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HERS: HIDDEN-PATTERN EXPERT LEARNING FOR
RISK-SPECIFIC VEHICLE DAMAGE ADAPTATION IN
DIFFUSION MODELS
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Paper under double-blind review

HERS MoLE SD v1.5 VQ-DiffusionSDXL Versatile Diffusion

a deep dent appears on 
the hood with a torn 
bumper flare  

visible damage 
includes a loose 
front bumper, broken 
headlight, and 
cracked hood paint  

rear door shows 
denting, scraping, 
cracked paint, and 
visible staining  

Figure 1: Qualitative comparison of HERS against existing diffusion-based baselines. Observe that
HERS generates damage regions with higher visual fidelity and localized consistency. Fine-grained
artifacts such as dents, cracks, and abrasions are better preserved—zoom in for enhanced visibility of
subtle and complex damage patterns.

ABSTRACT

Recent advances in text-to-image (T2I) diffusion models have enabled increasingly
realistic synthesis of vehicle damage, raising concerns about their reliability in
automated insurance workflows. The ability to generate crash-like imagery chal-
lenges the boundary between authentic and synthetic data, introducing new risks
of misuse in fraud or claim manipulation. To address these issues, we propose
HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation),
a framework designed to improve fidelity, controllability, and domain alignment
of diffusion-generated damage images. HERS fine-tunes a base diffusion model
via domain-specific expert adaptation without requiring manual annotation. Us-
ing self-supervised image–text pairs automatically generated by a large language
model and T2I pipeline, HERS models each damage category—such as dents,
scratches, broken lights, or cracked paint—as a separate expert. These experts are
later integrated into a unified multi-damage model that balances specialization with
generalization. We evaluate HERS across four diffusion backbones and observe
consistent improvements: +5.5% in text faithfulness and +2.3% in human prefer-
ence ratings compared to baselines. Beyond image fidelity, we discuss implications
for fraud detection, auditability, and safe deployment of generative models in
high-stakes domains. Our findings highlight both the opportunities and risks of
domain-specific diffusion, underscoring the importance of trustworthy generation
in safety-critical applications such as auto insurance.
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1 INTRODUCTION

Text-to-image (T2I) diffusion models Saharia et al. (2022); Rombach et al. (2022); Podell et al. (2024);
Kang et al. (2023); Ramesh et al. (2021); Yu et al. (2023); Chang et al. (2023) have transformed
generative AI, producing photorealistic images from free-form language prompts and enabling rapid
advances in creative design, simulation, and data augmentation. Yet, when deployed in safety-critical

domains such as auto insurance, where every pixel may encode liability, their limitations become
clear. Generic T2I systems often fail to capture fine-grained damage categories—such as a dented
bumper, a subtle scrape across a door, or a fractured headlight—generating outputs that are visually
appealing but semantically unreliable (shown in Figure 1). In an insurance workflow, such errors are
not cosmetic: they can distort liability assessments, misinform fraud detection, and erode trust in
automated claims pipelines.

This duality makes generative models both an opportunity and a risk. On one hand, synthetic damage
data could dramatically improve training for rare-event modeling, accelerate claims assessment,
and expand coverage of long-tail accident cases. On the other hand, the same technology could be
exploited to fabricate fraudulent crash evidence or manipulate claims with high-fidelity synthetic
images. Unlike traditional vision benchmarks, insurance scenarios demand risk-specific generation,
where semantic alignment, forensic plausibility, and liability-aware consistency are as critical as
photorealism.

Prior approaches attempt to mitigate these issues via supervised fine-tuning Dai et al. (2023);
Segalis et al. (2023), human preference optimization Xu et al. (2023a); Fan et al. (2023), or spatial
grounding Li et al. (2023); Xie et al. (2023). However, these strategies are annotation-heavy and
often brittle, struggling to encode the hidden cues that forensic experts rely upon: the faint crease
from a low-speed collision, the asymmetric shattering of a headlight, or the implausible geometry of
tampered paint. Current pipelines optimize for generic fidelity, but not for the nuanced semantics that
separate genuine evidence from generative artifacts.

To address this gap, we introduce HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage
Adaptation), a fully automated framework (shown in Figure 2) for adapting diffusion models to
synthesize semantically faithful, risk-relevant vehicle damage without manual supervision. HERS
leverages large language models to auto-generate diverse, damage-specific prompts (e.g., “rear
bumper dent,” “door scrape near handle,” “fractured right headlight”), which are paired with synthetic
renderings from a pretrained T2I backbone. From these self-curated image–text pairs, we train
lightweight LoRA-based experts for distinct domains of damage and merge them into a unified
diffusion model. This design captures both specialization (e.g., scratches on metallic paint) and
generalization (e.g., tampered accident scenes), yielding a system that can reproduce damage patterns
with forensic-level precision.

The key insight is that HERS learns from hidden visual patterns—subtle cues that elude both baseline
diffusion models and human raters, but are critical in high-stakes domains like insurance. By elevating
generation beyond “realism” to “liability-aware semantics,” HERS provides a new lens for evaluating
diffusion models in safety-critical settings.

Contributions. Our work makes the following advances:

• We articulate and address the overlooked challenge of semantically faithful damage synthesis
in auto insurance, where generative AI carries both opportunity and risk.

• We propose HERS, a self-supervised adaptation framework that trains LoRA-based experts
from auto-generated data, enabling damage-specific diffusion without manual annotation or
inference-time routing.

• We demonstrate state-of-the-art performance across text–image alignment, human preference
metrics, and multi-damage generalization, showing that HERS produces vehicle damage
patterns that are strikingly consistent with real-world collisions and tampered fraud cases.

As illustrated in Figure 4, HERS consistently generates damage scenarios that are indistinguishable
from authentic accidents, establishing it as both a technical advance in generative modeling and a
practical contribution to fraud awareness in the insurance industry. By revealing the dual-use nature of
diffusion in this domain, our work underscores the need for domain-specific generative strategies that
go beyond visual fidelity to encode risk-aware semantics essential for trustworthy AI deployment.
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Image-Text 
Datasets

Insurance Expert

“Front fender of the car shows signs 
of denting and chipped paint”

Ranking and Score

Typical 
Vehicle 
Parts

Descriptive 
Scene 

Narratives

Physically 
Implausible 
Scenarios

FT FT FT

Merge

T2I Model

Large Language Model

Text-to-Image Model

Automatically generate 
image-text pairs depicting 
diverse types of vehicle 
damage for skill-specific 
training in car insurance 
scenarios.

“A car’s rear bumper with visible 
scratches and chipped paint.”

“A floating bumper hovers midair, its 
paint cracking and peeling despite 
never touching the ground.”

“The rear of a soft yellow sedan 
displays a distinct pattern of cracked 
paint and surface abrasions along the 
bumper, suggesting damage likely 
caused by a low-speed collision in an 
urban environment.”

Typical Vehicle Parts

Descriptive Scene Narratives

Physically Implausible Scenarios

Text-to-Image Model

Figure 2: Overview of the HERS Framework. HERS (Hidden-Pattern Expert Learning for Risk-

Specific Damage Adaptation) auto-generates diverse, damage-specific image-text pairs using an LLM
and a base T2I model—without requiring manual annotation. These pairs span typical vehicle parts,
descriptive scene narratives, and physically implausible scenarios (examples shown in figure). Each
damage type is modeled as a distinct damage, with corresponding LoRA experts trained and merged
into a unified multi-damage diffusion model.

2 RELATED WORK

Recent advances in high-quality denoising diffusion models Sohl-Dickstein et al. (2015); Ho et al.
(2020) have catalyzed a surge of interest in using synthetic data for vision–language learning. Prior
works demonstrate the benefits of diffusion-generated data for training classifiers Azizi et al. (2023);
Sariyildiz et al. (2023); Lei et al. (2023) or augmenting caption datasets Caffagni et al. (2023), and
CLIP-style models Radford et al. (2021) have been extended using either synthetic visuals Tian et al.
(2023) or LLM-authored captions Hammoud et al. (2024). Parallel efforts in aligning text-to-image
(T2I) models with human expectations have relied on reinforcement learning from human feedback
(RLHF) Lee et al. (2023); Xu et al. (2023a); Wu et al. (2023); Dong et al. (2023); Clark et al.
(2024); Fan et al. (2023) or direct preference optimization (DPO) Rafailov et al. (2023); Wallace et al.
(2023), while methods such as SPIN-Diffusion Yuan et al. (2024) reduce annotation demands through
self-play. LLM-guided pipelines like DreamSync Sun et al. (2023) push further by auto-generating
prompts and filtering candidate images, albeit at high computational cost. Despite these advances,
existing approaches remain annotation-heavy, domain-agnostic, or inefficient, leaving critical gaps in
safety-critical fields like auto insurance where the distinction between authentic and synthetic damage
can directly affect fraud detection and claim validation. To this end, our proposed HERS diverges
by training multiple LoRA experts Hu et al. (2022), each dedicated to specific damage types (e.g.,
dents, scrapes, cracked paint, broken lights), and merging them into a unified diffusion model Shah
et al. (2023); Zhong et al. (2024). This design avoids inter-damage interference Liu et al. (2019),
eliminates dependence on costly human feedback, and captures “hidden patterns” of fine-grained
damage in a computationally efficient, self-supervised manner—providing domain-faithful generative
capabilities that are indispensable for risk-sensitive applications.

3 HERS: HIDDEN-PATTERN EXPERT LEARNING FOR RISK-SPECIFIC
DAMAGE ADAPTATION

We propose HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation), a
framework (shown in Figure 2) for adapting text-to-image (T2I) diffusion models to synthesize
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fine-grained and risk-relevant vehicle damage. Unlike prior adaptation methods such as SELMA Li
et al. (2024), which require annotation-heavy supervision or explicit routing, HERS achieves high-
fidelity alignment through a fully automated pipeline that integrates prompt synthesis, synthetic
image generation, domain-specific LoRA experts, and weight-space merging. Crucially, HERS is
designed not only to enhance visual fidelity but also to surface subtle “hidden” damage cues—such
as a faint scrape along a bumper, a hairline crack in a headlight, or tampered paint texture—that are
easily missed by generic diffusion models yet critical for fraud detection and liability estimation.

Formally, HERS operates in four stages.

3.1 STAGE 1: DOMAIN-GUIDED PROMPT SYNTHESIS

Let C = {dent,scrape,torn_bumper,cracked_paint,broken_light} denote the
canonical set of damage categories relevant to insurance workflows. We seed an autoregressive
language model fω (GPT-4) with exemplar prompts S = {s1, s2, s3} describing each category, e.g.

s1 = “rear bumper dent”, s2 = “scratched left door”, s3 = “front headlight cracked”.

For each concept c → C, the model generates a distribution of semantically diverse prompts:

pi ↑ fω(p | S, c). (1)

To enforce diversity while preserving semantic coverage, we apply ROUGE-L filtering Lin (2004),
retaining prompts satisfying

max
j

ROUGE-L(pi, pj) < ω, (2)

where ω is a similarity threshold. The resulting set P forms a structured, damage-aware prompt bank.

3.2 STAGE 2: SYNTHETIC IMAGE GENERATION

Each prompt pi → P is rendered via a pretrained diffusion generator G (e.g., Stable Diffusion XL) to
obtain an image xi:

xi = G(pi), ↓pi → P. (3)
The resulting dataset D = {(pi, xi)} captures not only canonical damages (dent, scrape) but also
nuanced conditions such as implausible tampering (e.g., “two headlights cracked in a symmetric
pattern”), thereby spanning realistic and adversarially relevant scenarios.

3.3 STAGE 3: DAMAGE-SPECIFIC EXPERT LEARNING

For each domain t → T , where T = {Typical Parts, Scene Narratives, Implausible Scenarios}, we
train a lightweight Low-Rank Adaptation (LoRA) Hu et al. (2022) expert. Given a pretrained weight
matrix W0 → Rd→d, we optimize a low-rank update:

!Wt = BtAt, Wt = W0 +!Wt, (4)

with At → Rr→d, Bt → Rd→r, and r ↔ d. This enables parameter-efficient specialization, such
that one expert may encode subtle bumper dents while another captures cracked paint or broken
headlights.

3.4 STAGE 4: MULTI-EXPERT WEIGHT MERGING

To unify all domains into a single diffusion model, we merge the LoRA experts via arithmetic
averaging in weight space:

A↑
=

1

|T |
∑

t↓T
At, B↑

=
1

|T |
∑

t↓T
Bt, (5)

yielding the final parameterization
W ↑

= W0 +B↑A↑. (6)
This consolidated model W ↑ supports zero-shot synthesis across multiple damage categories, avoiding
inference-time routing while preserving both specialization and generalization.
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HERS formalizes risk-specific adaptation as the problem of learning a set of low-rank expert perturba-
tions {!Wt} that, when merged, capture the hidden manifold of fine-grained vehicle damages. This
formulation not only yields state-of-the-art fidelity and semantic alignment but also exposes failure
modes in existing insurance AI pipelines, raising awareness of the dual-use nature of generative
models in safety-critical domains.

3.5 COMPARISON WITH PRIOR WORK

Unlike recent methods such as ZipLoRA Shah et al. (2023) and LLaVA-MoLE Chen et al. (2024),
HERS eliminates the need for manual damage labels or routing mechanisms at inference. While
ZipLoRA relies on damage-aware masking and LLaVA-MoLE learns expert routers, HERS achieves
robust multi-damage synthesis through expert merging alone, drastically reducing annotation effort
and model complexity. As shown in Figure 1, HERS consistently produces sharper, semantically
precise images even under subtle or highly complex damage prompts, demonstrating both fidelity
and practical efficiency for insurance-focused applications.

4 EXPERIMENTAL SETUP

4.1 EVALUATION BENCHMARK AND PROMPT CONSTRUCTION

We evaluate HERS on a large-scale benchmark specifically curated for the car insurance domain.
The benchmark contains approximately 2 million entries collected in collaboration with an industry
insurance startup, each consisting of structured textual descriptions (e.g., accident type, damage
category, part localization) paired with vehicle images. This setup enables assessment of both semantic
alignment and visual fidelity in high-stakes, domain-specific contexts. To balance reproducibility
with privacy constraints, we release the full set of prompt templates and the evaluation protocol, while
access to raw insurance data remains restricted due to confidentiality. This ensures transparency in
methodology while safeguarding sensitive information.

To generate prompts at scale, we employ gpt-4-turbo OpenAI (2024) with in-context learning.
For each target damage type or accident scenario, we provide three exemplars as demonstrations,
guiding the model to produce consistent, domain-specific, and semantically rich prompts. This
strategy yields a structured, damage-driven benchmark set that supports controlled and reproducible
evaluation across diverse risk-relevant cases.

4.2 EVALUATION METRICS

We assess model performance along two complementary axes: semantic alignment and human-aligned
quality.

Semantic alignment. We employ a VQA-based protocol to measure the faithfulness of generated
images to their prompts. Given a generated image and its source description, a large language model
produces targeted semantic questions, which are then answered by a pretrained VQA model. Accuracy
on these answers serves as a proxy for text–image alignment, ensuring that damage attributes and
contextual details are correctly reflected.

Human-aligned quality. To capture perceptual realism, we evaluate generations using preference-
based reward models, including PickScore Kirstain et al. (2023), ImageReward Xu et al. (2023a),
and HPS Wu et al. (2023). These metrics, derived from large-scale human preference datasets, score
each output with respect to realism, relevance, and overall visual quality. Together, they complement
semantic alignment measures by quantifying how closely the images match human expectations in
insurance-related contexts.

4.3 IMPLEMENTATION DETAILS

All experiments are conducted using a single NVIDIA A40 GPU. During prompt generation, we
sample from gpt-4-turbo with temperature set to 0.7 for diversity and relevance. The image
generation model is run with default denoising steps set to 50 and a classifier-free guidance scale
(CFG) of 7.5, ensuring a balance between image quality and prompt adherence.
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Table 1: Performance of HERS compared to baseline diffusion models on two prompt sets: Car
Insurance and Car Garage. Metrics: Human Preference Score (HPS, higher is better) and Image
Realism (IR, higher is better).

Model Car Insurance Prompts

HPS (%) IR (%)

VQ-Diffusion Gu et al. (2022) 41.50± 0.06 →15.40± 3.00
Versatile Diffusion Xu et al. (2023b) 42.70± 0.10 →11.20± 2.30
SDXL Podell et al. (2024) 45.90± 0.08 82.50± 3.05
SD v1.5 Rombach et al. (2022) 43.30± 0.07 35.20± 2.25
MoLE Zhu et al. (2024) 48.20± 0.08 95.10± 0.70

HERS (Proposed) 53.40± 0.09 113.00± 0.85

Model Car Garage Prompts

HPS (%) IR (%)

VQ-Diffusion Gu et al. (2022) 40.90± 0.07 →18.70± 2.80
Versatile Diffusion Xu et al. (2023b) 41.90± 0.09 →14.50± 2.40
SDXL Podell et al. (2024) 46.40± 0.09 89.50± 3.60
SD v1.5 Rombach et al. (2022) 44.50± 0.07 →3.00± 2.20
MoLE Zhu et al. (2024) 47.95± 0.09 102.70± 1.25

HERS (Proposed) 51.40± 0.10 115.75± 0.95

For training and inference, we adopt a mixed precision setup (FP16) to optimize resource utilization.
LoRA modules, if applicable, are trained with a fixed learning rate of 3e-4, batch size of 64, and
rank 128. Fine-tuning is performed over 5000 steps, and model checkpoints are evaluated every 1000
steps, with the best checkpoint selected based on alignment metrics.

We implement our pipelines using the Diffusers library von Platen et al. (2022), which facilitates
seamless integration of prompt generation, image synthesis, and evaluation in a reproducible and
modular framework.

5 RESULTS AND ANALYSIS

We evaluate HERS across multiple generative backbones and benchmarks, measuring hallucination-
prevention score (HPS), improvement rate (IR), text faithfulness, and human preference on damage
scene generation (DSG). Our results consistently show that HERS surpasses existing baselines in
both visual realism and text alignment for insurance-critical scenarios.

Benchmark Performance. Table 1 summarizes HERS’s performance on Car Insurance and Car

Garage prompts. For insurance prompts, HERS achieves 53.4% HPS and 113.0% IR, outperforming
MoLE Zhu et al. (2024) and SDXL Podell et al. (2024) (48.2% and 45.9% HPS, respectively). Similar
trends hold for garage prompts (51.4% HPS, 115.75% IR), demonstrating robustness across domains.
Human studies (Figure 3) confirm superior preference scores for HERS in car stain, damage, part,
and overall quality, highlighting its realism in depicting scratches, dents, and structural deformations
critical for claim verification.

Fine-grained Visual Fidelity. Beyond global metrics, we inspect both zoom-out and zoom-in
perspectives (Figures 4 and 5). In zoom-out views, baseline models such as VQ-Diffusion Gu et al.
(2022) and Versatile Diffusion Xu et al. (2023b) preserve overall vehicle structure but often introduce
implausible artifacts or inconsistent global deformations. MoLE Zhu et al. (2024) and SELMA Li et al.
(2024) improve realism yet occasionally over-deform, limiting reliability for full-vehicle assessment.

Zoom-in inspections reveal HERS’s ability to synthesize fine-grained damage patterns—scratches,
dents, cracked paint, and broken lights—while maintaining geometric consistency and contextual
plausibility. Competing models frequently fail to reproduce these local details or introduce artifacts,

6
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Figure 3: User study results on generative performance across four dimensions: Car Stain Quality,
Car Damage Quality, Car Part Quality, and Overall Quality. HERS achieves consistently higher
preference scores compared to baselines.

Table 2: Comparison of fine-tuning strategies on SD v1.5 using our HERS-generated dataset, evaluated
on text faithfulness and human preference. Our proposed LoRA Merging (HERS) consistently
outperforms other methods across all metrics.

No. Methods Text Faithfulness Human Preference on DSG
DSGmPLUG ↗ TIFABLIP2 ↗ PickScore ↗ ImageReward ↗ HPS ↗

0. SD v1.5 68.9 76.4 19.6 0.31 22.4
1. + LoRA Merging (HERS) 75.7 81.3 21.4 0.72 26.8
2. + LoRA Merging (HERS) + DPO 74.1 79.5 20.5 0.57 25.5
3. + MoE-LoRA 75.0 80.8 21.1 0.65 26.2

whereas HERS balances both local fidelity and global coherence, critical for high-stakes tasks such
as fraud detection and automated claim validation.

Ablations and Cross-Backbone Generalization. Ablation studies (Table 2) demonstrate that
LoRA merging with HERS-generated data significantly boosts text faithfulness (DSGmPLUG

75.7,
TIFABLIP2

81.3) and human preference (HPS 26.8), surpassing vanilla SD v1.5 and other fine-tuning
variants. Comparisons across diffusion backbones (Tables 3 and 4) confirm that HERS enhances both
SDXL and SD v1.5, consistently outperforming SELMA Li et al. (2024) in text alignment and human
evaluation, underscoring its generality and stability.

Together, these results tell a cohesive story: HERS not only improves quantitative metrics but also
faithfully replicates both global and local damage features, making its outputs visually convincing,
textually aligned, and suitable for practical, safety-critical insurance applications.

6 CONCLUSION

In this work, we introduced HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage

Adaptation), a framework for enhancing text-to-image diffusion models in the high-stakes domain of
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Figure 4: Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I
Models in Zoom-Out Perspective. Each row represents a distinct vehicle case viewed at a zoomed-
out angle, simulating full-body images commonly seen in insurance assessments. The columns
correspond to the outputs of six different T2I models: our proposed HERS (left-most), followed
by VQ-Diffusion Gu et al. (2022), Versatile Diffusion Xu et al. (2023b), SDXL Podell et al. (2024),
MoLE Zhu et al. (2024), and SELMA Li et al. (2024). Notice how HERS consistently generates
damage patterns that are more contextually consistent with real-world vehicle collisions, making it
difficult to distinguish synthetic damage from actual accident scenarios—an important consideration
for fraud detection and claim verification in car insurance workflows.

Table 3: Comparison of SD v1.5 and SDXL for generating car insurance damage images. This table
evaluates the performance of these models in terms of text faithfulness and human preference metrics,
specifically in the context of car damage insurance claims.

No. Base Model Training Image Generator Text Faithfulness Human Preference on DSG
DSGmPLUG ↗ TIFABLIP2 ↗ PickScore ↗ ImageReward ↗ HPS ↗

1. SD v1.5 - 68.7 75.6 18.9 0.15 21.4
2. SDXL - 72.5 79.8 19.5 0.60 23.2

3. SD v1.5 SD v1.5 74.0 78.5 19.2 0.70 24.0
4. SDXL SD v1.5 77.5 80.3 19.7 0.75 25.2
5. SDXL SDXL 76.8 81.9 20.3 0.95 26.7

car insurance. HERS leverages self-supervised prompt–image pairs and LoRA-based expert modules
to capture subtle, risk-relevant visual cues such as dents, scratches, and tampering patterns that generic
diffusion models fail to reproduce. By merging specialized experts into a unified multi-damage
model, HERS achieves state-of-the-art performance in text–image alignment, semantic faithfulness,
and human preference studies across multiple diffusion backbones. Quantitatively, HERS improves
text faithfulness by +5.5% and human preference by +2.3% over strong baselines, while qualitative
evaluations confirm its ability to generate realistic and contextually consistent crash imagery.

Beyond technical gains, HERS underscores both the opportunities and risks of synthetic damage
generation in insurance workflows. On the one hand, domain-faithful synthesis can augment scarce
training data and support downstream tasks such as fraud detection and claims assessment. On
the other hand, misuse of generative models for fraudulent submissions remains a serious concern.
Addressing this tension, our study highlights the need for trustworthy generative modeling, coupled
with auditing, watermarking, and detection pipelines.
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Figure 5: Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I
Models in Zoom-In Perspective. Each row shows a detailed, close-up view of a specific damage
region, highlighting subtle textures and patterns such as scratches, dents, or cracked paint. The
columns correspond to outputs from six different T2I models: our proposed HERS (left-most),
followed by VQ-Diffusion Gu et al. (2022), Versatile Diffusion Xu et al. (2023b), SDXL Podell et al.
(2024), MoLE Zhu et al. (2024), and SELMA Li et al. (2024). Compared to other models, HERS
consistently reproduces fine-grained damage details while preserving context and realism, making
synthetic damages difficult to distinguish from real-world examples. Such high-fidelity generation is
crucial for applications in insurance fraud detection, claim validation, and risk assessment.

Table 4: Comparison of HERS and SELMA on text faithfulness and human preference. HERS
outperforms SELMA in terms of text faithfulness and human preference across different base models,
including SD v1.5, SDXL, VQ-Diffusion, and Versatile Diffusion. Best scores for each model are in
bold.

Base Model Methods Text Faithfulness Human Preference on DSG prompts
DSGmPLUG ↗ TIFABLIP2 ↗ PickScore ↗ ImageReward ↗ HPS ↗

SD v1.5 SELMA Li et al. (2024) 70.3 79.0 21.5 0.18 23.3
HERS (Ours) 75.6 83.2 22.8 0.75 26.9

SDXL SELMA Li et al. (2024) 72.5 81.7 21.8 0.22 24.9
HERS (Ours) 78.0 84.1 23.2 0.90 27.8

VQ-Diffusion SELMA Li et al. (2024) 68.8 76.3 20.7 0.12 22.7
HERS (Ours) 74.6 81.3 21.7 0.71 25.3

Versatile Diffusion SELMA Li et al. (2024) 70.0 78.5 21.2 0.14 23.5
HERS (Ours) 75.2 82.5 22.3 0.77 26.2

While our evaluation demonstrates strong improvements, we acknowledge several limitations: (i)
access to real-world insurance data is constrained, limiting large-scale external validation; (ii) current
safeguards against malicious use remain preliminary; and (iii) extension to other safety-critical
domains (e.g., medical imaging, disaster assessment) requires further study. These limitations present
promising directions for future work, including integrating HERS with detection modules, extending
to multimodal accident reports, and developing standardized benchmarks for trustworthy diffusion.
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