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ABSTRACT

This paper aims to clearly distinguish between Stochastic Gradient Descent with
Momentum (SGDM) and Adam in terms of their convergence rates. We demon-
strate that Adam achieves a faster convergence compared to SGDM under the
condition of non-uniformly bounded smoothness. Our findings reveal that: (1)
in deterministic environments, Adam can attain the known lower bound for the
convergence rate of deterministic first-order optimizers, whereas the convergence
rate of Gradient Descent with Momentum (GDM) has higher order dependence
on the initial function value; (2) in stochastic setting, Adam’s convergence rate
upper bound matches the lower bounds of stochastic first-order optimizers, consid-
ering both the initial function value and the final error, whereas there are instances
where SGDM fails to converge with any learning rate. These insights distinctly
differentiate Adam and SGDM regarding their convergence rates. Additionally,
by introducing a novel stopping-time based technique, we further prove that if
we consider the minimum gradient norm during iterations, the corresponding con-
vergence rate can match the lower bounds across all problem hyperparameters.
The technique can also help proving that Adam with a specific hyperparameter
scheduler is parameter-agnostic, which hence can be of independent interest.

1 INTRODUCTION

Among various optimization techniques, the Adam optimizer Kingma & Ba (2014); Loshchilov &
Hutter (2019) stands out due to its empirical success in a wide range of deep learning applications,
especially for pre-training large foundation models with enormous data Touvron et al. (2023); Brown
et al. (2020); Zhang et al. (2022a); Rae et al. (2021); Chowdhery et al. (2022); Du et al. (2021).
This popularity of Adam can be attributed to its adaptive learning rate mechanism, which smartly
adjusts the step size for each parameter, allowing flexible and robust learning rate choices. Adam’s
versatility is further highlighted by its consistent performance in training various kinds of models,
making it a preferred optimizer in both academic and industrial settings Schneider et al. (2022).
Its empirical success extends beyond standard benchmarks to real-world challenges, where it often
delivers state-of-the-art results. This track record solidifies Adam’s position as a fundamental tool for
deep learning practitioners.

Exploring the theoretical foundations of the Adam optimizer, particularly why it often outperforms
traditional optimizers like Stochastic Gradient Descent with Momentum (SGDM), is an intriguing
yet complex task. Understanding Adam’s convergence behavior is challenging, especially in settings
defined by standard convergence rate analysis. In these settings, assumptions include uniformly
bounded smoothness and finite gradient noise variance. Current research indicates that under these
conditions, SGDM can attain the lower bound of the convergence rate for all first-order optimizers
Carmon et al. (2017). This finding implies that, theoretically, Adam’s convergence rate should not
exceed that of SGDM. This theoretical result contrasts with practical observations where Adam
frequently excels, presenting a fascinating challenge for researchers. It highlights the need for
more refined theoretical models that can bridge the gap between Adam’s empirical success and its
theoretical understanding.
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Recent research by Zhang et al. (2019) has provided valuable insights into the complexity of neural
network optimization, particularly challenging the assumption of uniform bounded smoothness. Their
observations indicate that smoothness often varies, showing a positive correlation with the norm of
the gradient and experiencing considerable fluctuations during the optimization process. Building on
this, they introduce the (L0, L1)-smooth condition (detailed in our Assumption 1), which posits that
local smoothness can be bounded in relation to the gradient norm. This concept presents an exciting
opportunity to theoretically demonstrate that Adam could potentially converge faster than SGDM.
However, even in the relatively simpler deterministic settings, no study has yet conclusively shown
this to be the case.

To effectively compare the convergence rates of Adam and Stochastic Gradient Descent with Mo-
mentum (SGDM), it’s essential to establish an upper bound on Adam’s convergence rate and a lower
bound for SGDM, and then prove Adam’s superiority. This endeavor faces several challenges. First,
the known lower bound for SGDM’s convergence rate is only available in deterministic settings
without momentum Zhang et al. (2019); Crawshaw et al. (2022). Moreover, this result is based on a
scenario where the counter-example objective function is selected after fixing the learning rate. This
procedure deviates from more common practices where the learning rate is adjusted after defining
the objective function Drori & Shamir (2020); Carmon et al. (2017); Arjevani et al. (2022), casting
doubts on the standard applicability of this lower bound. Secondly, for Adam, the current assumptions
required to derive an upper bound for its convergence rate are quite strict. These include assumptions
like bounded adaptive learning rates or deterministically bounded noise Wang et al. (2022); Li et al.
(2023a). However, even under these constraints, the convergence rates obtained for Adam are weaker
than those of algorithms like clipped SGDM Zhang et al. (2019).

These complexities hinder a straightforward comparison between the convergence rates of Adam and
SGDM, highlighting a significant gap in the theoretical understanding that remains to be bridged.

Our contributions. In this paper, we aim to bridge the gap and summarize our contributions as
follows.

• We separate the convergence rate of Adam and SGDM under (L0, L1)-smooth condition
both in the deterministic setting and in the stochastic setting.

– In the deterministic setting, for the first time, we prove that under the (L0, L1)-smooth
condition, the convergence rate of the Adam optimizer can match the existing lower
bound for first-order deterministic optimizers, up to numerical constants. Additionally,
we establish a new lower bound for the convergence rate of GDM, where one is allowed
to tune the learning rate and the momentum coefficient after the problem is fixed.
The lower bound exhibits a higher order dependence on the initial function value gap
compared to the upper bound of Adam. This distinction clearly separates Adam and
GDM for the deterministic setting.

– In the stochastic setting, for the first time, we prove that under the (L0, L1)-smooth
condition, the convergence rate of Adam matches the existing lower bound for first-
order stochastic optimizers regarding the initial function value f(w1)−f∗ and the final
error ε. In contrast, counterexamples exist where SGDM fails to converge, irrespective
of the learning rate and momentum coefficient. These findings distinctly separate the
convergence properties of Adam and SGDM in stochastic settings.

• With the aid of a novel stopping time based technique, we further demonstrate that the
convergence rate of minimum error point of Adam can match the lower bound across all
problem hyperparameters. We demonstrate that such a technique can be of independent
interest by proving that Adam with specific scheduler is parameter-agnostic based on the
stopping time.

2 RELATED WORKS

Convergence analysis under non-uniform smoothness. Observations from empirical studies
on deep neural network training indicate that local smoothness can vary significantly throughout
the optimization process. In response to this, Zhang et al. (2019) introduced the (L0, L1)-smooth
condition, which posits that local smoothness can be bounded by a linear function of the gradient norm.
Subsequent works have extended this concept by generalizing the linear function to polynomials Chen
et al. (2023); Li et al. (2023a), or to more general functions Mei et al. (2021). Under non-uniform
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smoothness, convergence properties of various optimizers have been studied. For instance, upper
bounds on the convergence rate have been established for optimizers such as Clipped SGDM Zhang
et al. (2020), sign-based optimizers Jin et al. (2021); Hübler et al. (2023); Sun et al. (2023), AdaGrad
Faw et al. (2023); Wang et al. (2023b), variance-reduction methods Reisizadeh et al. (2023); Chen
et al. (2023), and trust-region methods Xie et al. (2023). However, research on lower bounds has
been comparatively limited, with results primarily focusing on Gradient Descent.

Convergence analysis of Adam. The development of convergence analysis for Adam has been quite
tortuous. While Adam was originally proposed with a convergence guarantee Kingma & Ba (2014),
subsequent analysis by Reddi et al. (2018) pointed out flaws in this initial analysis and provided
counterexamples claiming that Adam could fail to converge. Only recently, Shi et al. (2021) and
Zhang et al. (2022b) have shown that the counterexamples in Reddi et al. (2018) only rule out the
possibility that Adam can converge problem-agnostically, and it is still possible that Adam can
converge with problem-dependent hyperparameters.

So far, several works have established the convergence of Adam under the L-smooth condition.
Zaheer et al. (2018) proved that Adam without momentum can converge to the neighborhood of
stationary points by additionally assuming that λ is large. De et al. (2018) showed that Adam
without momentum can converge to stationary points but under the strong assumption that the sign of
gradients does not change during the optimization. Zou et al. (2019), Défossez et al. (2022), and Guo
et al. (2021) derived the convergence of Adam by assuming the stochastic gradient is bounded. Shi
et al. (2021) and Zhang et al. (2022b) characterized the convergence of random-reshuffling Adam but
suffer from sub-optimal rates. He et al. (2023) studied the non-ergodic convergence of Adam under
a bounded gradient assumption, while Hong & Lin (2023) provided high-probability guarantees
for Adam under a deterministically bounded noise assumption. A concurrent work by Wang et al.
(2023a) shows that Adam can achieve the lower bound of first-order optimizers with respect to the
final error ε under standard assumptions, but it is unknown whether Adam can match the lower bound
with respect to other problem specifics.

On the other hand, closely related to our work, there are only two works studying the convergence
of Adam under non-uniform smoothness Wang et al. (2022); Li et al. (2023a), both with restricted
assumptions and results. We will provide a detailed discussion in Section 4.

3 PRELIMINARY

Notations. In this paper, we will use asymptotic notations O,Ω,Θ to respectively denote asymptoti-
cally smaller, larger , and equivalent. We also use Õ, Ω̃, Θ̃ to indicate that there is logarithmic factor
hidden. We denote Ft as the filter given by w1, · · · ,wt.

Problem and Algorithm. We study the unconstrained minimization problem minw f(w). We
present the psedo-code of Adam as follows.

Algorithm 1 Adam Optimizer
Input: Stochastic oracle O, learning rate η > 0, initial point w1 ∈ Rd, initial conditioner
ν0 ∈ R+, initial momentum m0, momentum parameter β1, conditioner parameter β2, number of
epoch T
for t = 1 to T do

Generate a random zt, and query stochastic oracle gt = Of (wt, zt)

Calculate νt = β2νt−1 + (1− β2)g
⊙2
t

Calculate mt = β1mt−1 + (1− β1)gt
Update wt+1 = wt − η 1

λ+
√
νt

⊙mt

end for

We would like to highlight that all the analysis in this paper is for λ = 0. This is because λ = 0
means we do not require the adaptive learning rate to be upper bounded (a restrictive assumption
in existing works Li et al. (2023a); Guo et al. (2021)) and is most challenging. The proof can be
immediately extended to λ > 0 without any modification.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Meanwhile, we briefly state the SGDM optimizer as follows: with initial point w1 and initial
momentum m0, the update of t-th iteration of SGDM is given by

mt = βmt−1 + (1− β)gt,wt+1 = wt − ηmt.

Assumptions. In this paper, all the analyses are established under the following two standard
assumptions.

Assumption 1 ((L0, L1)-smooth condition). We assume f is differentiable and lower bounded, and
there exist non-negative constants L0, L1 > 0, such that ∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1

L1
,

∥∇f(w1)−∇f(w2)∥ ≤ (L0 + L1∥∇f(w1)∥)∥w1 −w2∥.

Assumption 2 (Affine noise variance). We assume that the stochastic noise gt is unbiased, i.e.,
E|Ftgt = Gt. We further assume gt has affine variance, i.e., there exists σ0 ≥ 0, σ1 ≥ 1,
E|Ft [∥gt∥2] ≤ σ2

0 + σ2
1∥∇f(wt)∥2.

Assumption 1 is a more general form of (L0, L1)-smooth condition and is equivalent to the Hessian-
bound form Zhang et al. (2019) when Hessian exists. Assumption 2 is one of the weakest assumptions
on the noise in existing literature, and generalizes bounded variance assumption Li et al. (2023b),
bounded gradient assumption Défossez et al. (2022), bounded noise assumption Li et al. (2023a).

4 SEPARATING THE CONVERGENCE RATES OF ADAM AND (S)GD

In this section, we elucidate the disparate convergence rates of Adam and (S)GD under Assumptions
1 and 2, examining both deterministic and stochastic settings. We commence with the deterministic
scenario before delving into the stochastic complexities.

4.1 ANALYSIS FOR THE DETERMINISTIC SETTING

As discussed in the introduction section, to discern the differential convergence rates of deterministic
Adam and GD, it is necessary to establish not only Adam’s upper bound but also GD’s lower bound,
given a consistent set of assumptions. Crucially, these bounds must be sufficiently tight to ensure
that Adam’s upper bound is indeed the lesser. To date, only a couple of studies have addressed
the convergence of deterministic Adam. The first, referenced in Wang et al. (2022), indicates a
convergence rate of O( (f(w1)−f∗)2

ε2 ), which is sub-optimal compared to the classical deterministic
rate of O( f(w1)−f∗

ε2 ) Zhang et al. (2019; 2020) regarding the initial function value gap (f(w1)− f∗).
The second study, Li et al. (2023a), presents a convergence rate that depends polynomially on 1

λ ,
where λ is the small constant introduced to prevent the adaptive learning rate from becoming infinity.
Therefore, their result is only non-vacuous when λ is large, which deviates from practical settings.
Additionally, their bound exhibits an exaggerated dependency on the initial function value gap,
yielding mint∈[T ] ∥∇f(wt)∥ = O( (f(w1)−f∗)3

ε2 ). As we will see later, such dependencies create
upper bounds that surpass the lower bounds of GD, making them unable to serve our purpose. To
overcome these limitations and accurately assess the performance of deterministic Adam, we propose
a new theorem that establishes an improved convergence rate for deterministic Adam.

An upper bound for the convergence rate of deterministic Adam.
Theorem 1 (Informal). Let Assumption 1 hold. Then, ∀β1, β2 ≥ 0 satisfying β2

1 < β2 < 1, λ = 0,

and ε = O(L0/L1), if T ≥ Θ
(

L0(f(w1)−f∗)
ε2

)
, then Algorithm 1 satisfies

1

T

T∑
t=1

∥∇f(wt)∥ ≤ ε.

Proof. Please see Appendix B.1 for the formal statement of theorem and the proof.

Our result offers a tighter bound than those presented in prior studies Wang et al. (2022); Li et al.
(2023a). It is noteworthy that under the uniform smoothness constraint—where the objective func-
tion’s smoothness is capped at L (that is, when L0 = L and L1 = 0 as per Assumption 1, referred to
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as the L-smooth condition in existing literature Arjevani et al. (2022); Carmon et al. (2017); Faw
et al. (2022))—Assumption 1 is met with L0 = L and any L1 ≥ 0. Consequently, the established
lower bound for all first-order optimizers Carmon et al. (2017) pertaining to the L-smooth condition

inherently provides a lower bound for the (L0, L1)-smooth condition, which is Ω
(√

L0(f(w1)−f∗)√
T

)
.

This coincides with our upper bound up to numerical constants. Such correspondence suggests that
our proposed bound is, in fact, optimal.

Our proof strategy utilizes a distinctive Lyapunov function, f(wt) +
β1

2(1−β1)
4
√
β2
η ||mt−1||2
λ+

√
νt−1

, which
draws inspiration from the current analysis of Gradient Descent with Momentum (GDM) under the
L-smooth condition Sun et al. (2019). However, we have introduced significant modifications to
accommodate the integration of an adaptive learning rate. This carefully crafted Lyapunov function
enables us to effectively control the deviation between the momentum term and the current gradient,
even under (L0, L1)-smooth condition. Through this approach, we successfully establish the final
optimal bound.
Remark 1 (On the comparison with AdaGrad). Our result also suffices to separate Adam from
AdaGrad. It is important to note that the convergence rate of AdaGrad under the (L0, L1)-smooth
condition in a deterministic setting, as reported inWang et al. (2023b), is (f(w1)−f∗)2

ε2 . This rate
is outperformed by that of Adam1. In Appendix B.3, we show that the rate in Wang et al. (2023b)
is tight by providing a counterexample. The comparatively slower convergence rate of AdaGrad
can be attributed to that (L0, L1)-smooth condition demands the update norm to be bounded by
O(1) to prevent the local smoothness from exponentially increasing. This, in turn, necessitates a
learning rate of O(1). However, the adaptive conditioner in AdaGrad, which accumulates over time,
causes the adaptive learning rate to become excessively small during later training stages, resulting
in reduced convergence speed. Conversely, Adam utilizes an exponential moving average for its
adaptive learning rate, which prevents the conditioner from accumulating excessively. Consequently,
Adam does not suffer from the aforementioned issue.

A lower bound for the convergence rate of GDM

With Adam’s upper bound, we then move on to a lower bound for the convergence rate of GDM. In
fact, there has already been such lower bounds for GD in the existing literature Zhang et al. (2019);
Crawshaw et al. (2022), which we restate as follows:
Proposition 1 (Theorem 2, Crawshaw et al. (2022)). Fix ε, L0, L1, and ∆1, with learning rate η,
there exists objective function f satisfying (L0, L1)-smooth condition and f(w1)− f∗ = ∆1, such
that the minimum step T of GD to achieve final error ε (i.e., let {wt}∞t=1 be the iterates of GD, and
T ≜ min{t : ∥∇f(wt)∥ < ε}) satisfies

T = Ω̃

(
L2
1∆

2
1 + L0∆1

ε2

)
.

However, the proposition presents a limitation: the counter-example is chosen after the learning rate
has been determined. This approach is inconsistent with standard practices, where hyperparameters
are usually adjusted based on the specific task, and deviates from conventional lower bounds Carmon
et al. (2017); Arjevani et al. (2022) that offer assurances for optimally-tuned hyperparameters. This
type of result does not eliminate the possibility that, if the learning rate were adjusted after selecting
the objective function—as is common practice—Gradient Descent (GD) could potentially achieve a
markedly faster convergence rate. This misalignment raises concerns about the appropriateness of
the proposition’s methodology. Moreover, this proposition does not take momentum into account, a
technique that is commonly employed in conjunction with GD in practice.

To address these shortcomings, we introduce a new lower bound for GDM. This lower bound is
applicable under the standard practice of adjusting hyperparameters after the objective function has
been selected. Moreover, it encompasses scenarios where momentum is incorporated.
Theorem 2 (Informal). Fixing ε, L0, L1, and ∆1, there exists an objective function f satisfying
(L0, L1)-smooth condition and f(w1) − f∗ = ∆1, such that for any learning rate η > 0 and

1The state-of-art rate of AdaGrad under (L0, L1)-smooth condition and stochastic setting is (f(w1)−f∗)2

ε4
,

which is also worse than the rate of Adam established latter in Theorem 3.
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β ∈ [0, 1], the minimum step T of GDM to achieve final error ε satisfies

T = Ω̃

(
L2
1∆

2
1 + L0∆1

ε2

)
.

Proof. Please see Appendix B.2 for the formal statement of theorem and the proof.

It should be noticed in the above theorem, the hyperparameters (i.e., the learning rate and the
momentum coefficient) are chosen after the objective function is determined, which agrees with
practice and the settings of common lower bounds, and overcomes the shortcoming of Proposition
1. Moreover, as shown in Zhang et al. (2019), it is easy to prove that the upper bound of GD’s
convergence rate is also O

(
L2

1∆
2
1+L0∆1

ε2

)
, which indicates such a lower bound is optimal.

The proof addresses two primary challenges outlined above. The first challenge involves handling
momentum. To tackle this, we extend the counterexample provided in Proposition 1 for cases where
the momentum coefficient β is small. Additionally, we introduce a new counterexample for situations
with a large β, demonstrating how large momentum can bias the optimization process and decelerate
convergence. The second challenge is how to derive a universal counterexample such that every
hyperparameter setting will lead to slow convergence. We overcome this by a simple but effective
trick: we independently put counterexamples for different hyperparameters in Proposition 1 over
different coordinates and make it a whole counterexample. Therefore, for different hyperparameters,
there will be at least one coordinate converge slowly, which leads to the final result.

Separating deterministic Adam and GDM. Upon careful examination of Theorem 1 and Theorem 2,
it becomes apparent that the convergence rate of GDM is inferior to that of Adam since

∑T
t=1 ∥Gt∥

T ≥
mint∈[T ] ∥Gt∥. Notably, GDM exhibits a more pronounced dependency on the initial function value
gap in comparison to Adam. This implies that with a sufficiently poor initial point, the convergence of
GDM can be significantly slower than that of Adam. The underlying reason for this disparity can be
attributed to GDM’s inability to adeptly manage varying degrees of sharpness within the optimization
landscape. Consequently, GDM necessitates a learning rate selection that is conservative, tailored to
the most adverse sharpness encountered—often present during the initial optimization stages.

4.2 ANALYSIS FOR THE STOCHASTIC SETTING

Transitioning to the more complex stochastic setting, we extend our analysis beyond the deterministic
framework. As with our previous approach, we start by reviewing the literature to determine if
the existing convergence rates for Adam under the (L0, L1)-smooth condition can delineate a clear
distinction between the convergence behaviors of Adam and Stochastic Gradient Descent with
Momentum (SGDM). In fact, the only two studies that delve into this problem are the ones we
discussed in Section 4.1, i.e., Wang et al. (2022); Li et al. (2023a). However, these results pertaining
to Adam are contingent upon rather stringent assumptions. Wang et al. (2022) postulates that
stochastic gradients not only conform to the (L0, L1)-smooth condition but are also limited to a
finite set of possibilities. These assumptions are more restrictive than merely assuming that the true
gradients satisfy the (L0, L1)-smooth condition, and such strong prerequisites are seldom employed
outside of the analysis of variance-reduction algorithms. Meanwhile, Li et al. (2023a) aligns its
findings on stochastic Adam with those on deterministic Adam, leading to a polynomial dependency
on 1/λ, which deviates from practical scenarios as discussed in Section 4.1. Furthermore, it presumes
an a.s. bounded difference between stochastic gradients and true gradients, an assumption that closely
resembles the boundedness of stochastic gradients and is more limiting than the standard assumption
of bounded variance for stochastic gradients.

These more restricted and non-standard assumptions cast challenges in establishing a lower bound
for the convergence of SGDM in the relevant contexts, let alone attempting a comparison between
SGDM and Adam. In addition to the fact that these upper bounds fail to facilitate a clear comparison
between Adam and SGDM, there are also concerns regarding their convergence rates. Wang et al.
(2022) reports a convergence rate of (f(w1)−f∗)2

ε8 , which has a higher-order dependence on the initial
function value gap and the final error than the (f(w1)−f∗)

ε4 rate established for Clipped SGDM under

6
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the (L0, L1)-smooth condition Zhang et al. (2020)2. Furthermore, Li et al. (2023a) indicates a con-
vergence rate of O( (f(w1)−f∗)4 poly(1/λ)

ε4 ), which, aside from the previously mentioned dependency
issues on 1/λ, shows a significantly stronger dependence over the initial function value gap compared
to the analysis of Clipped SGDM. This naturally leads to the question of whether such rates for Adam
can be improved to match Clipped SGDM.

To tackle these obstacles, we present the following upper bound for Adam.

An upper bound for the convergence rate of Adam.
Theorem 3 (Informal). Let Assumptions 1 and 2 hold. Then, ∀1 > β1 ≥ 0 and λ = 0, if ε ≤

1
poly(f(w1)−f∗,L0,L1,σ0,σ1)

, with a proper choice of learning rate η and momentum hyperparameter

β2, we have if T ≥ Θ
(

(L0+L1σ0)σ
2
0σ

2
1(f(w1)−f∗)

ε4

)
,

1

T
E

T∑
t=1

∥∇f(wt)∥ ≤ ε.

Proof. Please see Appendix C.1 for the formal statement of theorem and the proof.

Below we include several discussions regarding Theorem 3. To begin with, one can immediately
observe that Theorem 3 only requires Assumptions 1 and 2, and the convergence rate with respect
to the initial function value gap and the final error f(w1)−f∗

ε4 matches that of Clipped SGDM Zhang
et al. (2020) even with a weaker noise assumption. Therefore, our result successfully mitigate these
barriers raised above. Indeed, to the best of our knowledge, it is for the first time that an algorithm
is shown to converge with rate O

(
f(w1)−f∗

ε4

)
only requiring Assumptions 1 and 2, showcasing the

advantage of Adam.

We briefly sketch the proof here before moving on to the result of SGDM. Specifically, the proof
is inspired by recent analysis of Adam under L-smooth condition Wang et al. (2023a), but several
challenges arise during the proof:

• The first challenge lies in the additional error introduced by the (L0, L1)-smooth condition.
We address this by demonstrating that the telescoping sum involving the auxiliary function
∥Gt∥2

√
νt−1

, as employed in Wang et al. (2023a), can bound this additional error when the
adaptive learning rate is upper bounded. Although the adaptive learning rate in the Adam
algorithm is not inherently bounded, we establish that the deviation incurred by employing
a bounded surrogate adaptive learning rate is manageable;

• The second challenge involves deriving the desired dependence on the initial function
value gap. Wang et al. (2023a) introduces two distinct proof strategies for bounding the
conditioner νt and determining the final convergence rate. However, one strategy introduces
an additional logarithmic dependence on ε, while the other exhibits sub-optimal dependence
on the initial function value gap. We propose a novel two-stage divide-and-conquer approach
to surmount this issue. In the first stage, we bound νt effectively. Subsequently, we
leverage this bound within the original descent lemma to achieve the optimal dependence on
f(w1)− f∗.

Remark 2 (On the limitations). Although Theorem 3 addresses certain deficiencies identified in prior
studies Wang et al. (2022); Li et al. (2023a), it is not without its limitations. As noted by Arjevani et al.
(2022), the established lower bound for the convergence rate of first-order optimization algorithms
under the L0-smooth condition with bounded noise variance (specifically, σ0 = σ0 and σ1 = 1 as
stated in Assumption 2) is O(

(f(w1)−f∗)L0σ
2
0

ε4 ). This sets a benchmark for the performance under
Assumptions 1 and 2. The upper bound of Adam’s convergence rate as presented in Theorem 3 falls
short when compared to this benchmark, exhibiting a weaker noise scale dependency (σ3

0 as opposed
to σ2

0) and additional dependencies on L1 and σ1.

To address these issues, we demonstrate in the subsequent section that by focusing on the convergence
of the minimum gradient norm, Emint∈[T ] ∥∇f(wt)∥, we can attain an improved convergence rate

2While Zhang et al. (2020) also assumes an a.s. bounded gap between stochastic gradients and true gradients.
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of O(
(f(w1)−f∗)L0σ

2
0

ε4 ). This rate aligns with the aforementioned lower bound across all the problem
hyperparameters.

We now establish the lower bound of SGDM. This is, however, more challenging than the deterministic
case as to the best of our knowledge, there is no such a lower bound in existing literature (despite that
the lower bounds of GD Zhang et al. (2019); Crawshaw et al. (2022) naturally offer a lower bound
of SGD, which is considerably loose given the factor of 1/ε2). Intuitively, stochasticity can make
the convergence of GDM even worse, as random fluctuations can inadvertently propel the iterations
towards regions characterized by high smoothness even with a good initialization. We formulate this
insight into the following theorem.

A lower bound for the convergence rate of SGDM.
Theorem 4 (Informal). Fix L0, L1, and ∆1, there exists objective function f satisfying (L0, L1)-
smooth condition and f(w1)− f∗ = ∆1, and a gradient noise oracle satisfying Assumption 2, such
that for any learning rate η > 0 and β ∈ [0, 1], for all T > 0,

min
t∈[T ]

E∥∇f(wt)∥ = ∥∇f(w1)∥ ≥ L1∆1.

Proof. Please see Appendix C.2 for the formal statement of theorem and the proof.

Theorem 4 provides concrete evidence for the challenges inherent in the convergence of SGDM. It
shows that there are instances that comply with Assumption 1 and Assumption 2 for which SGDM
fails to converge, regardless of the chosen learning rate and momentum coefficient. This outcome
confirms our earlier hypothesis: the stochastic elements within SGDM can indeed adversely affect its
convergence properties under non-uniform smoothness.

Our proof is founded upon a pivotal observation: an objective function that escalates rapidly can
effectively convert non-heavy-tailed noise into a ”heavy-tailed” one. In particular, under the (L0, L1)-
smooth condition, the magnitude of the gradient is capable of exponential growth. As a result, even
if the density diminishes exponentially, the expected value of the gradient norm may still become
unbounded. This situation mirrors what occurs under the L-smooth condition when faced with
heavy-tailed noise. Such a dynamic can lead to the non-convergence of SGDM.

Separating Adam and SGDM. Considering that Adam can achieve convergence under Assumptions
1 and 2, while SGD cannot, the superiority of Adam over SGDM becomes evident. It is important to
note, however, a recent study by Li et al. (2023b), which demonstrates that SGD can converge with
high probability under the same assumptions, provided the noise variance is bounded. We would like
to contextualize this finding in relation to our work as follows: First, this result does not conflict with
our Theorem 4, since our theorem pertains to bounds in expectation rather than with high probability.
Second, our comparison of Adam and SGDM within an in-expectation framework is reasonable and
aligns with the convention of most existing lower bounds in the literature Carmon et al. (2017); Drori
& Shamir (2020); Arjevani et al. (2022). Moreover, establishing high-probability lower bounds is
technically challenging, and there are few references to such bounds in the existing literature. Lastly,
while we have not derived a corresponding high-probability lower bound for SGD, the upper bound
provided by Li et al. (2023b) is O( (f(w1)−f∗)4

ε4 ), which indicates a less favorable dependency on the
initial function value gap compared to the bound for Adam.

5 CAN ADAM REACH THE LOWER BOUND OF THE CONVERGENCE RATE
UNDER (L0, L1)-SMOOTH CONDITION?

As we mentioned in Remark 2, although Theorem 3 matches the lower bound established by Arjevani
et al. (2022) with respect to the initial function value gap f(w1) − f∗, the final error ε, and the
smoothness coefficient L0, it exhibits sub-optimal dependence on the noise scale σ0 and additional
dependence on L1 and σ1. One may wonder whether these dependencies are inherently unavoidable
or if they stem from technical limitations in our analysis.

Upon revisiting the proof, we identified that the sub-optimal dependencies arise from our strategy of
substituting the original adaptive learning rate with a bounded surrogate. For example, the correlation
between stochastic gradient and adaptive learning rate will introduce an error term η

σ2
0(1−β2)∥gt∥2

√
β2νt−1νt

,

8
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detailed in Eq. (8). To bound this term, we add a constant λ to β2νt−1, allowing us to upper
bound 1√

β2νt−1+λ
. Consequently, the term η

σ2
0(1−β2)∥gt∥2√
β2νt−1+λνt

can be bounded by η
σ2
0(1−β2)∥gt∥2

√
λνt

,

which has the same order as a second-order Taylor expansion. To control the error introduced by
adding λ, we cannot choose a value for λ that is too large. The optimal choice of λ for balancing
the new error against the original error is (1 − β2)σ

2
0 . This selection results in the original error

term η σ0

√
1−β2∥gt∥2

νt
, which induces an additional σ0 factor, ultimately leading to the sub-optimal

dependence on σ0. Therefore, we need to explore alternative methods to handle the error term to
eliminate the sub-optimal dependence on σ0.

We begin our analysis by observing that the term (1−β2)∥gt∥2√
β2νt−1νt

can in fact be bounded by an ”approx-

imate telescoping” series of 1√
νt

(noting an additional coefficient 1√
β2

in comparison to standard
telescoping):

(1− β2)∥gt∥2√
β2νt−1νt

≤ O
(

1√
β2νt−1

− 1√
νt

)
.

Accordingly, summing η
σ2
0(1−β2)∥gt∥2√

β2νt−1νt

over t yields a bound of O(ησ2
0

∑
t(1− β2)

1√
νt
). However,

this term could potentially be unbounded since
√
νt is not lower bounded. To circumvent this issue,

we consider the first-order Taylor’s expansion of the descent lemma, which, gives −
∑

t η
∥∇f(wt)∥2√

νt
.

Intuitively, if any ∥∇f(wt)∥2 is of the order O(σ2
0(1− β2)), our proof would be completed since

we choose 1− β2 = Θ(ε4). In the other case, the term O(ησ2
0

∑
t(1− β2)

1√
νt
) can be offset by the

negative term −
∑

t η
∥∇f(wt)∥2

√
νt

. However, formalizing this intuition into a proof is challenging in
the context of stochastic analysis, where the randomness across iterations complicates the analysis.
Specifically, if we condition on the event that ”no gradient norm is as small as σ2

0(1− β2),” which is
supported over the randomness of all iterations, it becomes difficult to express many expected values
(such as those from the first-order Taylor expansion) in closed form.

We address this difficulty by introducing a stopping time τ ≜ min{t : ∥∇f(wt+1)∥2 ≤ O(σ2
0(1−

β2))}. By applying the optimal stopping theorem Durrett (2019), we can maintain closed-form
expressions for the expected values up to the stopping time, allowing the problematic error term to be
absorbed within this interval. Building on this methodology, we formulate the following theorem.

Theorem 5 (Informal). Let Assumptions 1 and 2 hold. Then, ∀1 > β1 ≥ 0, if ε ≤
1

Poly(L0,L1,σ0,σ1,
1

1−β1
,f(w1)−f∗)

, with a proper choice of learning rate η and momentum hyper-

parameter β2, we have that if T ≥ Θ(
L0σ

2
0(f(w1)−f∗)

ε4 )

E min
t∈[1,T ]

∥∇f(wt)∥ ≤ ε.

Proof. Please see Appendix D.1 for the formal statement of theorem and the proof.

One can easily see that the convergence rate of Theorem 5 matches the lower bound in Arjevani et al.
(2022) with respect to all problem hyperparameters up to numerical constants even under the weaker
(L0, L1)-smooth condition. Therefore, such a rate is optimal and provides an affirmative answer to
the question raised in the beginning of this section.

One may notice that in the construction of the stopping time, we set the threshold for the squared
gradient norm to be O(1−β2). As we set 1−β2 = Θ(ε4), the threshold is actually much smaller than
what we aim for, since our goal is to have ∥∇f(wt)∥2 ≤ ε2. Therefore, based on the stopping-time
technique, we can actually show that Adam can converge with an optimal rate of O(ε−4) when
1− β2 = ε2, or 1/

√
T if expressed in terms of the iteration number T . To the best of our knowledge,

this is the first time that Adam has been shown to converge with an optimal rate under the condition
that 1 − β2 = Ω(1/T ), which greatly enlarges the hyperparameter range. We show in Appendix
D.2 that based on this technique, we can show Adam is hyperparameter agnostic even under the
(L0, L1)-smooth condition.
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6 CONCLUSION

In this paper, we have conducted a mathematical examination of the performance of the Adam
optimizer and SGDM within the context of non-uniform smoothness. Our convergence analysis
reveals that Adam exhibits a faster rate of convergence compared to SGDM under these conditions.
Moreover, we introduce a novel stopping time technique that demonstrates Adam’s capability to
achieve the existing lower bounds for convergence rates. This finding underscores the robustness of
Adam in complex optimization landscapes and contributes to a deeper understanding of its theoretical
properties.
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A AUXILIARY LEMMAS

In this section, we provide auxiliary results which will be used in subsequent results.

Lemma 1. We have ∀t ≥ 1, ∥wt+1 −wt∥ ≤ η 1−β1

√
1−β2

√
1− β2

1
β2

.

Proof. We have that

∥wt+1 −wt∥ = η

∣∣∣∣mt√
νt

∣∣∣∣ ≤ η

∑t−1
i=0(1− β1)β

i
1∥gt−i∥√∑t−1

i=0(1− β2)βi
2∥gt−i∥2 + βt

2ν0

≤η
1− β1√
1− β2

√∑t−1
i=0 β

i
2∥gt−i∥2

√∑t−1
i=0

β2i
1

βi
2√∑t−1

i=0 β
i
2∥gt−i∥2

≤ η
1− β1

√
1− β2

√
1− β2

1

β2

.

Here the second inequality is due to Cauchy’s inequality. The proof is completed.

The following lemma provides a novel descent lemma under (L0, L1)-smooth condition.
Lemma 2. Let Assumption 1 hold. Then, for any three points w1,w2,w3 ∈ X satisfying ∥w1 −
w2∥ ≤ 1

2L1
and ∥w1 −w3∥ ≤ 1

2L1
, we have

f(w2) ≤ f(w3)+⟨∇f(w1),w2−w3⟩+1

2
(L0+L1∥∇f(w1)∥)∥w2−w3∥(∥w1−w3∥+∥w1−w2∥).

Proof. By the Fundamental Theorem of Calculus, we have

f(w2) =f(w3) +

∫ 1

0

⟨∇f(w3 + a(w2 −w3)),w2 −w3⟩da

=f(w3) + ⟨∇f(w1),w2 −w3⟩+
∫ 1

0

⟨∇f(w3 + a(w2 −w3))−∇f(w1),w2 −w3⟩da

≤f(w3) + ⟨∇f(w1),w2 −w3⟩+
∫ 1

0

∥∇f(w3 + a(w2 −w3))−∇f(w1)∥∥w2 −w3∥da

(⋆)

≤f(w3) + ⟨∇f(w1),w2 −w3⟩+
∫ 1

0

(L0 + L1∥∇f(w1)∥)∥a(w2 −w1) + (1− a)(w3 −w1)∥∥w2 −w3∥da

≤f(w3) + ⟨∇f(w1),w2 −w3⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w3∥(∥w1 −w3∥+ ∥w1 −w2∥),

where Inequality (⋆) is because due to

∥w3 + a(w2 −w3)−w1∥ = ∥a(w2 −w1) + (1− a)(w3 −w1)∥ ≤ 1

L1
,

the definition of (L0, L1)-smooth condition can be applied.

The proof is completed.

The following lemma is helpful when bounding the second-order term.
Lemma 3. Assume we have 0 < β2

1 < β2 < 1 and a sequence of real numbers (an)∞n=1. Let b0 > 0,
bn = β2bn−1 + (1− β2)a

2
n, c0 = 0, and cn = β1cn−1 + (1− β1)an. Then, we have

T∑
n=1

|cn|2

bn
≤ (1− β1)

2

(1− β1√
β2
)2(1− β2)

(
ln

(
bT
b0

)
− T lnβ2

)
.

Proof. This is a lemma commonly adopted in the literature of the convergence of Adam Défossez
et al. (2022); Wang et al. (2023a). We invite interesting readers to see (Lemma A.2, Défossez et al.
(2022)) for the proof.
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Lemma 4. If β2 ≥ β1, then we have

∥mt∥2

(
√
νt)3

≤ 4(1− β1)

(
t∑

s=1

4

√
βt−s
1

2

1− β2

(
1√

β2νs−1

− 1
√
νs

))
.

Proof. To begin with, we have

∥mt∥
4
√
ν3
t

≤ (1− β1)

t∑
s=1

βt−s
2 ∥gs∥

4
√
ν3
t

≤ (1− β1)

t∑
s=1

βt−s
1 ∥gs∥

4

√
β
3(t−s)
2

4
√
ν3
s

.

Here in the last inequality we use νt ≥ βt−s
2 νs.

By further applying Cauchy-Schwartz inequality, we obtain

∥mt∥2√
ν3
t

≤(1− β1)
2

 t∑
s=1

βt−s
1 ∥gs∥2

4

√
β
3(t−s)
2

√
ν3
s

 t∑
s=1

βt−s
1

4

√
β
3(t−s)
2


≤ (1− β1)

2

1− β1

4
√

β3
2

 t∑
s=1

βt−s
1 ∥gs∥2

4

√
β
3(t−s)
2

√
ν3
s


≤4(1− β1)

 t∑
s=1

βt−s
1 ∥gs∥2

4

√
β
3(t−s)
2

√
ν3
s

 .

As ∥gs∥2√
ν3
s

≤ 2∥gs∥2

√
νs

√
β2νs−1(

√
νs+

√
β2νs−1)

= 2
1−β2

(
1√

β2νs−1

− 1√
νs

)
, the proof is completed.

Lemma 5. Under the same set of assumptions in Theorem 11, if β2 ≥ β1, then we have

∥mt∥2∥Gt∥2

νt

√
β2νt−1

≤ 4(1−β1)

 t∑
s=1

8

√
βt−s
1 ∥gs∥2∥Gs∥2

νs

√
β2νs−1

+8
1− β1

1− β2

L2
1

L2
0

(
t∑

s=1

8

√
βt−s
1

(
1√

β2νs−1

− 1
√
νs

))
.

Proof. Similar to the proof of Lemma 4, we have

∥mt∥2√
β2νt−1νt

≤4(1− β1)

 t∑
s=1

βt−s
1 ∥gs∥2

4

√
β
3(t−s)
2

√
β2νs−1νs

 . (1)

Meanwhile, according to Assumption 1, we have

∥Gt∥2 ≤∥Gt−1∥2 + 2∥Gt−1∥∥Gt −Gt−1∥+ ∥Gt −Gt−1∥2

≤∥Gt−1∥2 + 2∥Gt−1∥(L0 + L1∥Gt−1∥)∥wt+1 −wt∥+ 2(L2
0 + L2

1∥Gt−1∥2)∥wt+1 −wt∥2

≤∥Gt−1∥2 +
1− 8

√
β1

3 8
√
β1

∥Gt−1∥2 +
3 8
√
β1L

2
0

1− 8
√
β1

∥wt+1 −wt∥2 + 2L1∥Gt−1∥2∥wt+1 −wt∥

+ 2(L2
0 + L2

1∥Gt−1∥2)∥wt+1 −wt∥2

(⋆)

≤∥Gt−1∥2 +
1− 8

√
β1

3 8
√
β1

∥Gt−1∥2 +
1− 8

√
β1

2

L2
0

L2
1

+
1− 8

√
β1

3 8
√
β1

∥Gt−1∥2

+
1− 8

√
β1

2

L2
0

L2
1

+
1− 8

√
β1

3 8
√
β1

∥Gt−1∥2

≤ 1
8
√
β1

∥Gt−1∥2 + (1− 8
√
β1)

L2
1

L2
0

.

Here inequality (⋆) is because ∥wt+1 −wt∥ ≤ 1− 8
√
β1

6L1
(According to Lemma 1 and the choice of η

and β2 in Theorem 11, we have |wt+1−wt| ≤ (1−β1)
√
1−β1

256σ2
1L1

, and to prove the conclusion, we need to
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show that 1− 8
√
β1

6 ≥ (1−β1)
√
1−β1

256σ2
1

. Since (1− 8
√
β1)(1+

8
√
β1)(1+

4
√
β1)(1+

2
√
β1) = (1−β1), and

(1 + 8
√
β1)(1 +

4
√
β1)(1 +

2
√
β1) ≤ 2× 2× 2 ≤ 8, it follows that 1− 8

√
β1

6 ≥ 1−β1

48 ≥ (1−β1)
√
1−β1

256σ2
1

.
Thus, the claim is proven).

Recursively applying the above inequality, we obtain that

∥Gt∥2 ≤ 1

8

√
βt−s
1

∥Gs∥2 +

((
1

8
√
β1

)t−s

− 1

)
L2
1

L2
0

,

which by Eq. (1) further gives

∥mt∥2∥Gt∥2√
β2νt−1νt

≤4(1− β1)

 t∑
s=1

βt−s
1 ∥gs∥2∥Gt∥2

4

√
β
3(t−s)
2 νs

√
β2νs−1


≤4(1− β1)

 t∑
s=1

8

√
βt−s
1 ∥gs∥2∥Gs∥2

νs

√
β2νs−1

+

t∑
s=1

8

√
βt−s
1 ∥gs∥2

νs

√
β2νs−1

L2
1

L2
0


≤4(1− β1)

 t∑
s=1

8

√
βt−s
1 ∥gs∥2∥Gs∥2

νs

√
β2νs−1

+ 8
1− β1

1− β2

L2
1

L2
0

(
t∑

s=1

8

√
βt−s
1

(
1√

β2νs−1

− 1
√
νs

))
.

Here the last inequality is based on the similar reasoning of Lemma 5.

The proof is completed.

B PROOFS FOR DETERMINISTIC ALGORITHMS

B.1 PROOF FOR DETERMINISTIC ADAM

We will first provide the formal statement of Theorem 1 3, and then show the corresponding proof.
Theorem 6 (Theorem 1, restated). Let Assumption 1 hold. Then, ∀β1, β2 satisfying 0 ≤ β2

1 < β2 < 1,

if T > 16L2
1L0(f(w0)− f∗)/(1− β2), picking η =

√
f(w1)−f∗

√
1− β2

1
β2√

TL0(1−β1)
, we have

1

T

T∑
t=1

∥∇f(wt)∥ ≤ 64

(1− β2)(1− β2
1

β2
)
(
1− β1

4
√
β2

)2
(√

L0(f(w1)− f∗)√
T

)
.

Proof. To begin with, according to Lemma 1 and restriction on the value of T , we obtain that

∀t ∈ N &t ≥ 1, ∥wt+1 −wt∥ ≤ 1

4L1
.

This is because by Lemma 1, |wt+1 −wt| ≤ η(1−β1)/(
√
1− β2

√
1− β2

1/β2), and by substituting
the definition of η, we know |wt+1−wt| ≤

√
f(w0)− f∗/(

√
1− β2

√
TL0). Finally, by substituting

the requirement for T , we confirm the conclusion holds.

Therefore, the descent lemma can then be applied and thus ∀t ∈ N&t ≥ 1,

f(wt+1) ≤ f(wt)−η

〈
Gt,

mt

λ+
√
νt

〉
︸ ︷︷ ︸

First Order

+ η2
L0 + L1∥Gt∥

2

∥mt∥2

(λ+
√
νt)2︸ ︷︷ ︸

Second Order

.

3In the theorem below and other theorems in this paper afterward, without loss of generality, we analyze the
norm version of Adam, i.e., Adam with scalar adaptive learning rate, for a more readable proof. The extension to
the coordinate-wise Adam can be easily done, as evidenced by literature such as Xing et al. (2021); Faw et al.
(2022; 2023); Wang et al. (2023b)
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To begin with, as for the ”First Order” term, acording to mt = β1mt−1 + (1− β1)Gt we have that

−η

〈
Gt,

mt

λ+
√
νt

〉
=− η

1

1− β1

〈
mt,

mt

λ+
√
νt

〉
+ η

β1

1− β1

〈
mt−1,

mt

λ+
√
νt

〉
(⋆)

≤ − η
1

1− β1

∥mt∥2

λ+
√
νt

+ η
β1

(1− β1)
4
√
β2

〈
mt−1,

mt√
λ+

√
νt

√
λ+

√
νt−1

〉
(∗)
≤ − η

1

1− β1

∥mt∥2

λ+
√
νt

+
β1

2(1− β1)
4
√
β2

η
∥mt∥2

λ+
√
νt

+
β1

2(1− β1)
4
√
β2

η
∥mt−1∥2

λ+
√
νt−1

=− η
1− β1

4
√
β2

1− β1

∥mt∥2

λ+
√
νt

− β1

2(1− β1)
4
√
β2

η
∥mt∥2

λ+
√
νt

+
β1

2(1− β1)
4
√
β2

η
∥mt−1∥2

λ+
√
νt−1

.

where inequality (⋆) is due to that
√
νt ≥

√
β2νt−1 and inequality (∗) is due to Young’s inequality.

Meanwhile, as for the ”Second Order” term, we have

η2
L0 + L1∥Gt∥

2

∥mt∥2

(λ+
√
νt)2

(•)
≤L0η

2 (1− β1)
2

(1− β2)(1− β2
1

β2
)
+

L1η
2

√
1− β2

∥mt∥2

λ+
√
νt

(◦)
≤L0η

2 (1− β1)
2

(1− β2)(1− β2
1

β2
)
+

η

2

1− β1
4
√
β2

1− β1

∥mt∥2

λ+
√
νt

.

Here inequality (•) is due to Lemma 1 and

νt ≥ (1− β2)∥Gt∥2,
and inequality (◦) is due to the requirement over T .

Applying the estimations of both the ”First Order” and the ”Second Order” terms, we obtain that

f(wt+1)− f(wt) ≤− η

2

1− β1
4
√
β2

1− β1

∥mt∥2

λ+
√
νt

− β1

2(1− β1)
4
√
β2

η
∥mt∥2

λ+
√
νt

+
β1

2(1− β1)
4
√
β2

η
∥mt−1∥2

λ+
√
νt−1

+ L0η
2 (1− β1)

2

(1− β2)(1− β2
1

β2
)
.

Summing the above inequality over t ∈ {1, · · · , T} then gives
T∑

t=1

η

2

1− β1
4
√
β2

1− β1

∥mt∥2

λ+
√
νt

≤f(w1)− f(wT+1)−
β1

2(1− β1)
4
√
β2

η
∥mT ∥2

λ+
√
νT

+ TL0η
2 (1− β1)

2

(1− β2)(1− β2
1

β2
)

≤f(w1)− f(wT+1) + TL0η
2 (1− β1)

2

(1− β2)(1− β2
1

β2
)
.

(2)

Furthermore, as (1− β1)Gt = mt − β1mt−1, we have that

∥Gt∥2 ≤ 1

(1− β1)2
∥mt∥2 +

1

(1− β1)2
∥mt−1∥2.

Applying the above inequality and λ = 0 to Eq. (2), we obtain that
T∑

t=1

η

4

(
1− β1

4
√
β2

)
(1− β1)

∥Gt∥2√
νt

≤ f(w1)− f(wT+1) + TL0η
2 (1− β1)

2

(1− β2)(1− β2
1

β2
)
.

Meanwhile, we have
√
νt −

√
β2νt−1 =

(1− β2)∥Gt∥2√
νt +

√
β2νt−1

≤ (1− β2)
∥Gt∥2√

νt
.
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Therefore, applying the above inequality and dividing both sides by η, we have

1

4

(
1− β1

4
√
β2

)
(1− β1)

T∑
t=1

(
√
νt −

√
β2νt−1) ≤

f(w1)− f(wT+1)

η
+ TL0η

(1− β1)
2

(1− β2)(1− β2
1

β2
)
,

which by telescoping further leads to

1

4

(
1− β1

4
√
β2

)
(1− β1)

T∑
t=1

(1− β2)
√
νt ≤

f(w1)− f(wT+1)

η
+ TL0η

(1− β1)
2

(1− β2)(1− β2
1

β2
)
.

According to Cauchy-Schwartz’s inequality, we then obtain(
T∑

t=1

∥Gt∥

)2

≤

(
T∑

t=1

√
νt

)(
T∑

t=1

∥Gt∥2√
νt

)

≤ 1

1− β2

 4(f(w1)− f(wT+1))

η
(
1− β1

4
√
β2

)
(1− β1)

+ TL0η
(1− β1)

(1− β2)
(
1− β1

4
√
β2

)
(1− β2

1

β2
)

2

=
1

1− β2

 4(f(w1)− f(wT+1))

η
(
1− β1

4
√
β2

)
(1− β1)

+ 4TL0η
(1− β1)

(1− β2)
(
1− β1

4
√
β2

)
(1− β2

1

β2
)

2

.

The proof is completed by applying the value of η.

B.2 PROOF FOR GDM

This section collects the proof of Theorem 2. To begin with, given problem hyperparameters ∆1, ε,
L0, and L1. We first construct three 1D functions as follows:

f1(x) =



L0e
L1x−1

L2
1

, x ∈
[
1

L1
,∞
)
,

L0x
2

2
+

L0

2L2
1

, x ∈ [− 1

L1
,
1

L1
],

L0e
−L1x−1

L2
1

, x ∈
(
−∞,− 1

L1

]
.

(3)

f2(y) =


ε(y − 1) +

ε

2
, y ∈ [1,∞),

ε

2
y2 , y ∈ [−1, 1],

− ε(y + 1) +
ε

2
, y ∈ (−∞,−1].

(4)

f3(z) =



ε(z − 1) +
ε

2L1
+

L0

2L2
1

, z ∈ [
1

L1
,∞),

εL1

2
z2 +

L0

2L2
1

, z ∈ [0,
1

L1
],

L0z
2

2
+

L0

2L2
1

, z ∈ [− 1

L1
, 0],

L0e
−L1z−1

L2
1

, z ∈
(
−∞,− 1

L1

]
.

(5)

It is easy to verify that these functions satisfy (L0, L1)-smooth condition as long as ε ≤ L0. We
then respectively the convergence of GDM over these three examples with different learning rate and
momentum coefficient.
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Lemma 6 (Convergence over f1). Assume ∆1 ≥ L0

L2
1
(e− 1

2 ), ε ≤ 1 ,and let x1 =
1+log( 1

2+
L2
1

L0
∆1)

L1
.

Then, we have f1(x1) − f∗
1 = ∆1, and if η ≥

(5+8 log 1
ε )(1+log( 1

2+
L2
1

L0
∆1))

L2
1(∆1+

L0
2L2

1
)

and β ≤ 1 −

2
(

L2
1

L0
e
)−4 log 1

ε−2

(∆1 +
L0

2L2
1
)−4 log 1

ε−2, we have that GDM satisfies that ∀t ∈ [1,∞), |f ′
1(xt)| ≥

L1∆1.

Proof. We prove this lemma by proving that ∀k ≥ 1, |xk+1| ≥ (4 + 8 log 1
ε )|xk| and Sign(xk+1) =

(−1)k+1 by induction. When k = 1, according to the update rule of GDM, we have

x2 = x1 − ηf ′
1(x1).

As η ≥
(5+8 log 1

ε )(1+log( 1
2+

L2
1

L0
∆1))

∆1+
L0
2L2

1

= − (5+8 log 1
ε )x1

f ′
1(x1)

, we have

x2 ≤ −(4 + 8 log
1

ε
)x1,

which leads to the claim.

Now assuming that the claim has been proved for k ≤ t− 1 (t ≥ 2). Then, for k = t, with induction
hypothesis we have

xt+1 = xt − ηmt = xt − η

(
βtf ′

1(x1) + (1− β)

t−1∑
s=1

βt−sf ′
1(xs) + (1− β)f ′

1(xt)

)
.

Without the loss of generality, we assume t is even. By the induction hypothesis, we obtain that
f ′
1(xt) < 0 and f ′

1(xt−1) < 0, and

|f ′
1(x1)| ≤ |f ′

1(x2)| ≤ · · · ≤ |f ′
1(xt−1)|.

Therefore, we have

xt+1 ≥xt − η (βf ′
1(xt−1) + (1− β)f ′

1(xt))

=xt −
L0

L1
η
(
βeL1xt−1−1 − (1− β)e−L1xt−1

)
≥xt −

L0

L1
η

(
βe

− L1xt

8 log 1
ε
+4

−1
− (1− β)e−L1xt−1

)
.

Furthermore, according to the definition of x1, we have

1− β ≥ 2e−L1(4 log 1
ε+2)x1 ≥ 2e

L1xt
2 ,

which leads to

xt+1 ≥ xt +
L0

L1
ηe−

L1xt
2 −1 ≥ xt +

(5 + 8 log 1
ε )x1

eL1x1
e−

L1xt
2 ≥ xt +

(5 + 8 log 1
ε )x1

eL1x1
eL1xt(2+4 log 1

ε ).

Then, as e
L1x
2

x is monotonously increasing for x ∈ [ 2
L1

,∞), and x1 ≥ 2
L1

, we have

xt+1 ≥ xt +
(5 + 8 log 1

ε )x1

eL1x1
eL1xt(1+2 log 1

ε ) ≥ xt − (5 + 8 log
1

ε
)xt ≥ −(4 + 8 log

1

ε
)xt.

The proof is completed.

Lemma 7 (Convergence over f2). Assume that ∆1 ≥ ε
2 + L1

L0
, and let y1 ≜ ∆1

ε + 1
2 . Then, if η ≤

(5+8 log 1
ε )(1+log( 1

2+
L2
1

L0
∆1))

L2
1(∆1+

L0
2L2

1
)

, we have that GDM satisfies that ∥∇f2(yt)∥ ≥ ε if T ≤ Θ̃(
L2

1∆
2
1+L0∆1

ε2 ).
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Proof. We have that mt = ε before yt enters the region (−∞, 1]. As the movement of each step
before yt enters the region (−∞, 1] is ηε and the total length to enter (−∞, 1] is y1 − 1, the proof is
completed.

Lemma 8 (Convergence over f3). Assume ∆1 ≥ L0

L2
1
e + 4e +

L2
0

e2L2
1

, L1 ≥ 1, ε ≤ 1
2 , and let

z1 = −
1+log( 1

2+
L2
1

L0
∆1)

L1
. Then, we have f3(z1) − f∗

3 = ∆1, and if η ≥
(5+8 log 1

ε )(1+log( 1
2+

L2
1

L0
∆1))

L2
1(∆1+

L0
2L2

1
)

and β ≥ 1 − 2
(

L2
1

L0
e
)−4 log 1

ε−2

(∆1 + L0

2L2
1
)−4 log 1

ε−2, we have that GDM satisfies that ∀t ∈

[1,Θ(
L2

1∆
2
1

ε3 )), |f ′
3(xt)| ≥ ε.

Proof. To begin with, according to the definition of z1, we have η ≥ − (5+8 log 1
ε )z1

f ′
3(x1)

and 1 − β ≥
2eL1(4 log 1

ε+2)z1 ≥ 1
2 . Also. as ∆1 ≥ L0

L2
1
(e− 1

2 ), we have z1 ≤ − 2
L1

, and thus

f ′
3(z1) = −L0

L1
e−L1z1−1 ≤ −L1

(
∆1 +

L0

2L2
1

)
≤ −4.

We will first prove the following claim by induction: for k ∈ [2, ⌊ 1
1−β ⌋], we have zk ≥ 1

L1
, and

mk ≤ βk−1f ′
3(z1)

2 .

As for k = 2, we have

z2 = z1 − ηf ′
3(z1) ≥ −

(
4 + 8 log

1

ε

)
z1.

According to ∆1 ≥ L0

L2
1
(e− 1

2 ), we have z1 ≤ − 2
L1

, and thus z2 ≥ 1
L1

. Since m2 = βf ′(z1) + (1−

β)ε <
f ′
3(z1)
2 , the claim is proved for k = 2.

Now assuming that we have prove the claim for k ≤ t− 1. According to the induction hypothesis,
we have

f ′
3(z2) = · · · = f ′

3(zt−1) = ε,

and thus

mt = βt−1f ′
3(z1) + (1− βt−1)ε

(⋆)

≤ βt−1f ′
3(z1)−

βt−1f ′
3(z1)

2
≤ βt−1f ′

3(z1)

2
.

Here inequality (⋆) is due to β⌊ 1
1−β ⌋ ≥ 1

4 as β ≥ 1
2 . Therefore, as zt = zt−1 − ηmt ≥ zt−1 ≥ 1

L1
,

we prove the claim.

It should be noticed that ∀t ∈ [1, ⌊ 1
1−β ⌋], ∥f

′
3(zt)| ≥ ε. Furthermore, according to the claim,

z⌊ 1
1−β ⌋+1 can now be bounded as

z⌊ 1
1−β ⌋+1 =z1 − η

⌊ 1
1−β ⌋∑
k=1

mt ≥
η

5 + 8 log 1
ε

f ′
3(z1)− η

⌊ 1
1−β ⌋∑
k=1

βk−1f ′
3(z1)

2
≥ η

5 + 8 log 1
ε

f ′
3(z1)− η

1− 1
e

(1− β)

f ′
3(z1)

2

≥ 1

L1
− η

1− 1
e

(1− β)

f ′
3(z1)

4
≥ 1

L1
− η

(
1− 1

e

)
f ′
3(z1)

8

(
L2
1

L0
e

)4 log 1
ε+2(

∆1 +
L0

2L2
1

)4 log 1
ε+2

≥ 1

L1
+

η

16

L2
1∆

2
1 + L0∆1

ε2
.

As f ′
3(z) = ε for all z ≥ 1

L1
, the iterates needs additional

η
16

L2
1∆2

1
ε2

ηε = 1
16

L2
1∆

2
1

ε3 steps to make
f ′
3(zt) < ε. The proof is completed.

Lemma 9. Let f1, f2, f3 : R → R satisfies (L0, L1)-smooth condition. Then f1(x)+ f2(y)+ f3(z)
satisfies (L0, L1)-smooth condition.
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Proof. If we consider a point (x1, y1, z1) within a ball centered at (x2, y2, z2) with radius 1/L1, it
follows that x1 is within a ball centered at x2 with the same radius. Thus, we have:

|∇f1(x1)−∇f1(x2)| ≤ (L0 + L1|∇f1(x1)|)|x1 − x2| ≤ (L0 + L1|∇f(x1, y1, z1)|)|x1 − x2|.

The last inequality holds because ∇f1(x1) is one coordinate of ∇f(x1, y1, z1). Similarly, we can
derive:

|∇f2(y1)−∇f2(y2)| ≤ (L0 + L1|∇f(x1, y1, z1)|)|y1 − y2|,

|∇f3(z1)−∇f3(z2)| ≤ (L0 + L1|∇f(x1, y1, z1)|)|z1 − z2|.

Taking the squared sum of these inequalities confirms that f is indeed (L0, L1)-smooth.

Theorem 7 (Theorem 2, restated). Assume that ∆1 ≥ 4L0

L1
e+16e+4

L2
0

e2L2
1

, L1 ≥ 1 and ε ≤ 1, then
there exists objective function f satisfying (L0, L1)-smooth condition and f(w1)− f∗ = ∆1, such
that for any learning rate η > 0 and β ∈ [0, 1], the minimum step T of GDM to achieve final error ε
satisfies

T = Ω̃

(
L2
1∆

2
1 + L0∆1

ε2

)
.

Proof. Construct the objective function as f(x, y, z, u) = f1(x) + f2(y) + f3(z). Then, let x1, y1,
z1 be chosen as f1(x1)− f∗

1 = f2(y1)− f∗
2 = f3(z1)− f∗

3 = ∆1

3 and z1 ≤ 0. According to Lemma
9, f satisfies (L0, L1)-smooth condition. Then, for each learning rate and momentum coefficient,
they will always be covered by one of the above lemmas, and applying the corresponding lemma
gives the desired result.

The proof is completed.

B.3 PROOF FOR DETERMINISTIC ADAGRAD

To begin with, we recall the following result from Wang et al. (2023b):
Proposition 2. For every learning rate η ≥ Θ( 1

L1
) and ∆1, there exist a lower-bounded objective

function g1 obeying Assumption 1 and a corresponding initialization point w0 with g1(w1)−g∗1 = ∆1,
such that AdaGrad with learning rate η and initialized at w0 diverges over g1.

We then define g2 as the f2 in the proof of Theorem 2, i.e.,

g2(y) =


ε(y − 1) +

ε

2
, y ∈ [1,∞),

ε

2
y2 , y ∈ [−1, 1],

− ε(y + 1) +
ε

2
, y ∈ (−∞,−1].

(6)

We then have the following lemma characterizing the convergence of AdaGrad over g2.

Lemma 10 (Convergence over g2). Assume that ∆1 ≥ ε
2 + L1

L0
, and let y1 ≜ ∆1

ε + 1
2 . Then, if

η ≤ Θ( 1
L1

), we have that AdaGrad satisfies that ∥∇g2(yt)∥ ≥ ε if T ≤ Θ̃(
L2

1∆
2
1

ε2 ).

Proof. We have that gt = ε before yt enters the region (−∞, 1]. Therefore, the sum of movement of
each step before yt enters the region (−∞, 1] is

η

t∑
s=1

ε√
sε

= ηΘ(
√
t).

Solving ηΘ(
√
t) = ∆1

ε + 1
2 − 1 gives t = L2

1∆
2
1

ε2 , and the proof is completed.
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We then have the following lower bound for deterministic AdaGrad.

Theorem 8. Assume that ∆1 ≥ ε
2 + L1

L0
. Then, there exists objective function f satisfying (L0, L1)-

smooth condition and f(w1)− f∗ = ∆1, such that for any learning rate η > 0 and β ∈ [0, 1], the
minimum step T of AdaGrad to achieve final error ε satisfies

T = Ω(
L2
1∆

2
1

ε2
).

Proof. The proof is completed by letting f(x, y) = g1(x) + g2(y) following the same routine as
Theorem 7.

C PROOF FOR STOCHASTIC ALGORITHMS

C.1 PROOF FOR ADAM

To begin with, we restate the theorem as follows:

Theorem 9 (Theorem 3, restated). Let Assumptions 1 and 2 hold. Then, ∀β1 ≥ 0 and λ = 0, if

ε ≤ 1
poly(f(w1)−f∗,L0,L1,σ0,σ1)

, with η =

√
f(w1)−f∗

√
L0+L1

√
Tσ0σ2

1

and momentum hyperparameter β2 =

1 − η2

 1024σ2
1(L1+L0)(1−β1)√
1− β2

1
β2

(1− β1√
β2

)

2

, we have if T ≥ Θ
(

(L0+L1)σ
3
0σ

2
1(f(w1)−f∗)
ε4

)
, then Algorithm 1

satisfies

1

T
E

T∑
t=1

∥∇f(wt)∥ ≤ ε.

Proof. Let the approximate iterative sequence be defined as ut ≜
wt− β1√

β2
wt−1

1− β1√
β2

and the surro-

gate second-order momentum be defined as ν̃t ≜ β2νt−1 + (1 − β2)σ
2
0 . Then, as η√

1−β2
=√

1− β2
1

β2
(1− β1√

β2
)

1024σ2
1(L1+L0)(1−β1)

, we have

∥ut −wt∥ =

β1√
β2

1− β1√
β2

∥wt −wt−1∥
(∗)
≤ η

β1√
β2

1− β1√
β2

1− β1

√
1− β2

√
1− β2

1

β2

≤ 1

4L1
,

and

∥ut+1 −wt∥ =
1

1− β1√
β2

∥wt+1 −wt∥
(∗)
≤ η

1

1− β1√
β2

1− β1

√
1− β2

√
1− β2

1

β2

≤ 1

4L1
.

Therefore, if choosing w1 = wt, w2 = ut+1, and w3 = ut in Lemma 2, we see the conditions of
Lemma 2 is satisfied, which after taking expectation gives

E|Ftf(ut+1) ≤ f(ut) + E|Ft ⟨∇f(wt),ut+1 − ut⟩ +
1

2
(L0 + L1∥∇f(wt)∥)E|Ft (∥ut+1 − wt∥ + ∥ut − wt∥)∥ut+1 − ut∥.

We call ⟨∇f(wt),ut+1−ut⟩ the first-order term and 1
2 (L0+L1∥∇f(wt)∥)(∥ut+1−wt∥+ ∥ut−

wt∥)∥ut+1 − ut∥ the second-order term, as they respectively correspond to the first-order and
second-order Taylor’s expansion. We then respectively bound these two terms as follows.
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Analysis for the first-order term. Before we start, denote ν̃t ≜ β2νt−1 + (1− β2)σ
2
0

ut+1 − ut =
wt+1 −wt

1− β1√
β2

− β1√
β2

wt −wt−1

1− β1√
β2

=− η

1− β1√
β2

1
√
νt

mt + β1
η

1− β1√
β2

1√
β2νt−1

mt−1

=− η

1− β1√
β2

1√
ν̃t

mt + β1
η

1− β1√
β2

1√
ν̃t

mt−1 −
η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
mt

+ β1
η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
mt−1

=− η
1− β1

1− β1√
β2

1√
ν̃t

gt −
η

1− β1√
β2

(
1

√
νt

− 1√
ν̃t

)
mt + β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
mt−1.

According to the above decomposition, we have the first-order term can also be decomposed into

E|Ft [⟨∇f(wt),ut+1 − ut⟩]

=
1− β1

1− β1√
β2

E|Ft

[〈
Gt,−η

1√
ν̃t

gt

〉]
+ E|Ft

[〈
Gt,−

η

1− β1√
β2

(
1√
νt

− 1√
ν̃t

)
mt

〉]

+ E|Ft

[〈
Gt, β1

η

1− β1√
β2

(
1√

β2νt−1

− 1√
ν̃t

)
mt−1

〉]
. (7)

As E|Ft

[〈
Gt,−η 1√

ν̃t
gt

〉]
= −η ∥Gt∥2

√
ν̃t

, we have

1− β1

1− β1√
β2

E|Ft

[〈
Gt,−η

1√
ν̃t

gt

〉]
≤ −∥Gt∥2√

ν̃t

.

We then respectively bound the rest of the two terms in Eq. (7). To begin with,

E|Ft

[〈
Gt,−

η

1− β1√
β2

(
1√
νt

− 1√
ν̃t

)
mt

〉]

=E|Ft

[〈
Gt,−

η

1− β1√
β2

(
(1− β2)(σ

2
0 − ∥gt∥2)√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
mt

〉]

≤ η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)(σ

2
0 + ∥gt∥2)√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]

=
η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)∥gt∥2√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]
+

η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)σ

2
0√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]
.

(8)

The first term in the right-hand-side of Eq. (8) can be bounded as

η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)∥gt∥2√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]
(∗)
≤ η(1− β1)(√

1− β1√
β2

)3E|Ft

[
∥Gt∥

( √
1− β2∥gt∥2√

ν̃t(
√
νt +

√
ν̃t)

)]
(◦)
≤ η(1− β1)(√

1− β1√
β2

)3 ∥Gt∥√
ν̃t

√
E|Ft∥gt∥2

√
E|Ft

∥gt∥2

(
√
νt +

√
ν̃t)2

(•)
≤ η(1− β1)

√
1− β2(√

1− β1√
β2

)3 ∥Gt∥√
ν̃t

√
σ2
0 + σ2

1∥Gt∥2
√

E|Ft
∥gt∥2

(
√
νt +

√
ν̃t)2

≤η(1− β1)
√
1− β2(√

1− β1√
β2

)3 ∥Gt∥√
ν̃t

(σ0 + σ1∥Gt∥)

√
E|Ft

∥gt∥2

(
√
νt +

√
ν̃t)2

,
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where inequality (∗) uses Lemma 1, inequality (◦) is due to Holder’s in-
equality, and inequality (•) is due to Assumption 2. Applying mean-

value inequality respectively to η(1−β1)
√
1−β2(√

1− β1√
β2

)3 E|Ft ∥Gt∥√
ν̃t

σ0

√
E|Ft

∥gt∥2

(
√
νt+

√
ν̃t)2

and

η(1−β1)
√
1−β2(√

1− β1√
β2

)3 E|Ft ∥Gt∥√
ν̃t

σ1∥Gt∥
√
E|Ft

∥gt∥2

(
√
νt+

√
ν̃t)2

and due to β1 ≤ β2, we obtain that the

right-hand-side of the above inequality can be bounded by

1

16
η

1− β1

1− β1√
β2

√
1− β2σ0

∥Gt∥2

ν̃t
+

4η
√
1− β2σ0(

1− β1√
β2

)2 E|Ft
∥gt∥2

(
√
νt +

√
ν̃t)2

+
1

16
η

1− β1

1− β1√
β2

∥Gt∥2√
ν̃t

+ 4η
(1− β2)(1− β1)

(1− β1√
β2
)2

σ2
1

∥Gt∥2√
ν̃t

E|Ft
∥gt∥2

(
√
νt +

√
ν̃t)2

≤1

8
η
∥Gt∥2√

ν̃t

+
4η

√
1− β2σ0(

1− β1√
β2

)2 E|Ft
∥gt∥2

νt
+

1

8
η
∥Gt∥2√

ν̃t

+ 16η
(1− β2)

(1− β1)
σ2
1

∥Gt∥2√
ν̃t

E|Ft
∥gt∥2

(
√
νt +

√
ν̃t)2

.

(9)

Here the inequality is due to ν̃t = (1− β2)σ
2
0 + β2νt−1 ≥ (1− β2)σ

2
0 . Meanwhile, we have(

1√
β2ν̃t

− 1√
ν̃t+1

)
∥Gt∥2

=
∥Gt∥2((1− β2)

2σ2
0 + β2(1− β2)∥gt∥2)√

β2ν̃t

√
ν̃t+1(

√
β2ν̃t +

√
ν̃t+1)

≥ ∥Gt∥2β2(1− β2)∥gt∥2√
β2ν̃t

√
ν̃t+1(

√
β2ν̃t +

√
ν̃t+1)

≥1

4

∥Gt∥2(1− β2)∥gt∥2√
ν̃t(

√
νt +

√
ν̃t)2

,

where in the last inequality, we use
√
β2 ≥ 1

2 . Applying the above inequality back to Eq. (9), we
obtain that

η

1− β1
E|Ft

[
∥Gt∥

(
(1− β2)g

2
t√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]
≤1

4
η
∥Gt∥2√

ν̃t

+
4η

√
1− β2σ0(

1− β2
1

β2

)2 E|Ft
∥gt∥2

νt
+ η

64

(1− β1)
σ2
1E|Ft

(
1√
β2ν̃t

− 1√
ν̃t+1

)
∥Gt∥2.

(10)

Furthermore, due to Assumption 1, we have (we define G0 ≜ G1)

∥Gt+1∥2 ≤∥Gt∥2 + 2∥Gt∥∥Gt+1 −Gt∥+ ∥Gt+1 −Gt∥2

≤∥Gt∥2 + 2(L0 + L1∥Gt∥)∥Gt∥∥wt+1 −wt∥+ 2(L2
0 + L2

1∥Gt∥2)∥wt+1 −wt∥2,

which by η√
1−β2

=

√
1− β2

1
β2

(1− β1√
β2

)2

1024σ2
1(L1+L0)(1−β1)

further leads to

1√
β2ν̃t+1

∥Gt∥2

≥ 1√
β2ν̃t+1

(
∥Gt+1∥2 − 2(L0 + L1∥Gt∥)∥Gt∥∥wt+1 −wt∥ − 2(L2

0 + L2
1∥Gt∥2)∥wt+1 −wt∥2

)
≥

(
1√

β2ν̃t+1

∥Gt+1∥2 −
2L0

σ0

(1− β1)

64σ2
1

∥wt+1 −wt∥2 −
3

8

(1− β1)

64σ2
1

∥Gt∥2√
ν̃t

)
.
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Applying the above inequality back to Eq. (10) leads to that

η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)g

2
t√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]

≤5

8
η
∥Gt∥2√

ν̃t

+
4η

√
1− β2σ0

(1− β1)
2 E|Ft

∥gt∥2

νt
+ η

64

(1− β1)
σ2
1E|Ft

(
∥Gt∥2√
β2ν̃t

− ∥Gt+1∥2√
ν̃t+1

)

+ 2
L0

σ0
E|Ft∥wt+1 −wt∥2. (11)

As for the second term in the right-hand-side of Eq. (8), we have

η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)σ

2
0√

νt

√
ν̃t(

√
νt +

√
ν̃t)

)
∥mt∥

]

≤ η

1− β1√
β2

E|Ft

[
∥Gt∥

(
4
√
1− β2

√
σ0

4
√
ν̃t
√
νt

)
∥mt∥

]

≤1

8
η
∥Gt∥2√

ν̃t

+
8η

√
1− β2σ0

(1− β1)2
E|Ft

[(
∥mt∥2

νt

)]
. (12)

In the last inequality we use again β2 ≥ β1. With Inequalities (11) and (12), we conclude that the
first-order term can be bounded by

E|Ft [⟨∇f(wt),ut+1 − ut⟩] ≤− 1

4
ηE

∥Gt∥2√
ν̃t

+
4η

√
1− β2σ0

(1− β1)
2 E|Ft

∥gt∥2

νt
+ η

64

(1− β1)
σ2
1E|Ft

(
∥Gt∥2√
β2ν̃t

− ∥Gt+1∥2√
ν̃t+1

)

+ 2
L0

σ0
E|Ft∥wt+1 −wt∥2 +

8η
√
1− β2σ0

(1− β1)2
E|Ft

[(
∥mt∥2

νt

)]
.

(13)

Analysis for the second-order term. To recall, the second order term is 1
2 (L0 +

L1∥∇f(wt)∥)(∥ut+1 − wt∥ + ∥ut − wt∥)∥ut+1 − ut∥. Before we start, we have the follow-
ing expansion for ut+1 − ut: (here the operations are all coordinate-wisely)

ut+1 − ut =
wt+1 −wt − β1√

β2
(wt −wt−1)

1− β1√
β2

=
−η mt√

νt
+ η β1√

β2

mt−1√
νt−1

1− β1√
β2

=
−η mt√

νt
+ ηβ1

mt−1√
νt

− ηβ1
mt−1√

νt
+ η β1√

β2
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νt−1

1− β1√
β2

=
−η (1−β1)gt√

νt
+ η β1(1−β2)∥gt∥2

√
β2
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√
νt−1

√
νt(

√
νt+

√
β2νt−1)

1− β1√
β2

(14)

Then firstly, we have
1

2
L0(∥ut+1 − wt∥ + ∥ut − wt∥)∥ut+1 − ut∥

≤
1

2
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(
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+
1

2
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+
1

2
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)

=
1

2
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√
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√
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√
β2νt−1)

1 − β1√
β2
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2

+
1

2
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1 − β1√
β2
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2

+
1

2
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1

1 − β1√
β2
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∥∥∥∥∥∥∥
2


≤
L0η

2

2


 1 − β1

1 − β1√
β2

+
β1(1 − β1)

(
√
β2 − β1)

√
1 − β2

1
β2
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√
νt

∥∥∥∥2 +
1

2
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β2

1 − β1√
β2
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√
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2

+
1

2

 1

1 − β1√
β2


2 ∥∥∥∥ mt

√
νt
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(•)
≤

L0η
2

2

2

 1 − β1

1 − β1√
β2

+
β1(1 − β1)

(
√
β2 − β1)

√
1 − β2

1
β2
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√
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√
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 .
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Secondly, we have
1

2
L1∥∇f(wt)∥(∥ut+1 −wt∥+ ∥ut −wt∥)∥ut+1 − ut∥

≤1

2
L1∥∇f(wt)∥(2∥ut+1 −wt∥+ ∥ut+1 − ut∥)


∥∥∥η (1−β1)gt√
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+
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√
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√
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√
νt(

√
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√
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(∗)
≤ 1

2
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νt
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+
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νt

(1− β1√
β2
)
√
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1

β2


=
L1

2
η

 1− β1

1− β1√
β2

+
β1(1− β1)

(
√
β2 − β1)

√
1− β2

1
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 ∥∇f(wt)∥(2∥ut+1 −wt∥+ ∥ut − ut+1∥)
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νt

(◦)
=

L1

2
η
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1− β1√
β2
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β1(1− β1)

(
√
β2 − β1)

√
1− β2

1

β2

 ∥Gt∥

(
∥ut+1 − ut∥+ 2

1

1− β1√
β2

η

∥∥∥∥mt√
νt
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)

∥gt∥√
νt

.

where inequality (∗) is due to that ∥mt−1∥√
νt−1

≤ 1−β1

√
1−β2

√
1− β2

1
β2

, ∥gt∥√
νt

≤ 1√
1−β2

, and equation (◦) is

due to ut − wt =

β1√
β2

1− β1√
β2

(wt − wt−1) and ut+1 − wt =
1

1− β1√
β2

(wt+1 − wt). As for the term

∥Gt∥∥mt∥√
νt

∥gt∥√
νt

, we first add additional denominator for it. Specifically, we have

∥Gt∥
∥mt∥√
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2
0
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0

+
1

2
σ0

∥mt∥2

νt
.

We analyze the first term in the right-hand-side of above inequality more carefully. Specifically, this
term with expectation can be bounded as

E|Ft
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νt + (1− β2)σ2

0

≤E|Ft
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0
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0
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∥mt∥2
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,

where Eq. (⋆) is due to Holder’s inequality.
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Meanwhile, due to Eq. (14), we have that the term |Gt∥∥ut+1 − ut∥∥gt∥√
νt

can be be bounded as

|Gt∥∥ut+1 − ut∥
∥gt∥√
νt
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β1(1− β1)

(
√
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.

Then, following the similar reasoning above, we have |Gt∥∥ut+1 − ut∥∥gt∥√
νt

can be bounded as

E|Ft∥Gt∥
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.

Putting all the estimations together, we have that the second-order term can be bounded by

E|Ft
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2
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(15)

Here in the second inequality we use β2 ≥ β1, and in the last inequality we use η√
1−β2

=√
1− β2

1
β2

(1− β1√
β2

)2

1024σ2
1(L1+L0)(1−β1)

.

Applying the estimations of the first-order term (Eq. (13)) and the second-order term (Eq. (15)) back
into the descent lemma, we derive that
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1

8
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64
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.
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Taking expectation to the above inequality and summing it over t ∈ [1, T ] then gives

1

8
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η
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By further applying Lemma 3 and β2 ≥ β1, we obtain
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η
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(17)

Here last inequality we apply η√
1−β2

=

√
1− β2

1
β2

(1− β1√
β2

)2

1024σ2
1(L1+L0)(1−β1)

.

Below we transfer the above bound to the bound of
∑T

t=1 ∥Gt∥ by two rounds of divide-and-conquer.
In the first round, we will bound E lnνT . To start with, we have that
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,

where the last inequality is due to that

β2νt−1 + (1− β2)σ
2
0 ≤ βt−T

2 νT + (1− β2)σ
2
0 ≤ (νT + (1− β2)σ

2
0)β

2(t−T )
2 . (18)
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Furthermore, we have
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Conclusively, we obtain
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Substituting E
∑T

t=1
∥Gt∥2

√
ν̃t

according to Eq. (17), we obtain that
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≤
√
βT
2 ν0 + 2σ2

0 +
2(1− β2)σ

2
1

η

(
f(w1)− f∗ + η

64

(1− β1)
σ2
1

∥G1∥2√
β2ν̃1

+
1

1− β2

(
147456η2(L0 + L1)σ

2
1σ0

(1− β1)
5
2

+ 4
L1η

2σ0

(1− β1)
3
2

+
24L0η

2

1− β1
+ 8

L0

σ0
η2

)
(E lnνT − T lnβ2)

)

≤
√
βT
2 ν0 + 2σ2

0 + σ0 +
1

4
E lnνT

≤
√
βT
2 ν0 + 2σ2

0 + σ0 +
1

2
E
√
νT + (1− β2)σ2

0 .

where the third inequality is due to

T ≥36 ∗ 20484(L0 + L1)
3σ12

1 (f(w1)− f∗)

(1− β1)6σ2
0

+
768 ∗ 20482(f(w1)− f∗)σ8

1(8L
2
1(f(w1)− f∗)2 + 4L0(f(w1)− f∗))

(1− β1)4σ2
0

+
242 ∗ 147456(L0 + L1)σ

8
1(f(w1)− f∗)σ2

0

(1− β2)5
+

1282(L0 + L1)(f(w1)− f∗)σ4
1

σ2
0

+
242 ∗ 147456 ∗ 20482(L0 + L1)

3σ16
1 (f(w1)− f∗)3

(1− β2)11
+

1282 ∗ 20482(L0 + L1)
3(f(w1)− f∗)3σ12

σ4
0(1− β1)6

,

and the last inequality is due to lnx ≤ x. Solving the above inequality with respect to
E
√
νT + (1− β2)σ2

0 and applying ν0 = σ2
0 then gives

E
√
νT ≤ E

√
νT + (1− β2)σ2

0 ≤6σ0. (20)
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Therefore, Eq. (17) can be rewritten as

1

16
η

T∑
t=1

E
∥Gt∥2√

ν̃t

≤f(w1)− f∗ + η
64

(1− β1)
σ2
1

∥G1∥2√
β2ν̃1

+
1

1− β2

(
147456η2(L0 + L1)σ

2
1σ0

(1− β1)
5
2

+ 4
L1η

2σ0

(1− β1)
3
2

+
24L0η

2

1− β1
+ 8

L0

σ0
η2

)
(2 ln 6σ0 − T lnβ2) .

(21)

We then execute the second round of divide-and-conquer. To begin with, we have that

T∑
t=1

E
[
∥Gt∥2√

ν̃t

1∥Gt∥≥σ0
σ1

]
≤

T∑
t=1

E
[
∥Gt∥2√

ν̃t

]
. (22)

On the other hand, we have that

∥Gt∥2√
ν̃t

1∥Gt∥≥σ0
σ1

≥
2
3∥Gt∥2 + 1

3
σ2
0

σ2
1√

ν̃t

1∥Gt∥≥σ0
σ1

≥
β2

3σ2
1
E|Ft∥gt∥2 + 1−β2

3
σ2
0

σ2
1√

ν̃t

1∥Gt∥≥σ0
σ1

=E|Ft

β2

3σ2
1
∥gt∥2 + 1−β2

3σ2
1
σ2
0

√
ν̃t

1∥Gt∥≥σ0
σ1

≥ 1

2
E|Ft

β2

3σ2
1
∥gt∥2 + 1−β2

3σ2
1
σ2
0√

ν̃t+1 +
√
β2ν̃t

1∥Gt∥≥σ0
σ1

.

As a conclusion,

T∑
t=1

E
[
∥Gt∥2√

ν̃t

1∥Gt∥≥σ0
σ1

]
≥ 1

2

T∑
t=1

E

[ β2

3σ2
1
∥gt∥2 + 1−β2

3σ2
1
σ2
0√

ν̃t+1 +
√
β2ν̃t

1∥Gt∥≥σ0
σ1

]

≥ 1

6(1− β2)σ2
1

T∑
t=1

E
[(√

ν̃t+1 −
√
β2ν̃t

)
1∥Gt∥≥σ0

σ1

]
.

Meanwhile, for convenience, we define {ν̄t}∞t=0 as ν̄0 = ν0, ν̄t = β2ν̄t−1+(1−β2)|gt|21∥Gt∥<
σ2
0

σ2
1

.

One can easily observe that ν̄t ≤ νt, and thus

T∑
t=1

E

[(√
ν̃t+1 −

√
β2ν̃t

)
1
∥Gt∥<

σ2
0

σ2
1

]

=

T∑
t=1

E
(√

β2
2νt−1 + β2(1− β2)∥gt∥2 + (1− β2)σ2

0 −
√
β2(β2νt−1 + (1− β2)σ2

0)

)
1
∥Gt∥<

σ2
0

σ2
1

≤
T∑

t=1

E
(√

β2
2 ν̄t−1 + β2(1− β2)∥gt∥2 + (1− β2)σ2

0 −
√
β2(β2ν̄t−1 + (1− β2)σ2

0)

)
1
∥Gt∥<

σ2
0

σ2
1

≤
T∑

t=1

E

(√
β2
2 ν̄t−1 + β2(1− β2)∥gt∥21∥Gt∥<

σ2
0

σ2
1

+ (1− β2)σ2
0 −

√
β2(β2ν̄t−1 + (1− β2)σ2

0)

)

=

T∑
t=1

E
(√

β2ν̄t + (1− β2)σ2
0 −

√
β2(β2ν̄t−1 + (1− β2)σ2

0)

)

=E
√
β2ν̄t + (1− β2)σ2

0 + (1−
√

β2)

T−1∑
t=1

E
√

β2ν̄t + (1− β2)σ2
0 − E

√
β2(β2ν̄0 + (1− β2)σ2

0).
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All in all, summing the above two inequalities together, we obtain that

E
√

ν̃t+1 + (1−
√

β2)

T∑
t=2

E
√

ν̃t −
√

β2ν̃1

=

T∑
t=1

E
(√

ν̃t −
√

β2ν̃t−1

)
≤

T∑
t=1

E
(√

ν̃t −
√

β2ν̃t−1

)
1∥Gt∥≥

σ0
σ1

+

T∑
t=1

E
(√

ν̃t −
√

β2ν̃t−1

)
1
∥Gt∥<

σ2
0

σ2
1

≤3(1− β2)σ
2
1√

β2

T∑
t=1

E
[
∥Gt∥2√

ν̃t

]
+ E

√
β2ν̄t + (1− β2)σ2

0 + (1−
√

β2)

T−1∑
t=1

E
√

β2ν̄t + (1− β2)σ2
0 −

√
β2(β2ν̄0 + (1− β2)σ2

0).

Since ∀t ≥ 1,

E
√

β2ν̄t + (1− β2)σ2
0 ≤

√
β2Eν̄t + (1− β2)σ2

0 ≤
√

σ2
0 + ν0 ≤

√
2σ0,

combining with
√
β2ν̃1 =

√
β2(β2ν̄0 + (1− β2)σ2

0) and E
√
ν̃t+1 = E

√
β2νt + (1− β2)σ2

0 ≥
E
√
β2ν̄t + (1− β2)σ2

0 , we obtain

(1−
√

β2)

T∑
t=1

E
√
ν̃t ≤

3(1− β2)σ
2
1√

β2

T∑
t=2

E
[
∥Gt∥2√

ν̃t

]
++(1−

√
β2)

T∑
t=1

E
√

β2ν̄t + (1− β2)σ2
0

≤3(1− β2)σ
2
1√

β2

T∑
t=1

E
[
∥Gt∥2√

ν̃t

]
+

√
2(1−

√
β2)Tσ0..

Dividing both sides of the above equation by 1−
√
β2 then gives

T∑
t=1

E
√
ν̃t ≤

3(1− β2)σ
2
1√

β2

T∑
t=2

E
[
∥Gt∥2√

ν̃t

]
+ (1−

√
β2)

T∑
t=1

E
√
β2ν̄t + (1− β2)σ2

0

≤12σ2
1

T∑
t=1

E
[
∥Gt∥2√

ν̃t

]
+
√
2Tσ0. (23)

By applying Eq. (21) and the constraint of T , we obtain that
T∑

t=1

E
√
ν̃t ≤

√
2Tσ0 + 12

σ2
1

η

(
f(w1)− f∗ + η

64

(1− β1)
σ2
1

∥G1∥2√
β2ν̃1

+
1

1− β2

(
147456η2(L0 + L1)σ

2
1σ0

(1− β1)
5
2

+ 4
L1η

2σ0

(1− β1)
3
2

+
24L0η

2

1− β1
+ 8

L0

σ0
η2

)
(2 ln 6σ0 − T lnβ2)

)
≤4Tσ0.

Combining the above inequality and Eq. (21) and applying Cauchy’s inequality, we obtain that(
E

T∑
t=1

∥∇f(wt)∥

)2

≤

(
T∑

t=1

E
√

ν̃t

)(
T∑

t=1

E
[
∥Gt∥2√

ν̃t

])

≤4Tσ0 ×
1

η

(
f(w1)− f∗ + η

64

(1− β1)
σ2
1

∥G1∥2√
β2ν̃1

+
1

1− β2

(
147456η2(L0 + L1)σ

2
1σ0

(1− β1)
5
2

+ 4
L1η

2σ0

(1− β1)
3
2

+
24L0η

2

1− β1
+ 8

L0

σ0
η2

)
(2 ln 6σ0 − T lnβ2)

)
.

By η =

√
f(w1)−f∗

√
L0+L1

√
Tσ0σ2

1

and the constraint of T , the proof is completed.
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C.2 PROOF FOR SGDM

Theorem 10 (Informal). Fix L0 ≥ 0, L1 > 0, and ∆1 ≥ 0, there exists objective function f satisfying
(L0, L1)-smooth condition and f(w1)− f∗ = ∆1, and a noise oracle O(w, z) generating stochastic
gradient by gt = ∇f(wt) +O(wt, zt) and satisfying Assumption 2 (zt is i.i.d. sampled from some
underlying distribution), such that for any learning rate η > 0 and β ∈ [0, 1], for all T > 0,

min
t∈[T ]

E∥∇f(wt)∥ = ∥∇f(w1)∥ ≥ L1∆1.

Proof. Define the objective function f as f1 used in the the proof of Theorem 2 as

f1(x) =



L0e
L1x−1

L2
1

, x ∈
[
1

L1
,∞
)
,

L0x
2

2
+

L0

2L2
1

, x ∈ [− 1

L1
,
1

L1
],

L0e
−L1x−1

L2
1

, x ∈
(
−∞,− 1

L1

]
.

(24)

It is easy to verify that f1 obeys Assumption 1. Then, we set w1 as the solution of f1(x)− L0

2L2
1
= ∆1,

thus f(w1) − f∗ = ∆1 is satisfied. We then construct the noise oracle as Of (w, z) = z, where

z ∼ e
−

√
|z|

6
√

σ2
0/960 . One can easily verify that Var(z) = σ2

0 and Assumption 2 is meet.

Now, we prove the following claim: starting any point wt and with any previous momentum mt−1,
one step of SGDM

E[∥∇f(wt+1)∥|wt] = ∞.

Specifically, we have one step of SGDM gives
wt+1 = wt − η(1− β)∇f(wt)− ηβmt−1 − η(1− β)zt.

Therefore, we have

E[|∇f(wt+1)||wt] ≥E
[
|∇f(wt+1)|1wt+1≥max{ 1

L1
,wt−η(1−β)∇f(wt)−ηβmt−1}

]
≥E

[
|∇f(wt+1)|1

zt≤min{
wt− 1

L1
η(1−β)

−∇f(wt)− β
1−βmt−1,0}

]

≥1

2

∫ min{
wt− 1

L1
η(1−β)

−∇f(wt)− β
1−βmt−1,0}

−∞

L0

L1
eL1(wt−η(1−β)∇f(wt)−ηβmt−1−η(1−β)z)−1e

−
√

−z

6
√

σ2
0/960 dz.

Since limz→−∞ eL1(wt−η(1−β)∇f(wt)−ηβmt−1−η(1−β)z)−1e
−

√
−z

6
√

σ2
0/960 = ∞ regardless of η, β, and

mt−1, we have E[|∇f(wt+1)||wt] = ∞ based on the above inequalities. This means that an update
from any point over this example will always lead to the divergence on expected gradient norm, thus
we have ∀t > 1,

min
t∈[T ]

E|∇f(wt)| = |∇f(w1)|.

The proof is completed.

D PROOFS FOR SECTION 5

D.1 PROOF FOR THEOREM 5

Theorem 11 (Theorem 5, restated). Let Assumption 1 hold. Then, ∀β1 ≥ 0, if ε ≤
1

Poly(L0,L1,σ0,σ1,
1

1−β1
,f(w1)−f∗)

, with η = (1 − β1)

√
L0(f(w1)−f∗)√

T
and momentum hyperparam-

eter β2 = 1− η2
(256σ2

1L1)
2

1−β1
, we have that if T ≥ Θ(

L0σ
2
0(f(w1)−f∗)

ε4 )

E min
t∈[1,T ]

∥∇f(wt)∥ ≤ ε.
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Proof. Recall that ut ≜
wt− β1√

β2
wt−1

1− β1√
β2

. and the surrogate second-order momentum be defined as

ν̃t ≜ β2νt−1 + (1− β2)σ
2
0 . Due to η√

1−β2
≤

√
1−β1

8L1
and following the similar routine as Theorem

3, one can easily verify that

∥ut −wt∥ ≤ 1

4L1
, ∥ut+1 −wt∥ ≤ 1

4L1
.

Therefore, if Lemma 2 can be applied with w1 = wt, w2 = ut+1, and w3 = ut, we see the
conditions of Lemma 2 is satisfied, which after taking expectation gives

E|Ftf(ut+1)

≤ f(ut) + E|Ft⟨∇f(wt),ut+1 − ut⟩+
1

2
(L0 + L1∥∇f(wt)∥)E|Ft(∥ut+1 −wt∥+ ∥ut −wt∥)∥ut+1 − ut∥.

We call ⟨∇f(wt),ut+1−ut⟩ the first-order term and 1
2 (L0+L1∥∇f(wt)∥)(∥ut+1−wt∥+ ∥ut−

wt∥)∥ut+1 − ut∥ the second-order term, as they respectively correspond to the first-order and
second-order Taylor’s expansion. We then respectively bound these two terms as follows.

Analysis for the first-order term. Similar to bounding the first-order term in the proof of Theorem
3, we have the following decomposition :

ut+1 − ut =
wt+1 −wt

1− β1√
β2

− β1√
β2

wt −wt−1

1− β1√
β2

=− η
1− β1

1− β1√
β2

1√
β2νt−1

gt −
η

1− β1√
β2

(
1

√
νt

− 1√
β2νt−1

)
mt.

According to the above decomposition, we have the first-order term can also be decomposed into

E|Ft [⟨∇f(wt),ut+1 − ut⟩]

=
1− β1

1− β1√
β2

E|Ft

[〈
Gt,−η

1√
β2νt−1

gt

〉]
+ E|Ft

[〈
Gt,−

η

1− β1√
β2

(
1

νt
− 1√

β2νt−1

)
mt

〉]
.

As E|Ft

[〈
Gt,−η 1√

β2νt−1

gt

〉]
= −η ∥Gt∥2√

β2νt−1

, we have

1− β1

1− β1√
β2

E|Ft

[〈
Gt,−η

1√
β2νt−1

gt

〉]
≤ − ∥Gt∥2√

β2νt−1

.

We then bound E|Ft

[〈
Gt,− η

1− β1√
β2

(
1
νt

− 1√
β2νt−1

)
mt

〉]
as follows

E|Ft

[〈
Gt,−

η

1− β1√
β2

(
1√
νt

− 1√
β2νt−1

)
mt

〉]

=E|Ft

[〈
Gt,−

η

1− β1√
β2

(
(1− β2)∥gt∥2√

νt

√
β2νt−1(

√
νt +

√
β2νt−1)

)
mt

〉]

≤ η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)∥gt∥2√

νt

√
β2νt−1(

√
νt +

√
β2νt−1)

)
∥mt∥

]

=
η

1− β1√
β2

E|Ft

[
∥Gt∥

(
(1− β2)∥gt∥2√

νt

√
β2νt−1(

√
νt +

√
β2νt−1)

)
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]
.
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Due to Lemma 1, the right-hand-side of the above inequality can be further bounded as

η

1 − β1√
β2

E|Ft

[
∥Gt∥

(
(1 − β2)∥gt∥2

√
νt

√
β2νt−1(

√
νt +

√
β2νt−1)

)
∥mt∥

]
≤

η(1 − β1)(√
1 − β1√

β2

)3
E|Ft

[
∥Gt∥

( √
1 − β2∥gt∥2√

β2νt−1(
√
νt +

√
β2νt−1)

)]

(◦)
≤

η(1 − β1)(√
1 − β1√

β2

)3

∥Gt∥√
β2νt−1

√
E|Ft∥gt∥2

√
E|Ft

∥gt∥2

(
√
νt +

√
β2νt−1)2

(•)
≤

η(1 − β1)
√
1 − β2(√

1 − β1√
β2

)3

∥Gt∥√
β2νt−1

√
σ2
0 + σ2

1∥Gt∥2

√
E|Ft

∥gt∥2

(
√
νt +

√
β2νt−1)2

≤
η(1 − β1)

√
1 − β2(√

1 − β1√
β2

)3

∥Gt∥√
β2νt−1

(σ0 + σ1∥Gt∥)

√
E|Ft

∥gt∥2

(
√
νt +

√
β2νt−1)2

,

where inequality (◦) is due to Holder’s inequality, and inequality (•) is due to Assumption 2. Apply-

ing mean-value inequality respectively to η(1−β1)
√
1−β2(√

1− β1√
β2

)3 E|Ft ∥Gt∥√
β2νt−1

σ0

√
E|Ft

∥gt∥2

(
√
νt+

√
β2νt−1)2

and

η(1−β1)
√
1−β2(√

1− β1√
β2

)3 E|Ft ∥Gt∥√
β2νt−1

σ1∥Gt∥
√

E|Ft
∥gt∥2

(
√
νt+

√
β2νt−1)2

and due to β1 ≤ β2, we obtain that the

right-hand-side of the above inequality can be bounded by
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Meanwhile, we have(
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Combing the above two inequalities, we further obtain
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Furthermore, due to Assumption 1, we have (we define G0 ≜ G1)

∥Gt+1∥2 ≤∥Gt∥2 + 2∥Gt∥∥Gt+1 −Gt∥+ ∥Gt+1 −Gt∥2
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which further leads to
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, (25)

where the second inequality is due to Young’s inequality, and the last inequality is due to ∥wt+1 −
wt∥ ≤ η(1−β1)

√
1−β2

√
1− β2

1
β2

≤ η
√
1−β1√
1−β2

≤ 1−β1

256σ2
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.

Applying the above inequality back to the estimation of
η
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[
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2
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]
leads to that
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) .

All in all, we conclude that the first-order term can be bounded by

E|Ft [⟨∇f(wt),ut+1 − ut⟩] ≤− 3

8
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+
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Analysis for the second-order term. To recall, the second order term is 1
2 (L0 +

L1∥∇f(wt)∥)(∥ut+1 − wt∥ + ∥ut − wt∥)∥ut+1 − ut∥. Before we start, we have the follow-
ing expansion for ut+1 − ut: (here the operations are all coordinate-wisely)
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Then firstly, we have
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Secondly, we have
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where inequality (∗) is due to that ∥mt−1∥√
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By applying Lemma 5, we further obtain
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which further indicates that
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Here the last inequality is due to Lemma 4.

Following similar reasoning, we have ∥ut+1 − ut∥ ≤ 4η√
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Then, following the similar routine as Eq. (25) and due to η√
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, we have
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Putting all the estimations together, we have that the second-order term can be bounded by
(note here due to the complexity of coefficients, we use Poly(L0, L1, σ0, σ1,
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Applying the estimations of the first-order term and the second-order term back into the descent
lemma, we derive that
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and due to Eq. (26), we have E|Ftxt ≥ 0, and thus St ≜
∑t

s=1 xs (S0 = 0) is a submartingale with
respect to {Ft}t. Also, as τ is a bounding stopping theorem, by optional stopping time, we obtain
that ESτ ≥ 0, which gives
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where the last inequality is because due to η√
1−β2

≤ 1−β1

128L1σ1
, following the similar reasoning of Eq.
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By rearranging the inequality and due to Lemma 3, we obtain
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(27)

Similar to the proof of Theorem 3, we then transfer the above bound to the bound of
∑τ

t=1 ∥Gt∥ by
two rounds of divide-and-conquer. In the first round, we will bound E lnντ . To start with, we have
that
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Furthermore, we have
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where inequality (◦) is due to optimal stopping theorem.
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where we use η =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)
√
T

, 1 − β2 =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)

T ,
and T ≥ Poly(L0, L1, σ0, σ1,

1
1−β1

, f(w1) − f∗). Therefore, we obtain
√
1− β2E

√∑τ
t=1 ∥gt∥2 +

ν0

1−β2
≤ 6
√
ν0 + 2σ2

0T (1− β2).

Therefore, Eq. (27) can be rewritten as

1

16
ηE

τ∑
t=1

∥Gt∥2√
β2νt−1

≤ f(u1)− Ef(uτ+1) +
128L0η

2

(1− β2)(1− β1)2

(
ln

6
√
ν0 + 2σ2

0T (1− β2)√
ν0

− T lnβ2

)

+
η3

1− β2
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

1√
β2ν0

+

(
η3

1− β2
+ η

)
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

(
∥G1∥2√
β2ν0

)
.

We then execute the second round of divide-and-conquer. To begin with, we have that
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E
√
ν̄t − E

√
β2ν0

≤E
√
ν̄τ + (1−

√
β2)Tσ0 − E

√
β2ν0.
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All in all, summing the above two inequalities together, we obtain that

E
√
ντ + (1−

√
β2)E

τ−1∑
t=1

√
νt −

√
β2ν0

=E
τ∑

t=1

(√
νt −

√
β2νt−1

)
≤E

τ∑
t=1

(√
νt −

√
β2νt−1

)
1∥Gt∥≥

σ0
σ1

+ E
τ∑

t=1

(√
νt −

√
β2νt−1

)
1
∥Gt∥<

σ2
0

σ2
1

≤2(1− β2)σ
2
1

τ∑
t=1

E
[

∥Gt∥2√
β2νt−1

]
+ E

√
ν̄τ + (1−

√
β2)Tσ0 − E

√
β2ν0.

Since ν0 = ν̄0 and E√ντ ≥ E
√
ν̄τ , we obtain

(1−
√

β2)E
τ−1∑
t=0

√
ν̃t ≤2(1− β2)σ

2
1E

τ∑
t=1

[
∥Gt∥2√
β2νt−1

]
+ (1−

√
β2)Tσ0.

Dividing both sides of the above equation by 1−
√
β2 then gives

E
τ−1∑
t=0

√
ν̃t ≤4σ2

1E
τ∑

t=1

[
∥Gt∥2√
β2νt−1

]
+ Tσ0.

By applying Eq. (21) and the constraint of τ , we obtain that

E
τ−1∑
t=0

√
νt ≤Tσ0 + 64

σ2
1

η

(
f(u1)− Ef(uτ+1) +

64L0η
2

1− β2

(
ln

6
√
ν0 + 2σ2

0T (1− β2)√
ν0

− T lnβ2

)

+
η3

1− β2
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

1√
β2ν0

+

(
η3

1− β2
+ η

)
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

(
∥G1∥2√
β2ν0

))
≤4Tσ0.

Here the last inequality is due to η =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)
√
T

, 1 − β2 =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)

T , and T ≥ Poly(L0, L1, σ0, σ1,
1

1−β1
, f(w1) − f∗). Therefore, by

Cauchy’s inequality, we obtain that(
E

τ∑
t=1

∥∇f(wt)∥

)2

≤

(
E

τ−1∑
t=0

√
νt

)(
E

τ∑
t=1

[
∥Gt∥2√
β2νt−1

])

≤4Tσ0 ×
16

η

(
f(w1)− f∗ +

64L0η
2

1− β2

(
ln

6
√
ν0 + 2σ2

0T (1− β2)√
ν0

− T lnβ2

)

+
η3

1− β2
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

1√
β2ν0

+

(
η3

1− β2
+ η

)
Poly(L0, L1, σ0, σ1,

1

1− β1
, f(w1)− f∗)

(
∥G1∥2√
β2ν0

))
(∗)
≤4Tσ0 ×

16

η

(
3(f(w1)− f∗) +

128L0η
2

(1− β2)(1− β1)2

(
ln

6
√
ν0 + 2σ2

0T (1− β2)√
ν0

− T lnβ2

))
(•)
≤64Tσ0

(
3
√
TL0(f(w1)− f∗) +

128L0η

(1− β2)(1− β1)2T
T

(
ln

6
√
ν0 + 2σ2

0T (1− β2)√
ν0

))
≤64Tσ0

(
387(1− β1)

√
TL0(f(w1)− f∗)

)
,
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where inequality (∗) is due to η =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)
√
T

, 1 − β2 =
Poly(L0,L1,σ0,σ1,

1
1−β1

,f(w1)−f∗)

T , and T ≥ Poly(L0, L1, σ0, σ1,
1

1−β1
, f(w1) − f∗), inequality (•)

is due to that η =

√
f(w1)−f∗
√
L0

, and last inequality is due to 1
(1−β2)T

ln
6
√

ν0+2σ2
0T (1−β2)√
ν0

≤ 6.

We then consider two cases: τ < T and τ = T : for the first case, we have that according to the
definition of τ

E min
t∈[1,T ]

∥Gt∥1τ<T ≤
4
√

σ2
0L0(f(w1)− f∗)

4
√
T

.

For the latter case, we have

E min
t∈[1,T ]

∥Gt∥1τ=T ≤ 1

T

(
E

T∑
t=1

∥∇f(wt)∥1τ=T

)
≤ 1

T

(
E

τ∑
t=1

∥∇f(wt)∥

)
≤ 256 4

√
σ2
0L0(f(w1)− f∗)

4
√
T

.

Summing the two inequalities above complete the proof.

D.2 PROOF OF PARAMETER-AGNOSTIC ADAM

D.2.1 RELATED WORKS ON PARAMETER AGNOSTIC OPTIMIZATION

Parameter-agnostic optimization. The term ”parameter-agnostic” implies that the optimizer is
capable of converging without the need for extensive hyperparameter tuning or detailed knowledge
of the task characteristics. Designing parameter-agnostic or parameter-free optimizers is a significant
challenge, as it can help avoid the extensive cost associated with hyperparameter search. Existing
works on parameter-agnostic optimization can be categorized into several streams based on the
settings they are predicated upon. In the deterministic offline setting, it is widely acknowledged that
GD is not parameter-agnostic, even under an L-smooth condition Nesterov et al. (2018). However,
this can be rectified by combining the GD with the Backtracking Line Search technique Armijo
(1966). In the stochastic offline setting, under the L-smooth condition, multiple algorithms have
been shown to be parameter-agnostic Yang et al. (2023); Ward et al. (2020); Faw et al. (2022); Wang
et al. (2023b); Cutkosky & Mehta (2020). More recently, Hübler et al. (2023) demonstrated that
Normalized-SGDM can be parameter-agnostic even under an (L0, L1)-smooth condition. In the
realm of online convex optimization, Orabona & Pál (2016); Orabona & Tommasi (2017) have shown
there exist parameter-free algorithms achieving optimal dependence regarding not only the final error
but also other problem specifics.

D.2.2 OUR RESULTS

As we select η = 1/
√
T , choosing 1−β2 = Ω(1/T ) has the advantage that the update norm decreases

with respect to T . This makes Adam parameter-agnostic under the (L0, L1)-smooth condition, as the
update norm will eventually become smaller than 1

L1
as T increases.

Theorem 12. Let Assumptions 1 and 2 hold. Then, at the t-th iteration, setting η = 1√
t
, β2 = 1− 1

4√
t3

,
we have that Algorithm 1 satisfies

E min
t∈[1,T ]

∥∇f(wt)∥ ≤ Õ
(

1
4
√
T

)
.

It is shown in Hübler et al. (2023) that Normed-SGDM is parameter-agnostic. Here we show that
Adam with a specific scheduler can achieve the same goal.

Proof. As described in Section 5, the proof immediately follows by several modifications of the proof
of Theorem 11:

• We start our analysis for t ≥ L4
1128

4σ4
1

(1−β1)4
. For t ≤ L4

1128
4σ4

1

(1−β1)4
, the function value can be bounded

by constant as L4
1128

4σ4
1

(1−β1)4
is independent of t;
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• For t ≥ L4
1128

4σ4
1

(1−β1)4
, we have max{∥ut−wt∥, ∥ut+1−wt∥} ≤ 1

L1
since ∥wt+1−wt∥ ≤ 1

4√t

which also can be used to prove Eq. (25).

The proof is completed.
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