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Abstract

Question-answering (QA) systems powered by
Large Language Models (LLMs) increasingly
enable interactive access to essential informa-
tion across diverse domains. However, the
robustness of these systems to variations in
linguistic style, such as differences in read-
ing level, formality, or domain-specific termi-
nology, remains underexplored. To systemat-
ically address this gap, we propose the Style
Perturbed Question Answering (SPQA) frame-
work. SPQA systematically perturbs original
questions to produce linguistically diverse vari-
ants and evaluates model responses to both orig-
inal and perturbed queries based on correctness,
completeness, coherence, and linguistic adapt-
ability. Given the critical importance of acces-
sible and medically accurate health informa-
tion, we specifically apply SPQA to consumer
health QA. Using a scalable evaluation pipeline
combining automated style-transfer methods
with a rigorously validated GPT-40-based auto-
mated evaluation approach, we benchmark sev-
eral state-of-the-art LLMs. Our results demon-
strate substantial performance declines under
realistic stylistic perturbations, highlighting sig-
nificant challenges related to equity, reliability,
and robustness in consumer-facing QA systems,
especially in sensitive domains like healthcare.

1 Introduction

The integration of Large Language Models (LLMs)
into consumer-facing question-answering (QA) sys-
tems has enabled new, interactive ways for users to
access essential information across a broad range
of contexts and domains (Yu et al., 2024; Chiang
et al., 2024; He et al., 2025). These models inter-
pret and respond to user queries, providing relevant
advice and information. However, a substantial
challenge remains: users frequently pose questions
using diverse tones and linguistic styles, shaped
by factors such as emotional state, cultural back-
ground, and varying domain literacy (Epner and
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Figure 1: Example of the Style Perturbed Question An-
swering (SPQA) task. An original consumer health
question is linguistically transformed into a specified
style, creating a modified QA task. The generated an-
swer (to this modified question) is then evaluated against
the gold standard answer (to the original question) based
on four criteria: correctness, completeness, coherence
and fluency, and linguistic adaptability

Baile, 2012; Vela et al., 2022). This phenomenon
is especially pronounced in the medical domain,
where a broad and heterogeneous audience gives
rise to even greater variability in tone (Wang and
Zhang, 2024).

Prior research has demonstrated that demo-
graphic attributes such as gender, race, and age can
lead to disparities in the quality of LLM-generated
responses (Qu and Wang, 2024; Gosavi et al., 2024;
Shin et al., 2024). Similarly, linguistic variations,
including informal language and demographic-
specific paraphrasing, adversely affect model com-



prehension, leading to inconsistent interpretations
and responses (Arora et al., 2025). Additionally,
LLMs are known to experience performance degra-
dation when encountering typographical errors, ad-
versarial attacks, and other forms of input pertur-
bations, significantly impairing their reasoning ca-
pabilities (Gan et al., 2024; Li et al., 2024; Wang
etal., 2021). These findings highlight the need for
systematic evaluations to measure LLM robustness
against diverse linguistic inputs, an area that re-
mains underexplored within consumer-facing QA
contexts.

To address this gap, we propose a novel evalua-
tion framework: Style Perturbed Question Answer-
ing (SPQA) (as shown in Figure 1). SPQA system-
atically perturbs questions into predefined stylistic
variations, generates responses to both the origi-
nal and perturbed questions, and evaluates these
responses according to four comprehensive criteria:
correctness, completeness, coherence, and linguis-
tic adaptability. We apply SPQA within the context
of consumer health information, given the criti-
cal importance of medically accurate and reliable
health information. The specific styles explored
in this study include reading level, formality spec-
trum, and domain knowledge and were selected
for their relevance to the medical domain and their
known influence on information accessibility and
health literacy. Our contributions to this research
domain are as follows:

1. Robustness Evaluation Framework: We intro-
duce SPQA, a novel framework to systematically
evaluate LLM robustness against realistic linguistic
variations, an underexplored yet critical aspect of
QA.

2. Automated Evaluation with LLM-Judge: We
leverage GPT-40 as an automated evaluator, exten-
sively validated against expert human annotations,
enabling scalable and reliable QA assessments.

3. Comprehensive LLM Benchmarking: We
benchmark major LLMs (Llama, DeepSeekR1,
Qwen, and Phi) across multiple configurations, re-
vealing their performance sensitivities to linguistic
perturbations.

4. Focus on Consumer Health: We apply SPQA
specifically to consumer health QA, emphasizing
implications for health literacy, accessibility, and
equity in medical information provision.

This study advances the understanding of lin-
guistic robustness in QA systems broadly, with par-
ticular emphasis on critical challenges in consumer
health information contexts. By demonstrating the

susceptibility of current LLMs to realistic linguis-
tic variations, our findings underscore significant
equity concerns related to the accessibility and re-
liability of medical information. The proposed
SPQA framework thus presents key opportunities
to enhance health literacy, promote equitable in-
formation access, and ultimately improve health
outcomes among diverse populations.

2 Related Work

2.1 Open-ended QA Benchmarks for LLMs

LLMs are evaluated using a range of benchmarks
that assess language understanding (Hendrycks
et al.,, 2020; Bommasani et al., 2023), factual
knowledge (Lin et al., 2021; Kwiatkowski et al.,
2019; Thorne et al., 2018), reasoning (Zellers et al.,
2019; Ghazal et al., 2017), and question answer-
ing (Abacha et al., 2017). While QA models fre-
quently use multiple-choice question datasets like
ARC (Clark et al., 2018), benchmarks specifically
targeting open-ended QA for practical, real-world
applications remain limited. Recent benchmarks at
addressing open-ended QA evaluation include MT-
Bench (Bai et al., 2024) for dialogue coherence and
Chatbot Arena (Chiang et al., 2024) for pairwise
response ranking. There are few other open-ended
QA benchmarks as well that focus on complex
question answering (Yen et al., 2023; Prabhu and
Anand, 2024; Shah et al., 2024). Testing the robust-
ness of LL.Ms is also quite common. Few works
use adversarial attacks (Huang et al., 2024; Singh
et al., 2024), while frameworks like RITFIS (Walsh
et al., 2024) evaluate model resilience to broader
input variations.

2.1.1 Consumer Health QA

Medical QA benchmarks prioritize accuracy and
clinical reliability. Notable examples include
MedQA (Jin et al., 2020), which targets clini-
cal reasoning, and PubMedQA (Jin et al., 2019),
which emphasizes biomedical literature synthe-
sis. MedRedQA, the QA dataset we used in ex-
perimentation, evaluates responses to consumer-
driven medical inquiries from Reddit (Nguyen
et al., 2023), making it particularly relevant to our
exploration of consumer health information. Sev-
eral other works have tried to solve the consumer
health QA task (Demner-Fushman et al., 2020; We-
livita and Pu, 2023).



2.2 Evaluation Criteria

General domain QA model evaluation typically as-
sesses correctness, completeness, and coherence
(Yalamanchili et al., 2024; Liu et al., 2023). Medi-
cal QA evaluation additionally considers trustwor-
thiness (Zhu et al., 2020), given the high-six nature
of health-related information. However, the con-
cept of linguistic adaptability, measuring how effec-
tively LLMs align their responses with variations
in tone and style, remains underexplored, highlight-
ing a significant gap addressed by our proposed
SPQA framework.

2.2.1 Automated Metrics and LLM-Judge

Traditional QA metrics like BLEU (Papineni et al.,
2002) and ROUGE-L (Lin, 2004) rely on n-gram
overlap, limiting their ability to capture deeper
semantic nuances. More recent metrics, like
BERTScore (Zhang* et al., 2020), incorporate con-
textual embeddings but primarily measure semantic
similarities in topics and themes rather than infor-
mation accuracy.

LLMs themselves have become increasingly
popular as evaluators due to their demonstrated
alignment with human judgments across bench-
marks. Chatbot Arena (Chiang et al., 2024), MT-
Bench (Bai et al., 2024), and AlpacaEval (Dubois
et al., 2024) utilize LLM-based ranking systems
for dialogue evaluation. Despite evidence showing
models like GPT-4 can reliably assess responses,
significant challenges persist within specialized do-
mains such as medical QA, where factual accuracy
and nuanced interpretation are paramount.

3 Methods

3.1 Dataset

For dataset preparation, we utilized MedRedQA
(Nguyen et al., 2023), a large QA dataset com-
prising 51,000 consumer questions and their corre-
sponding expert answers. We found few questions
to be incomplete and few with missing answers.
We randomly sampled questions that were com-
plete and had clean answers. Since the answers in
the original dataset are expert verified or expert gen-
erated, we used these answers as the gold standard
in our experiments.

The resulting filtered dataset comprises 470
samples, split into two parts: SYSTEM-VAL and
QA-BENCH. In the SYSTEM-VAL subset, each of the
120 samples was assigned one of the eight pertur-
bation types, resulting in 15 instances per perturba-

tion type. These samples were used to validated the
style transfer process and LLM-Judge (see §3.4.1).
The QA-BENCH subset includes 350 unique original
questions, each transformed into all eight stylistic
variations, alongside the original version, totaling
3,150 QA pairs.

3.2 Task Formulation

The primary objective of QA systems is to generate
accurate, informative, and contextually appropriate
responses to user questions. Formally, this QA task
is represented as the mapping function:

f:Q—A ey

where f denotes an LLM-based QA model that
generates an answer A’ given an input question
. The quality of the generated answer is eval-
uated via a scoring function g, which compares
the model-generated answer A’ against a gold-
standard, expert-validated answer A4

g(Q: Agold; Al) (2)

To systematically evaluate how linguistic varia-
tions affect QA performance, we formulate a modi-
fied QA task by linguistically perturbing the origi-
nal question (), generating a transformed question
Q*. The new task now becomes:

st:Q—=Q = f:Q" = A ?3)

consequently, the evaluation function is adjusted
accordingly:

g(Q*a Agolda A/) (4)

Importantly, while Q* differs from the original
question in phrasing, tone, complexity, or style,
the semantic intent remains constant. The gold-
standard answer A 4,4 is based on the original ques-
tion (), emphasizing the necessity to verify the
model-generated answer remains accurate, com-
plete, and linguistically adaptable despite these per-
turbations.

3.3 Automated Style Transfer (AST)

3.3.1 AST Framework

The SPQA framework is broadly applicable across
various QA domains, with the specific linguistic
styles requiring careful selection based on the tar-
get task and domain context. Because relevant
linguistic styles vary significantly by domain, each



Criteria

Definition (This Work)

Prior Work and Their Definition

Correctness

Completeness

Coherence
and Fluency

Linguistic
Adaptability

Measures the factual correctness and accu-
racy of the LLM generated response consid-
ering the gold answer as factually correct.

Evaluates what portion of the question is fully
answered by the LLM-generated response.

Assesses the grammatical correctness and
logical coherence of the generated response.

Measures how well an LLM adjusts its re-
sponse based on variations in tone, formality,
and user expertise while preserving factual-

ity.

(Adlakha et al., 2024; Yalamanchili et al., 2024; Scialom
et al., 2021) define correctness as the factual alignment of
generated responses with ground-truth data in QA tasks.

(Yalamanchili et al., 2024; Xu et al., 2023; Scialom et al.,
2021) examines the comprehensiveness of long-form an-
swers, analyzing whether the responses fully address the
posed questions without omitting essential information.

In literature, coherence is defined as response consistency,
while fluency is defined as grammatical correctness and
naturalness (Zhong et al., 2022).

No prior works systematically define this; our study intro-
duces this criterion to assess LLM robustness to stylistic
perturbations.

Table 1: Evaluation criteria used in this study for the perturbed QA task (See §6 for details)

application of SPQA must identify style dimen-
sions critical to effective communication within
that context.

In this study, we specifically apply SPQA to
consumer health QA, given the critical importance
of providing medically accurate, reliable, and eas-
ily understandable health information to diverse
user populations. To systematically assess QA ro-
bustness within this domain, we selected three lin-
guistic dimensions, for which we identified eight
distinct style variations: reading level, formality
spectrum, and domain-knowledge level (see Table
2). These dimensions were specifically selected for
their relevance to the consumer health context and
their known influence on information accessibility
and health literacy.

For the reading level dimension, we employed
four previously validated sub-categories represent-
ing a wide spectrum of reading complexity levels:
elementary, middle school, high school, and gradu-
ate school (Petersen and Ostendorf, 2007; Balyan
et al., 2020). Variations in formality (formal vs. in-
formal) and domain knowledge (domain expert vs.
layperson) were similarly incorporated to reflect
the realistic range of ways consumers engage with
health information—from casual and accessible to
highly specialized and formal. Additional or alter-
native stylistic dimensions can be integrated based
on the specific QA task or domain context.

The linguistic perturbations were generated via
a zero-shot prompting approach utilizing GPT-4o0.
Given an original question (), the model produced
transformed versions Q* that preserved the seman-
tic intent while varying linguistically according to
the specified stylistic criteria.

3.3.2 AST Validation

We validated each perturbation through a rigor-
ous human validation process involving five health-
informatics graduate students from a reputable uni-
versity in the USA. Each perturbed question Q*
in the SYSTEM-VAL subset was at first doubly anno-
tated and then independently adjudicated for eval-
uation on a 3-point Likert scale using two criteria:

* Style Transfer Success: The degree to which the
intended linguistic transformation (e.g., adjust-
ing formality or reading level) was successfully
implemented.

¢ Meaning Preservation: The extent to which
the original medical meaning and intent of the
question were preserved after perturbation.

During annotation, the annotators were not told
what specific stylistic perturbation was performed
on a given sample. This quality-control step en-
sured that observed performance differences across
perturbations genuinely reflected model sensitiv-
ity to linguistic variations rather than unintended
semantic changes.

3.4 LLM-Judge

A comprehensive and scalable evaluation of LLM-
based QA systems using the SPQA framework re-
quires an automated evaluation approach closely
aligned with human judgments. To achieve this, we
implemented an automated evaluation mechanism
using GPT-40 as an LLM-Judge. Each generated
answer was compared with the gold answer (of the
original question) and assessed based on four crite-
ria: correctness, completeness, coherence and flu-
ency, and linguistic adaptability. Table 1 provides



Domain Category Definition
elementary Text written with very basic vocabulary and simple sentence structures, as used
Grade levels by an elementary school student.
middle Text written with basic but varied vocabulary and slightly longer sentences,
reflecting a middle school student’s style.
high Text featuring advanced vocabulary and complex sentence structures typical of a
high school student.
graduate Text employing specialized terminology and dense, academic sentences charac-
teristic of a graduate student.
Formality spectrum formal Text using precise grammar and elevated word choice appropriate for a profes-
sional report.
informal Text using casual phrasing and contractions common in everyday conversation.

Domain-knowledge
levels

domain-expert

Text incorporating field-specific terms and detailed explanations suited to
subject-matter experts.

layperson

Text using everyday vocabulary and clear explanations geared toward a general
audience.

Table 2: Definitions of each style transfer category

detailed definitions of these criteria. Correctness
measures the factual correctness and accuracy of
the response, considering the gold-standard answer
as factually correct. Completeness evaluates what
portion of the question is fully addressed by the
generated answer. Coherence and fluency assesses
the grammatical correctness and logical coherence
of the generated answer. These three criteria are
widely used in literature. Linguistic adaptability,
a new criterion introduced in this study, evaluates
how effectively a system adjusts the tone, formal-
ity, and style of its responses to align with the lin-
guistic style of the input questions. Within health
contexts, including patient-facing applications and
educational tools, misaligned tone or style can un-
dermine comprehension and negatively impact user
experience (Okoso et al., 2025). Incorporating lin-
guistic adaptability into our evaluation allows us to
systematically assess whether QA systems not only
provide accurate and comprehensive answers but
also context-sensitive responses, thereby enhancing
accessibility and usability.

Each criterion is scored using a standardized
3-point Likert scale (1-3). Figure 6 presents the
final zero-shot prompt used in the system. This
prompt was refined based on 20 selected samples
from the SYSTEM-VAL subset. Using these criteria,
we evaluated 10 different LLMs from four different
model families.

3.4.1 Validation of LLM-Judge

To validate the reliability of our automated LLM-
Judge, we conducted a structured annotation study

involving three medical students as annotators. An-
notators evaluated 120 selected QA pairs, each
comprising a stylistically perturbed question (Q*),
the original expert answer (Ay,4), and the model-
generated answer (A’), using the same four evalua-
tion criteria and Likert scale as the LLM-Judge. An-
notation occurred in four rounds: an initial calibra-
tion round, where each annotator evaluated eight
samples followed by a training session to align scor-
ing practices, and three subsequent rounds. The
resulting 120 annotated samples were randomly
split into two subsets, with 20 samples reserved
for refining the LLM-Judge prompt and the remain-
ing 100 samples used for validating its reliability
(see §4.2 for results). This structured process en-
sures rigorous assessment of the automated evalu-
ation mechanism, enabling reliable identification
of LLM strengths and weaknesses across realistic
linguistic variations.

3.5 QA Benchmarking and Exp Setup

Using our SPQA framework, we evaluated ten
state-of-the-art LLM variants from four LLM fam-
ilies: Phi-4, Llama3, Qwen3, and DeepSeek-R1-
Distilled!. Each model generated answers for the
same set of 350 consumer health questions in their
original forms and across eight stylistically trans-
formed variants, resulting in 3,150 total generated
answers per model. Responses were evaluated us-

'For the DeepSeek model, we exclusively utilized locally
downloaded pretrained weights without employing any exter-
nal API, in compliance with institutional and state require-
ments.
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ing GPT-40 as an automated judge, scoring each
answer on four criteria, correctness, completeness,
coherence, and linguistic adaptability, using a 3-
point Likert scale. These 3-point Likert scores
were scaled and normalized to a 0-1 scale for ease
of comparison.

In our experiments, we used zero-shot prompting
to the models using HuggingFace. Therefore, we
did not require any fine-tuning step. We used an
A100 GPU with 80GB VRAM for inference. The
average inference time for the larger models was
5 hours for each variant. For smaller models, the
inference time was around 2 hours per variant.

4 Results

4.1 Style Transfer Validation Results

Figure 2 presents the final adjudicated results from
validating the stylistic transformations applied
specifically to the questions. The results demon-
strate that only 10.0% of the style-transferred ques-
tions did not fully achieve the desired stylistic mod-
ifications, and just 0.8% failed to retain the original
meaning of the question. The high success rate
in this validations confirms that our style transfer
methods consistently preserves meaning and effec-
tively performs the intended linguistic perturbation
on the original questions.

4.2 LLM-Judge Validation Results

Inter-annotator agreement among human annota-
tors, as well as alignment between human annota-
tors and the automated LLM-Judge, was assessed
using Pearson correlation coefficients and Cohen’s
Kappa scores. The observed values indicated mod-
erate agreement (Kuckartz et al., 2013), reflecting
the inherent complexity and subjectivity involved
in evaluating nuanced linguistic adaptations open-
ended QA and medical QA contexts.

Despite modest absolute agreement scores, the

Agreement Pearson Cohen’s
Type Correlation (r) Kappa (k)
Himan (V;g) 0.47 039
GPT40 (11 M-Judge) 0.36 0.33
Human vs. 0.23 0.18

Llama3-70B-Inst.

Table 3: The agreement scores between human experts
and the LLM-Judge are moderate. Human vs human
agreement and human vs LLM-Judge agreement are
quite similar indicating reliability of performance from
the LLM-Judge. For this task, Llama has poor agree-
ment with humans deeming it unsuitable for usage as
an LLM-Judge

consistency between human annotators and the
LLM-Judge indicates that the automated evalua-
tion closely mirrors human judgment. Figure 3
presents the distribution of Likert scores for human
annotators and the LLM-Judge across each evalua-
tion criterion. This comparative analysis supports
the reliability and suitability of the LLM-Judge
for automated evaluation in nuanced medical QA
tasks.

4.3 QA Benchmarking
Overall Degradation Across Styles

Table 4 provides results from the best performing
models from each LLM family (full table in §5).
The table shows the normalized scores for the origi-
nal questions and the performance change for each
stylistic variant compared to the original scores. To
assess the significance of this performance drop,
we performed a paired t-test with the null hypothe-
sis of no performance degradation. Fields marked
with * indicate statistically significant decreases
(p < 0.05). Across all metrics and models there
are statistically significant performance decreases.

Across all models and metrics, the quality of the
answers generated for stylistically altered questions
significantly decreased compared to answers gen-
erated for original questions. These declines were
most prominent for correctness and completeness,
suggesting that models either misinterpreted the
question or failed to provide adequate information.
Linguistic adaptability, a criterion introduced in
our SPQA framework to assess how well answer
style matches question style, also showed substan-
tial drops, suggesting models often fail to adjust
their response style when question phrasing shifts.
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Drop in performance compared to original

Grade Level Formality Spectrum Domain-knowledge

Model Metric Original Elementary Middle High Graduate Informal Formal Layperson Expert
Coherence 0.71 -0.06*  -0.04* -0.05*% -0.08* -0.03*  -0.08* -0.06*%  -0.12%
DS-Llama3-70B+ Completeness 0.5 -0.04*  -0.05* -0.05* -0.07*  -0.04*  -0.05% -0.03*  -0.11*
Correctness 0.62 -0.04*  -0.04* -0.06* -0.07*  -0.04*  -0.06* -0.03*  -0.11%*

Linguistic Ad.  0.63 -0.06*  -0.03* -0.07* -0.13*  -0.03* -0.1* -0.05*  -0.14*

Coherence 0.73 -0.06*  -0.07* -0.05* -0.1*  -0.05*%  -0.09*% -0.07%  -0.12%

DS-Qwen3-32B1 Completeness  0.48 -0.03*  -0.03* -0.04* -0.06% -0.04*  -0.04* -0.04*  -0.07*
Correctness 0.61 -0.05*  -0.04* -0.02* -0.07* -0.03*  -0.07* -0.03*  -0.09%*

Linguistic Ad.  0.64 -0.07*  -0.06* -0.03* -0.13* 0.0 -0.11%* -0.05*  -0.11*

Coherence 0.69 -0.03*  -0.03* -0.05* -0.06* -0.02*  -0.07* -0.01*  -0.08%*

Phi4 Completeness  0.44 -0.02%* -0.01 -0.01 -0.05* -0.03*  -0.04* -0.01 -0.05%
Correctness 0.56 -0.02 -0.01 -0.01 -0.04*  -0.02 -0.04* -0.02 -0.05*

Linguistic Ad.  0.66 -0.04*  -0.03* -0.02 -0.08*  -0.01 -0.07* -0.05*%  -0.08%*

Coherence 0.7 -0.06*  -0.05* -0.03* -0.09%* -0.04*  -0.08* -0.04*  -0.09*

Qwen3-32Bf Completeness 0.5 -0.02 -0.03* -0.03* -0.05%  -0.03*  -0.04* -0.03*  -0.08%*
Correctness 0.61 -0.04* -0.01 -0.02* -0.05* -0.03*  -0.04* -0.04*  -0.07*

Linguistic Ad.  0.64 -0.09*  -0.06* -0.06* -0.13*  -0.02 -0.08%* -0.05*%  -0.09%*

Table 4: Normalized mean scores of the best performing models from each family (Rounded to 2 Decimal Places).
Except for a few cases, all models have performed worse in case of the linguistic variants compared to the original.
(f indicates 8-bit quantization). * indicates statistically significance with p < 0.05. (See Figure 5 for full results and

Figures 7, 8, and 9 for significance test results)

In contrast, coherence remained relatively stable,
indicating that models maintain fluent output even
when misinterpreting question intent. This is con-
sistent with the known ability of LLMs to generate
fluent text.

Impact of Linguistic Axes

We further analyzed these performance drops to
identify patterns. Figure 4 presents the average
performance drop across models, computed as the
difference between the mean score on original ques-
tions and the mean score on stylistically altered
variants. The results are grouped into two broader
variants: (1) a simplified and informal style, aver-
aging elementary, informal, and layperson variants;
and (2) a formal and specialized style, averaging
graduate, formal, and expert variants, representing
advanced and specialized language usage.

As represented in the figure, the overall degrada-
tion in performance is higher in formal and special-
ized styles compared to simple and informal styles.
This result was consistent for all ten LLM variants
that we used in our experimentation.

Comparative Model Performance

All ten models demonstrated susceptibility to style-
induced performance degradation, although the
degree varied by model size and training ap-
proach. The largest models in each family achieved
the highest scores but larger models were more
vulnerable to performance drop. For example,
DeepSeek-R1-Distilled-L1ama3-70B achieved
the highest baseline scores on original questions
but experienced disproportionately greater perfor-
mance drops under stylistic perturbations. Sim-
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Figure 4: Average performance drop (across 4 metrics) for evaluated LLMs, indicating that larger models are
more susceptible to performance degradation. Performance decline is more pronounced for formal and specialized

stylistic variants compared to simplified styles

ilarly, DeepSeek-R1-Distilled-L1lama3-7@B ex-
perienced marked losses under expert and formal
styles, indicating brittleness despite its size. In
comparison, L1ama3-70B-Instruct, though simi-
lar in size, performed marginally better on linguis-
tic adaptability, potentially due to its additional
instruction tuning.

Mid-sized models like Phi-4 exhibited more sta-
ble performance across styles, albeit with lower
baseline performance. Qwen3-0.6B, the smallest
model, had the smallest absolute drop but also the
lowest original performance. Interestingly, its re-
silience to informal and layperson styles may re-
flect its reduced specialization, leading to more
consistent outputs (Yang et al., 2025).

These observations suggest that model scale
and advanced training techniques (like Reinforce-
ment Learning with Human Feedback (RLHF)),
although beneficial for original phrasing, may am-
plify sensitivity to stylistic shifts. Instruction tun-
ing may reinforce specific interaction norms that
break down under atypical inputs.

Implications for Equity and Robustness

These results raise pressing concerns regarding
QA robustness in real-world deployments. While
the largest performance drops occurred with for-
mal and expert-style queries, there was still no-
table degradation for simplified and informal styles.
Users with low literacy or non-native speakers may
frame queries in simplified or unconventional ways.
Our findings show that such phrasing, though se-
mantically equivalent, often results in lower answer
quality. Conversely, expert users posing technically
precise questions also receive degraded responses,
an especially problematic outcome in clinical set-

tings.

This dual vulnerability suggests that current
LLMs may be more proficient with specific styles,
likely shaped by standard web-based corpora and
fine-tuning data that emphasize neutral, well-
formed text. As a result, models fail to general-
ize across diverse communication styles, reducing
their utility for a broad population.

5 Conclusion and Future Work

This study introduces the SPQA framework, a sys-
tematic method for evaluating linguistic robustness
in question-answering systems powered by LLMs.
SPQA systematically assesses how stylistic varia-
tions in questions impact QA model performance
across multiple evaluation dimensions. By rigor-
ously validating both the automated style transfor-
mations and the automated evaluation mechanism
against expert human annotation, this work estab-
lishes a robust foundation for comprehensive and
scalable robustness evaluation in QA tasks.

While broadly applicable, we applied SPQA to
consumer health QA, revealing vulnerabilities in
current LLMs when processing stylistic variations
reflecting real-world linguistic diversity. These
findings raise concerns about robustness across
diverse populations, particularly affecting those
with limited health literacy. Future research should
extend SPQA to additional domains, including
multimodal inputs, spoken interactions, and low-
resource languages. Performance improvements
may be achieved through adaptive prompting, style-
diverse data augmentation, and patient-centered
metrics. This work underscores the need for robust
evaluation frameworks to ensure equitable access
to reliable information for all.



Limitations

This study has several limitations. First, errors
introduced during the question style-transfer step
could potentially cascade into subsequent stages.
Although validation indicated that stylistic pertur-
bations preserved original question meaning over
99% of the time, occasional failures in achiev-
ing exact stylistic adherence could still impact
downstream results. Second, evaluating the quality
of generated answers using human annotation re-
vealed inherent subjectivity and ambiguity in judg-
ments related to correctness, completeness, coher-
ence, and linguistic adaptability. While the auto-
mated LLM-Judge demonstrated performance com-
parable to human evaluators, systematic errors or
biases inherent to GPT-40 could influence evalu-
ation outcomes, potentially affecting result valid-
ity. Third, the current evaluation is limited to a
single consumer health QA dataset. Additional
experiments across other datasets and application
domains are necessary to fully assess the general-
izability and robustness of the SPQA framework.
Finally, the reliance on a single pretrained model
(GPT-40) for both stylistic perturbations and evalu-
ation may introduce implicit biases or performance
limitations unique to that model, warranting future
assessments with additional models.
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A  LLM Judge Prompts

Since we used a zero-shot LLM-Judge, it was essential to have a rigorously engineered prompt for
different phases of our workflow.

Figure 5 represents the prompt provided to the LLMs to generate the answers to the questions. Figure
6 represents the prompt provided to the LLM-Judge. These were also used as the base instructions for
the annotators validating the LLM-Judge. Keeping the instructions same, we ensured fair ground for the
LLM-Judge and human experts.

° ° Medical QA Evaluation Prompt (USER
MESSAGE)

Evaluate the following QA sample:
Modified Question (Q_mod): {question}
Gold Standard Answer (A_gold): {gold}
Generated Answer (A_gen): {answer}

Figure 5: Prompt for QA Models

L X ) Medical QA Evaluation Prompt (SYSTEM MESSAGE)

You are a helpful assistant that evaluates medical QA samples. For each sample, you must evaluate the generated answer (A_gen) as a response to the modified question (Q_med). Use the gold
standard answer (A_gold) as the medically accurate information regarding the topic. In this QA task, the generated answer (A gen) and the gold standard answer (A gold) may come from
different linguistic distribution. Do not penalize A gen for being linguistically different from A gold.
Use the following four criteria. For each criterion, assign a score from 1 (lowest) to 3 (highest).
1. Correctness: What portion of A_gen is accurate in answering the modified question Qmod? Consider A gold to be medically accurate.
- Score Definitions:
€R3: Considering A_gold as medically accurate, the generated answer is mostly correct in answering Q_mod.
CR2: The generated answer is partially correct, including some medically sound details but missing or misrepresenting key elements needed to fully address Q_mod.
CR1: Comparing with A gold, the generated answer is completely incorrect. It fails to capture the relevant medical information needed to address Q_mod.
2. Completeness: What portion of the queries made in Q_mod are answered by A gen? Do not penalize for incorrect answers.
- Score Definitions:
CM3: A_gen answers the important queries asked in Q_mod.
cH2: The generated answer covers some essential details but omits other essential elements needed for a complete ansuer.
cHl: The generated answer is largely incomplete, missing most of the essential details required to fully address Q mod.
3. Fluency and Coherence: How well is A gen written in terms of language fluency and logical structure?
- Score Definitions:
FC3: The generated answer is highly fluent and logically structured.
FC2: The generated answer is moderately fluent but contains noticeable issues.
FC1: The generated answer is poorly written, with significant grammatical and structural issues.
4. Linguistic Adaptability: How effectively does A_gen adopt the style and tone of the modified question (Q_med)?
- Score Definitions:
LA3: The generated answer fully captures the tone and style of Q_mod.
LA2: The generated answer partially matches the tone or style.
LA1: The generated answer fails to match the tome or style of Q_mod.

Return your evaluation in JSON format as follows:

{
"correctness”: ,
“completeness”: ,
“fluency_and_coherence”: ,
"linguistic_adaptability”:
}

Ensure that your output contains enly the JSON object.

Figure 6: System Prompt for LLM-Judge and instructions for annotators validating the LLM-Judge

B Additional results

B.1 Significance Test

Section 4 mentions that a significance test was performed. Figures 7, 8, and 9 represent heatmaps of the
detailed results from the significance test.
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Figure 8: Paired One-Sided T-Test: Style Variant < Original (Rounded to nearest third decimal place)
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Drop in performance compared to original

Grade Level Formality Spectrum Domain-knowledge

Model Metric Original Elementary Middle High Graduate Informal Formal Layperson Expert
DS-Llama-70Bf  Coherence 0.71 -0.06 -0.04 -0.05 -0.08 -0.03 -0.08 -0.06 -0.12
DS-Llama-70Bf Completeness 0.5 -0.04 -0.05 -0.05 -0.07 -0.04 -0.05 -0.03 -0.11
DS-Llama-70Bf  Correctness 0.62 -0.04 -0.04 -0.06 -0.07 -0.04 -0.06 -0.03 -0.11
DS-Llama-70Bt Linguistic Ad.  0.63 -0.06 -0.03 -0.07 -0.13 -0.03 -0.1 -0.05 -0.14
DS-Qwen-32BT  Coherence 0.73 -0.06 -0.07 -0.05 -0.1 -0.05 -0.09 -0.07 -0.12
DS-Qwen-32Bf Completeness  0.48 -0.03 -0.03 -0.04 -0.06 -0.04 -0.04 -0.04 -0.07
DS-Qwen-32Bf  Correctness 0.61 -0.05 -0.04 -0.02 -0.07 -0.03 -0.07 -0.03 -0.09
DS-Qwen-32Bf Linguistic Ad.  0.64 -0.07 -0.06 -0.03 -0.13 0.0 -0.11 -0.05 -0.11
Llama3-1B Coherence 0.71 -0.04 -0.05 -0.03 -0.08 -0.04 -0.06 -0.06 -0.09
Llama3-1B Completeness  0.41 0.0 0.0 -0.01 -0.02 0.03 -0.03 -0.01 -0.05
Llama3-1B Correctness 0.54 -0.03 -0.01 -0.03 -0.04 -0.01 -0.05 -0.02 -0.06
Llama3-1B Linguistic Ad.  0.67 -0.08 -0.03 -0.04 -0.11 -0.02 -0.07 -0.07 -0.11
Llama3-3B Coherence 0.71 -0.04 -0.05 -0.04 -0.1 -0.04 -0.08 -0.03 -0.11
Llama3-3B Completeness ~ 0.43 -0.04 00 -0.02 -0.05 -0.01 -0.04 -0.01 -0.06
Llama3-3B Correctness 0.54 -0.03 -0.01 -0.01 -0.05 0.0 -0.04 0.0 -0.06
Llama3-3B Linguistic Ad.  0.68 -0.07 -0.06 -0.03 -0.1 -0.01 -0.09 -0.05 -0.12
Llama3-8B Coherence 0.71 -0.05 -0.03 -0.03 -0.08 -0.04 -0.07 -0.06 -0.1
Llama3-8B Completeness  0.43 -0.01 -0.01 -0.02 -0.04 -0.01 -0.03 -0.03 -0.05
Llama3-8B Correctness 0.56 -0.03 -0.02 -0.03 -0.06 -0.01 -0.05 -0.02 -0.07
Llama3-8B Linguistic Ad.  0.66 -0.05 -0.03 -0.04 -0.07 -0.01 -0.07 -0.04 -0.07
Llama3-70B+t Coherence 0.69 -0.04 -0.04 -0.01 -0.06 -0.02 -0.06 -0.03 -0.08
Llama3-70Bf  Completeness  0.45 -0.01 -0.01 -0.01 -0.05 0.0 -0.05 0.0 -0.07
Llama3-70B+t Correctness 0.57 -0.03 -0.03 -0.02 -0.06 -0.01 -0.06 -0.02 -0.07
Llama3-70Bf  Linguistic Ad. 0.67 -0.07 -0.03 -0.03 -0.08 -0.01 -0.08 -0.04 -0.11
Phi4 Coherence 0.69 -0.03 -0.03 -0.05 -0.06 -0.02 -0.07 -0.01 -0.08
Phi4 Completeness  0.44 -0.02 -0.01 -0.01 -0.05 -0.03 -0.04 -0.01 -0.05
Phi4 Correctness 0.56 -0.02 -0.01 -0.01 -0.04 -0.02 -0.04 -0.02 -0.05
Phi4 Linguistic Ad.  0.66 -0.04 -0.03 -0.02 -0.08 -0.01 -0.07 -0.05 -0.08
Qwen3-0.6B Coherence 0.69 -0.04 -0.03 -0.01 -0.07 -0.03 -0.07 -0.06 -0.09
Qwen3-0.6B Completeness  0.46 -0.02 -0.02 -0.01 -0.03 -0.03 -0.01 0.0 -0.07
Qwen3-0.6B Correctness 0.59 -0.05 -0.02 -0.02 -0.06 -0.01 -0.05 -0.02 -0.08
Qwen3-0.6B Linguistic Ad.  0.63 -0.08 -0.04 -0.03 -0.09 -0.02 -0.07 -0.06 -0.11
Qwen3-4B Coherence 0.72 -0.07 -0.05 -0.06 -0.1 -0.03 -0.1 -0.04 -0.12
Qwen3-4B Completeness  0.48 -0.02 -0.04 -0.03 -0.05 -0.04 -0.05 0.0 -0.07
Qwen3-4B Correctness 0.62 -0.04 -0.04 -0.03 -0.08 -0.04 -0.06 -0.03 -0.1
Qwen3-4B Linguistic Ad.  0.65 -0.09 -0.07 -0.05 -0.11 -0.01 -0.09 -0.06 -0.13
Qwen3-32Bt Coherence 0.7 -0.06 -0.05 -0.03 -0.09 -0.04 -0.08 -0.04 -0.09
Qwen3-32Bt Completeness 0.5 -0.02 -0.03 -0.03 -0.05 -0.03 -0.04 -0.03 -0.08
Qwen3-32BY Correctness 0.61 -0.04 -0.01 -0.02 -0.05 -0.03 -0.04 -0.04 -0.07
Qwen3-32Bt Linguistic Ad.  0.64 -0.09 -0.06 -0.06 -0.13 -0.02 -0.08 -0.05 -0.09

Table 5: Full results table. { indicates models with 8-bit quantization.

B.2 Full Result
Table 5 represents the complete results table with all the models we have used in our experimentation. A

shorter and more concise version of this table has been presented in the main paper.

C Declaration of use of Generative Al
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Figure 9: Paired One-Sided T-Test: Style Variant < Original (Rounded to nearest third decimal place)
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