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Abstract
Oncologists are increasingly relying on multiple
modalities to model the complexity of diseases.
Within this landscape, transcriptomic and epi-
genetic data have proven to be particularly in-
strumental and play an increasingly vital role
in clinical applications. However, their inte-
gration into multimodal models remains a chal-
lenge, especially considering their high dimen-
sionality. In this work, we present a novel bi-
modal model that jointly learns representations
of bulk RNA-seq and DNA methylation lever-
aging self-supervision from Masked Language
Modeling. We leverage an architecture that re-
duces the memory footprint usually attributed
to purely transformer-based models when deal-
ing with long sequences. We demonstrate that
the obtained bimodal embeddings can be used to
fine-tune cancer-type classification and survival
models that achieve state-of-the-art performance
compared to unimodal models. Furthermore, we
introduce a robust learning framework that main-
tains downstream task performance despite miss-
ing modalities, enhancing the model’s applicabil-
ity in real-world clinical settings. Code available
at https://github.com/instadeepai/
multiomics-open-research.

1. Introduction
The growing availability of high-throughput technologies
has revolutionized molecular research, generating extensive
genomic, transcriptomic, and epigenomic data that holds im-
mense potential for personalized medicine (Ho et al., 2021;
Stark et al., 2019; Dai & Shen, 2022). Cancer diagnosis
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and prognosis thus increasingly rely on heterogeneous pa-
tient data, and the integration of these diverse data sources
remains a significant challenge, even more so when some
modalities may be missing in real clinical applications.

The high dimensionality of each modality often makes clas-
sic machine learning and deep learning methods ineffective
for diagnostic purposes. As a result, there is a growing
tendency to first learn representations of the data, partic-
ularly using self-supervised approaches. In this context,
foundation models have steadily emerged as powerful tools
to learn effective and generalizable embeddings that can
be applied to biological and clinical tasks. Trained with
an unsupervised language modeling objective, they have
already been applied to a wide range of omics data, includ-
ing genomics (Dalla-Torre et al., 2025; Brixi et al., 2025),
single-cell transcriptomics (Cui et al., 2024) or bulk RNA-
seq (Gélard et al., 2025). These models extensively leverage
the transformer architecture (Vaswani et al., 2017) which
limits the maximum input length of the model due to the
quadratic memory scaling of the attention mechanism. Re-
cent models have developed new architectures to cope with
these long-range sequences, either by integrating convolu-
tional blocks (Avsec et al., 2021; Linder et al., 2025; Joshi
et al., 2025) or state-space models (Popov et al., 2025).

Among multiple studies, the Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) is a publicly
available dataset that gathers multi-omics data, in partic-
ular bulk RNA-seq and DNA methylation which are the
focus of this work. Including clinical information such as
survival time and divided into 33 cohorts (or cancer types),
this dataset is a popular benchmark for evaluating survival
analysis and cancer-type classification methods. Survival
analysis, or time-to-event prediction, aims at predicting the
time from diagnosis to the patient’s death from the disease
using censored data. Though classically tackled with Cox
regression (Cox, 1972), the Cox partial likelihood has more
recently been reformulated as a loss used to train deep learn-
ing architectures (Ching et al., 2018; Katzman et al., 2018).

In this paper, we introduce MOJO, standing for Multi-
Omics JOint representation learning, that we here tailor

1

https://github.com/instadeepai/multiomics-open-research
https://github.com/instadeepai/multiomics-open-research
https://portal.gdc.cancer. gov/


Bimodal masked language modeling for RNA-seq and DNA methylation representation learning

for learning joint embeddings of bulk RNA-seq and DNA
methylation through bimodal masked language modeling
from the TCGA dataset. We leverage a multimodal archi-
tecture that employs a mix of convolutional and transformer
layers. We show that the embeddings learned by MOJO
lead to state-of-the-art performance in various tasks from
pan-cancer cancer-type classification, survival analysis, and
cancer subtype clustering. Finally, we further present a
framework that allows for a downstream task model to pre-
serve its performance in the absence of a modality by intro-
ducing an auxiliary loss based on mutual information.

2. Related works
Omics representation learning

Omics representations were usually derived from statistical
methods such as Principal Component Analysis (Jolliffe,
2002) or Non-negative Matrix Factorization (NMF) (Lee &
Seung, 2000), the latter being particularly suited for RNA-
seq and DNA methylation due to their positivity. Deep learn-
ing architectures such as Masked Auto-Encoders (Gross
et al., 2024) or Mixture-of-Experts (Meng et al., 2023) have
then been applied to learn omics representations used either
for survival analysis or cancer-type predictions. In line with
foundation models for single-cell transcriptomics (Cui et al.,
2024; Yang et al., 2022), Gélard et al. 2025 developed a
transformer-based model for bulk RNA-seq representation
learning. Multi-modal integration is often performed us-
ing late integration, i.e., each source is encoded separately
before being aggregated, often using Kronecker product
(Chen et al., 2020), element-wise operations (Vale-Silva
& Rohr, 2021) or cross-attention (Garau-Luis et al., 2024).
Variational auto-encoders (Kingma & Welling, 2013) have
also been widely used for multi-omics integration, either for
single-cell omics (Cao & Gao, 2022; Ashuach et al., 2023;
Tu et al., 2022) or bulk omics (Benkirane et al., 2023).

Missing modalities

Improving the robustness of multimodal models under
modality absence is crucial given the sensitivity of recent
deep learning architectures to missing modalities (Ma et al.,
2022). Part of the literature focuses on techniques that
operate at the data level (Damrosch, 1995), namely lever-
aging modality imputation (Chen et al., 2024; Zhang et al.,
2021a; Ma et al., 2021). Zhi et al. 2024 proposes a retrieval-
augmented in-context learning framework to address the
missing modalities issue in a low-data regime. Another
path towards handling missing modalities lies in adjusting
the model itself with, for example, model fusion (Wagner
et al., 2011) or knowledge distillation (Saha et al., 2024).
Training methods are also adapted to make multimodal mod-
els robust to missing modalities by employing modality
dropout (Krishna et al., 2024; Nezakati et al., 2024) during

training to simulate scenarios where a subset of modalities
might be missing. In our work, we adapt a technique from
Ramazanova et al. 2025, which addresses the problem of
missing modalities as a test-time-adaptation problem, by
incorporating an auxiliary loss during the fine-tuning of our
model.

3. Multi-omics joint representation learning
3.1. Bulk RNA-seq and DNA methylation processing for

language modeling

Modalities alignment Bulk RNA-seq provides an es-
timate of the mean expression over all cells in a sample
for a large number of genes denoted Ngenes (typically
Ngenes ∼ 104). Thus, each sample of RNA-seq is com-
posed of real values (in units of transcript per million, or
TPM) per gene, Xrna ∈ RNgenes , to which we apply an
x 7→ log10(1 + x) transformation. DNA methylation is the
enzymatic attachment of methyl groups to DNA’s nucleotide
bases (usually Cytosine followed by Guanine or CpG site).
The methylation level of a given site, obtained through
the Illumina Infinium HumanMethylation450 (450K) Bead-
Chip array (Bibikova et al., 2011), is expressed by a beta
value β ∈ [0, 1], with the number of measured sites, Nsites

being around 450,000, resulting in a methylation sample
Xsites meth ∈ [0, 1]Nsites . The first step in our modeling
is to align RNA-seq and methylation data by defining a
methylation value per gene Xmeth ∈ RNgenes as follows:

• For each gene g ∈ J1 ; NgenesK, we define sites(g)
as all methylation sites close to the gene, as defined
in the Infinium Human Methylation 450k BeadChip
annotations (typically within ±1.5 kb of the transcript
start site or within the gene body).

• The methylation level for a gene is then defined as:

Xmeth[g] =
1

|sites(g)|
∑

s∈sites(g)

Xsites meth[s]

Therefore, a bimodal sample characterized by RNA-seq
and DNA methylation is a vector X = (Xrna, Xmeth) ∈
R2Ngenes .

Tokenization Language models learn to estimate the
likelihood of token sequences. Thus, after aligning the
two modalities and obtaining a feature vector X =
(Xrna, Xmeth), each of its components is tokenized by bin-
ning their values on linear scales. The token id associated
with a given RNA-seq or methylation value is its corre-
sponding bin id, so after tokenization one sample is a vector
X̃ = (X̃rna, X̃meth) with X̃rna ∈ J0 ; Brna − 1KNgenes

and X̃meth ∈ J0 ; Bmeth − 1KNgenes , Brna and Bmeth be-
ing the number of bins respectively for gene expression and
methylation.
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Figure 1: MOJO pipeline. (a) Each modality is first tokenized using linear binning. (b) MOJO, whose core architecture is
composed of a mix of convolution and attention operations, is firstly pre-trained through bimodal masked language modeling.
(c) Embeddings are probed from MOJO to fine-tune a task-specific head tailored for cancer-type classification or survival
analysis.

3.2. A long-range model architecture for bimodal
representation learning

In order to learn representations of bulk RNA-seq and DNA
methylation, we propose a model that combines both convo-
lution and transformer blocks. Inspired by Avsec et al. 2021;
Linder et al. 2025; Joshi et al. 2025 to handle long-range ge-
nomic dependencies, this architecture allows us to cope with
the high dimensionality of the two omics that we consider,
each corresponding to a sequence of length Ngenes. More
precisely, a first bimodal embedding is obtained by passing
each omic token through classic embedding layers and sum-
ming them up along with a gene embedding vector. As gene
expression and DNA methylation are permutation invariant,
this gene embedding acts as a positional encoding and is
initialized with the Gene2Vec method (Zou et al., 2019) as
done in Gélard et al. 2025; Yang et al. 2022. Before being
fed to a transformer model made up of multi-head attention
layers (Vaswani et al., 2017), the embedding is downsam-
pled by a convolutional tower. This downscaling allows the
transformer block to act on a compressed embedding vec-
tor to significantly reduce the computational cost and time.
While the convolutional architecture may be counterintu-
itive for unordered data, it acts as an efficient mechanism
for dimensionality reduction. The original sequence length
is restored using a deconvolutional tower with residual con-
nections flowing from the downsampling blocks. Separate

language modeling heads predict binned gene expressions
and methylation. This architecture is summarized in Figure
1.

3.3. Pre-training: bimodal masked language modeling

Self-supervision loss Our model is pre-trained through
self-supervision using multimodal masked language mod-
eling. Although this framework may be applied to more
than 2 modalities that can be processed as a sequence of
tokens, we present it in the bimodal case where the set of
modalities M = {rna,meth}. We adopt standard parame-
ters for masked language modeling: for each sequence, 15%
of the tokens are corrupted to train the model. Among these
corrupted tokens, 80% are replaced with a special <MASK>
token, 10% are substituted with random tokens, and the
remaining 10% are left unchanged, but still contribute to
the loss. The final heads of our model provide a set of
probability distributions pm ∈ [0, 1]Ngenes×Bm for m ∈M.
The following multimodal negative log-likelihood is then
optimized:

LmultimodalMLM
= −

∑
m∈M

1

|Mm|
∑

i∈Mm

log((pm)i,(X̃m)i
)

with for m ∈ M,Mm corresponding to the set of masked
token indices for that modality.
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Experiment Our model is pre-trained using the TCGA
dataset from 33 cohorts, resulting in 9,252 pairs of bulk
RNA-seq and methylation, 5% being kept for testing. We
selected Ngenes = 17,116 genes by using the same set
of genes as Gélard et al. 2025, from which genes with no
methylation data were removed. The model is trained on
a TPU v4-8 for total of 192 billion tokens using the Adam
(Kingma & Ba, 2014) optimizer with gradient accumulation
to reach an effective batch of 3× 106 tokens. The complete
set of hyperparameters can be found in A.1, as well as pre-
training learning curves in A.2.

4. Evaluation downstream tasks
The representations learned by MOJO are evaluated using
a panel of downstream tasks ranging from supervised clas-
sification, survival analysis, and zero-shot classification,
to clustering. We compare our method to unimodal (only
RNA-seq or DNA methylation) and bimodal models:

BulkRNABert (Gélard et al., 2025): A transformer-based
model, pretrained on bulk RNA-seq using masked language
modeling. Embeddings are extracted from the last self-
attention layer, and the mean embedding over the sequence
is used as input for downstream tasks. The tokenization of
the RNA-seq data is the same between MOJO and BulkRN-
ABert, i.e., the same Brna has been used.

MethFormer: We develop the equivalent of BulkRNABert
for DNA methylation (averaged per gene) and we will refer
to it in the results as MethFormer. Similarly, the same
value of Bmeth is maintained to allow for fair comparison.
This model differs from MethylBERT (Jeong et al., 2025)
which uses read-level methylome and not the 450k microar-
rays we are interested in.

Late integration: Bimodal integration resulting from the fu-
sion of embeddings extracted from unimodal models. More
precisely, we will refer to Late Integration (concatenation)
as the concatenation of the embeddings from BulkRNABert
(for RNA-seq) and MethFormer (for methylation) which
have been pre-trained beforehand. Late integration (cross-
attention) corresponds to an integration of the two embed-
dings with a two-step cross-attention followed by a concate-
nation, allowing for interaction between the two modalities.
The different cross-attention modules are only trained when
fitting the downstream tasks. An illustration of the late
integration is provided in Figure 2.

CustOmics (Benkirane et al., 2023): A multi-omics model
based on Variational Auto-Encoders and tailored for cancer-
type classification and survival analysis. Although it can
handle up to three modalities (bulk RNA-seq, DNA methy-
lation, and Copy Number Variation), we are here interested
in its version that can perform the downstream tasks in the
bimodal setting. Two models are considered: CustOmics

(end-to-end) that trains the VAEs and the task heads jointly,
and CustOmics (probing) that first learns the unsupervised
representation with VAEs and then uses the encoded features
as input to task heads.

Multi-Omics Factor Analysis (MOFA) (Argelaguet et al.,
2018): An unsupervised machine learning method designed
to integrate multi-omics data by inferring a set of low-
dimensional hidden factors, it can be seen as a multi-omics
extension to PCA. MOFA factors are then used as input ei-
ther to a Support Vector Machine (Cortes & Vapnik, 1995)
for cancer-type classification or a Cox proportional model
(Cox, 1972) for survival analysis.

We also integrate a more exhaustive benchmark of other
feature extraction and multi-omics model integration in Ap-
pendix B.

4.1. Cancer-type classification

Methodology MOJO is first evaluated on the super-
vised task of cancer-type classification. The pan-cancer
TCGA dataset is divided into 33 cohorts that make up
the labels for the classification task. The last attention
layer of the transformer component of MOJO is probed
to obtain the embedding used for classification. After
being downsampled by the convolutional layers, the em-
bedding lies in Rndownsample×embdim , with embdim = 512 and
ndownsample = 67 (resulting from 8 successive downsampling
operations by a factor of 2 from an initial sequence length
of Ngenes = 17,116, padded to the next power of 2, 17,152).
Then a mean embedding in Rembdim is obtained by averaging
over the sequence dimension. This embedding serves as
the input to a Multi-Layer Perceptron (MLP) of two hid-
den layers (respectively of size 256 and 128) that outputs a
single logit for cancer-type prediction. In addition, we add
dropout (Srivastava et al., 2014) and layer normalization (Ba
et al., 2016). BulkRNABert, MethFormer, and MOJO are
further fine-tuned in addition to training the MLPs using the
parameter-efficient method IA3 (Liu et al., 2022), which
introduces low-dimensional learnable parameters into the
self-attention mechanisms and feed-forward networks. For
MOJO, we also adapt this principle to the convolutional
layers by adding a point-wise multiplication of the output
of each convolutional operation with a learnable vector of
the same dimension.

Results Cancer-type classification results on the Pan-
cancer TCGA dataset are presented in Table 1. For this task,
the dataset has been split into 80% for training and 20% for
testing, repeating the split for 5 different seeds. We report
the average and standard deviation over these 5 seeds for
the different metrics. We will be using both macro F1 and
weighted F1 scores to avoid any bias due to class imbalance
(label distribution is provided in Appendix B.1). MOJO
provides state-of-the-art results when considering the two
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Figure 2: Late integration architecture. RNA-seq and Methylation embeddings are obtained from pre-trained transformer-
based encoders (respectively BulkRNABert and MethFormer) and are fused either by concatenation or by a two-step
cross-attention mechanism.

Table 1: Cancer type classification

Model Modality test macro-F1 test weighted-F1

BulkRNABert RNA-seq 0.918 ± 0.008 0.943 ± 0.004
MethFormer Methylation 0.917 ± 0.008 0.931 ± 0.006
MOFA Bimodal 0.789 ± 0.012 0.852 ± 0.007

Late integration (concatenation) Bimodal 0.928 ± 0.008 0.945 ± 0.007
Late integration (cross-attention) Bimodal 0.929 ± 0.005 0.945 ± 0.002
CustOmics (probing) Bimodal 0.887 ± 0.065 0.911 ± 0.088
MOJO (probing) Bimodal 0.928 ± 0.009 0.945 ± 0.006

CustOmics (end-to-end) Bimodal 0.922 ± 0.006 0.946 ± 0.006
MOJO (no pre-training) Bimodal 0.835 ± 0.015 0.891 ± 0.006
MOJO Bimodal 0.935 ± 0.007 0.952 ± 0.006

modalities, with better performance than CustOmics and
late integration. For the latter, the cross-attention version
performs slightly better on average than its concatenation
counterpart, but not significantly. Our joint modeling of
RNA-seq and methylation with MOJO outperforms the cor-
responding unimodal transformer-based models (BulkRN-
ABert and MethFormer). Moreover, when only probing the
last attention layer and fitting an SVM (MOJO (probing) in
the table), our model shows a clear performance increase
in comparison with CustOmics (probing), highlighting that
representations from masked language modeling exhibit
stronger predictive capacity. Finally, we show that our bi-
modal masked language modeling pre-training produces a
notable performance gain compared to a model trained from
scratch (MOJO (no pre-training) in the table).

Training times We additionally report in Table 2 the time
required by different models (BulkRNABert, Late integra-
tion (cross-attention), Late integration (concatenation), and
MOJO) to perform a full update step (forward and back-
ward pass) when training a pan-cancer classification model.

While supporting substantially larger batch sizes compared
to purely transformer-based models or late integration mech-
anisms, MOJO achieves approximately a 100× speedup
over other benchmarked models. This highlights the compu-
tational efficiency of our hybrid architecture that combines
convolutional and transformer layers, offering a more scal-
able alternative to fully transformer-based approaches.

4.2. Survival Analysis

Methodology We then evaluate omics embeddings on a
pan-cancer survival task, also known as time-to-event pre-
diction. This task involves predicting the survival time T ∗

i

for individuals who have cancer, specifically the time from
diagnosis until death. A key challenge in survival analysis
is right censoring, where the observed time C∗

i might be
shorter than the actual survival time T ∗

i due to factors like
the end of a study or loss of patient contact. Consequently,
the true target time used by the model, Ti, is defined as the
minimum of the actual survival time and the censoring time
(Ti = min(T ∗

i , C
∗
i )). One defines as well δi = 1T∗

i ≤C∗
i
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Table 2: Average time per update step (forward + backward
pass) during training of classification models on a TPU v4-
8. All models are evaluated with an effective batch size
of 64, achieved via gradient accumulation when necessary.
For each model, we additionally report the maximum batch
size supported by the model. As in classification bench-
marks, parameter efficient fine-tuning is applied to MOJO
and BulkRNABert.

Model
Update time

(seconds)
Maximum
batch size

Late integration (cross-attention) 5.819 ± 0.006 4
BulkRNABert 4.462 ± 0.006 8

Late integration (concatenation) 2.205 ± 0.004 16
MOJO 0.059 ± 0.009 1,024

(so δi = 1 if the event occurred (death), otherwise δi = 0),
thus constituting a dataset D = {Ti, xi, δi}Ni=1, with xi

the covariates (RNA-seq and/or methylation embeddings in
our study). A widely used method to tackle such time-to-
event problems is the Cox proportional hazards model (Cox,
1972). This semi-parametric model focuses on modeling the
hazard function λ(t|x), which represents the instantaneous
rate of an event at time t given covariates x. A Cox model
expresses λ as λ(t|x) = λ0(t)e

ĥβ(x), with β a vector of pa-
rameters (so in our case x, β ∈ Rembdim ), λ0(t) the hazard
baseline, and in the Cox model, ĥβ(x) = βTx. More recent
works (Katzman et al., 2018; Ching et al., 2018) allow loos-
ening the linear combination of features by replacing ĥβ(x)
by the output of a neural network and using the negative
partial Cox-log-likelihood as loss:

Lsurvival = −
∑

i|δi=1

(
ĥβ(xi)− log

∑
j∈Ri

eĥβ(xj)
)

For the survival task, we extract the embeddings from
BulkRNABert, MethFormer, and MOJO in the same way
as for the cancer-type classification task and train a similar
MLP architecture on top. We do not consider the cross-
attention version of the late integration here as the Cox loss
requires working with a big enough batch size so that the
computation of cross-attentions (given the sequence length
of Ngenes = 17, 116) is not computationally efficient. Sim-
ilarly, we do not apply IA3 and only consider the probing
experiment for the survival task.

Results Survival results on the pan-cancer TCGA dataset
are presented in Table 3. The same split strategy as for
the classification task is used. Two different evaluation
metrics based on Harrell’s C-index (Harrell et al., 1982) are
reported. First, a C-index is computed on the whole test set
(all cohorts) referred to as “C-index”. However, in order to
make sure that a pan-cancer model is able to predict survival
within cohorts correctly, and not just to differentiate survival

Table 3: Pan-cancer survival analysis

Model C-index Weighted C-index

BulkRNABert 0.750 ± 0.004 0.657 ± 0.011
MethFormer 0.735 ± 0.006 0.618 ± 0.017
MOFA 0.648 ± 0.037 0.601 ± 0.022

CustOmics 0.686 ± 0.018 0.639 ± 0.099
Late integration 0.756 ± 0.004 0.653 ± 0.011
MOJO 0.771 ± 0.006 0.670 ± 0.009

chances between cancer types, a “Weighted C-index” is also
reported. This corresponds to a weighted sum of the C-
indexes computed per cohort on the pan-cancer test set, with
weights corresponding to the number of samples of each
cohort in the test set. As for the classification task, MOJO
exhibits higher performance than the unimodal transformer-
based models and the late integration, with a significant
gain over CustOmics. In an additional experiment, MOJO
performance has been matched by an end-to-end version
of CustOmics (weighted C-index of 0.669 ± 0.004). This
need for end-to-end training compared to simple probing
highlights the strength of MOJO’s learned representations.
Kaplan-Meier curves are also provided in Appendix B.4,
showing better patient stratification with MOJO.

4.3. Zero-shot pan-cancer and breast cancer sub-typing
and clustering

Methodology To further assess the value of the embed-
dings learned by MOJO, we evaluate them in a fully unsu-
pervised manner by considering their zero-shot classifica-
tion and clustering capabilities on the PAM50 classification,
which corresponds to breast cancer sub-typing (Luminal
A, Luminal B, Basal, and HER2) (Parker et al., 2009). In-
spired by Joshi et al. 2025 that evaluates single-cell RNA-
seq embedding models, a zero-shot classification is per-
formed using a k-nearest neighbors model (with k = 5),
which is evaluated using accuracy. Compared to the super-
vised classification task we presented, this procedure allows
for evaluating the quality of the embedding without having
to fine-tune a model on top of the embeddings. Secondly,
we perform a Leiden clustering (Traag et al., 2019) in the
embedding space and report standard Normalized Mutual
Information (NMI), and Adjusted Random Index (ARI) as
clustering evaluation metrics. For this experiment, we want
to understand the effectiveness of our joint modeling com-
pared to the late integration method for bimodal data. We
thus compare MOJO and the late integration (concatena-
tion) method embeddings in this section. In addition to
the PAM50 sub-typing problem, we also perform the same
analysis with the same pan-cancer dataset (referred to as
“Pan-cancer” in the results) as in 4.1.
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Figure 3: t-SNE representation of MOJO and Late inte-
gration embeddings, colored by cancer-type on a subset of
cohorts. MOJO’s embeddings visually exhibit better cohort
separation capacity compared to Late Integration ones, cor-
roborating quantitative results from Table 4. Pan-cancer
t-SNE plot is provided in Appendix B.3.

Results The zero-shot classification and clustering results
are shown in Table 4, showing better performance when
using MOJO embedding than late integration. A comparison
with CustOmics is also added in Appendix B, with lower
performance than MOJO. We present in Figure 3 a t-SNE
(Van der Maaten & Hinton, 2008) visualization of both
embeddings in the pan-cancer setting, reflecting that MOJO
embeddings more effectively separate the cohorts.

Table 4: Zero-shot classification and clustering results on
pan-cancer and PAM50 tasks. (Acc. = Accuracy, NMI
= Normalized Mutual Infomation, ARI = Ajusted Rank
Index).

Task Metric MOJO Late integration

PAM50
Acc. 0.777 0.763
NMI 0.345 0.291
ARI 0.213 0.154

Pan-cancer
Acc. 0.928 0.870
NMI 0.862 0.771
ARI 0.756 0.620

5. Missing modalities
Integrating two modalities, from late integration to joint
modeling using our MOJO architecture, has proven to pro-
vide performance increases on downstream tasks. However,
in clinical applications, some modalities might be missing,
and in the worst-case scenario, one modality may never
be used by a given medical center. To this end, we aim
to provide downstream task models trained on a bimodal
setting but which support missing modalities and whose per-
formance when modalities are missing remains comparable

to the performance of models trained specifically on the re-
maining modalities. To this end, we focus on the pan-cancer
cancer-type classification task and develop the following
experiment framework. First, a bimodal downstream model
is fine-tuned as done previously in 4.1, i.e. using pairs
of (Xrna, Xmeth) without any missing modalities from a
pre-trained MOJO architecture. Our contribution, detailed
thereafter, lies in a slight modification of the fine-tuning
procedure to cope with missing modalities. Then, at test
time, we compute the evaluation metrics in three ways: first
without any modification of the test set, then simulating the
absence of either RNA-seq or methylation by dropping that
modality in x% of the (Xrna, Xmeth) pairs of the test set
(with x = 100 meaning that the modality is removed from
all samples) and compute the metrics without further fine-
tuning the model. The next sections detail how the missing
modalities issue is addressed within this framework.

5.1. MOJO accepts missing modalities

Being trained by masked language modeling, MOJO natu-
rally accepts missing RNA-seq or methylation information
for a given subset of genes by attributing a special <MASK>
token to these genes. One can naturally extend this pro-
cedure by attributing a sequence full of <MASK> tokens
to a missing modality, making MOJO inherently capable
of handling missing modalities. However, as during pre-
training only a fraction of each modality is masked to ac-
count for the masked language modeling loss, the absence
of a whole modality is never encountered by the model.
To this end, we decided to conduct another pre-training of
MOJO by incorporating samples from the TCGA dataset
that are missing one of the two considered modalities, thus
extending the initial pre-training dataset composed of 9,252
pairs (Xrna, Xmeth) with 2,022 pairs (Xrna, None) and
560 pairs (None,Xmeth) with None indicating a miss-
ing modality. We will refer to this model as MOJO-MMO
(MMO = Missing MOdalities).

5.2. Mutual information auxiliary loss

As described in our experimental framework, we only fine-
tune and evaluate the downstream model with samples that
have both modalities, thus allowing us to get a fair com-
parison between all the models. Therefore, as the dataset
is fixed, one needs to change the fine-tuning procedure to
cope with the drop of a full modality at test time to hope
for performance maintenance. To this end, we add mu-
tual information as an auxiliary loss paired with classic
cross-entropy for the pan-cancer classification task. This
quantity is used in Ramazanova et al. 2025 as a test-time
adaptation technique of an audio/vision model to handle
missing modalities. We adapt it to be directly incorpo-
rated during the fine-tuning phase of the model to avoid any
modification of the model at test time, thus saving computa-
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Algorithm 1 Mutual information auxiliary (MI) loss

Input: Omics tokens X = {rnaseq : xrnaseq,meth :
xmeth}, true class label y, sequence length N , mask to-
ken <MASK>, mutual information coefficient λ, classifi-
cation model fθ
Output: single example loss
if noMissingModality(X) then

modalities = [rna+meth, rnaseq,meth]
output = [fθ(X)]
for m ∈ [rnaseq,meth] do
X ′ ← copy(X)
X ′[m]← [<MASK>] ∗N
output.append(fθ(X

′))
end for
MILoss = MI(output,modalities)

else
MILoss = 0.0

end if
Loss = CrossEntropy(fθ(X), y) + λ ∗MILoss

tional time. Following the notation from Ramazanova et al.
2025, we denote fθ(x;m) the output of the classification
model for a given input x when modalities m are present,
with m ∈ Dmodality = {rna + meth, rna,meth}. One
would require fθ to provide the same prediction whatever
modality is given, thus satisfying the following equality:
fθ(x; rna+meth) = fθ(x; rna) = fθ(x;meth). One can
satisfy such a constraint by minimizing the following loss:

Laux = Em∈Dmodality
[MI(fθ(x,m),m)]

with MI(X,Y ) = DKL[P(X,Y )||PX ⊗PY ] corresponding
to the mutual information (Shannon, 1948) between two
random variables X and Y . The mutual information is equal
to 0 when the two random variables are independent; thus,
minimizing this quantity as an auxiliary loss should guide
the model towards providing the same output independently
of the given modality. Therefore, we end up optimizing the
following loss:

L = Ltask + λ ∗ Laux

with Ltask corresponding here to the cross-entropy for the
cancer-type classification task. We detail in Algorithm 1 the
procedure used to compute this loss for a single example.

5.3. Missing modalities experimental results

We present the results of applying our missing modalities
framework in Figure 4 (with the exact performance figures
being additionally reported in Appendix C). When consider-
ing our initial model trained on both modalities from MOJO,
with a test weighted-F1 of 0.952, it is no surprise that with-
out any further intervention, when dropping either all the

Figure 4: Missing modalities experimental results. Test
weighted-F1 score for the pan-cancer classification is re-
ported for different methods to handle the absence of a
modality in x% of the samples (left: RNA-seq, right: Methy-
lation). Unimodal models are respectively MethFormer and
BulkRNABert when RNA-seq or Methylation is missing.

RNA-seq or all the methylation from the test set, one gets
a significant performance decrease (respectively 0.538 and
0.854). When adding the mutual information loss as an aux-
iliary loss during model fine-tuning (we used λ = 10 as the
ratio of the cross-entropy and the mutual information com-
puted after model initialization), model performance with-
out any modality drop at test time remains stable (0.949),
meaning that the addition of the mutual information as an
auxiliary loss does not inhibit the classification signal from
the cross-entropy. The previously observed performance
decrease when one modality is dropped is corrected: from
0.538 to 0.916 when RNA-seq is missing, and from 0.854 to
0.937 when methylation is missing. This recovered perfor-
mance is even closer to models that have been specifically
trained on one modality, for instance MethFormer for methy-
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lation (0.931) and BulkRNABert for RNA-seq (0.943). Fi-
nally, when dropping only 50% of one modality, the bimodal
model fine-tuned with the mutual information as auxiliary
loss performs similarly to its unimodal counterpart.

One also observes the effectiveness of extending the pre-
training dataset with pairs that are missing one modality for
MOJO-MMO, as the performance gap also narrows even
without the addition of the mutual information loss. We fi-
nally conducted an experiment by combining MOJO-MMO
and the mutual information as auxiliary loss, ending with
performance similar to the auxiliary loss alone. One notices
the discrepancy between the drop of methylation and the
drop of RNA-seq: the performance deterioration is greater
when RNA-seq is missing, suggesting this modality is more
reliable than the other for the model to predict cancer type,
which is corroborated by the higher performance of BulkRN-
ABert compared to MethFormer.

6. Conclusion
We proposed a novel methodology for learning joint repre-
sentations of multi-omics data and introduced the MOJO
architecture. Our focus was on pre-training this model to
learn representations from bi-omics data, specifically bulk
RNA-seq and DNA methylation. By aligning these two
modalities, we formulated the representation learning task
as a self-supervised problem using bimodal masked lan-
guage modeling. The architecture combines convolutional
and attention-based components, enabling it to efficiently
handle long-range sequences that arise when modeling a
large number of genes, outperforming purely transformer-
based approaches in this context. Compared to the late
integration mechanism that requires separate pre-training
of unimodal models, our joint approach allows one to learn
representations of multi-omics data with a single model.

After a pre-training phase, the embeddings learned by the
model are used as input for clinical downstream tasks on
the TCGA dataset: from supervised classification (cancer-
typing) to time-to-event prediction, MOJO provides state-
of-the-art performance compared to unimodal models. We
further point up the interest in joint modeling compared to a
late integration mechanism through zero-shot classification
and clustering (breast cancer sub-typing). In particular, the
predictive capacity of MOJO’s representations has been
emphasized by observing a significant performance gain
compared to other models in the layer probing setup.

Finally, we raise the issue of the possibility for a given
modality to be missing at test time, and thus the need for a
methodological solution to prevent any performance drop
of the downstream model. To this end, we presented how
MOJO can inherently cope with missing modalities, and
we reformulated a test-time adaptation technique based on

mutual information by incorporating it as an auxiliary loss
during the fine-tuning process. Through this method, we
were able to narrow the performance drop in the absence of
a modality, getting results that are comparable to unimodal
models.

Further work would extend this architecture to a larger class
of data, especially by relaxing the need for initial modality
alignment. Although already providing promising results
for missing modalities, the mutual information approach
may also be extended to more than two modalities, and
some improvements have to be made so that performance
exactly matches unimodal models.
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A. MOJO pre-training
A.1. Hyperparameters

Table 5: MOJO model and pre-training hyperparameters

Model Hyperparameters
Number of downsamples 8
Kernel size 5
Embedding dimension 512
Number of transformer layers 8
Feed forward dimension 1,024
Number of attention heads 16

Training Hyperparameters
Batch size 128
Gradient accumulation 4
Learning rate 5× 10−5

Masking ratio 15%

A.2. Pre-training learning curves

Figure 5: Bimodal masked language modeling pre-training curves of the MOJO architecture. The training reconstruction
accuracy is represented of each omic separately as well as the average reconstruction accuracy among the different omics.
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B. Downstream tasks dataset and benchmarks
B.1. Pan-cancer classification dataset

Figure 6: Pan-cancer classification label distribution.

B.2. Downstream tasks benchmarks

In addition to Table 1 (cancer-type classification) and Table 3, a more exhaustive benchmark including other representation
models for RNA-seq and DNA methylation has been performed:

• Multiple Factor Analysis (MFA) (Sánchez et al., 2012), using a latent space of dimension 256.

• Non-negative Matrix Factorization (NMF) (Lee & Seung, 2000), with the same latent space dimension as for MFA.

• OmiEmbed (Zhang et al., 2021b): a unified multi-task deep learning framework for multi-omics data based on
Variational Auto-Encoders (Kingma & Welling, 2013) from early integrated omics.

• IntegrAO (Ma et al., 2024): an unsupervised framework based on Graph Neural Networks (Scarselli et al., 2008) for
integrating incomplete multi-omics data, tailored for classification and survival task.

Multiple Factor Analysis and Non-negative Matrix Factorization features are then fed to a Support Vector Machine (SVM)
for the cancer-type classification task and to a Cox proportional model for the survival analysis task. The results are presented
in Table 6 and Table 7.
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Table 6: Full benchmark on cancer-type classification

Model Modality test macro-F1 test weighted-F1

BulkRNABert RNA-seq 0.918 ± 0.008 0.943 ± 0.004
MethFormer Methylation 0.917 ± 0.008 0.931 ± 0.006

MFA Bimodal 0.753 ± 0.013 0.848 ± 0.008
NMF Bimodal 0.725 ± 0.011 0.827 ± 0.006
MOFA Bimodal 0.789 ± 0.012 0.852 ± 0.007

Late integration (concatenation) Bimodal 0.928 ± 0.008 0.945 ± 0.007
Late integration (cross-attention) Bimodal 0.929 ± 0.005 0.945 ± 0.002
CustOmics (probing) Bimodal 0.887 ± 0.065 0.911 ± 0.088
MOJO (probing) Bimodal 0.928 ± 0.009 0.945 ± 0.006

IntegrAO Bimodal 0.912 ± 0.005 0.911 ± 0.015
OmiEmbed Bimodal 0.919 ± 0.004 0.922 ± 0.016
CustOmics (end-to-end) Bimodal 0.922 ± 0.006 0.946 ± 0.006
MOJO (no pre-training) Bimodal 0.835 ± 0.015 0.891 ± 0.006
MOJO Bimodal 0.935 ± 0.007 0.952 ± 0.006

Table 7: Full benchmark on pan-cancer survival analysis

Model Modality C-index Weighted C-index

BulkRNABert RNA-seq 0.750 ± 0.004 0.657 ± 0.011
MethFormer Methylation 0.735 ± 0.006 0.618 ± 0.017

MFA Bimodal 0.616 ± 0.033 0.593 ± 0.016
NMF Bimodal 0.616 ± 0.040 0.591 ± 0.025
MOFA Bimodal 0.648 ± 0.037 0.601 ± 0.022

IntegrAO Bimodal 0.710 ± 0.008 0.624 ± 0.006
OmiEmbed Bimodal 0.736 ± 0.006 0.631 ± 0.007

CustOmics Bimodal 0.686 ± 0.018 0.639 ± 0.099
Late integration Bimodal 0.756 ± 0.004 0.653 ± 0.011
MOJO Bimodal 0.771 ± 0.006 0.670 ± 0.009

Table 8: Full benchmark on zero-shot classification and clustering results on pan-cancer and PAM50 tasks. (Acc. = Accuracy,
NMI = Normalized Mutual Infomation, ARI = Ajusted Rank Index).

Task Metric MOJO Late integration CustOmics

PAM50
Acc. 0.777 0.763 0.765
NMI 0.345 0.291 0.311
ARI 0.213 0.154 0.176

Pan-cancer
Acc. 0.928 0.870 0.905
NMI 0.862 0.771 0.830
ARI 0.756 0.620 0.699
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B.3. Bimodal embeddings t-SNE visualisations

Figure 7: Pan-cancer version of the t-SNE representation of MOJO and Late integration embeddings, colored by cancer-type.
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B.4. Kaplan-Meier curves

Figure 8: Kaplan-Meier curve for pan-cancer survival models for four models: MOJO, CustOmics, BulkRNABert, Meth-
Former.
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C. Missing modalities experiments

Table 9: Missing modalities experiment: cancer type classification

Model Add mutual information Drop modality (test time) macro-F1 test weighted-F1

BulkRNABert ✗ - 0.918 ± 0.008 0.943 ± 0.004
MethFormer ✗ - 0.917 ± 0.008 0.931 ± 0.006

MOJO ✗ - 0.935 ± 0.007 0.952 ± 0.006
MOJO ✗ Drop 100% of RNASeq 0.422 ± 0.022 0.538 ± 0.025
MOJO ✗ Drop 100% of Methylation 0.764 ± 0.024 0.854 ± 0.011

MOJO ✓ - 0.930 ± 0.007 0.949 ± 0.004
MOJO ✓ Drop 100% of RNASeq 0.895 ± 0.008 0.916 ± 0.007
MOJO ✓ Drop 100% of Methylation 0.911 ± 0.012 0.937 ± 0.008

MOJO-MMO ✗ - 0.933 ± 0.006 0.952 ± 0.003
MOJO-MMO ✗ Drop 100% of RNASeq 0.653 ± 0.013 0.769 ± 0.004
MOJO-MMO ✗ Drop 100% of Methylation 0.903 ± 0.010 0.932 ± 0.005

MOJO-MMO ✓ - 0.929 ± 0.006 0.949 ± 0.005
MOJO-MMO ✓ Drop 100% of RNASeq 0.883 ± 0.005 0.911 ± 0.004
MOJO-MMO ✓ Drop 100% of Methylation 0.911 ± 0.010 0.937 ± 0.006

18


