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Abstract
Hierarchical reinforcement learning allows an
agent to effectively solve complex tasks by lever-
aging the compositional structures of tasks and
executing a sequence of skills. However, our ex-
amination shows that prior work focuses on learn-
ing individual skills without considering how to
efficiently combine them, which can lead to sub-
optimal performance. To address this problem, we
propose a novel framework, called second-order
skills (SOS), for learning skills to facilitate the
efficient execution of skills in sequence. Specifi-
cally, second order skills (which can be general-
ized to higher orders) aim to learn skills from an
extended perspective that takes into account the
next skill required to accomplish a task. We theo-
retically demonstrate that our method guarantees
more efficient performance in the downstream
task compared to previous approaches that do not
consider second-order skills. Also, our empiri-
cal experiments show that learning second-order
skills results in improved learning performance
compared to state-of-the-art in baselines across
diverse benchmark domains.

1. Introduction
Real world compositional tasks require long-horizon plan-
ning and can be difficult for reinforcement learning (RL)
approaches to learn successful policies to solve them. An
effective approach for solving these long-horizon tasks is
hierarchical reinforcement learning (HRL) (Sutton et al.,
1999), which decouples the complex learning problem into
multiple simpler subproblems. In HRL, low level policies
(also referred to as skills) are learned to solve these sub-
problems while a high level policy composes the learned
skills by selecting different skills based on the state to solve
the downstream task. Prior work in HRL has studied the
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Figure 1. An example scenario from the Crafting domain (see Sec-
tion 4.1), where the goal is to make planks by (1) getting a wood
and then (2) using the workbench. Our second-order approach
(in blue) achieves a higher return than the first-order baseline (in
red) considered in prior work. First-order: the first-order skill
greedily considers only the next skill to execute, leading the agent
to grab the closest tree but move further from the workbench.

problem of learning skills and composing the learned skills
independently (Oh et al., 2017; Andreas et al., 2016; Ahn
et al., 2022). These skills are often learned in an unsuper-
vised setting, where samples are easy to gather, and then
fine-tuned in a downstream task (Eysenbach et al., 2018;
Gregor et al., 2016; Choi et al., 2021).

However, we highlight in this paper that when learning these
skills in an unsupervised setting, it can be easy to learn skills
that do not compose together optimally for the downstream
task. This sub-optimality arises whenever there is ambiguity
in how the agent should execute the skill, and when the
agent only optimizes to maximizes the individual skill’s
reward. As a result, only maximizing individual skill reward
can be detrimental when the agent must execute other skills
in the future for the downstream task. Figure 1 shows an
example of this sub-optimality issue, where the agent must
first gather wood and then use a workbench to complete the
task of making planks. Note that the example has ambiguity
in which wood the agent should gather (i.e., either the left
or right wood). If the agent looks ahead and considers the
second step to complete the task, the agent can infer that
gathering the wood closer to the workbench is a faster path
than gathering the other wood.

With this insight, this paper introduces learning of a new
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form of skills that maximize individual skill reward while
also maximizing future rewards for other skills. We call
these dual-maximizing skills second-order skills (SOS). For-
mally, every second-order skill is made of a target skill and
a future skill, where the agent executes the target skill while
maximizing future rewards for the future skill. This enables
the agent to “look-ahead” to the future skill, enabling the
agent to execute the target and future skill for a higher re-
turn than executing first-order skills for downstream tasks.
Further, by iteratively applying second-order skills, we can
extend the idea of second-order skills to nth order skills,
which consist of n different skills with one target skill and
n−1 different future skills. Analogous to how second-order
skills are more efficient than first-order skills, composing
nth order skills for downstream tasks is more efficient than
composing n− 1th order skills.

In summary, we make the following primary contributions:

• Novel Skill Learning. We define second-order skills
(Section 3.1) and introduce the SOS algorithm for learning
them using any off-policy RL algorithm (Section 3.2).

• Theoretical Analysis. We theoretically present that high
level policies that execute second-order skills will be more
efficient than only executing first order skills.

• Empirical Evaluation. We empirically show the effec-
tiveness of learning second-order skills using two bench-
mark domains: the crafting domain (Andreas et al., 2016)
and minigrid placement (Sohn et al., 2018; Liu et al., 2022).

2. Problem Statement
2.1. Hierarchical Reinforcement Learning

Our HRL setting considers a finite episodic MDP
(S,A,P,R, γ, T ), where S is the set of states, A is the
set of actions, P is the state transition probability, R is
the reward function, γ is the discount factor, and T is the
episodic horizon (Sutton and Barto, 1998; Sutton et al.,
1999). A hierarchical agent aims to maximize the expected
return for the downstream task by splitting the problem
of learning into two: (1) Instead of learning behavior for
the entire MDP, the agent learns a set of sub-behaviors G
called skills. Specifically, the agent learns a low-level policy
πLL(a|s, g) for each skill g ∈ G, where a ∈ A and s ∈ S,
by maximizing the skill rewards rg(s, a). Each low-level
policy also learns a termination policy βLL(done|s, a, g),
predicting whether the current skill g is done (0 or 1) given
the current state s and action a. (2) The HRL agent also
learns a high-level policy πHL(g|s), which selects the best
low-level policy (i.e., skill) to maximize the task return. The
high-level policy executes the selected low-low policy g
until it terminates.

2.2. Skill Pre-Training

We consider a variant of the HRL problem, where the agent
learns the low-level skills G in isolation to the downstream
task R. This setting is considered in a variety of related
work regarding unsupervised skill discovery (Eysenbach
et al., 2018; Gregor et al., 2016) and goal conditioned
RL (Nachum et al., 2018). These methods learn skills by
training an RL policy on a given or inferred reward and
use the learned skills to enable sample efficient learning for
HRL. Following prior work (Oh et al., 2017; Andreas et al.,
2016; Ahn et al., 2022), we make two minor assumptions to
make learning and deriving theoretical properties easier: (1)
that skill rewards have already been inferred, and (2) that
these skill rewards are non-negative (see Appendix A.2 for
more details).

Ambiguity Issue. A critical issue in the unsupervised learn-
ing setting is the ambiguity problem, which occurs whenever
a skill has multiple paths to successful execution. Specif-
ically, when the agent executes a skill that has multiple
paths of execution, the agent may arrive in a state that is
sub-optimal for the downstream task. For example, Figure 1
shows the ambiguity in choosing which wood to collect,
where getting left or right wood successfully terminates the
skill but either choice results in a different performance. We
address this ambiguity issue by introducing the concept of
second-order skills in the next section.

3. Approach
This section formally defines second-order skills (SOS) and
introduces a new algorithm for learning them using any off-
policy RL algorithm. Intuitively, SOS learns a second-order
skill g1 → g2 that executes a skill g1 while maximizing
future return for a next skill g2. We also present theoretical
results, showing that when using second-order skills for
HRL, SOS allows the agent to achieve a higher return than
first-order skills on downstream tasks. Finally, we general-
ize our second-order approach to nth-order skills that can
be defined by recursively applying second-orders to other
second-order skills. Similarly, these nth-order skills can be
learned using our SOS algorithm and can achieve higher
theoretical HRL performance.

3.1. Higher-Order Skills and HRL

Second-Order Skills. Formally, given two skills g1 and g2,
we define the second-order skill g1 → g2 to be the skill that
trains under the same MDP as skill g1 but instead maximizes
the following second-order reward function:

rg1→g2(s, a)=Es′∼P(s,a)

[{
Q̂g2(s, a) if s′∈Sg1

0 else

]
(1)
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where Sg1 denotes a latent set of goal states determining
when the agent has terminated the skill g1 successfully,
and Q̂g2(·, ·) denotes the estimated Q value for the skill g2.
Intuitively, Equation 1 states that when the agent executes g1
successfully, it receives a reward of Q̂g2(s, a), enabling the
second-order skill g1 → g2 to look-ahead toward g2 while
executing g1. We show a visualization of value functions
resulting from second-order skills reward in Section 4.4.

The notion of a successful skill is important when com-
posing skills together for downstream tasks. The success
function is generally unknown to the agent and must be
estimated. In practice, we can estimate Sg1 using the reward
rg1 as the two are closely related:

Sg1 = {s ∈ S | rg1(s, a) > ρ}, (2)

where ρ is a hyperparameter.

nth-Order Skills. Because g1 → g2 is itself a skill, nth-
order skills can be defined by recursively applying second-
order skills. For example, a third-order skill g1 → g2 → g3
can be learned in the same way as second-order skills by
first learning g2 → g3 and then learning g1 → (g2 → g3).

nth-Order HRL. Similar to HRL, nth-order HRL learns
both a low-level and high-level policy but the low-level
policy learns nth-order skills. Specifically, we learn (1) A
low-level policy for each nth order skill: πLL(a|s, g1 →
g2 → . . . → gn). The termination policy for the nth
order skill is the same as the target skill’s termination
skill: βLL(done|s, a, g1). (2) Then, the high-level policy
is learned as πHL(g1 → g2 → . . . → gn|s), which selects
the nth-order skills for the low-level policy.

3.2. Learning Higher-Order Skills

This section details how second-order skills can be learned
based on an off-policy RL algorithm. As with the definitions
in Section 3.1, nth-order skills can be learned by recursively
applying our learning algorithm on second-order skills.

Universal Value Function Approximation. Follow-
ing (Schaul et al., 2015a), we use a single neural network to
approximate value functions for each first-order and second-
order MDPs: ψ : S × A× G × G → R, which takes state,
action, and embeddings for two skills (sub-skill and final
skill). Note that if the sub-skill and final skill are equal, ψ
outputs the values that correspond to the first-order skill,
so our definition of second-order skills generalizes to first-
order skills.

Off-Policy RL with Second-Order Skills. We give the
pseudo-code for learning second-order skills using any off-
policy RL algorithm (e.g., double DQN (Hasselt et al.,
2015)) in Algorithm 1 in the appendix. Using the current Q
estimate ψ, we estimate the second-order reward using the
current Q estimate ψ.

3.3. Theoretical Properties

Optimality. We present the main theoretical result in The-
orem 3.1, showing that second-order skills are more effi-
ciently executed than first-order skills.

Theorem 3.1. Let g1 and g2 be two skills with non-negative
rewards rg1 and rg2 . Let g1 → g2 be the second order skill
for g1 and g2. Suppose there is a downstream task with
a reward function R that requires skills g1 and g2 to be
executed in sequence. Let π∗

x be the optimal policy for each
skill, and trajectories τ1 and τ2 are generated by executing
skills in sequence by using first-order and second-order
skills, respectively:

τ1 ∼ {(s1, π∗
g1(s1)), . . . , (si, π

∗
g1(si)), (3)

(si+1, π
∗
g2(si+1)), . . . }

τ2 ∼ {(s1, π∗
g1→g2(s1)), . . . , (sj , π

∗
g1→g2(sj)), (4)

(sj+1, π
∗
g2(sj+1)), . . . }

Then the return of second-order skill trajectory τ2 is al-
ways more optimal or equal to the return of first-order skill
trajectory τ1:

R(τ2) ≥ R(τ1), (5)

where R refers to the expected return of a trajectory.

Our proof is shown in Appendix A.3.

Corollary 3.2. Any downstream task that requires skills to
be executed in some order can be more efficiently solved
using second-order skills than first-order skills. Similarly,
nth-order skills can solve these downstream tasks more
efficiently than n′th-order skills for any n′ < n.

This can be shown by recognizing that any order of skill
execution on a downstream task can be made more efficient
by using the result in Theorem 3.1.

4. Experiments
4.1. Environments

Minigrid Placement. Inspired by block placement games,
such as Sokoban (Kartal et al., 2021) and PushWorld (Kan-
sky et al., 2023), we create a simple placement envi-
ronment in the popular Minigrid Gymnasium environ-
ment (Chevalier-Boisvert et al., 2018) (see Figure 2). In this
environment, an agent must place two balls (red and blue)
into a goal area. However, this task is not trivial to solve as
the agent must think ahead and put the first ball further into
the goal space so that the agent is not blocked when placing
the next ball into the remaining goal space. Two skills are
given to the agent: placing the red/blue balls into the goal
area. We expect the first-order skills to be short-sighted and
immediately place the balls in the closest position, rendering
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Goal: Make planks
Step 1. Get wood
Step 2. Use workbench

Minigrid Placement Crafting

Goal: Put balls into left corner 
Step 1. Place first ball     
Step 2. Place second ball     

Before

After

Figure 2. Visualizations of the Minigrid Placement and Crafting
domain (e.g., make plank task) in this paper. A sequence of
skills is required to complete a goal in each domain.

the HRL agent unable to solve this environment (since the
agent can no longer place the next ball).

Crafting. We implement the Crafting domain from Andreas
et al. (2016) in the Minigrid Gymnasium environment. This
domain is inspired by minecraft, where the agent must craft
various objects using various materials and tools in the envi-
ronment (see Figure 2). We give the agent 6 low-level skills
to learn: get wood, get grass, get iron, use
toolshed, use workbench, use factory. Us-
ing these skills, the agent must then learn how to exe-
cute the following 8 downstream tasks (we use the make
tasks from Andreas et al. (2016)): make plank, make
stick, make cloth, make rope, make bridge,
make bed, make axe, make shears. The agent is
also given a sketch (or a plan) for which low-level skills to
execute in order to solve each downstream task. For exam-
ple, to solve make stick, the agent is given the sketch:
[get wood, use workbench]. The full sketch de-
tails can be found in the appendix (Andreas et al., 2016).

4.2. Implementation

We learn each environment using a double DQN (Hasselt
et al., 2015) with prioritized experience replay (Schaul et al.,
2015b), and dueling networks (Wang et al., 2015). We use
a similar neural network in each environment: the network
uses a 3-layer MLP over a concatenated representation of
the state, and one hot encoding of skill(s) (one skill for
first-order, and two skills for second-order). We give more
details on the architecture in Appendix A.5.

4.3. Results

We trained skills on each environment (Minigrid Placement
and Crafting) for 5 million and 10 million timesteps respec-
tively. For the baseline, all timesteps were used to train

Table 1. Second-Order Skills HRL DQN Return

Placement Crafting

DQN 1st-order 0± 0 0.67± 0.04
2nd-order 1± 0 0.82± 0.03

Oracle ∞-order 1 1.02

first-order skills. For SOS, timesteps were used to train first-
order and second-order skills in parallel. Then, we trained a
high-level DQN policy which executes the pretrained skills
on the downstream task. We show the results of the high-
level policy in Table 1 and learning curve in Figure 3. The
full per-task return for Crafting is shown in the Appendix,
Figure 5.

On Placement, we found that first-order skills were unable
to solve the downstream task at all (total return of 0) while
second-order skills solved the task (total return of 1). This
is because the first-order skills always greedily placed the
balls in the nearest goal position, which blocks the agent
from placing the next ball. The second-order skills allowed
the agent to “look-ahead” and place the first ball in a further
position, so that the next ball could be placed correctly.

On Crafting, we also found that first-order skills performed
worse than second-order (0.67± 0.04 to 0.82± 0.03 return
over 8 seeds). Similar to what we showed in the Crafting
example, Figure 1, we found that second-order skills could
find more optimal paths to complete the tasks. We also
found that second-order skills enabled the agents to solve
tasks at a higher rate (refer to Figure 5 in the Appendix),
where the second-order skills can consistently solve the
difficult long-horizon tasks better (make bridge, make
bed, make axe, and make shears). We believe this
is due to another property of second-order skills: executing
second-order skills leaves agents in a state that it is unlikely
to get stuck on, as they maximize the future return on other
skills. This enables the high-level agent to succeed since the
second-order skills are more likely to succeed.

4.4. Analysis

Second-Order Skills Visualization. We visualize the opti-
mal value functions of second-order skills in Figure 4 in an
imagined environment similar to Crafting, where an agent
must travel to subgoals α then β. We can see from Figure 4
that V ∗

α→β can be thought of as a “reweighted” version of
V ∗
α , but with the values from V ∗

β . From this Figure, we can
also see that when an agent must visit α then β, the agent
should (most of the time) visit α2 rather than α1, since it is
closer to β and the value of V ∗

α→β is higher for α2.

Oracle nth-Order Implementation. We also implemented
oracle nth skills for skills orders 1 through 4. We evaluated
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Figure 3. Episode returns of the HRL agent after training the low level skills for 5M and 10M environment steps for Placement and
Crafting respectively. We plotted the mean and standard deviations over 8 seeds. For Crafting, we plot the mean return over all 8 Crafting
tasks.
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Figure 4. A visualization of a toy environment similar to Crafting where the agent must visit α and β. We visualize the optimal value
functions for the skills α, β and second-order skill α → β. The values for second-order skill α → β, V ∗

α→β indicate that the agent should
visit α2 most of the time if the agent will visit β afterword.

Table 2. nth-Order HRL Theoretical Return
Placement Crafting

Oracle

1st-order 0 0.89± 0.00
2nd-order 1 1.01± 0.00
3rd-order 1 1.02± 0.00
4th-order 1 1.02± 0.00

them on the Placement and Crafting environments for 10000
episodes and show the mean reward (± standard error) in
Table 2.

We find that in Placement, since there are only 2 skills
needed, 2nd-order skills can immediately solve the task.
However, in Crafting, the maximum number skills needed
to solve a single downstream task is 4. Even so, there are
diminishing returns from 2nd-order to 3rd-order to skills.
3rd and 4th order skills are indistinguishable. This implies
that for many tasks, second-order skills gives us sufficient
approximations of policies for nth-order skills.

5. Related Work
Unsupervised Skill Discovery. Unsupervised skill discov-
ery aims to learn skills without the necessity of manually
defining and tuning reward functions for desired behaviors.
One of the most common approaches to the unsupervised
skill discovery problem is to maximize the mutual informa-
tion (MI) between skill latent variables and states (Gregor
et al., 2016; Achiam et al., 2018; Eysenbach et al., 2018;
Hansen et al., 2019; Sharma et al., 2019; Choi et al., 2021;
Zhang et al., 2021), leading to the discovery of diverse and
distinguishable behaviors. The works has been extended to
use different posterior models (Hansen et al., 2019), spectral
normalization (Choi et al., 2021), and variants of the MI
identity (Zhang et al., 2021) to further improve the skill
performance. However, these methods share a limitation:
they do not consider the behavioral optimality when the
learned skills are combined for down-stream tasks. Our
work propose a novel framework designed to learn skills
that can be executed efficiently when combined together.

Option-Based HRL. The option framework studies discov-
ering temporally extended high-level actions, called options,
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to achieve efficient learning (Sutton et al., 1999; Precup and
Sutton, 2000). By reducing the effective number of decision
makings, options improve an agent’s learning efficiency for
solving a long-horizon task (Omidshafiei et al., 2018). Re-
cent frameworks show that an agent can learn both option
and termination policies end-to-end without requiring prior
knowledge (Bacon et al., 2017; Riemer et al., 2018; Abdul-
hai et al., 2022). Our main idea of extending the perspective
of skills by considering the next skill also applies to option
learning settings.

Goal-Conditioned HRL. Another related work is the goal-
conditioned setting, where a high-level policy generates a
sequence of subgoals for a low-level policy to follow (Kulka-
rni et al., 2016). Nachum et al. (2018) focused on improving
learning efficiency using off-policy correction or hindsight
mechanisms. Chane-Sane et al. (2021); Lo et al. (2022);
Zhang et al. (2020) proposed efficient subgoal sampling
methods to avoid challenges of sparse reward when the sub-
goal is hard or impossible to reach. Savinov et al. (2018);
Laskin et al. (2020); Huang et al. (2019); Hoang et al. (2021)
proposed to model the relationship between subgoals in a
graph form to enable navigating between subgoals via plan-
ning. However, these approaches learn goal-conditioned
policy by optimizing to reach any state that belongs to
the given subgoal, which may induce a sub-optimal be-
havior (Nachum et al., 2019). Thus, our work propose a
novel way to improve skill learning to enable more efficient
composition of skills in down-stream tasks.

6. Conclusion
In this paper, we have introduced second-order skills (SOS),
which learns second-order skills to efficiently compose for
solving downstream tasks. Our key idea is to extend the
perspective skills by looking ahead to next skills that will
be executed after the current. We evaluated our method of
learning second-order skills on the gridworld benchmark
domains and showed that SOS performs more effectively
than the first-order baseline.
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A. Appendix
A.1. Second-Order Skills Pseudocode

Algorithm 1 Learning Second-Order Skills Pseudocode
1: given
2: A distribution of skills or goals G.
3: An off-policy RL algorithm A ▷ DQN, DDPG, etc.
4: with Q network ψ : S ×A× G × G → R. ▷ ψ takes a state, action, goal, and final goal
5: A reward function r : S ×A× G → R.
6: A skill success threshold ρ ≥ 0.
7: Initialize A and Q network ψ.
8: Initialize replay buffer D.
9: for episode = 1, . . . ,M do

10: Sample a goal g and final goal g′ from G.
11: for t = 1, . . . , T do
12: Sample and execute action at using policy A:
13: at ← π(st∥g∥g′). ▷ ∥ denotes concatenation
14: Let rt ← r(st, at, g).
15: Let t denote whether the transition is terminal.
16: Store the transition (st∥g∥g′, at, rt, st+1∥g∥g′, t) into D.
17: if update then
18: Sample a mini-batch B from replay buffer D.
19: Let BSOS = [ ]. ▷ Convert B to a second order mini-batch
20: for (s∥g∥g′, a, r, s′∥g∥g′, t) in B do
21: if g ̸= g′ then ▷ If second order
22: r ← I[r > ρ]ψ(s∥g′∥g′, a).
23: t← t ∨ (r > ρ).
24: Append (s∥g∥g′, a, r, s′∥g∥g′, t) to BSOS.

Perform an optimization step on ψ with BSOS using A

A.2. Discussion of Second-Order Reward

Non-Negativity. Following prior work (Oh et al., 2017; Andreas et al., 2016; Ahn et al., 2022), we assume that skill rewards
are non-negative. Sparse or goal-reaching reward, commonly used in prior work and are used here, are already non-negative,
as they give positive rewards when a goal or sub-goal is reached, and zero otherwise.

We also note that many of skill rewards (Eysenbach et al., 2018; Achiam et al., 2018) can also be translated into a non-
negative reward using a monotonic function such as tan, or simply flooring the reward such as r′ = max(0, r). However, as
this non-trivially changes the skills learned, we leave investigating how to translate reward for second-order skills to future
work.

The non-negativity assumption is required since second-order skills may not be beneficial in specific cases when rewards are
negative. Specifically, consider two skills g1 and g2, and a second-order skill g1 → g2. Then, under Equation (1), g1 → g2
could learn behavior that accumulates negative reward for g2 before g1 is completed.

ρ-Threshold Value. Recall that we estimate the success of a skill using the approximation in Equation (2). The choice of
the threshold ρ is set as a hyperparameter. Note that in sparse reward settings, ρ = 0 is sufficient, as the reward r is greater
than zero only when success is achieved. ρ can also be learned by taking setting ρ to be the Xth percentile reward observed
by the agent.

In the most general scenario, success can be modeled using some learned distribution:

Sg1 ∼ pθ(· | s, a) (6)

We leave generalizations of success and second-order skills to future work.
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A.3. Proof of Theorem 3.1

Before we give the proof of Theorem 3.1, we state our formal definition of a reward function that requires skills to be
executed in sequence.

Definition A.1. A reward function R is a reward function that requires skills g1 and g2 to be executed in sequence if it
follows two properties:

1. R only gives reward if g2 is completed (i.e. s ∈ Sg2 ) after g1 is completed (i.e. s ∈ Sg1 ). (With the implicit assumption
that history of completion is tracked in the MDP).

2. R is “aligned” with g2. We specify that behavior for maximizing the the skill reward for g2, rg2 , also maximizesR
when g1 is completed. Formally: Let πg2 be a policy for g2. For some state s, if g1 is completed (s ∈ Sg1), and τπ is
the trajectory generated by π on s, then

Rrg2
(τπ) > Rrg2

(τπ′)⇒ RR(τπ) > RR(τπ′) (7)

where Rx is the expected return for task x.

Following this definition, we give the proof for Theorem 3.1 below:

Proof. (For ease of reading, we will restate the conditions.) We have skills g1 and g2 with non-negative rewards rg1 and rg2 .
We have a downstream taskR which requires g1 and g2 to be executed in sequence (defined above).

Let π∗
x be the optimal policy for a skill x, (including second-order g1 → g2). For notation, we denote τ1(s) as the first-order-

only trajectory generated by first completing g1 using π∗
g1 , then completing g2 using π∗

g2 , and τ2(s) as the second-order
trajectory generated by first completing g1 using π∗

g1→g2 , then completing g2 using π∗
g2 . I.e.

τ1(s1) ∼ {(s1, π∗
g1(s1)), . . . , (si, π

∗
g1(si)), (si+1, π

∗
g2(si+1)), . . . } (8)

τ2(s1) ∼ {(s1, π∗
g1→g2(s1)), . . . , (sj , π

∗
g1→g2(sj)), (sj+1, π

∗
g2(sj+1)), . . . }

We will show that for all s ∈ S, RR(τ2(s)) ≥ RR(τ1(s)). We break this into two cases:

(1) If g1 is already completed: s ∈ Sg1 . Then the two trajectories are equal, since they both execute π∗
g2 , so RR(τ2(s)) =

RR(τ1(s)).

(2) If g2 is not completed: s ̸∈ Sg1 .

Let s′1 denote the state reached after executing π∗
g1 on s, and let s′2 denote the state reached after executing π∗

g1→g2 on s.
Note that s′1 ∈ Sg1 and s′2 ∈ Sg1 .

Then, we can show that RR(τ2(s
′
2)) ≥ RR(τ1(s

′
1)). We show by the contrapositive. Suppose that there is some s′1 and s′2

such that RR(τ2(s
′
2)) < RR(τ1(s

′
1)).

Then by the contrapositive on the Definition in Equation (7), Rrg2
(τ2(s

′
2)) < Rrg2

(τ1(s
′
1)). However, this contradicts with

our definition of the second-order skill g1 → g2 and the optimal policy for the skill π∗
g1→g2 . Since, the path to s′1 is strictly

higher rewarding than s′2 according to the second-order reward definition in Equation (1).

Thus, RR(τ2(s
′
2)) ≥ RR(τ1(s

′
1)), and it directly follows that RR(τ2(s)) ≥ RR(τ1(s)),
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A.4. Hyperparameters

Table 3. Minigrid Placement Hyperparameters

discount γ 0.9
learn start 20000
epsilon greedy 0.1
learning rate 1e-4
gradient norm clip 10
replay frequency 4
target update frequency 4000
batch size 32
prioritized replay weight 0.4
prioritized replay exponent 0.5
max memory buffer size 1000000
success threshold ρ 0

Table 4. Crafting Hyperparameters

discount γ 0.9
learn start 20000
epsilon greedy 0.1
learning rate 1e-4
gradient norm clip 10
replay frequency 8
target update frequency 4000
batch size 128
prioritized replay weight 0.4
prioritized replay exponent 0.5
max memory buffer size 6000000
success threshold ρ 0.5

A.5. Network Architecture

For the Crafting and Placement environments, we use a similar architecture: Each position in the grid is encoded into an
object ID and mapped into a learned encoding. The grid encoding is flattened, then concatenated with a one-hot encoding of
the direction of the agent, and a one-hot encoding of the agents skill(s) (two skills if second-order). Lastly, this encoding is
fed into a 3-layer MLP.

For crafting, we additionally concatenate a one-hot encoding of the task sketch (a list of the subgoals needed to complete the
task).
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A.6. Crafting Task Results
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Figure 5. Episode returns for each task of the HRL agent on Crafting after training the low level skills for 10M environment steps. We
plotted the mean and standard deviations over 8 seeds.
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