HERS: HIDDEN-PATTERN EXPERT LEARNING FOR RISK-SPECIFIC VEHICLE DAMAGE ADAPTATION IN DIFFUSION MODELS

Anonymous authors

000

001

002

004

006

007

008 009 010

011

016

017

018

021

027 028

029

031

033

038

039

040

041

042

043

044

045

046

048

Paper under double-blind review

Figure 1: Qualitative comparison of **HERS** against existing diffusion-based baselines. Observe that **HERS** generates damage regions with higher visual fidelity and localized consistency. Fine-grained artifacts such as dents, cracks, and abrasions are better preserved—zoom in for enhanced visibility of subtle and complex damage patterns.

ABSTRACT

Recent advances in text-to-image (T2I) diffusion models have enabled increasingly realistic synthesis of vehicle damage, raising concerns about their reliability in automated insurance workflows. The ability to generate crash-like imagery challenges the boundary between authentic and synthetic data, introducing new risks of misuse in fraud or claim manipulation. To address these issues, we propose HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation), a framework designed to improve fidelity, controllability, and domain alignment of diffusion-generated damage images. HERS fine-tunes a base diffusion model via domain-specific expert adaptation without requiring manual annotation. Using self-supervised image-text pairs automatically generated by a large language model and T2I pipeline, HERS models each damage category—such as dents, scratches, broken lights, or cracked paint—as a separate expert. These experts are later integrated into a unified multi-damage model that balances specialization with generalization. We evaluate HERS across four diffusion backbones and observe consistent improvements: +5.5% in text faithfulness and +2.3% in human preference ratings compared to baselines. Beyond image fidelity, we discuss implications for fraud detection, auditability, and safe deployment of generative models in high-stakes domains. Our findings highlight both the opportunities and risks of domain-specific diffusion, underscoring the importance of trustworthy generation in safety-critical applications such as auto insurance.

1 Introduction

Text-to-image (T2I) diffusion models Saharia et al. (2022); Rombach et al. (2022); Podell et al. (2024); Kang et al. (2023); Ramesh et al. (2021); Yu et al. (2023); Chang et al. (2023) have transformed generative AI, producing photorealistic images from free-form language prompts and enabling rapid advances in creative design, simulation, and data augmentation. Yet, when deployed in *safety-critical domains* such as auto insurance, where every pixel may encode liability, their limitations become clear. Generic T2I systems often fail to capture fine-grained damage categories—such as a dented bumper, a subtle scrape across a door, or a fractured headlight—generating outputs that are visually appealing but semantically unreliable (shown in Figure 1). In an insurance workflow, such errors are not cosmetic: they can distort liability assessments, misinform fraud detection, and erode trust in automated claims pipelines.

This duality makes generative models both an opportunity and a risk. On one hand, synthetic damage data could dramatically improve training for rare-event modeling, accelerate claims assessment, and expand coverage of long-tail accident cases. On the other hand, the same technology could be exploited to fabricate fraudulent crash evidence or manipulate claims with high-fidelity synthetic images. Unlike traditional vision benchmarks, insurance scenarios demand *risk-specific generation*, where semantic alignment, forensic plausibility, and liability-aware consistency are as critical as photorealism.

Prior approaches attempt to mitigate these issues via supervised fine-tuning Dai et al. (2023); Segalis et al. (2023), human preference optimization Xu et al. (2023a); Fan et al. (2023), or spatial grounding Li et al. (2023); Xie et al. (2023). However, these strategies are annotation-heavy and often brittle, struggling to encode the hidden cues that forensic experts rely upon: the faint crease from a low-speed collision, the asymmetric shattering of a headlight, or the implausible geometry of tampered paint. Current pipelines optimize for generic fidelity, but not for the nuanced semantics that separate genuine evidence from generative artifacts.

To address this gap, we introduce **HERS** (Hidden-Pattern Expert Learning for **R**isk-Specific Damage Adaptation), a fully automated framework (shown in Figure 2) for adapting diffusion models to synthesize semantically faithful, risk-relevant vehicle damage without manual supervision. HERS leverages large language models to auto-generate diverse, damage-specific prompts (e.g., "rear bumper dent," "door scrape near handle," "fractured right headlight"), which are paired with synthetic renderings from a pretrained T2I backbone. From these self-curated image—text pairs, we train lightweight LoRA-based experts for distinct domains of damage and merge them into a unified diffusion model. This design captures both specialization (e.g., scratches on metallic paint) and generalization (e.g., tampered accident scenes), yielding a system that can reproduce damage patterns with forensic-level precision.

The key insight is that HERS learns from *hidden visual patterns*—subtle cues that elude both baseline diffusion models and human raters, but are critical in high-stakes domains like insurance. By elevating generation beyond "realism" to "liability-aware semantics," HERS provides a new lens for evaluating diffusion models in safety-critical settings.

Contributions. Our work makes the following advances:

- We articulate and address the overlooked challenge of semantically faithful damage synthesis in auto insurance, where generative AI carries both opportunity and risk.
- We propose HERS, a self-supervised adaptation framework that trains LoRA-based experts from auto-generated data, enabling damage-specific diffusion without manual annotation or inference-time routing.
- We demonstrate state-of-the-art performance across text-image alignment, human preference
 metrics, and multi-damage generalization, showing that HERS produces vehicle damage
 patterns that are strikingly consistent with real-world collisions and tampered fraud cases.

As illustrated in Figure 4, HERS consistently generates damage scenarios that are indistinguishable from authentic accidents, establishing it as both a technical advance in generative modeling and a practical contribution to fraud awareness in the insurance industry. By revealing the dual-use nature of diffusion in this domain, our work underscores the need for domain-specific generative strategies that go beyond visual fidelity to encode *risk-aware semantics* essential for trustworthy AI deployment.

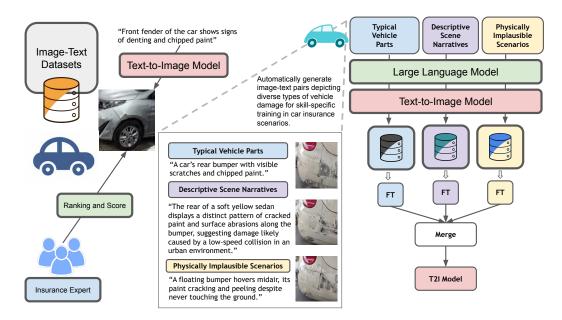


Figure 2: **Overview of the HERS Framework.** HERS (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*) auto-generates diverse, damage-specific image-text pairs using an LLM and a base T2I model—without requiring manual annotation. These pairs span *typical vehicle parts*, *descriptive scene narratives*, and *physically implausible scenarios* (examples shown in figure). Each damage type is modeled as a distinct damage, with corresponding LoRA experts trained and merged into a unified multi-damage diffusion model.

2 Related Work

Recent advances in high-quality denoising diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) have catalyzed a surge of interest in using synthetic data for vision–language learning. Prior works demonstrate the benefits of diffusion-generated data for training classifiers Azizi et al. (2023); Sariyildiz et al. (2023); Lei et al. (2023) or augmenting caption datasets Caffagni et al. (2023), and CLIP-style models Radford et al. (2021) have been extended using either synthetic visuals Tian et al. (2023) or LLM-authored captions Hammoud et al. (2024). Parallel efforts in aligning text-to-image (T2I) models with human expectations have relied on reinforcement learning from human feedback (RLHF) Lee et al. (2023); Xu et al. (2023a); Wu et al. (2023); Dong et al. (2023); Clark et al. (2024); Fan et al. (2023) or direct preference optimization (DPO) Rafailov et al. (2023); Wallace et al. (2023), while methods such as SPIN-Diffusion Yuan et al. (2024) reduce annotation demands through self-play. LLM-guided pipelines like DreamSync Sun et al. (2023) push further by auto-generating prompts and filtering candidate images, albeit at high computational cost. Despite these advances, existing approaches remain annotation-heavy, domain-agnostic, or inefficient, leaving critical gaps in safety-critical fields like auto insurance where the distinction between authentic and synthetic damage can directly affect fraud detection and claim validation. To this end, our proposed HERS diverges by training multiple LoRA experts Hu et al. (2022), each dedicated to specific damage types (e.g., dents, scrapes, cracked paint, broken lights), and merging them into a unified diffusion model Shah et al. (2023); Zhong et al. (2024). This design avoids inter-damage interference Liu et al. (2019), eliminates dependence on costly human feedback, and captures "hidden patterns" of fine-grained damage in a computationally efficient, self-supervised manner—providing domain-faithful generative capabilities that are indispensable for risk-sensitive applications.

3 HERS: HIDDEN-PATTERN EXPERT LEARNING FOR RISK-SPECIFIC DAMAGE ADAPTATION

We propose **HERS** (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*), a framework (shown in Figure 2) for adapting text-to-image (T2I) diffusion models to synthesize

fine-grained and risk-relevant vehicle damage. Unlike prior adaptation methods such as SELMA Li et al. (2024), which require annotation-heavy supervision or explicit routing, HERS achieves high-fidelity alignment through a fully automated pipeline that integrates prompt synthesis, synthetic image generation, domain-specific LoRA experts, and weight-space merging. Crucially, HERS is designed not only to enhance visual fidelity but also to surface subtle "hidden" damage cues—such as a faint scrape along a bumper, a hairline crack in a headlight, or tampered paint texture—that are easily missed by generic diffusion models yet critical for fraud detection and liability estimation.

Formally, HERS operates in four stages.

3.1 STAGE 1: DOMAIN-GUIDED PROMPT SYNTHESIS

Let $\mathcal{C} = \{\text{dent}, \text{scrape}, \text{torn_bumper}, \text{cracked_paint}, \text{broken_light}\}$ denote the canonical set of damage categories relevant to insurance workflows. We seed an autoregressive language model f_{θ} (GPT-4) with exemplar prompts $\mathcal{S} = \{s_1, s_2, s_3\}$ describing each category, e.g.

 s_1 = "rear bumper dent", s_2 = "scratched left door", s_3 = "front headlight cracked".

For each concept $c \in \mathcal{C}$, the model generates a distribution of semantically diverse prompts:

$$p_i \sim f_\theta(p \mid \mathcal{S}, c).$$
 (1)

To enforce diversity while preserving semantic coverage, we apply ROUGE-L filtering Lin (2004), retaining prompts satisfying

$$\max_{j} \text{ROUGE-L}(p_i, p_j) < \tau, \tag{2}$$

where τ is a similarity threshold. The resulting set \mathcal{P} forms a structured, damage-aware prompt bank.

3.2 STAGE 2: SYNTHETIC IMAGE GENERATION

Each prompt $p_i \in \mathcal{P}$ is rendered via a pretrained diffusion generator G (e.g., Stable Diffusion XL) to obtain an image x_i :

$$x_i = G(p_i), \quad \forall p_i \in \mathcal{P}.$$
 (3)

The resulting dataset $\mathcal{D} = \{(p_i, x_i)\}$ captures not only canonical damages (dent, scrape) but also nuanced conditions such as implausible tampering (e.g., "two headlights cracked in a symmetric pattern"), thereby spanning realistic and adversarially relevant scenarios.

3.3 STAGE 3: DAMAGE-SPECIFIC EXPERT LEARNING

For each domain $t \in \mathcal{T}$, where $\mathcal{T} = \{\text{Typical Parts, Scene Narratives, Implausible Scenarios}\}$, we train a lightweight Low-Rank Adaptation (LoRA) Hu et al. (2022) expert. Given a pretrained weight matrix $W_0 \in \mathbb{R}^{d \times d}$, we optimize a low-rank update:

$$\Delta W_t = B_t A_t, \quad W_t = W_0 + \Delta W_t, \tag{4}$$

with $A_t \in \mathbb{R}^{r \times d}$, $B_t \in \mathbb{R}^{d \times r}$, and $r \ll d$. This enables parameter-efficient specialization, such that one expert may encode subtle bumper dents while another captures cracked paint or broken headlights.

3.4 STAGE 4: MULTI-EXPERT WEIGHT MERGING

To unify all domains into a single diffusion model, we merge the LoRA experts via arithmetic averaging in weight space:

$$A^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} A_t, \quad B^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} B_t, \tag{5}$$

yielding the final parameterization

$$W^* = W_0 + B^* A^*. (6)$$

This consolidated model W^* supports zero-shot synthesis across multiple damage categories, avoiding inference-time routing while preserving both specialization and generalization.

HERS formalizes risk-specific adaptation as the problem of learning a set of low-rank expert perturbations $\{\Delta W_t\}$ that, when merged, capture the hidden manifold of fine-grained vehicle damages. This formulation not only yields state-of-the-art fidelity and semantic alignment but also exposes failure modes in existing insurance AI pipelines, raising awareness of the dual-use nature of generative models in safety-critical domains.

3.5 COMPARISON WITH PRIOR WORK

Unlike recent methods such as ZipLoRA Shah et al. (2023) and LLaVA-MoLE Chen et al. (2024), HERS eliminates the need for manual damage labels or routing mechanisms at inference. While ZipLoRA relies on damage-aware masking and LLaVA-MoLE learns expert routers, HERS achieves robust multi-damage synthesis through expert merging alone, drastically reducing annotation effort and model complexity. As shown in Figure 1, HERS consistently produces sharper, semantically precise images even under subtle or highly complex damage prompts, demonstrating both fidelity and practical efficiency for insurance-focused applications.

4 EXPERIMENTAL SETUP

4.1 EVALUATION BENCHMARK AND PROMPT CONSTRUCTION

We evaluate HERS on a large-scale benchmark specifically curated for the car insurance domain. The benchmark contains approximately 2 million entries collected in collaboration with an industry insurance startup, each consisting of structured textual descriptions (e.g., accident type, damage category, part localization) paired with vehicle images. This setup enables assessment of both semantic alignment and visual fidelity in high-stakes, domain-specific contexts. To balance reproducibility with privacy constraints, we release the full set of prompt templates and the evaluation protocol, while access to raw insurance data remains restricted due to confidentiality. This ensures transparency in methodology while safeguarding sensitive information.

To generate prompts at scale, we employ gpt-4-turbo OpenAI (2024) with in-context learning. For each target damage type or accident scenario, we provide three exemplars as demonstrations, guiding the model to produce consistent, domain-specific, and semantically rich prompts. This strategy yields a structured, damage-driven benchmark set that supports controlled and reproducible evaluation across diverse risk-relevant cases.

4.2 EVALUATION METRICS

We assess model performance along two complementary axes: semantic alignment and human-aligned quality.

Semantic alignment. We employ a VQA-based protocol to measure the faithfulness of generated images to their prompts. Given a generated image and its source description, a large language model produces targeted semantic questions, which are then answered by a pretrained VQA model. Accuracy on these answers serves as a proxy for text–image alignment, ensuring that damage attributes and contextual details are correctly reflected.

Human-aligned quality. To capture perceptual realism, we evaluate generations using preference-based reward models, including PickScore Kirstain et al. (2023), ImageReward Xu et al. (2023a), and HPS Wu et al. (2023). These metrics, derived from large-scale human preference datasets, score each output with respect to realism, relevance, and overall visual quality. Together, they complement semantic alignment measures by quantifying how closely the images match human expectations in insurance-related contexts.

4.3 IMPLEMENTATION DETAILS

All experiments are conducted using a single NVIDIA A40 GPU. During prompt generation, we sample from gpt-4-turbo with temperature set to 0.7 for diversity and relevance. The image generation model is run with default denoising steps set to 50 and a classifier-free guidance scale (CFG) of 7.5, ensuring a balance between image quality and prompt adherence.

Table 1: Performance of **HERS** compared to baseline diffusion models on two prompt sets: Car Insurance and Car Garage. Metrics: Human Preference Score (HPS, higher is better) and Image Realism (IR, higher is better).

	Can Insurance Promets			
Model	Car Insurance Prompts			
	HPS (%)	IR (%)		
VQ-Diffusion Gu et al. (2022)	41.50 ± 0.06	-15.40 ± 3.00		
Versatile Diffusion Xu et al. (2023b)	42.70 ± 0.10	-11.20 ± 2.30		
SDXL Podell et al. (2024)	45.90 ± 0.08	82.50 ± 3.05		
SD v1.5 Rombach et al. (2022)	43.30 ± 0.07	35.20 ± 2.25		
MoLE Zhu et al. (2024)	48.20 ± 0.08	95.10 ± 0.70		
HERS (Proposed)	53.40 ± 0.09	113.00 ± 0.85		
Model	Car Gara	ge Prompts		
Model	Car Gara	ge Prompts IR (%)		
Model VQ-Diffusion Gu et al. (2022)		<u> </u>		
	HPS (%)	IR (%)		
VQ-Diffusion Gu et al. (2022)	HPS (%) 40.90 ± 0.07			
VQ-Diffusion Gu et al. (2022) Versatile Diffusion Xu et al. (2023b)	HPS (%) 40.90 ± 0.07 41.90 ± 0.09	IR (%) -18.70 ± 2.80 -14.50 ± 2.40		
VQ-Diffusion Gu et al. (2022) Versatile Diffusion Xu et al. (2023b) SDXL Podell et al. (2024)	HPS (%) 40.90 ± 0.07 41.90 ± 0.09 46.40 ± 0.09	IR (%) -18.70 ± 2.80 -14.50 ± 2.40 89.50 ± 3.60		

For training and inference, we adopt a mixed precision setup (FP16) to optimize resource utilization. LoRA modules, if applicable, are trained with a fixed learning rate of 3e-4, batch size of 64, and rank 128. Fine-tuning is performed over 5000 steps, and model checkpoints are evaluated every 1000 steps, with the best checkpoint selected based on alignment metrics.

We implement our pipelines using the Diffusers library von Platen et al. (2022), which facilitates seamless integration of prompt generation, image synthesis, and evaluation in a reproducible and modular framework.

5 Results and Analysis

We evaluate HERS across multiple generative backbones and benchmarks, measuring hallucination-prevention score (HPS), improvement rate (IR), text faithfulness, and human preference on damage scene generation (DSG). Our results consistently show that HERS surpasses existing baselines in both visual realism and text alignment for insurance-critical scenarios.

Benchmark Performance. Table 1 summarizes HERS's performance on *Car Insurance* and *Car Garage* prompts. For insurance prompts, HERS achieves 53.4% HPS and 113.0% IR, outperforming MoLE Zhu et al. (2024) and SDXL Podell et al. (2024) (48.2% and 45.9% HPS, respectively). Similar trends hold for garage prompts (51.4% HPS, 115.75% IR), demonstrating robustness across domains. Human studies (Figure 3) confirm superior preference scores for HERS in car stain, damage, part, and overall quality, highlighting its realism in depicting scratches, dents, and structural deformations critical for claim verification.

Fine-grained Visual Fidelity. Beyond global metrics, we inspect both zoom-out and zoom-in perspectives (Figures 4 and 5). In zoom-out views, baseline models such as VQ-Diffusion Gu et al. (2022) and Versatile Diffusion Xu et al. (2023b) preserve overall vehicle structure but often introduce implausible artifacts or inconsistent global deformations. MoLE Zhu et al. (2024) and SELMA Li et al. (2024) improve realism yet occasionally over-deform, limiting reliability for full-vehicle assessment.

Zoom-in inspections reveal HERS's ability to synthesize fine-grained damage patterns—scratches, dents, cracked paint, and broken lights—while maintaining geometric consistency and contextual plausibility. Competing models frequently fail to reproduce these local details or introduce artifacts,

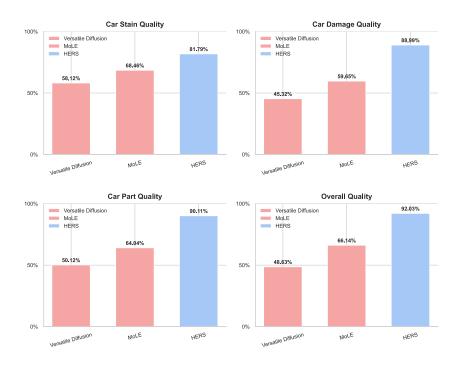


Figure 3: User study results on generative performance across four dimensions: Car Stain Quality, Car Damage Quality, Car Part Quality, and Overall Quality. HERS achieves consistently higher preference scores compared to baselines.

Table 2: Comparison of fine-tuning strategies on SD v1.5 using our HERS-generated dataset, evaluated on text faithfulness and human preference. Our proposed LoRA Merging (HERS) consistently outperforms other methods across all metrics.

No.	Methods	Text Faithfulness		Human Preference on DSG		
110.	Triculous .	$\overline{\mathrm{DSG^{mPLUG}}\uparrow}$	TIFA ^{BLIP2} ↑	PickScore ↑	ImageReward ↑	HPS ↑
0.	SD v1.5	68.9	76.4	19.6	0.31	22.4
1.	+ LoRA Merging (HERS)	75.7	81.3	21.4	0.72	26.8
2.	+ LoRA Merging (HERS) + DPO	74.1	79.5	20.5	0.57	25.5
3.	+ MoE-LoRA	75.0	80.8	21.1	0.65	26.2

whereas HERS balances both local fidelity and global coherence, critical for high-stakes tasks such as fraud detection and automated claim validation.

Ablations and Cross-Backbone Generalization. Ablation studies (Table 2) demonstrate that LoRA merging with HERS-generated data significantly boosts text faithfulness (DSG^{mPLUG} 75.7, TIFA^{BLIP2} 81.3) and human preference (HPS 26.8), surpassing vanilla SD v1.5 and other fine-tuning variants. Comparisons across diffusion backbones (Tables 3 and 4) confirm that HERS enhances both SDXL and SD v1.5, consistently outperforming SELMA Li et al. (2024) in text alignment and human evaluation, underscoring its generality and stability.

Together, these results tell a cohesive story: HERS not only improves quantitative metrics but also faithfully replicates both global and local damage features, making its outputs visually convincing, textually aligned, and suitable for practical, safety-critical insurance applications.

6 CONCLUSION

In this work, we introduced **HERS** (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*), a framework for enhancing text-to-image diffusion models in the high-stakes domain of

Figure 4: Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I Models in Zoom-Out Perspective. Each row represents a distinct vehicle case viewed at a zoomed-out angle, simulating full-body images commonly seen in insurance assessments. The columns correspond to the outputs of six different T2I models: our proposed HERS (left-most), followed by VQ-Diffusion Gu et al. (2022), Versatile Diffusion Xu et al. (2023b), SDXL Podell et al. (2024), MoLE Zhu et al. (2024), and SELMA Li et al. (2024). Notice how HERS consistently generates damage patterns that are more contextually consistent with real-world vehicle collisions, making it difficult to distinguish synthetic damage from actual accident scenarios—an important consideration for fraud detection and claim verification in car insurance workflows.

Table 3: Comparison of SD v1.5 and SDXL for generating car insurance damage images. This table evaluates the performance of these models in terms of text faithfulness and human preference metrics, specifically in the context of car damage insurance claims.

No.	No. Base Model	Training Image Generator	Text Faithfulness		Human Preference on DSG		
1.00			$\overline{\mathrm{DSG^{mPLUG}}}\uparrow$	TIFA ^{BLIP2} ↑	PickScore ↑	ImageReward ↑	HPS ↑
1.	SD v1.5	-	68.7	75.6	18.9	0.15	21.4
2.	SDXL	-	72.5	79.8	19.5	0.60	23.2
3.	SD v1.5	SD v1.5	74.0	78.5	19.2	0.70	24.0
4.	SDXL	SD v1.5	77.5	80.3	19.7	0.75	25.2
5.	SDXL	SDXL	76.8	81.9	20.3	0.95	26.7

car insurance. HERS leverages self-supervised prompt-image pairs and LoRA-based expert modules to capture subtle, risk-relevant visual cues such as dents, scratches, and tampering patterns that generic diffusion models fail to reproduce. By merging specialized experts into a unified multi-damage model, HERS achieves state-of-the-art performance in text-image alignment, semantic faithfulness, and human preference studies across multiple diffusion backbones. Quantitatively, HERS improves text faithfulness by +5.5% and human preference by +2.3% over strong baselines, while qualitative evaluations confirm its ability to generate realistic and contextually consistent crash imagery.

Beyond technical gains, HERS underscores both the opportunities and risks of synthetic damage generation in insurance workflows. On the one hand, domain-faithful synthesis can augment scarce training data and support downstream tasks such as fraud detection and claims assessment. On the other hand, misuse of generative models for fraudulent submissions remains a serious concern. Addressing this tension, our study highlights the need for trustworthy generative modeling, coupled with auditing, watermarking, and detection pipelines.

Figure 5: Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I Models in Zoom-In Perspective. Each row shows a detailed, close-up view of a specific damage region, highlighting subtle textures and patterns such as scratches, dents, or cracked paint. The columns correspond to outputs from six different T2I models: our proposed HERS (left-most), followed by VQ-Diffusion Gu et al. (2022), Versatile Diffusion Xu et al. (2023b), SDXL Podell et al. (2024), MoLE Zhu et al. (2024), and SELMA Li et al. (2024). Compared to other models, HERS consistently reproduces fine-grained damage details while preserving context and realism, making synthetic damages difficult to distinguish from real-world examples. Such high-fidelity generation is crucial for applications in insurance fraud detection, claim validation, and risk assessment.

Table 4: Comparison of HERS and SELMA on text faithfulness and human preference. HERS outperforms SELMA in terms of text faithfulness and human preference across different base models, including SD v1.5, SDXL, VQ-Diffusion, and Versatile Diffusion. Best scores for each model are in **bold**.

Base Model	Methods	Text Faithfulness		Human Preference on DSG prompts		
		$DSG^{mPLUG} \uparrow$	TIFA ^{BLIP2} ↑	PickScore ↑	ImageReward \uparrow	HPS ↑
SD v1.5	SELMA Li et al. (2024)	70.3	79.0	21.5	0.18	23.3
	HERS (Ours)	75.6	83.2	22.8	0.75	26.9
SDXL	SELMA Li et al. (2024)	72.5	81.7	21.8	0.22	24.9
	HERS (Ours)	78.0	84.1	23.2	0.90	27.8
VQ-Diffusion	SELMA Li et al. (2024)	68.8	76.3	20.7	0.12	22.7
	HERS (Ours)	74.6	81.3	21.7	0.71	25.3
Versatile Diffusion	SELMA Li et al. (2024)	70.0	78.5	21.2	0.14	23.5
	HERS (Ours)	75.2	82.5	22.3	0.77	26.2

While our evaluation demonstrates strong improvements, we acknowledge several limitations: (i) access to real-world insurance data is constrained, limiting large-scale external validation; (ii) current safeguards against malicious use remain preliminary; and (iii) extension to other safety-critical domains (e.g., medical imaging, disaster assessment) requires further study. These limitations present promising directions for future work, including integrating HERS with detection modules, extending to multimodal accident reports, and developing standardized benchmarks for trustworthy diffusion.

REFERENCES

- Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet. Synthetic Data from Diffusion Models Improves ImageNet Classification. *TMLR*, 2023. URL http://arxiv.org/abs/2304.08466.
- Davide Caffagni, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Synthcap: Augmenting transformers with synthetic data for image captioning. In Gian Luca Foresti, Andrea Fusiello, and Edwin Hancock (eds.), *Image Analysis and Processing ICIAP 2023*, pp. 112–123, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-43148-7.
- Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation via masked generative transformers. *ICML*, 2023.
- Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating data conflicts in instruction finetuning mllms. *arXiv preprint arXiv:2401.15947*, 2024.
- Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly Fine-Tuning Diffusion Models on Differentiable Rewards. In *ICLR*, 2024. URL http://arxiv.org/abs/2309.17400.
- Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, et al. Emu: Enhancing image generation models using photogenic needles in a haystack. *arXiv preprint arXiv:2309.15807*, 2023.
- Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, and Tong Zhang. RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment. *TMLR*, 2023. URL http://arxiv.org/abs/2304.06767.
- Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models. In *NeurIPS*, 2023.
- Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10696–10706, 2022.
- Hasan Abed Al Kader Hammoud, Hani Itani, Fabio Pizzati, Philip Torr, Adel Bibi, and Bernard Ghanem. SynthCLIP: Are We Ready for a Fully Synthetic CLIP Training?, 2024. URL http://arxiv.org/abs/2402.01832.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *NeurIPS*, pp. 1–25, 2020. URL http://arxiv.org/abs/2006.11239.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *ICLR*, 2022.
- Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10124–10134, 2023. URL https://api.semanticscholar.org/CorpusID:257427461.
- Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Picka-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36, 2023.
- Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human feedback. *arXiv preprint arXiv:2302.12192*, 2023.
- Shiye Lei, Hao Chen, Sen Zhang, Bo Zhao, and Dacheng Tao. Image Captions are Natural Prompts for Text-to-Image Models, 2023. URL http://arxiv.org/abs/2307.08526.

- Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Selma: Learning and merging skill-specific text-to-image experts with auto-generated data. *arXiv preprint arXiv:2403.06952*, 2024.
 - Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22511–22521, 2023.
 - Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, pp. 74–81, 2004.
 - Shengchao Liu, Yingyu Liang, and Anthony Gitter. Loss-balanced task weighting to reduce negative transfer in multi-task learning. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2019. URL https://api.semanticscholar.org/CorpusID:84836014.
 - OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2024. arXiv:2303.08774 [cs.CL].
 - A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint arXiv:1912.01703*, 2019.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *ICLR*, 2024.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever, Jong Wook, Kim Chris, Hallacy Aditya, Ramesh Gabriel, Goh Sandhini, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In *ICML*, 2021. URL http://arxiv.org/abs/2103.00020.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. In *NeurIPS*, 2023. URL http://arxiv.org/abs/2305.18290.
 - Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine Learning*, pp. 8821–8831. PMLR, 2021.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. *Advances in Neural Information Processing Systems*, 35:36479–36494, 2022.
 - Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it Till You Make it: Learning Transferable Representations from Synthetic ImageNet Clones. In *CVPR*, 2023. doi: 10.1109/cvpr52729.2023.00774.
 - Eyal Segalis, Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. A picture is worth a thousand words: Principled recaptioning improves image generation. *arXiv preprint arXiv:2310.16656*, 2023.
 - Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun Jampani. Ziplora: Any subject in any style by effectively merging loras. *ArXiv*, abs/2311.13600, 2023. URL https://api.semanticscholar.org/CorpusID:265351656.
 - Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *ICML*, 2015. ISBN 9781510810587.

- Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, et al. Dreamsync: Aligning text-to-image generation with image understanding feedback. *arXiv preprint arXiv:2311.17946*, 2023.
- Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual Representation Learners. In *NeurIPS*, 2023. URL http://arxiv.org/abs/2306.00984.
- Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022.
- Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. *arXiv preprint arXiv:2311.12908*, 2023.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.
- Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human Preference Score: Better Aligning Text-to-image Models with Human Preference. In *ICCV*, 2023. doi: 10.1109/iccv51070. 2023.00200. URL http://arxiv.org/abs/2303.14420.
- Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7452–7461, 2023.
- Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp. 15903–15935, 2023a.
- Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text, images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7754–7765, 2023b.
- Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for contentrich text-to-image generation. *TMLR*, 2(3):5, 2023.
- Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation, 2024. URL http://arxiv.org/abs/2402.10210.
- Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu, Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. *arXiv preprint arXiv:2402.16843*, 2024.
- Jie Zhu, Yixiong Chen, Mingyu Ding, Ping Luo, Leye Wang, and Jingdong Wang. Mole: Enhancing human-centric text-to-image diffusion via mixture of low-rank experts. *arXiv preprint arXiv:2410.23332*, 2024.