 13:600–612, 2004. doi: 10.
1109/TIP.2003.819861. URL https://ieeexplore.ieee.org/document/1284395.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal
llm. arXiv preprint arXiv: 2309.05519, 2023. URL https://arxiv.org/abs/2309.
05519v2.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv: 2408.12528, 2024. URL
https://arxiv.org/abs/2408.12528v1.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang. Video
question answering via gradually refined attention over appearance and motion. In Proceedings of
the 2017 ACM on Multimedia Conference, MM 2017, Mountain View, CA, USA, October 23-27,
2017, pp. 1645–1653, 2017.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for bridging
video and language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 5288–5296, 2016.

23

https://arxiv.org/abs/2407.11895v1
https://aclanthology.org/2024.lrec-main.1300
https://ieeexplore.ieee.org/document/1284395
https://arxiv.org/abs/2309.05519v2
https://arxiv.org/abs/2309.05519v2
https://arxiv.org/abs/2408.12528v1


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Zhiyang Xu, Trevor Ashby, Chao Feng, Rulin Shao, Ying Shen, Di Jin, Qifan Wang, and Lifu
Huang. Vision-flan:scaling visual instruction tuning, Sep 2023. URL https://vision-flan.
github.io/.

Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang, Arun
Babu, Binh Tang, Brian Karrer, Shelly Sheynin, Candace Ross, Adam Polyak, Russell Howes, Vasu
Sharma, Puxin Xu, Hovhannes Tamoyan, Oron Ashual, Uriel Singer, Shang-Wen Li, Susan Zhang,
Richard James, Gargi Ghosh, Yaniv Taigman, Maryam Fazel-Zarandi, Asli Celikyilmaz, Luke
Zettlemoyer, and Armen Aghajanyan. Scaling autoregressive multi-modal models: Pretraining and
instruction tuning, 2023.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin
Choi. MERLOT: Multimodal neural script knowledge models. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=CRFSrgYtV7m.

Yan Zeng, Xinsong Zhang, Hang Li, Jiawei Wang, Jipeng Zhang, and Wangchunshu Zhou. X 2-vlm:
All-in-one pre-trained model for vision-language tasks. arXiv preprint arXiv:2211.12402, 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. IEEE International Conference on Computer Vision, 2023. doi: 10.1109/
ICCV51070.2023.01100.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yugang Jiang, and Xipeng Qiu.
Anygpt: Unified multimodal llm with discrete sequence modeling. ArXiv, abs/2402.12226, 2024.
URL https://api.semanticscholar.org/CorpusID:267750101.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities,
2023a.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Advances in Neural Information Processing Systems,
36, 2024.

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified speech
tokenizer for speech language models, 2023b.

Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
Llavar: Enhanced visual instruction tuning for text-rich image understanding. arXiv preprint
arXiv:2306.17107, 2023c.

Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and
Xiangyu Yue. Meta-transformer: A unified framework for multimodal learning. arXiv preprint
arXiv: 2307.10802, 2023d.

Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng
Wang, Wenjuan Han, and Baobao Chang. Mmicl: Empowering vision-language model with
multi-modal in-context learning. ArXiv preprint, abs/2309.07915, 2023.

Kaizhi Zheng, Xuehai He, and Xin Eric Wang. Minigpt-5: Interleaved vision-and-language generation
via generative vokens, 2023.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model. arXiv preprint arXiv: 2408.11039, 2024. URL
https://arxiv.org/abs/2408.11039v1.

Wangchunshu Zhou, Yan Zeng, Shizhe Diao, and Xinsong Zhang. VLUE: A multi-task multi-
dimension benchmark for evaluating vision-language pre-training. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 27395–27411. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/zhou22n.html.

24

https://vision-flan.github.io/
https://vision-flan.github.io/
https://openreview.net/forum?id=CRFSrgYtV7m
https://api.semanticscholar.org/CorpusID:267750101
https://arxiv.org/abs/2408.11039v1
https://proceedings.mlr.press/v162/zhou22n.html
https://proceedings.mlr.press/v162/zhou22n.html


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae
Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-scale
corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A PRE-TRAINING DATA

Pre-training Data Sources. The pre-training data sources involve six types:

1. Image-text paired data: SBU (Ordonez et al., 2011), CC3M (Sharma et al., 2018), LAION-
COCO (LAION, 2022), and JourneyDB (Pan et al., 2023), where JourneyDB only serves
for image generation.

2. Language-only data: RefinedWeb (Penedo et al., 2023).

3. Image-text interleaved data: OBELICS (Laurençon et al., 2023), MMC4-core-ff (Zhu et al.,
2023).

4. Video-text paired data: WebVid-10M (Bain et al., 2021).

5. Video-text interleaved data: HowTo-100M (Miech et al., 2019), Youtube-Temporal-
180M (Zellers et al., 2021).

6. Speech-text paired data: Libriheavy (Kang et al., 2023).

Pre-training Data Processing. We have different data processing procedures for different data
types illustrated in §A following Emu (Sun et al., 2023c) and Qwen-VL (Bai et al., 2023):

1. Image-text paired data: we remove pairs with more than 2:1 aspect ratio or smaller than
224 × 224 resolution of the image. We remove pairs with more than 0.27 CLIP scores.
We remove non-English pairs. We randomly place the image or text at the forefront for
generating captions based on images and vice versa.

2. Language-only data: we use the same data processing pipeline as used in Yi (AI et al., 2024).

3. Image-text interleaved data: we filter the data using a CLIP score threshold of 0.25, and
follow the same procedure as illustrated in Emu (Sun et al., 2023c).

4. Video-text paired data: we randomly place the frames or text at the forefront for generating
captions based on frames and vice versa. 60% of the pairs are text-to-video, while 40% of
the pairs are video-to-text. We sample 4 to 8 frames of each video for training according to
the text lengths.

5. Video-text interleaved data: We first use PySceneDetect to extract key frames from the
video based on scene changes, following the practice of Stable Video Diffusion (Blattmann
et al., 2023). Then, for each video clip between two key frames, we extract a central frame
for textual caption generation with BLIP-2 (Li et al., 2023b). Additionally, the video clips
between key frames are processed using ASR (automatic speech recognition) tools to extract
subtitles. The ASR text and captions are then integrated and refined using Yi-34B-Chat (AI
et al., 2024), resulting in a single text segment. These text segments, along with the key
frames and central frames, form the video-text interleaved data.

6. Speech-text paired data: we remove speechs with more than 15 seconds.

B PRE-TRAINING DETAILS

Hyperparameters. We enable Flash Attention (Dao et al., 2022; Dao, 2023) during pre-training.
Gradient clipping is set to 1.0 for all stages. The maximum sequence length for training is 2800
tokens. We use a cosine learning rate scheduler with a peak learning rate of 3e-5 and a warmup ratio
of 0.03. The optimizer used is AdamW (Loshchilov & Hutter, 2017).

Prompt Templates. The prompt template is only necessary for paired datasets. For image-text
paired data, we use the prompt templates of “{image} The caption of this image is: {caption}” and
“Please generate an image of “{caption}”: {image}”. For video-text paired data: we use the prompt
templates of “Please describe the following video: {image} {description}” and “Please generate a
video for “{description}”: {video}”. For speech-text paired data: we use the prompt templates of
“{speech} Transcribe this speech: {transcription}” and “Please generate a speech of “{transcription}”:
{speech}” during Stage I and Stage II. While for Stage III, we change the ASR prompt template into
‘{speech} The transcription of this speech is: {transcription}”.
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C SUPERVISED FINE-TUNING DETAILS

Table 9: Supervised Fine-Tuning Data. “ICL” denotes In-Context Learning, and “CoT” denotes
Chain of Thought.

Task Dataset

Language Only OpenHermes (Teknium, 2023)

Multimodal ICL MMICL (Zhao et al., 2023)

Multimodal CoT ScienceQA (Lu et al., 2022)

Chart Understanding Geo170K (Gao et al., 2023)

Instructional Image
Generation InstructPix2Pix (Brooks et al., 2023), MagicBrush (Zhang et al., 2024)

ASR LibriSpeech (Panayotov et al., 2015), GigaSpeech (Chen et al., 2021),
Common Voice (Ardila et al., 2020)

Video Dialogue VideoChat2-IT (Li et al., 2023c)

Image QA

Vision-Flan (Xu et al., 2023), VizWiz (Gurari et al., 2018),
LAION-GPT4V6, LLaVAR (Zhang et al., 2023c),

OCR-VQA (Mishra et al., 2019), VQA (Goyal et al., 2016),
TextVQA (Singh et al., 2019), OK-VQA (Marino et al., 2019),

Mantis-Instruct (Jiang et al., 2024)

Speech Generation SpeechInstruct (Zhang et al., 2023a)

Speech Understanding SpeechInstruct (Zhang et al., 2023a)

Image Captioning Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

Descriptive Image
Generation Flickr30K (Plummer et al., 2015), MS-COCO (Lin et al., 2014)

TTS GigaSpeech (Chen et al., 2021), Common Voice (Ardila et al., 2020)

Video Generation MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011b)

Video Understanding MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011b),
MSVD-QA (Chen & Dolan, 2011a), MSRVTT-QA (Xu et al., 2017)

Visual Storytelling VIST (Huang et al., 2016)

Supervised Fine-Tuning Data. As shown in Table 9, we use 16 tasks with 34 datasets for a
comprehensive supervised fine-tuning.

Prompt Templates. The chat template is the same as used in Yi (AI et al., 2024). The system
prompt is unified as: “You are MIO, an AI assistant capable of understanding and generating images,
text, videos, and speech, selecting the appropriate modality according to the context.” except for
speech generation and TTS whose system prompts are “You are MIO, an AI assistant capable of
understanding images, text, videos, and speech, and generating speech. Please respond to the user
with speech only, starting with <spch> and ending with </spch>.” to avoid randomness of the output
modality.

Hyperparameters. Similar to pre-training (c.f., Appendix B), we enable Flash Attention (Dao
et al., 2022; Dao, 2023) during supervised fine-tuning. Gradient clipping is set to 1.0. The maximum
sequence length for training is 2800 tokens. We use a cosine learning rate scheduler with a peak
learning rate of 3e-5 and a warmup ratio of 0.03. The optimizer used is AdamW (Loshchilov &
Hutter, 2017).

D EVALUATION DETAILS.

Hyperparameters. The decoding strategies and hyperparameters are quite important for a superior
performance. As shown in Table 10, we use different sets of parameters for different output modalities.
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Table 10: Decoding Hyperparameters.
Output Modality Text Image Speech Video

Beam size 5 1 1 1
Do Sampling False True True True

Top-P - 0.7 0.7 0.7
Repetition Penalty 1.0 1.0 1.15 1.15

Temperature 1.0 1.0 1.0 1.0
Guidance Scale 1.0 1.0 1.0 1.0

Table 11: Prompt templates used for evaluating instruction-tuned models.
Task Prompt Template

Image Captioning Provide a one-sentence caption for the provided image. {image}

Image QA (We use the prompt templates in LMMs-Eval (Li* et al., 2024)).

Image Generation Please generate an image according to the given description.
{description}

ASR Please transcribe this speech.{speech_token}

TTS Please generate a speech according to the given transcription. Start
with <spch>. {transcription}

Text-only The following are multiple choice questions (with answers) about
{subject} {question}

Video QA

The goal is to use the visual information available in the image to
provide an accurate answer to the question. This requires careful
observation, attention to detail, and sometimes a bit of creative

thinking.{video} Question: {question} Answer:

Prompt Templates. The prompt templates used for evaluating pre-training checkpoints are the
same as used during pre-training. For SFT checkpoint evaluation, we list the prompt templates in
Table 11.

E MORE EXPERIMENTS

E.1 IMAGE GENERATION EVALUATION

We compute two additional automatic metrics for evaluating image generation, i.e., SSIM (Wang
et al., 2004) and Aesthetic Predictor v2.57 for the evaluation of structural integrity and aesthetics,
respectively. SSIM (Structural Similarity Index Measure) evaluates the perceptual similarity between
the generated images and the ground-truth images, focusing on luminance, contrast, and structure,
with scores ranging from -1 (dissimilar) to 1 (identical). Aesthetic Predictor V2.5 is a SigLIP (Zhai
et al., 2023)-based predictor that evaluates the aesthetics of an image on a scale from 1 to 10 (10 is the
best). In addition, we randomly select 100 image descriptions from MS-COCO test set, and used each
model to generate images accordingly for human preference evaluation. We ask 3 annotators to rank
3 images generated by the 3 models: “given the image description, which image is preferred?” The
average ranking of MIO’s, AnyGPT’s, and Emu’s generated images are 1.2 (MIO), 2.9 (AnyGPT),
1.9 (Emu). MIO aligns the best with the human preference. The percentage agreement between the
three annotators (calculated as the number of cases with identical rankings by all annotators divided
by 100) is 82.3%, indicating a high consistency in the human evaluation.
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Dataset MS-COCO Flickr30K MS-COCO Subset
Metric SSIM (↑) Aesthetic (↑) SSIM (↑) Aesthetic (↑) Human Avg. Ranking (↓)

Emu 0.1749 3.733 0.1451 3.893 1.9
AnyGPT 0.1960 3.954 0.1585 4.251 2.9

MIO 0.2307 4.019 0.1727 4.326 1.2

Table 12: Image generation evaluation by SSIM, Aesthetic Predictor V2.5, and human preference.

Model Supported Workflow Content Score (1-5 points) (↑)

MIO s2s 1.4
LLaMA-Omni

(Fang et al., 2024) s2t→t2s 2.4

AnyGPT s2t→t2s 1.8

Table 13: Speech-to-Speech performance. “s2s” means “speech-to-speech”, while “s2t” and “t2s”
denote “speech-to-text” and “text-to-speech”, respectively.

E.2 SPEECH-TO-SPEECH EVALUATION

Since there is a lack of speech to speech evaluation benchmarks, we randomly sample some conversa-
tions from the moss-002-sft dataset8 and convert them into speech-to-speech format. Following the
evaluation procedures outlined in LLaMA-Omni (Fang et al., 2024), we use the content score metric
obtained from GPT-4o (OpenAI et al., 2024) to assess whether the model’s response effectively
addresses the user’s instructions. The results are shown in Table 13.

Though the content score of MIO is slightly lower than LLaMA-Omni and AnyGPT, both LLaMA-
Omni and AnyGPT first generate text replies and then convert these into voice. However, our model,
MIO, is capable of directly generating speech responses to speech queries.

E.3 TTS EVALUATION

Model GLOBE LibriSpeech test-clean
WER (↓) Speech Similarity (↑) WER (↓) Speech Similarity (↑)

MIO 9.8 67.8 10.3 75.1
AnyGPT 27.9 67.3 28.1 71.3

Table 14: More automatic evaluations for the TTS performance.

We select two additional benchmarks, LibriSpeech test-clean (Panayotov et al., 2015) and
GLOBE (Wang et al., 2024b), to evaluate the performance of TTS between our model and AnyGPT.
For fair comparison, we don’t specify the input voice prompt during evaluation of MIO and AnyGPT.
WER (Word Error Rate) and speaker similarity are employed as the automatic metrics. The results
are shown in Table 14. The results show that MIO performs significantly better than AnyGPT on
both WER and speaker similarity across both benchmarks.

Table 15: Human evaluation
for the TTS performance.

MIO Win 54%
Tie 25%

MIO Lose 21%

Additionally, we conduct a human evaluation to assess the speech
quality of the outputs from MIO and AnyGPT. In this evaluation,
participants are provided with the target speech, the speech gener-
ated by AnyGPT, and the speech generated by our model. They
are tasked with determining which one sounded more natural and
closer to the target speech. Evaluators could choose one of the two
generated speeches or indicate that they find them equally natural.

7https://github.com/discus0434/aesthetic-predictor-v2-5?tab=
readme-ov-file

8https://huggingface.co/datasets/fnlp/moss-002-sft-data
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Figure 3: Loss curves of pretraing stages.

Each evaluation is rated by three independent human evaluators, and we report the average scores.
The results are shown in Table 15. MIO significantly outperforms AnyGPT in the human evaluation,
consistent with the results from the automatic evaluation.

E.4 LOSS CURVES

We plot the loss curves for each stage in Figure 3. We can observe that when introducing a new
data type (i.e., image-text interleaved data) in stage 2, the training loss suddenly increases. However,
in the third pretraining stage, i.e., the speech-enhancement stage, the training loss transitions more
smoothly. Despite the fluctuations in loss between stages, which do have some impact on downstream
performance during the fluctuation periods, we find that with continued training, the model’s loss
quickly recovers to its previous convergence level and continues optimizing effectively.

E.5 MORE DEMONSTRATIONS.
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"Mike and Cheryl's Wedding" 
"Cheryl Leigh Jenkins and Michael David Nelson were married on Sunday, April 13, 2003, at

the Mountain Valley Chapel in Pigeon Forge, TN, in a really beautiful ceremony. They blended
their families from former marriages.".

Everyone came out
for the wedding.

Afterward everyone
celebrated by

throwing rice all over
each other.

The bride wore a long
dress that was

very pretty.

Everyone sat down
before they
walked out.
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How does photosynthesis work in plants?

A plant is seen growing and expanding its leaves as it uses sunlight for photosynthesis. this
process involves capturing light energy from the sun through chlorophyll, which then produces 
glucose (sugar) through carbon dioxide conversion. additionally, oxygen is released during the
process, helping support other life forms on earth.

                                 The image shows many different stages of growth throughout various         
                                  parts of the leaf, with green spots indicating the presence of chlorophyll     
                                  cells that absorb sunlight for photosynthesis.

 
                                 Finally, the energy produced by photosynthesis

  powers the plant's survival and supports other
  organisms in the ecosystem around it.

Overall, the entire scene illustrates the importance of photosynthesis
in supporting both plant growth and ecological balance. 
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Make the wolf a grizzly bear
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Make it a photograph.

What is the weather like today?🔊

How do you praise spring?
🔊

   Cloudy with a chance of rain. 

I love the flowers in bloom!

🔊

🔊

How to make a pizza, from preparing the ingredients to baking it at every step.

When I made my big
pepperoni pizza for

dinner last night,
all I needed

was some dough that
looked like cornbread

and toppings.

The whole process
went really well and
by now both pizzas
were done as they

had been left to bake
nicely. 

First I took a bowl of
flour out on the table.
After I added salt in a 
spoon and then two
tablespoons of milk

along with 2
teaspoons of oil

mixed until the dough
came together easily.

While waiting for the
dough to double, I got

a nice thick crust
going on another pan
but this one would be
topped with tomato

sauce instead of
cheese. 
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Figure 4: Demonstrations of MIO’s advanced abilities. Yellow : inputs; Green : outputs.
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Bird eye panoramic view of busiest Asian cargo port with hundreds of ships loading export and
import goods and thousands of containers in harbor.
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Life isn't about
waiting for the storm

to pass. It's about
learning to dance in

the rain.

Hundreds of people
gathered around

looking at
motorcycles.
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The Peter and Paul fortress on a winter morning. Aerial view.
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A train is parked at a
train station.

A man in a white
shirt is taking a

picture of a pastry.
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      They seem very ignorant poor things
said another in reply

🔊

      The queen gazed upon our friends with
evident interest.

🔊

 \"They seem very ignorant poor things,\"
said another in reply.

The queen gazed upon her friends with
evident interest.

🎥
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Even so I was fortunate, for had they 
     gained the cave before I did, they would

have had me at their mercy.

🔊

      "Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. I am not a weak old
man!"

🔊

Even so I was fortunate, for had they
gained the cave before I did, they would

have had me at their mercy.

"Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. 
I am not a weak old man!"
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      They seem very ignorant poor things
said another in reply

🔊
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Even so I was fortunate, for had they 
     gained the cave before I did, they would

have had me at their mercy.

🔊

      "Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. I am not a weak old
man!"

🔊

Even so I was fortunate, for had they
gained the cave before I did, they would

have had me at their mercy.

"Never!" she answered firmly. "I will
denounce your father!" "You can't frighten

me with such stuff. 
I am not a weak old man!"

Figure 5: Demonstrations of MIO’s basic abilities. Yellow : inputs; Green : outputs.
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  Please solve the closed choice problem with detailed explanation.
  Which property do these two objects have in common?
  A. colorful    B. stretchy

  The stretchy property is part of both object descriptions. Both descriptions mention that each     
  item can be stretched. So, the stretchy property is shared by both objects.
  The answer is B).
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g    Include information in your caption that is specific to image 0, and avoid using generic or       
   ambiguous descriptions.

One cow separates from the
rest othe group to go near
the fence
<image 0> <image 1>

 

  Be specific and detailed in your description of image 1, but also try to capture the essence of   
  the image 1 in a succinct way. 

A truck with two motorcycles parked on its flatbed trailer.

Figure 6: Multimodal Chain-of-Thought and Multimodal In-Context Learning Demos. Yellow :
inputs; Green : outputs.
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