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Abstract

Mixup augmentation has emerged as a powerful technique for improving the gen-1

eralization ability of deep neural networks. However, the lack of standardized2

implementations and benchmarks has hindered progress, resulting in poor repro-3

ducibility, unfair comparisons, and conflicting insights. In this paper, we introduce4

OpenMixup, the first mixup augmentation benchmark for visual representation5

learning, where 18 representative mixup baselines are trained from scratch and6

systematically evaluated on 11 image datasets across varying scales and granularity,7

spanning fine-grained scenarios to complex non-iconic scenes. We also open-source8

a modular codebase for streamlined mixup method design, training, and evalua-9

tions, which comprises a collection of widely-used vision backbones, optimization10

policies, and analysis toolkits. Notably, the codebase not only underpins all our11

benchmarking but supports broader mixup applications beyond classification, such12

as self-supervised learning and regression tasks. Through extensive experiments,13

we present insights on performance-complexity trade-offs and identify preferred14

mixup strategies for different needs. To the best of our knowledge, OpenMixup has15

contributed to a number of studies in the mixup community. We hope this work16

can further advance reproducible mixup research and fair comparisons, thereby17

laying a solid foundation for future progress. The source code is publicly available.18

1 Introduction19

Figure 1: Radar plot of top-1 accuracy for represen-
tative mixup baselines on 11 classification datasets.

Data mixing, or mixup, has proven effective in20

enhancing the generalization ability of DNNs,21

with notable success in visual classification22

tasks. The pioneering Mixup [1] proposes to23

generate mixed training examples through the24

convex combination of two input samples and25

their corresponding one-hot labels. By encour-26

aging models to learn smoother decision bound-27

aries, mixup effectively reduces overfitting and28

thus improves the overall performance. Mani-29

foldMix [2] and PatchUp [3] extend this oper-30

ation to the hidden space. CutMix [4] presents31

an alternative approach, where an input rectan-32

gular region is randomly cut and pasted onto33

the target in the identical location. Subsequent34

works [5, 6, 7] have focused on designing more35

complex hand-crafted policies to generate di-36

verse and informative mixed samples, which37

can all be categorized as static mixing methods.38

⇤Equal contribution. †Corrsponding author.
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Figure 2: Visualization of mixed samples from representative static and dynamic mixup augmentation
methods on ImageNet-1K. We employ a mixing ratio of � = 0.5 for a comprehensive comparison.
Note that mixed samples are more precisely in dynamic mixing policies than these static ones.

Despite efforts to incorporate saliency information into static mixing framework [8, 9, 10], they still39

struggle to ensure the inclusion of desired targets in the mixed samples, which may result in the issue40

of label mismatches. To address this problem, a new class of optimization-based methods, termed41

dynamic mixing, has been proposed, as illustrated in the second row of Figure 2. PuzzleMix [11]42

and Co-Mixup [12] are two notable studies that leverage optimal transport to improve offline mask43

determination. More recently, TransMix [13], TokenMix [14], MixPro [15], and SMMix [16] are44

specifically tailored for Vision Transformers [17]. The AutoMix series [18, 19] introduces a brand-45

new mixup learning paradigm, where mixed samples are computed by an online-optimizable generator46

in an end-to-end manner. These emerging dynamic approaches represent a promising avenue for47

generating semantically richer training samples that align with the underlying structure of input data.48

Why do we call for a mixup augmentation benchmark? While dynamic methods have shown49

signs of surpassing the static ones, their indirect optimization process incurs significant computational50

overhead, which limits their efficiency and applicability. Therefore, without a systematic understand-51

ing, it is uncertain if dynamic mixup serves as the superior alternative in vision tasks. Moreover, a52

thorough and standardized evaluation of different dynamic methods is also missing in the community.53

Benchmark is exactly the way to establish such an understanding, which plays a pivotal role in driving54

research progress by integrating an agreed-upon set of tasks, impartial comparisons, and assessment55

criteria. To the best of our knowledge, however, there have been no such comprehensive benchmarks56

for mixup augmentation to facilitate unbiased comparisons and practical use in visual recognition.57

Why do we need an open-source mixup codebase? Notably, most existing mixup techniques are58

crafted with diverse settings, tricks, and implementations, each with its own coding style. This lack59

of standardization not only hinders user-friendly reproduction and deployment but impedes further60

development, thus imposing costly trial-and-error on practitioners to determine the most appropriate61

mixup strategy for their specific needs in real-world applications. Hence, it is essential to develop a62

unified mixup visual representation learning codebase for standardized data pre-processing, mixup63

development, network architecture selection, model training, evaluation, and empirical analysis.64

In this paper, we present OpenMixup, the first comprehensive benchmark for mixup augmentation.65

Unlike previous work [20, 21], we train and evaluate 18 approaches that represent the foremost strands66

on 11 diverse classification datasets, as illustrated in Figure 1. We also open-source a standardized67

codebase for mixup-based visual representation learning. The overall framework is built up with68

modular components for data pre-processing, mixup augmentation, network backbone selection,69

optimization, and evaluations, which not only powers our benchmarking study but has supported70

broader relatively under-explored mixup applications beyond classification, such as semi-supervised71

learning [22, 23], self-supervised learning [24, 25], and visual attribute regression [26, 27].72

Furthermore, insightful observations are obtained by incorporating multiple evaluation metrics and73

analysis toolkits with our OpenMixup, including GPU memory usage (as Figure 4), loss landscape74

(as Figure 6), analysis of robustness and calibration (as Table A8). For example, despite the key role75

static mixing plays in today’s deep learning systems, we surprisingly find that its generalizability over76

diverse datasets and backbones is significantly inferior to that of dynamic algorithms. By ranking the77

performance and efficiency trade-offs, we reveal that several recent dynamic methods have already78

outperformed the static ones. This may suggest a promising breakthrough for mixup augmentation,79

provided that the dynamic computational overhead can be further reduced. Overall, we believe these80

observations can facilitate meaningful evaluation and comparisons of mixup variants, enabling a81

systematic understanding and paving the way for future advancements in the community.82
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It is worth emphasizing that such a first-of-its benchmark can be rather time- and resource-consuming.83

Since most existing studies have focused on visual classification tasks, we centralize the benchmarking84

scope on this field while extending it to broader mixup applications beyond classification with transfer85

learning. Meanwhile, we have already supported these downstream tasks and datasets in our proposed86

codebase, allowing users to customize their mixup algorithms, models, and training setups in these87

relatively under-explored scenarios. Our key contributions can thus be summarized as follows:88

• We introduce OpenMixup, the first comprehensive benchmarking study for mixup augmenta-89

tion, where 18 representative baselines are trained from scratch and rigorously evaluated on90

11 visual classification datasets, ranging from non-iconic scenes to gray-scale, fine-grained,91

and long tail scenarios. By providing a standard testbed and a rich set of evaluation protocols,92

OpenMixup enables objective assessment and fair comparisons of different mixup methods.93

• To support reproducible research and user-friendly development, we open-source a uni-94

fied codebase for mixup-based visual representation learning. The codebase incorporates95

standardized modules for data pre-processing, mixup augmentation, backbone selection,96

optimization policies, and distributed training functionalities. Beyond the benchmark itself,97

our codebase is readily extensible and has supported semi- and self-supervised learning and98

visual attribute regression tasks, which further enhances its versatility and potential benefits.99

• Observations and insights are obtained through extensive analysis. We investigate the100

generalization ability of all evaluated mixup baselines across diverse datasets and backbones,101

compare their GPU memory footprint and computational cost, visualize the loss landscape102

to understand optimization behavior, and evaluate robustness against input corruptions and103

calibration performance. Furthermore, we establish comprehensive rankings in terms of their104

performance and applicability (efficiency and versatility), offering clear method guidelines105

for specific requirements. These findings not only present a firm grasp of the current mixup106

landscape but shed light on promising avenues for systematic advancements in the future.107

2 Background and Related Work108

2.1 Problem Definition109

Mixup training. We first consider the general image classification tasks with k different classes:110

given a finite set of n image samples X = [xi]ni=1 2 Rn⇥W⇥H⇥C and their corresponding ground-111

truth class labels Y = [yi]ni=1 2 Rn⇥k, encoded by a one-hot vector yi 2 Rk. We attempt to seek the112

mapping from input data xi to its class label yi modeled through a deep neural network f✓ : x 7�! y113

with parameters ✓ by optimizing a classification loss `(.), say the cross entropy (CE) loss,114

`CE(f✓(x), y) = �y log f✓(x). (1)
Then we consider the mixup classification task: given a sample mixing function h, a label mixing115

function g, and a mixing ratio � sampled from Beta(↵,↵) distribution, we can generate the mixed116

data Xmix with xmix = h(xi, xj ,�) and the mixed label Ymix with ymix = g(yi, yj ,�), where ↵ is117

a hyper-parameter. Similarly, we learn f✓ : xmix 7�! ymix by the mixup cross-entropy (MCE) loss,118

`MCE = �`CE(f✓(xmix), yi) + (1� �)`CE(f✓(xmix), yj). (2)

Mixup reformulation. Comparing Eq. (1) and Eq. (2), the mixup training has the following119

features: (1) extra mixup policies, g and h, are required to generate Xmix and Ymix. (2) the120

classification performance of f✓ depends on the generation policy of mixup. Naturally, we can121

split the mixup task into two complementary sub-tasks: (i) mixed sample generation and (ii) mixup122

classification (learning objective). Notice that the sub-task (i) is subordinate to (ii) because the final123

goal is to obtain a stronger classifier. Therefore, from this perspective, we regard the mixup generation124

as an auxiliary task for the classification task. Since g is generally designed as a linear interpolation,125

i.e., g(yi, yj ,�) = �yi + (1 � �)yj , h becomes the key function to determine the performance of126

the model. Generalizing previous offline methods, we define a parametric mixup policy h� as the127

sub-task with another set of parameters �. The final goal is to optimize `MCE given ✓ and � as:128

min
✓, �

`MCE

⇣
f✓
�
h�(xi, xj ,�)

�
, g(yi, yj ,�)

⌘
. (3)

2.2 Sample Mixing129

Within the realm of visual classification, prior research has primarily concentrated on refining the130

sample mixing strategies rather than the label mixing ones. In this context, most sample mixing131

methods are categorized into two groups: static policies and dynamic policies, as presented in Table 1.132
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Table 1: Information of all supported vision Mixup augmentation methods in OpenMixup. Note
that Mixup and CutMix in the label mixing policies indicate mixing labels of two samples by linear
interpolation or calculating the cut squares. The Perf., App., and Overall headings below denote the
performance, applicability (efficiency & versatility), and overall rankings of all the mixup baselines.
Method Category Publication Sample Mixing Label Mixing Extra Cost ViT only Perf. App. Overall
Mixup [1] Static ICLR’2018 Hand-crafted Interpolation Mixup 7 7 15 1 10
CutMix [4] Static ICCV’2019 Hand-crafted Cutting CutMix 7 7 13 1 8
DeiT (CutMix+Mixup) [28] Static ICML’2021 CutMix+Mixup CutMix+Mixup 7 7 7 1 3
SmoothMix [6] Static CVPRW’2020 Hand-crafted Cutting CutMix 7 7 18 1 13
GridMix [7] Static PR’2021 Hand-crafted Cutting CutMix 7 7 17 1 12
ResizeMix [10] Static CVMJ’2023 Hand-crafted Cutting CutMix 7 7 10 1 5
ManifoldMix [2] Static ICML’2019 Latent-space Mixup Mixup 7 7 14 1 9
FMix [5] Static arXiv’2020 Fourier-guided Cutting CutMix 7 7 16 1 11
AttentiveMix [8] Static ICASSP’2020 Pretraining-guided Cutting CutMix 3 7 9 3 6
SaliencyMix [9] Static ICLR’2021 Saliency-guided Cutting CutMix 7 7 11 1 6
PuzzleMix [11] Dynamic ICML’2020 Optimal-transported Cutting CutMix 3 7 8 4 6
AlignMix [29] Dynamic CVPR’2022 Optimal-transported Interpolation CutMix 3 7 12 2 8
AutoMix [18] Dynamic ECCV’2022 End-to-end-learned Cutting CutMix 3 7 3 6 4
SAMix [30] Dynamic arXiv’2021 End-to-end-learned Cutting CutMix 3 7 1 5 1
AdAutoMix [19] Dynamic ICLR’2024 End-to-end-learned Cutting CutMix 3 7 2 7 4
TransMix [13] Dynamic CVPR’2022 CutMix+Mixup Attention-guided 7 3 5 8 7
SMMix [16] Dynamic ICCV’2023 CutMix+Mixup Attention-guided 7 3 4 8 6
DecoupledMix [23] Static NIPS’2023 Any Sample Mixing Policies DecoupledMix 7 7 6 1 2

Static Policies. The sample mixing procedure in all static policies is conducted in a hand-crafted133

manner. Mixup [1] first generates artificially mixed data through the convex combination of two134

randomly selected input samples and their associated one-hot labels. ManifoldMix variants [2, 3]135

extend the same technique to latent feature space for better sample mixing performance. Subsequently,136

CutMix [4] involves the random replacement of a certain rectangular region inside input sample137

while concurrently employing Dropout throughout the mixing process. Inspired by CutMix, several138

researchers in the community have explored the use of saliency information [9] to pilot mixing139

patches, while others have developed more complex hand-crafted sample mixing strategies [5, 7, 6].140

Dynamic Policies. In contrast to static mixing, dynamic strategies are proposed to incorporate141

sample mixing into an adaptive optimization-based framework. PuzzleMix variants [11, 12] introduce142

combinatorial optimization-based mixing policies in accordance with saliency maximization. Super-143

Mix variants [31, 8] utilize pre-trained teacher models to compute smooth and optimized samples.144

Distinctively, AutoMix variants [18, 30] reformulate the overall sample mixing framework into an145

online-optimizable fashion that learns to generate the mixed samples in an end-to-end manner.146

2.3 Label Mixing147

Mixup [1] and CutMix [4] are two widely-recognized label mixing techniques, both of which are148

static. Recently, there has been a notable emphasis among researchers on advancing label mixing149

approaches, which attains more favorable performance upon certain sample mixing policies. Based150

on Transformers, TransMix variants [13, 14, 32, 16] are proposed to utilize class tokens and attention151

maps to adjust the mixing ratio. A decoupled mixup objective [23] is introduced to force models152

to focus on those hard mixed samples, which can be plugged into different sample mixing policies.153

Holistically, most existing studies strive for advanced sample mixing designs rather than label mixing.154

2.4 Other Applications155

Recently, mixup augmentation also has shown promise in more vision applications, such as semi-156

supervised learning [22, 23], self-supervised pre-training [24, 25], and visual attribute regression [26,157

27]. Although these fields are not as extensively studied as classification, our OpenMixup codebase158

has been designed to support them by including the necessary task settings and datasets. Its modular159

and extensible architecture allows researchers and practitioners in the community to effortlessly adapt160

and extend their models to accommodate the specific requirements of these tasks, enabling them to161

quickly set up experiments without building the entire pipeline from scratch. Moreover, our codebase162

will be well-positioned to accelerate the development of future benchmarks, ultimately contributing163

to the advancement of mixup augmentation across a diversity of visual representation learning tasks.164

3 OpenMixup165

This section introduces our OpenMixup codebase framework and benchmark from four key aspects:166

supported methods and tasks, evaluation metrics, and experimental pipeline. OpenMixup provides a167

unified framework implemented in PyTorch [33] for mixup model design, training, and evaluation.168
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Figure 3: Overview of codebase framework of OpenMixup benchmark. (1) benchmarks provide the
benchmarking results and corresponding config files for mixup classification and transfer learning.
(2) openmixup contains the source codes of all supported methods. (3) configs is responsible for
customizing setups of different mixup methods, networks, datasets, and training pipelines. (4) docs
& tools contains paper lists of popular mixup methods, user documentation, and practical tools.

The framework references MMClassification [34] and follows the OpenMMLab coding style. We169

start with an overview of its composition. As shown in Figure 3, the whole training process here is170

fragmented into multiple components, including model architecture (.openmixup.models), data pre-171

processing (.openmixup.datasets), mixup policies (.openmixup.models.utils.augments),172

script tools (.tools) etc. For instance, vision models are summarized into modular building blocks173

(e.g., backbone, neck, head etc.) in .openmixup.models. This modular architecture enables practi-174

tioners to easily craft models by incorporating different components through configuration files in175

.configs. As such, users can readily customize their specified vision models and training strategies.176

In addition, benchmarking configuration (.benchmarks) and results (.tools.model zoos) are177

also provided in the codebase. Additional benchmarking details are discussed below.178

3.1 Benchmarked Methods179

OpenMixup has implemented 17 representative mixup augmentation algorithms and 19 convolutional180

neural network and Transformer model architectures (gathered in .openmixup.models) across181

12 diverse image datasets for supervised visual classification. We summarize these mixup meth-182

ods in Table 1, along with their corresponding conference/journal, the types of employed sample183

and label mixing policies, properties, and rankings. For sample mixing, Mixup [1] and Manifold-184

Mix [2] perform hand-crafted convex interpolation. CutMix [4], SmoothMix [6], GridMix [7]185

and ResizeMix [10] implement hand-crafted cutting policy. FMix [5] utilizes Fourier-guided cut-186

ting. AttentiveMix [8] and SaliencyMix [9] apply pretraining-guided and saliency-guided cutting,187

respectively. Some dynamic approaches like PuzzleMix [11] and AlignMix [29] utilize optimal188

transport-based cutting and interpolation. AutoMix [18] and SAMix [30] perform end-to-end online-189

optimizable cutting-based approaches. As for the label mixing, most methods apply Mixup [1] or190

CutMix [4], while the latest mixup methods for visual transformers (TransMix [13], TokenMix [14],191

and SMMix [16]), as well as DecoupledMix [23] exploit attention maps and a decoupled framework192

respectfully instead, which incorporate CutMix variants as its sample mixing strategy. Such a wide193

scope of supported methods enables a comprehensive benchmarking analysis on visual classification.194

3.2 Benchmarking Tasks195

We provide detailed descriptions of the 12 open-source datasets as shown in Table 2. These datasets196

can be classified into four categories below: (1) Small-scale classification: We conduct bench-197

marking studies on small-scale datasets to provide an accessible benchmarking reference. CIFAR-198

10/100 [35] consists of 60,000 color images in 32⇥32 resolutions. Tiny-ImageNet (Tiny) [36] and199

STL-10 [37] are two re-scale versions of ImageNet-1K in the size of 64⇥64 and 96⇥96. Fash-200

ionMNIST [38] is the advanced version of MNIST, which contains gray-scale images of clothing.201

(2) Large-scale classification: The large-scale dataset is employed to evaluate mixup algorithms202

against the most standardized procedure, which can also support the prevailing ViT architecture.203

ImageNet-1K (IN-1K) [39] is a well-known challenging dataset for image classification with 1000204

classes. (3) Fine-grained classification: To investigate the effectiveness of mixup methods in com-205

plex inter-class relationships and long-tail scenarios, we conduct a comprehensive evaluation of206

fine-grained classification datasets, which can also be classified into small-scale and large-scale207

scenarios. (i) Small-scale scenarios: The datasets for small-scale fine-grained evaluation scenario are208

CUB-200-2011 (CUB) [40] and FGVC-Aircraft (Aircraft) [41], which contains a total of 200 wild209
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Table 2: The detailed information of supported visual classification datasets in OpenMixup.
Datasets Category Source Classes Resolution Train images Test images
CIFAR-10 [35] Iconic link 10 32⇥32 50,000 10,000
CIFAR-100 [35] Iconic link 100 32⇥32 50,000 10,000
FashionMNIST [38] Gray-scale link 10 28⇥28 50,000 10,000
STL-10 [37] Iconic link 10 96⇥96 50,00 8,000
Tiny-ImageNet [36] Iconic link 200 64⇥64 10,000 10,000
ImageNet-1K [39] Iconic link 1000 469⇥387 1,281,167 50,000
CUB-200-2011 [40] Fine-grained link 200 224⇥224 5,994 5,794
FGVC-Aircraft [41] Fine-grained link 100 224⇥224 6,667 3,333
iNaturalist2017 [42] Fine-grained & longtail link 5089 224⇥224 579,184 95,986
iNaturalist2018 [42] Fine-grained & longtail link 8142 224⇥224 437,512 24,426
Places205 [43] Scenic link 205 224⇥224 2,448,873 41,000

bird species and 100 classes of airplanes. (ii) Large-scale scenarios: The datasets for large-scale fine-210

grained evaluation scenarios are iNaturalist2017 (iNat2017) [42] and iNaturalist2018 (iNat2018) [42],211

which contain 5,089 and 8,142 natural categories. Both the iNat2017 and iNat2018 own 7 major212

categories and are also long-tail datasets with scenic images (i.e., the fore-ground target is in large213

backgrounds). (4) Scenic classification: Scenic classification evaluations are also conducted to214

investigate the mixup augmentation performance in complex non-iconic scenarios on Places205 [43].215

3.3 Evaluation Metrics and Tools216

We comprehensively evaluate the beneficial properties of mixup augmentation algorithms on the217

aforementioned vision tasks through the use of various metrics and visualization analysis tools in a218

rigorous manner. Overall, the evaluation methodologies can be classified into two distinct divisions,219

namely performance metric and empirical analysis. For the performance metrics, classification220

accuracy and robustness against corruption are two performance indicators examined. As for empirical221

analysis, experiments on calibrations, CAM visualization, loss landscape, the plotting of training loss,222

and validation accuracy curves are conducted. The utilization of these approaches is contingent upon223

their distinct properties, enabling user-friendly deployment for designated purposes and demands.224

Performance Metric. (1) Accuracy and training costs: We adopt top-1 accuracy, total training225

hours, and GPU memory to evaluate all mixup methods’ classification performance and training costs.226

(2) Robustness: We evaluate the robustness against corruptions of the methods on CIFAR-100-C227

and ImageNet-C [39], which is designed for evaluating the corruption robustness and provides 19228

different corruptions, e.g., noise and blur etc. (3) Transferability to downstream tasks: We evaluate229

the transferability of existing methods to object detection based on Faster R-CNN [44] and Mask230

R-CNN [45] on COCO train2017 [46], initializing with trained models on ImageNet. We also transfer231

these methods to semantic segmentation on ADE20K [47]. Please refer to Appendix B.4 for details.232

Empirical Analysis. (1) Calibrations: To verify the calibration of existing methods, we evaluate233

them by the expected calibration error (ECE) on CIFAR-100 [35], i.e., the absolute discrepancy234

between accuracy and confidence. (2) CAM visualization: We utilize mixed sample visualization, a235

series of CAM variants [48, 49] (e.g., Grad-CAM [50]) to directly analyze the classification accuracy236

and especially the localization capabilities of mixup augmentation algorithms through top-1 top-2237

accuracy predicted targets. (3) Loss landscape: We apply loss landscape evaluation [51] to further238

analyze the degree of loss smoothness of different mixup augmentation methods. (4) Training loss239

and accuracy curve: We plot the training losses and validation accuracy curves of various mixup240

methods to analyze the training stability, the ability to prevent over-fitting, and convergence speed.241

3.4 Experimental Pipeline of OpenMixup Codebase242

With a unified training pipeline in OpenMixup, a comparable workflow is shared by different243

classification tasks, as illustrated in Figure A1. Here, we take classification tasks as an instance to244

illustrate the whole training procedure. Firstly, users should go through the supported data pipeline and245

select the dataset and pre-processing techniques. Secondly, openmixup.models serves as a model246

architecture component for building desired methods. Thirdly, it is undemanding to designate the247

supported datasets, mixup augmentation strategies, model architectures, and optimization schedules248

under .configs.classification with Python configuration files to customize a desired setting.249

Afterward, .tools provides hardware support distributed training to execute the confirmed training250

process in configs. Apart from that, there are also various utility functionalities given in .tools (e.g.,251

feature visualization, model analysis, result summarization). We also provide online user documents252

6

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://cs.stanford.edu/~acoates/stl10/
https://www.kaggle.com/c/tiny-imagenet
http://www.image-net.org/challenges/LSVRC/2012/
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
https://github.com/visipedia/inat_comp/blob/master/2017
https://github.com/visipedia/inat_comp/blob/master/2018
http://places.csail.mit.edu/downloadData.html


Table 3: Top-1 accuracy (%) on CIFAR-
10/100 and Tiny-ImageNet (Tiny) based
on ResNet (R), Wide-ResNet (WRN),
and ResNeXt (RX) backbones.

Datasets CIFAR-10 CIFAR-100 Tiny
Backbones R-18 WRN-28-8 RX-50
Epochs 800 ep 800 ep 400 ep
Vanilla 95.50 81.63 65.04
Mixup 96.62 82.82 66.36
CutMix 96.68 84.45 66.47
ManifoldMix 96.71 83.24 67.30
SmoothMix 96.17 82.09 68.61
AttentiveMix 96.63 84.34 67.42
SaliencyMix 96.20 84.35 66.55
FMix 96.18 84.21 65.08
GridMix 96.56 84.24 69.12
ResizeMix 96.76 84.87 65.87
PuzzleMix 97.10 85.02 67.83
Co-Mixup 97.15 85.05 68.02
AlignMix 97.05 84.87 68.74
AutoMix 97.34 85.18 70.72
SAMix 97.50 85.50 72.18
AdAutoMix 97.55 85.32 72.89

Decoupled 96.95 84.88 67.46

Table 4: Top-1 accuracy (%) on ImageNet-1K using
PyTorch-style, RSB A2/A3, and DeiT settings based on
CNN and Transformer architectures, including ResNet (R),
MobileNet.V2 (Mob.V2), DeiT-S, and Swin-T.

Backbones R-50 R-50 Mob.V2 1x DeiT-S Swin-T
Epochs 100 ep 100 ep 300 ep 300 ep 300 ep
Settings PyTorch RSB A3 RSB A2 DeiT DeiT
Vanilla 76.83 77.27 71.05 75.66 80.21
Mixup 77.12 77.66 72.78 77.72 81.01
CutMix 77.17 77.62 72.23 80.13 81.23
DeiT / RSB 77.35 78.08 72.87 79.80 81.20
ManifoldMix 77.01 77.78 72.34 78.03 81.15
AttentiveMix 77.28 77.46 70.30 80.32 81.29
SaliencyMix 77.14 77.93 72.07 79.88 81.37
FMix 77.19 77.76 72.79 80.45 81.47
ResizeMix 77.42 77.85 72.50 78.61 81.36
PuzzleMix 77.54 78.02 72.85 77.37 79.60
AutoMix 77.91 78.44 73.19 80.78 81.80
SAMix 78.06 78.64 73.42 80.94 81.87

AdAutoMix 78.04 78.54 - 80.81 81.75
TransMix - - - 80.68 81.80
SMMix - - - 81.10 81.80

(a) DeiT-S on IN-1K (b) DeiT-S on CIFAR-100 (c) ConvNeXt-T on CIFAR-100

Figure 4: Trade-off evaluation with respect to accuracy performance, total training time (hours), and
GPU memory (G). The results in (a) are based on DeiT-S architecture on ImageNet-1K. The results
in (b) and (c) are based on DeiT-S and ConvNeXt-T backbones on CIFAR-100, respectively.

for more detailed guidelines (e.g., installation and getting started instructions), benchmarking results,253

comprehensive awesome lists of related works, etc.254

4 Experiment and Analysis255

4.1 Implementation Details256

We conduct essential benchmarking experiments of image classification on various scenarios with257

diverse evaluation metrics. For a fair comparison, grid search is performed for the shared hyper-258

parameter ↵ 2 {0.1, 0.2, 0.5, 1, 2, 4} of supported mixup variants while the rest of the hyper-259

parameters follow the original papers. Vanilla denotes the classification baseline without any mixup260

augmentations. All experiments are conducted on Ubuntu workstations with Tesla V100 or NVIDIA261

A100 GPUs and report the mean results of three trials. Appendix B provides classification results,262

and Appendix B.4 presents transfer learning results for object detection and semantic segmentation.263

Small-scale Benchmarks. We first provide standard mixup image classification benchmarks on264

five small datasets with two settings. (a) The classical settings with the CIFAR version of ResNet265

variants [52, 53], i.e., replacing the 7 ⇥ 7 convolution and MaxPooling by a 3 ⇥ 3 convolution.266

We use 32 ⇥ 32, 64 ⇥ 64, and 28 ⇥ 28 input resolutions for CIFAR-10/100, Tiny-ImageNet, and267

FashionMNIST, while using the normal ResNet for STL-10. We train models for multiple epochs268

from the stretch with SGD optimizer and a batch size of 100, as shown in Table 3 and Appendix B.2.269

(b) The modern settings following DeiT [28] on CIFAR-100, using 224⇥224 and 32⇥32 resolutions270

for Transformers (DeiT-S [28] and Swin-T [54]) and ConvNeXt-T [55] as shown in Table A7.271
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AttentiveMix

CutMixMixup GridMix FMix

PuzzleMix AutoMix SAMixSaliencyMix

ResizeMix

Figure 5: Visualization of class activation mapping (CAM) [50] for top-1 and top-2 predicted classes
of supported mixup methods with ResNet-50 on ImageNet-1K. Comparing the first and second rows,
we observe that saliency-guided or dynamic mixup approaches (e.g., PuzzleMix and SAMix) localize
the target regions better than the static methods (e.g., Mixup and ResizeMix).

Table 5: Rankings of various mixup augmentations as take-home messages for practical usage.
Mixup CutMix DeiT Smooth GridMix ResizeMix Manifold FMix Attentive Saliency PuzzleMix AlignMix AutoMix SAMix TransMix SMMix

Performance 13 11 5 16 15 8 12 14 7 9 6 10 2 1 4 3
Applicability 1 1 1 1 1 1 1 1 3 1 4 2 7 6 5 5
Overall 8 6 1 11 10 4 7 9 5 5 5 6 4 2 4 3

Standard ImageNet-1K Benchmarks. For visual augmentation and network architecture commu-272

nities, ImageNet-1K is a well-known standard dataset. We support three popular training recipes: (a)273

PyTorch-style [52] setting for classifical CNNs; (b) timm RSB A2/A3 [56] settings; (c) DeiT [28]274

setting for ViT-based models. Evaluation is performed on 224⇥224 resolutions with CenterCrop.275

Popular network architectures are considered: ResNet [52], Wide-ResNet [57], ResNeXt [53], Mo-276

bileNet.V2 [58], EfficientNet [59], DeiT [28], Swin [54], ConvNeXt [55], and MogaNet [60]. Refer277

to Appendix A for implementation details. In Table 4 and Table A2, we report the mean performance278

of three trials where the median of top-1 test accuracy in the last 10 epochs is recorded for each trial.279

Benchmarks on Fine-grained and Scenis Scenarios. We further provide benchmarking results on280

three downstream classification scenarios in 224⇥224 resolutions with ResNet backbone architectures:281

(a) Transfer learning on CUB-200 and FGVC-Aircraft. (b) Fine-grained classification on iNat2017282

and iNat2018. (c) Scenic classification on Places205, as illustrated in Appendix B.3 and Table A10.283

4.2 Observations and Insights284

Empirical analysis is conducted to gain insightful observations and a systematic understanding of the285

properties of different mixup augmentation techniques. Our key findings are summarized as follows:286

Figure 6: Visualization of 1D loss landscapes for
representative mixup methods with ResNet-50 on
ImageNet-1K. The validation accuracy is plotted,
showing that dynamic methods achieve deeper
and wider loss landscapes than static ones.

(A) Which mixup method should I choose? In-287

tegrating benchmarking results from various per-288

spectives, we provide practical mixup rankings289

(detailed in Appendix B.5) as a take-home mes-290

sage for real-world applications, which regards291

performance, applicability, and overall capacity.292

As shown in Table 1, as for the performance, the293

online-optimizable SAMix and AutoMix stand294

out as the top two choices. SMMix and Trans-295

Mix follow closely behind. However, in terms of296

applicability that involves both the concerns of297

efficiency and versatility, hand-crafted methods298

significantly outperform the learning-based ones.299

Overall, the DeiT (Mixup+CutMix), SAMix, and300

SMMix are selected as the three most preferable301

mixup methods, each with its own emphasis.302

(B) Generalizability over datasets. The intu-303

itive performance radar chart presented in Fig-304

ure 1, combined with the trade-off results in Fiugre 4, reveals that dynamic mixup methods consis-305

tently yield better performance compared to static ones, showcasing their impressive generalizability.306

However, dynamic approaches necessitate meticulous tuning, which incurs considerable training307

costs. In contrast, static mixup exhibits significant performance fluctuation across different datasets,308

8



indicating poor generalizability. For instance, Mixup [1] and CutMix [4] as the static representatives309

perform even worse than the baseline on Place205 and FGVC-Aircraft, respectively.310

(C) Generalizability over backbones. As shown in Figure 6 and Figure 4, we provide extensive311

evaluations on ImageNet-1K based on different types of backbones and mixup methods. As a312

result, dynamic mixup achieves better performance in general and shows more favorable generaliz-313

ability against backbone selection compared to static methods. Noticeably, the online-optimizable314

SAMix and AutoMix exhibit impressive generalization ability over different vision backbones, which315

potentially reveals the superiority of their online training framework compared to the others.316

(D) Applicability. Figure A2 shows that ViT-specific methods (e.g., TransMix [13] and Token-317

Mix [14]) yield exceptional performance with DeiT-S and PVT-S yet exhibit intense sensitivity to318

different model scales (e.g., with PVT-T). Moreover, they are limited to ViTs, which largely restricts319

their applicability. Surprisingly, static Mixup [1] exhibits favorable applicability with new efficient320

networks like MogaNet [60]. CutMix [4] fits well with popular backbones, such as modern CNNs321

(e.g., ConvNeXt and ResNeXt) and DeiT, which increases its applicability. As in Figure 4, although322

AutoMix and SAMix are available in both CNNs and ViTs with consistent superiority, they have323

limitations in GPU memory and training time, which may limit their applicability in certain cases.324

This also provides a promising avenue to reduce the cost of the well-performed online learable mixup.325

(E) Robustness & Calibration. We evaluate the robustness with accuracy on the corrupted version326

of CIFAR-100 and FGSM attack [61] and the prediction calibration. Table A8 shows that all327

mixup methods improve model robustness against corruptions. Interestingly, only four recent328

dynamic approaches exhibit better robustness compared to the baseline with FGSM attacks. We thus329

hypothesize that online-optimizable methods are well-trained to be robust against human interference,330

while hand-crafted mixup adapts to natural disruptions like corruption but is susceptible to attacks.331

Overall, the learning-based AutoMix and SAMix achieve the best robustness and calibration results.332

(F) Convergence & Training Stability. As shown in Figure 6, wider bump curves indicate smoother333

loss landscapes, while higher warm color bump tips are associated with better convergence and334

performance. Evidently, dynamic mixup owns better training stability and convergence than static335

mixup in general. Nevertheless, the initial Mixup [1] is an exception, exhibiting better training336

stability than all other dynamic methods. We assume this arises from its straightforward convex337

interpolation that principally prioritizes training stability but may lead to suboptimal outcomes.338

(G) Localizability & Downstream Transferability. It is commonly conjectured that models with339

better localizability can be better transferred to fine-grained prediction tasks. Thus, to gain intuitive340

insights, we provide tools for the class activation mapping (CAM) visualization with predicted classes341

on ImageNet-1K. As shown in Figure 5, SAMix and AutoMix’s exceptional localizability, combined342

with their accuracy, generalizability, and robustness mentioned above, may indicate their superiority343

in detection tasks. To assess their real downstream performance and transferability, transfer learning344

experiments are also available on object detection [44] and semantic segmentation [62] with details345

in Appendix B.4. Table A11 and Table A12 suggest that AutoMix variants indeed exhibit competitive346

results, but ViT-specific methods perform even better, showcasing their superior transferability. This347

also shows the potential for improved online training mixup design.348

5 Conclusion and Discussion349

Contributions. This paper presents OpenMixup, the first comprehensive mixup augmentation350

benchmark, where 18 mixup baselines are trained and evaluated on 11 diverse datasets. A unified and351

modular codebase is also released, which not only bolsters the benchmark but can facilitate broader352

under-explored mixup applications. Furthermore, observations and insights are obtained through353

extensive analysis, contributing to a more systematic comprehension of mixups. We anticipate that354

our OpenMixup can further contribute to fair and reproducible research in the mixup community. We355

also encourage researchers and practitioners to extend their valuable feedback to us and contribute to356

OpenMixup for building a more constructive mixup learning codebase together through GitHub.357

Limitations and Future Works. The benchmarking scope of this work mainly focuses on visual358

classification, albeit we have supported a broader range of tasks in our codebase and have conducted359

transfer learning experiments to object detection and semantic segmentation tasks to draw preliminary360

conclusions. We are aware of this and have prepared it upfront for future work. For example, our361

codebase can be easily extended to all the supported tasks and datasets for further benchmarking362

experiments and evaluations if necessary. We believe this work as the first mixup benchmarking study363

is enough to serve as a kick-start, and we plan to extend our work in these directions in the future.364
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Checklist567

The checklist follows the references. Please read the checklist guidelines carefully for information on568

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or569

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing570

the appropriate section of your paper or providing a brief inline description. For example:571

• Did you include the license to the code and datasets? [Yes] See Section A.572

• Did you include the license to the code and datasets? [No] The code and the data are573

proprietary.574

• Did you include the license to the code and datasets? [N/A]575

Please do not modify the questions and only use the provided macros for your answers. Note that the576

Checklist section does not count towards the page limit. In your paper, please delete this instructions577

block and only keep the Checklist section heading above along with the questions/answers below.578

1. For all authors...579

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s580

contributions and scope? [Yes]581

(b) Did you describe the limitations of your work? [Yes] See Section 5.582

(c) Did you discuss any potential negative societal impacts of your work? [Yes]583

(d) Have you read the ethics review guidelines and ensured that your paper conforms to584

them? [Yes]585

2. If you are including theoretical results...586

(a) Did you state the full set of assumptions of all theoretical results? [N/A]587

(b) Did you include complete proofs of all theoretical results? [N/A]588

3. If you ran experiments (e.g. for benchmarks)...589

(a) Did you include the code, data, and instructions needed to reproduce the main experi-590

mental results (either in the supplemental material or as a URL)? [Yes]591

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they592

were chosen)? [Yes]593

(c) Did you report error bars (e.g., with respect to the random seed after running experi-594

ments multiple times)? [Yes]595

(d) Did you include the total amount of compute and the type of resources used (e.g., type596

of GPUs, internal cluster, or cloud provider)? [Yes]597

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...598

(a) If your work uses existing assets, did you cite the creators? [Yes]599

(b) Did you mention the license of the assets? [No] The used code and data are open-source600

and under the MIT license for research usage.601

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]602

(d) Did you discuss whether and how consent was obtained from people whose data you’re603

using/curating? [Yes]604

(e) Did you discuss whether the data you are using/curating contains personally identifiable605

information or offensive content? [N/A] The used data has undergone ethical review.606

5. If you used crowdsourcing or conducted research with human subjects...607

(a) Did you include the full text of instructions given to participants and screenshots, if608

applicable? [N/A]609

(b) Did you describe any potential participant risks, with links to Institutional Review610

Board (IRB) approvals, if applicable? [N/A]611

(c) Did you include the estimated hourly wage paid to participants and the total amount612

spent on participant compensation? [N/A]613
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