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ABSTRACT

Visual Document Retrieval (VDR), the task of retrieving visually-rich document
pages using queries that combine visual and textual cues, is crucial for numerous
real-world applications. Recent state-of-the-art methods leverage Large Vision-
Language Models (LVLMs) in a multi-vector paradigm, representing each doc-
ument as patch-level embeddings to capture fine-grained details. While highly
effective, this approach introduces a critical challenge: prohibitive storage over-
head, as storing hundreds of vectors per page makes large-scale deployment costly
and impractical. To address this, we introduce DocPruner, the first framework
to employ adaptive patch-level embedding pruning for VDR to effectively re-
duce the storage overhead. DocPruner leverages the intra-document patch atten-
tion distribution to dynamically identify and discard redundant embeddings for
each document. This adaptive mechanism enables a significant 50-60% reduction
in storage for leading multi-vector VDR models with negligible degradation in
document retrieval performance. Extensive experiments across more than ten rep-
resentative datasets validate that DocPruner offers a robust, flexible, and effective
solution for building storage-efficient, large-scale VDR systems.

1 INTRODUCTION

Visual Document Retrieval (VDR), the task of retrieving relevant document pages based on a query
that leverages both visual and textual cues, is of paramount importance in numerous real-world
applications, from e-commerce product searches to educational resource discovery (Ding et al.,
2024; Zheng et al., 2025; Wang et al., 2025b). In contrast to traditional text retrieval, VDR presents
a greater challenge as it must interpret not only the textual content but also the complex layouts,
tables, figures, and other visual elements that convey critical information (Abootorabi et al., 2025;
Mei et al., 2025). Consequently, this intricate task has garnered increasing attention within the
information retrieval community in recent years, driving innovation beyond text-centric paradigms.

The methodology for VDR has undergone a significant paradigm shift. Early approaches were
predominantly OCR-based, involving the extraction of text from document images, which was
then indexed by conventional text retrievers (Zhang et al., 2024a; Hegghammer, 2022), as shown
in Figure 1 (a). However, these methods are often brittle and error-prone, frequently failing to
preserve the vital layout and structural relationship inherent in the visual representation (Most et al.,
2025; Guo et al., 2025). With the recent advent of Large Vision-Language Models (LVLMs) and
their dramatically enhanced visual understanding capabilities (Caffagni et al., 2024), the research
community has begun to explore LVLM-based methods, which have demonstrated state-of-the-art
retrieval performance (Macé et al., 2025; Günther et al., 2025; Dong et al., 2025; Tanaka et al.,
2025). These methods generally fall into two categories: one that encodes an entire document page
and the query into single, holistic embeddings (i.e., page-level retrieval) (Zhang et al., 2024c; Liu
et al., 2025b; Jiang et al., 2024b; Meng et al., 2025), and another that represents a document as
multiple patch-level embeddings and the query as multiple token-level embeddings, as illustrated
in Figure 1 (b). The former approach, while simple, often fails to capture the fine-grained details
necessary for understanding complex documents, leading to suboptimal performance. As a result,
the latter patch-level retrieval has emerged as the preferred paradigm for leading models.
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Figure 1: The illustration of comparison between OCR-based (a) & LVLM-based (b) paradigms for VDR, and
DocPruner (c), a novel framework to adaptively prune the patch-level embeddings for diverse document types.

The ascent of the patch-level retrieval paradigm is primarily attributed to the advantages of multi-
vector retrieval, a technique pioneered by ColBERT-style late interaction (Khattab & Zaharia, 2020).
The core mechanism of this approach involves a MaxSim operation, where for each query token em-
bedding, the maximum similarity score against all patch embeddings of a document is computed,
and these scores are then aggregated to determine relevance. The VDR field first witnessed the
successful application of this paradigm with ColPali (Faysse et al., 2024), which spurred a wave of
subsequent works that further refined and enhanced the performance of multi-vector VDR (Nom-
icAI, 2025; Günther et al., 2025; Xu et al., 2025a; Karlinsky et al., 2025). However, despite its
effectiveness, the multi-vector approach suffers from a critical efficiency bottleneck: prohibitive
storage overhead. Storing hundreds or even thousands of embedding vectors for every single docu-
ment page makes large-scale deployment costly and challenging (Ma et al., 2025).

To address this critical challenge, we introduce DocPruner, the first framework to successfully
employ adaptive pruning in the context of VDR to significantly alleviate storage overhead, as
shown in Figure 1 (c). The core of DocPruner is an elegant yet powerful mechanism that leverages
the patch-level attention score distribution within a single document to perform adaptive pruning
of its patch embeddings. This allows the framework to dynamically adjust the pruning ratio for
different documents, achieving a 50-60% reduction in patch embeddings for several state-of-the-
art multi-vector models with negligible performance degradation. While some prior works have
explored efficiency optimizations for multi-vector VDR, they are often constrained by pre-defined
pruning rates or fixed thresholds (Cheng et al., 2024a; Ma et al., 2025; Tmamna et al., 2024), which
lack the adaptability required for diverse, real-world visual documents. We believe that the design
philosophy of DocPruner, which enables robust performance even for diverse models and datasets,
ensures its flexibility and extensibility for practical, large-scale multimodal retrieval applications.

Our contributions can be summarized as follows:
❶ Pioneering Pruning for VDR. We propose DocPruner, the first framework to introduce an adap-

tive pruning mechanism to the VDR domain. It achieves a substantial 50-60% average patch
pruning rate with near-lossless performance, effectively mitigating the storage overhead of top-
performing multi-vector VDR models.

❷ Adaptive Property for Diverse Documents. The adaptive nature of DocPruner allows it to dynam-
ically tailor the pruning ratio for different types of visual documents, a feature that is particularly
crucial in real-world scenarios where document formats and information densities vary widely.

❸ Extensive Experimental Validation. We conduct comprehensive experiments on diverse and even
multilingual VDR benchmarks, demonstrating the effectiveness and robustness of DocPruner
when integrated with multiple leading multi-vector retrieval models in the community.

2 RELATED WORK

2.1 VISUAL DOCUMENT RETRIEVAL

Visual Document Retrieval (VDR) aims to retrieve relevant visually-rich documents based on visual
representations, a paradigm that has garnered significant attention from the research community
(Zheng et al., 2025; Mei et al., 2025; Zhang et al., 2025b). Previous OCR-based methods rely
on document parsing to extract textual content (Xiao et al., 2024; Wang et al., 2023; Karpukhin
et al., 2020), a process that can lose critical layout information and fail to interpret non-textual
components. Consequently, the field has rapidly evolved from early OCR-plus-retriever pipelines to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a paradigm leveraging powerful VLMs as OCR-free retriever backbones. By treating documents as
images, VDR systems can preserve this vital structural and visual integrity, enabling a “what-you-
see-is-what-you-get” retrieval mechanism that aligns with human perception (Ma et al., 2024).

These VLM-based methods primarily fall into two categories: efficient but less detailed page-level
retrieval, and the more powerful patch-level retrieval. Page-level retrievers, such as DSE (Ma et al.,
2024), GME (Zhang et al., 2024c) and UniSE (Liu et al., 2025b), encode an entire document page
into a single, compact embedding. While efficient, this approach may lose fine-grained details cru-
cial for specific queries. State-of-the-art patch-level retrievers (e.g., ColPali (Faysse et al., 2024),
ColQwen (Faysse et al., 2024), ColNomic (NomicAI, 2025), Jina Embeddings v4 (Günther et al.,
2025), and Llama Nemoretriever Colembed (Xu et al., 2025a)) achieve superior performance by
generating fine-grained, multi-vector representations per page, yet this introduces a critical bottle-
neck due to prohibitive storage and computational overhead. Our proposed DocPruner directly
addresses this pain point by proposing a solution to adaptively reduce the storage footprint of patch-
level embeddings, thereby making high-performance VDR more practical and scalable.

2.2 MULTI-VECTOR RETRIEVAL

Multi-vector retrievers, also known as late-interaction models (Khattab & Zaharia, 2020; Ji et al.,
2024), computes relevance by first independently encoding queries and documents into sets of token-
level embeddings and then performing fine-grained similarity calculations. Formally, given a query
q and a document d with L1 and L2 tokens respectively, they are encoded into embedding matrices
Q = (q1, . . . ,qL1) ∈ RP×L1 and D = (d1, . . . ,dL2) ∈ RP×L2 , where P is the embedding
dimension. The final score is derived from their token-wise similarity matrix S = Q⊤D. For
instance, ColBERT model (Khattab & Zaharia, 2020) computes the score via a MaxSim operation:

s(q, d) =

L1∑
i=1

L2
max
j=1

q⊤
i dj . (1)

Building on this foundation, ColBERTv2 (Santhanam et al., 2021) introduced a centroid-based
method to compress token embeddings for greater storage efficiency. PLAID (Santhanam et al.,
2022) further optimized this by using centroid interactions for efficient pruning of low-scoring doc-
uments. Other approaches have focused on reducing the number of stored vectors: XTR (Lee et al.,
2023) trains the model to prioritize and retrieve only key document tokens, Acquavia et al. (2023)
remove embeddings of less impactful tokens, and Clavié et al. (2024) cluster similar token embed-
dings at indexing time to reduce the total vector count. Recently, MUVERA (Jayaram et al., 2024)
proposed using Fixed Dimensional Encodings (FDEs) to approximate the multi-vector similarities,
enabling efficient retrieval. Despite their effectiveness, a primary limitation of these text-based
multi-vector models is their significant storage overhead, which scales linearly with the number of
document tokens (L2), resulting in a storage cost of O(P ×L2) per document, a substantial increase
compared to O(P ) cost of single-vector models (MacAvaney et al., 2025; Ji et al., 2024).

The concept of multi-vector retrieval has been extended to VDR, leveraging the fine-grained inter-
action capabilities to better align textual queries with visual content (Plale et al., 2025; Xu et al.,
2025b). Pioneering this direction, ColPali (Faysse et al., 2024) adapted the ColBERT framework
by using PaliGemma-3B model (Beyer et al., 2024) to generate multi-vector embeddings directly
from document images. Subsequently, Llama Nemoretriever Colembed (Xu et al., 2025a) further
advanced this paradigm by modifying Llama-3.2-3B (Grattafiori et al., 2024) with bidirectional at-
tention and employing a two-stage training strategy to achieve state-of-the-art performance on the
ViDoRe benchmark. More recently, Jina Embeddings v4 (Günther et al., 2025) proposed a unified
Qwen2.5-VL (Bai et al., 2025) architecture that supports both single-vector and multi-vector out-
puts, utilizing LoRA adapters for task-specific optimization. However, the storage overhead problem
persists in these visual models, which remains a critical challenge that DocPruner aims to address.

More related work can be seen in Appendix A.

3 METHODOLOGY

In this section, we first formalize the setting of multi-vector VDR in (▷ Section 3.1). We then
introduce our proposed framework, DocPruner, detailing its mechanism for adaptive patch-level
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embedding pruning in (▷ Section 3.2). Finally, we establish a theoretical foundation rooted in
information theory to justify its efficacy in (▷ Section 3.3).

3.1 TASK FORMULATION

The task of VDR is to retrieve a ranked list of relevant document pages from a large corpus C =
{d1, d2, . . . , d|C|} for a given textual query q. In the context of multi-vector VDR (Faysse et al.,
2024), both queries and documents are represented by sets of embedding vectors.

Let a query q be a sequence of Lq textual tokens. A VLM-based encoder, denoted as Φ(·), maps
this query into a set of token-level embeddings Q = {qi}

Lq

i=1, where each qi ∈ RP and P is the
embedding dimension. Similarly, a document page d is first rendered as an image and then processed
by the VLM encoder Φ(·), which divides the image into a grid of patches. This process yields a set
of Ld patch-level embeddings D = {dj}Ld

j=1, where each dj ∈ RP .

Following the late-interaction paradigm (Khattab & Zaharia, 2020; Santhanam et al., 2021), the rel-
evance score s(q, d) is computed via a MaxSim operation as defined in Equation 1. The primary
challenge is the storage overhead associated with this representation. Storing the full set of em-
beddings D for every document results in a cost of O(Ld × P ) per page, which is prohibitive for
large-scale corpora. Our objective is to generate a pruned set of document embeddings D′ ⊂ D
such that its size, L′

d = |D′|, is significantly smaller than Ld (L′
d ≪ Ld), thereby substantially

reducing the storage cost to O(L′
d × P ) while preserving retrieval performance.

3.2 THE DocPruner FRAMEWORK

DocPruner is a lightweight, plug-and-play framework applied during the offline indexing phase.
It is designed around two core principles: being query-agnostic to enable offline processing and
document-adaptive to handle the diverse nature of visual documents. The framework systemati-
cally identifies and discards redundant or less informative patch embeddings without requiring any
model retraining. The process involves three main steps: quantifying patch importance, applying an
adaptive threshold, and scoring with the pruned embeddings. See pseudocode in Section B.

3.2.1 QUANTIFYING PATCH IMPORTANCE VIA GLOBAL TOKEN ATTENTION

The central challenge of offline pruning is to estimate the importance of each patch without access to
a query. We need a reliable, intrinsic signal of salience. Our key insight is that a VLM, in the process
of understanding a document image, already computes such a signal. Specifically, we leverage the
attention mechanism directed towards a global token. A global token is a special token whose final
hidden state is trained to aggregate and summarize information from the entire input sequence. Its
representation must encapsulate the document’s overall semantics.

In our framework, we use the end-of-sequence [EOS] token as the default global token, a common
and effective choice in many VLM architectures. We extract the attention weights from the final
Transformer layer, as this layer captures the most abstract and semantically rich relationships.

Formally, let A(L) be the attention weights from the final layer L. After averaging across all H
attention heads to create a smooth, robust attention map (Ā(L)

i,j = 1
H

∑H
h=1 A

(L)
h,i,j), we define the

importance score I(dj) for the j-th patch as the attention it receives from the global token:

I(dj) = Ā
(L)
global,j . (2)

This process yields a vector of importance scores Id = {I(dj)}Ld
j=1 for each document, which

serves as the foundation for our adaptive pruning.

3.2.2 ADAPTIVE THRESHOLDING FOR PRUNING

Naive pruning strategies, such as using a fixed pruning ratio or a global threshold, are ill-suited
for VDR. Visual documents exhibit vast heterogeneity in information density—a sparse title page
has very different characteristics from a dense, text-filled page. A fixed strategy would either over-
prune the dense page, losing critical information, or under-prune the sparse page, retaining useless
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background patches. DocPruner’s adaptive thresholding directly addresses this by tailoring the
pruning decision to the statistical properties of each individual document.

For a given document d with Ld patch embeddings, we have a corresponding vector of importance
scores Id = {I(dj)}Ld

j=1. Our method computes a document-specific threshold by leveraging the
first two statistical moments of these scores. First, we define the mean importance µd, which
establishes a baseline salience level for the document’s patches. A high mean suggests the document
is generally information-rich. It is formally calculated as:

µd =
1

Ld

Ld∑
j=1

I(dj). (3)

Second, we compute the standard deviation σd, which measures the dispersion of importance
scores. A high standard deviation indicates that a few patches are exceptionally important compared
to the rest, a hallmark of sparse but salient content. It is calculated as:

σd =

√√√√ 1

Ld

Ld∑
j=1

(I(dj)− µd)2. (4)

The adaptive pruning threshold τd for document d is then defined as a linear combination of these
two statistics: τd = µd + k · σd, where k is a hyperparameter that acts as a adaptation factor.
It determines how many standard deviations above the mean a patch’s importance score must be
considered significant. We define the preliminary pruned set of patch embeddings D̂′

d as:

D̂′
d = {dj ∈ Dd | I(dj) > τd}. (5)

To handle the edge case where overly aggressive pruning might discard all embeddings (i.e., D̂′
d =

∅), we guarantee that at least one embedding is preserved. The final pruned set D′
d is defined as:

D′
d =

D̂′
d if D̂′

d ̸= ∅
{dj∗} where j∗ = argmax

j∈{1,...,Ld}
I(dj) if D̂′

d = ∅. (6)

3.2.3 SCORING WITH PRUNED EMBEDDINGS

The ultimate goal of pruning is to reduce storage and, by extension, accelerate online retrieval,
without compromising ranking quality. At query time, the retrieval process remains identical to the
standard late-interaction paradigm, with one crucial difference: the search space for the MaxSim
operation is significantly reduced. Instead of comparing each query token embedding against the
full set of document embeddings D, we use the compact, pruned set D′. The pruned relevance
score, s′(q, d), is computed as: s′(q, d) =

∑Lq

i=1 maxdj∈D′ q⊤
i dj . For a given query q, we compute

s′(q, dk) for all documents dk in the corpus to obtain a ranked list. The effectiveness of this ranking
is then evaluated using Normalized Discounted Cumulative Gain at rank 5 (nDCG@5).

3.3 THEORETICAL FOUNDATION

The efficacy of DocPruner can be rigorously analyzed through the Information Bottleneck (IB)
principle (Tishby et al., 2000; Saxe et al., 2019; Tishby & Zaslavsky, 2015). The IB framework aims
to learn a compressed representation Z of an input random variable X that is maximally informative
about a target variable Y. This is formulated as the following optimization problem:

max
Z

LIB(Z) = I(Z;Y)− βI(Z;X), (7)

where I(·; ·) denotes mutual information and β is a Lagrangian multiplier balancing compression
and information preservation.

The Intractable Ideal. In our VDR task, X is the full set of document embeddings D, Z is the
pruned set D′, and the target Y is the relevance score s(q, d), which depends on a future, unknown
query q. The ideal objective is to maximize the expected information about relevance over the
distribution of all possible queries P (q):

max
D′

Eq∼P (q)[I(D
′; s(q, d))] s.t. |D′| ≪ |D|. (8)

This objective is intractable due to the unknown query distribution P (q).

5
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DocPruner as a Tractable Approximation. DocPruner offers a principled, tractable approxi-
mation to this problem.
▶ Global Token as Relevance Proxy. The hidden state of global token, hglobal, serves as a sufficient

statistic for document’s relevance to an arbitrary query. That is, I(D; s(q, d)) ≈ I(D;hglobal).
This axiom posits that the global token’s representation, which summarizes the entire document,
captures the necessary information for determining relevance. The attention scores I(dj) directly
measure the information flow from each patch to this summary. Therefore, by selecting patches
that maximize I(D′;hglobal), we are effectively approximating the ideal, intractable objective.

▶ Entropy-Aware Pruning. The adaptive threshold τd dynamically adjusts the pruning ratio based
on the information entropy of the document’s attention distribution. Let the normalized attention
scores form a probability distribution pd(j) =

I(dj)∑
i I(di)

over the patches. The information content
of the document is captured by its Shannon entropy H(pd) = −

∑
j pd(j) log pd(j).

1. Low-Entropy Documents: For documents with low information entropy (e.g., title pages),
pd is a sparse, peaky distribution. A few patches have very high attention scores, while most
have near-zero scores. The term k · σd dominates, setting a high threshold τd that isolates
only the highly informative “outlier” patches, resulting in aggressive pruning.

2. High-Entropy Documents: For documents with high information entropy (e.g., dense
text pages), pd is more uniform. Attention scores are distributed more evenly across many
patches. The threshold τd is more lenient, preserving a larger patch number that collectively
contribute to the document’s meaning.

4 EXPERIMENT
4.1 EXPERIMENTAL SETUP

Benchmarks & Evaluation. We conduct our experiments on recent representative VDR bench-
marks: ViDoRe-V2 (Macé et al., 2025) and JinaVDR-Bench (Günther et al., 2025) (More de-
tails in Appendix C). We use three state-of-the-art multi-vector VDR models as our base mod-
els: ColQwen2.5 (Faysse et al., 2024), ColNomic (NomicAI, 2025), and Jina Embeddings
V4 (Günther et al., 2025). Following standard practice in VDR domain (Faysse et al., 2024; Günther
et al., 2025; NomicAI, 2025; Xu et al., 2025a), we use nDCG@5 as the primary evaluation metric.

Baselines. We compare DocPruner against three categories of baselines.

(I) Base Models. This represents the original multi-vector models without any pruning or merging.
They serve as the performance upper bound of storage cost.

(II) Merging-based Methods. Following Ma et al. (2025), the only work focused on VDR storage
optimization via merging, we implement three merging strategies:

▶ Sem-Cluster: Merges patch embeddings by performing hierarchical clustering and represent-
ing each cluster by its centroid. The tunable hyperparameter is the merging factor, which
determines the target number of clusters.

▶ 1D-Pooling: Applies 1D average pooling over sequential groups of patch embeddings to reduce
their count. The hyperparameter is merging factor, which defines the pooling window size.

▶ 2D-Pooling: Arranges patch embeddings into a 2D grid and applies 2D average pooling. The
hyperparameter is merging factor, which must be a perfect square.

(III) Pruning-based Methods: We compare three pruning strategies adapted to VDR context:

▶ Random: Randomly discards a fixed fraction of patch embeddings, serving as a naive baseline.
The hyperparameter is the pruning ratio.

▶ Attention-plus-Similarity: An adaptive method that computes a combined score from both the
[EOS] attention (importance) and the embedding similarity to the [EOS] token (representative-
ness), then prunes patches below a dynamically calculated threshold, following Wen et al. (2025).
Hyperparameters include an adaptive factor k and a weighting factor alpha.

▶ Pivot-Threshold: A two-stage adaptive method that first filters an “important set” of patches
using an adaptive attention threshold, and then de-duplicates this set by pruning patches that
are too similar to selected “pivot”, following VisPruner (Zhang et al., 2025c). Hyperparameters
include an adaptive factor for importance k, a de-duplication factor k dup, and num pivots.

6
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Figure 2: Performance comparison (nDCG@5) between DocPruner and baselines on ViDoRe-V2 benchmark
(Macé et al., 2025) across ColQwen2.5 (Left), ColNomic (Middle), and Jina Embedding V4 (Right). Here,
solid lines denote adaptive methods, whereas dashed lines denote non-adaptive ones; circular nodes represent
pruning methods, whereas square nodes represent merging methods.

Implementation Details. To ensure fair and reproducible comparisons, we replicated the base
results of three base models in aligned with their respective official implementation. Our evalua-
tion codebase is adapted from the official ViDoRe Benchmark repository1. The complete code for
our experiments, including all baseline implementations and the DocPruner framework, will be
made publicly available upon acceptance. For DocPruner, the adaptation factor k has a range of
{−0.5,−0.25, 0, 0.25, 0.5, 1}. The details of hyperparameters for all baseline methods is detailed
in the Appendix D. All experiments were conducted on a NVIDIA A100 (80GB) GPU cluster.

4.2 EXPERIMENTAL ANALYSIS

In this section, we conduct a comprehensive experimental analysis to answer four key research ques-
tions (RQs). (RQ1) How effectively does DocPruner maintain retrieval performance on diverse
visual document types while achieving significant storage compression? (RQ2) Can DocPruner’s
robust performance generalize to multilingual retrieval scenarios? (RQ3) What is the difference
between DocPruner framework and its variants? (RQ4) What are the quantifiable relative improve-
ments in storage efficiency and latency of implementing DocPruner?

4.2.1 RETRIEVAL PERFORMANCE COMPARISON (RQ1)

To answer RQ1, we evaluate DocPruner’s performance against a comprehensive set of baselines on
the ViDoRe-V2 benchmark. The results, visualized in Figure 2, demonstrate the effectiveness and
robustness of our approach across three leading multi-vector models. See more results in Sec.E.1.

Observation ❶: DocPruner achieves near-lossless retrieval performance while pruning 50-
60% of embeddings, demonstrating remarkable robustness across different base models. As
illustrated in Figure 2, DocPruner consistently operates near the performance ceiling set by the
unpruned base models (i.e., dashed black line) even when aournd 60% of embeddings are pruned.
For instance, when applied to ColQwen2.5, DocPruner removes 51.6% of patch embeddings with a
mere 0.0038 drop in nDCG@5 (from 0.5508 to 0.5470). This high efficiency is mirrored on Jina Em-
bedding V4, where it prunes 54.1% of embeddings while the nDCG@5 only decreases from 0.5687
to 0.5608. Even on the high-performing ColNomic model, DocPruner achieves a 43.6% pruning
ratio with a negligible performance change (0.5960 vs. the base’s 0.5946), showcasing a remarkable
balance between efficiency and accuracy. This robustness stems from DocPruner’s mechanism,
which leverages intra-document attention to create a document-specific importance score for each
patch, effectively retaining the most semantically salient information necessary for retrieval.

Observation ❷: Pruning-based strategies are generally more effective at preserving retrieval
performance than merging-based strategies. This trend is evident across all three models, where
methods marked with circles (pruning) consistently form a higher-performance frontier than those
with squares (merging). For instance, on the ColNomic model at a around 75% compression ratio,
DocPruner achieves an nDCG@5 of 0.5730 (at a 72.1% ratio), whereas the strongest merging base-
line, sem-cluster, drops to 0.5426 (at a 75% ratio). The reason for this disparity is that merging,
by averaging feature vectors, can dilute the distinctiveness of highly salient patches, blurring impor-
tant signals. In contrast, pruning preserves the original, high-fidelity embeddings of the most critical
patches, vital for the late-interaction mechanism’s ability to find precise query-patch matches.

1https://github.com/illuin-tech/vidore-benchmark
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Figure 4: Performance comparison (nDCG@5) between DocPruner and baselines on JinaVDR benchmark
(Günther et al., 2025) across ColQwen2.5 (Left), ColNomic (Middle), and Jina Embedding V4 (Right). Here,
solid lines denote adaptive methods, whereas dashed lines denote non-adaptive ones; circular nodes represent
pruning methods, whereas square nodes represent merging methods.

Figure 3: Adaptive pruning ratio values of four different
datasets in ViDoRe-V2 across difference k (More in Sec.E.1).

Observation ❸: Adaptive pruning
methods generally exhibit a superior
performance-compression trade-off
compared to non-adaptive, fixed-ratio
approaches. The solid lines in Fig-
ure 2, representing adaptive methods like
DocPruner, consistently maintain higher
nDCG@5 scores than their non-adaptive
counterparts (dashed lines) at similar
compression levels (esp., below 60%
ratio). For example, on the ColNomic
model, DocPruner achieves a high nDCG@5 of 0.5960 with a 43.6% pruning ratio, outperforming
all non-adaptive baselines. The superiority of adaptive methods is because they intelligently account
for the heterogeneity of visual documents (validated by Figure 3); they prune more aggressively on
information-sparse pages and more conservatively on information-dense ones, whereas fixed-ratio
methods apply a one-size-fits-all strategy that can be suboptimal.

Observation ❹: Notably, merging-based methods exhibit uncharacteristically strong perfor-
mance on the Jina Embedding V4, in some cases surpassing DocPruner. This phenomenon can
likely be attributed to JinaV4’s unique training architecture; its technical report (Günther et al.,
2025) reveals that the model is explicitly co-trained to produce a single-vector embedding via
mean pooling over its token-level representations. This training paradigm encourages the model
to learn patch embeddings that are inherently more aggregable and robust to averaging, making
post-hoc merging strategies unusually effective as they align with the model’s intrinsic properties.

4.2.2 GENERALIZATION TO MULTILINGUAL SCENARIOS (RQ2)

To answer RQ2, we evaluate DocPruner’s generalization capability on the multilingual JinaVDR
benchmark, where we choose documents in German, Russian, Chinese, and Japanese. The overall
and per-language results, presented in Figure 4 and Sec.E.2, lead to the following observations.

Observation ❺: DocPruner demonstrates strong and consistent performance across diverse
multilingual datasets, maintaining near-lossless retrieval accuracy while achieving substantial
storage savings (i.e., around 50-60%). For instance, on the ColNomic model, DocPruner achieves
a remarkable 61.0% overall pruning ratio with a slight increase in nDCG@5 from the base’s 0.8151
to 0.8191. Similarly, when applied to ColQwen2.5, it prunes 54.0% of embeddings while improving
the nDCG@5 score from 0.6877 to 0.6958. This robust generalization stems from DocPruner’s
core mechanism, which relies on the language-agnostic visual attention patterns within the VLM.

Observation ❻: DocPruner’s adaptive nature is particularly evident in its ability to dynami-
cally adjust pruning ratios for documents in different languages, reflecting varying informa-
tion densities. This tailored approach is clearly visible in the per-language pruning statistics shown
in Appendix E.2. Using the ColNomic model as an example (with k=-0.5), DocPruner applies a
modest pruning ratio of 9.0% for German documents (nDCG@5 of 0.6022 vs. base 0.5975) and
7.0% for Spanish documents (nDCG@5 of 0.7896 vs. base 0.7927). In contrast, it identifies greater
redundancy in other languages, pruning 36.3% for Japanese and 37.6% for Chinese documents while
maintaining high performance. This demonstrates that DocPruner is not applying a uniform rule
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but is sensitive to the intrinsic properties of the documents themselves, automatically allocating the
storage budget proportional to each document’s information entropy.

4.2.3 VARIANT STUDY (RQ3)

To answer RQ3, we conduct a variant study comparing DocPruner against pruning-based variants
(shown in Figure 5), which are: (I) attention-ratio, a non-adaptive method that prunes a fixed
percentage of patches with the lowest attention scores; (II) attention-threshold, which uses a fixed,
global attention value as the pruning threshold; and (III) attention-threshold-nfp, which enhances
the static threshold method with a noise-filtering-prompt (nfp) to guide the model’s focus.

Figure 5: Overall comparison between DocPruner &
variants (See per-dataset analysis in Sec.E.3).

Observation ❼: The document-adaptive
statistical thresholding of DocPruner con-
sistently achieves a superior performance-
compression trade-off compared to simpler
pruning variants that rely on fixed ratios or
static thresholds. While all methods lever-
age attention scores, their pruning criteria dif-
fer fundamentally: attention-ratio enforces a
uniform compression rate, whereas attention-
threshold and attention-threshold-nfp apply a
one-size-fits-all importance cutoff. At a sig-
nificant pruning ratio of approximately 60%,
DocPruner sustains a high nDCG@5 of 0.54;
but the performance of the static attention-
threshold variant collapses to below 0.45, and
even the improved attention-threshold-nfp and fixed-ratio attention-ratio methods lag considerably.

4.2.4 EFFICIENCY ANALYSIS (RQ4)
Table 1: Relative improvement of performance,
storage, and latency to base models on ViDoRe-
V2 (adaptation factor k as -0.25; orange denotes
better and green denotes worse).

∆ ColQwen ColNomic JinaV4
nDCG@5 ↓0.69% ↑0.24% ↓1.39%
Storage ↓51.55% ↓43.62% ↓54.09%
Latency ↑60.00% ↑65.96% ↑66.00%

Observation ❽: DocPruner achieves a substan-
tial storage footprint reduction of approximately
50% on average with near-lossless retrieval per-
formance, at the cost of an acceptable increase
in offline encoding latency. As detailed in Ta-
ble 1, DocPruner reduces storage footprints by
51.55% for ColQwen, 43.62% for ColNomic, and
54.09% for JinaV4, while the nDCG@5 perfor-
mance changes are minimal (↓0.69%, ↑0.24%, and
↓1.39%, respectively). This specific setting of k=-0.25 consistently delivers an optimal trade-off be-
tween performance and storage across all multi-vector models. Although DocPruner introduces an
overhead that increases offline latency by 60-66% due to the extra steps of attention score extraction
and filtering, the practical impact is modest. The average per-document encoding time increases
from a baseline of 0.47s to only 0.77s, a duration that is acceptable for an offline indexing phase and
vastly superior to 7.22s required by OCR-based method (i.e., OCR+BGE-M3 (Chen et al., 2024a)).

5 CONCLUSION

In this paper, we addressed the critical challenge of prohibitive storage overhead in state-of-the-art
multi-vector VDR systems. We introduced DocPruner, a novel and adaptive framework for patch-
level embedding pruning, which leverages the attention paid by a global token to each image patch
to derive a query-agnostic importance score. Crucially, DocPruner employs a document-specific
statistical threshold, allowing it to dynamically adjust the pruning ratio for documents of varying
information density and complexity. Through extensive experiments across more than ten bench-
mark datasets, we have demonstrated that DocPruner can achieve a substantial 50-60% reduction in
stored patch embeddings with only negligible degradation in retrieval accuracy. Future work could
explore integrating this pruning mechanism directly into the model training process or extending
the adaptive principle to other modalities. Ultimately, DocPruner charts a path toward fine-grained
multimodal understanding as practical, real-world applications at an unprecedented scale.

We elaborate the broader impact of DocPruner and LLM usage in Section F and G, respectively.
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Technical Appendices and Supplements

A MORE RELATED WORK

A.1 LARGE VISION-LANGUAGE MODELS

Large Vision-Language Models (LVLMs) have recently revolutionized a multitude of fields, includ-
ing visual question answering (Borisova et al., 2025; Zakari et al., 2022; Jang et al., 2025), urban
sensing (Zou et al., 2025; Yan et al., 2024c; Yan & Lee, 2024; Hou et al., 2025b), multimodal rea-
soning (Wang et al., 2024; Yan et al., 2025a; 2024a; Su et al., 2025b; Yan et al., 2024b), multimodal
retrieval (Lin et al., 2024; Lu & Tang, 2025; Kagaya et al., 2024; Zhong et al., 2024), and visual doc-
ument understanding (Li et al., 2024c; Zhang et al., 2025a; Ding et al., 2024; Hu et al., 2024a;b). The
architecture of these models generally follows several key paradigms. The first involves connecting
a pre-trained vision encoder (e.g., ViT) and a LLM via a lightweight projection module, as seen
in models like BLIP-2 (Li et al., 2023). A second paradigm consists of end-to-end trained models
that process visual and textual inputs within a unified architecture, such as PaliGemma (Beyer et al.,
2024). A third, highly effective approach involves freezing the core vision and language backbones
and fine-tuning lightweight adapters (e.g., LoRA) to bridge the modalities, a strategy popularized
by LLaVA (Li et al., 2024b;a). Furthermore, recent research is actively optimizing these models
for critical real-world requirements, such as minimizing hallucination (Bai et al., 2024; Zhou et al.,
2024; Zheng et al., 2024; Zhu et al., 2024), enabling agent-based interaction (Xie et al., 2024; Yan
et al., 2025b; Su et al., 2025a; Durante et al., 2024), and enhancing interpretability (Lin et al.,
2025; Huo et al., 2024; 2025; Huang et al., 2025) and safety (Fang et al., 2025; Chen et al., 2025;
Liu et al., 2025a). The multi-vector models evaluated in our work are built upon such powerful
LVLMs; for instance, ColQwen (Faysse et al., 2024) and ColNomic (NomicAI, 2025) are based on
the Qwen2.5-VL series (Bai et al., 2025), one of the leading open-source LVLMs, while Jina Em-
beddings v4 (Günther et al., 2025) further leverages this foundation to implement a unified training
paradigm for both single-vector and multi-vector outputs.

A.2 PRUNING IN LVLMS

The extensive length of visual token sequences in LVLMs poses significant computational chal-
lenges, motivating a surge of research in token compression (Cheng et al., 2024a; Tmamna et al.,
2024; Ye et al., 2025a). These training-free methods primarily fall into two paradigms. The
first is instruction-centric pruning (Hou et al., 2025a; Huang et al., 2024; Federici et al., 2024),
which leverages query-document interaction. Methods like FastV (Chen et al., 2024b) and Sparse-
VLM (Zhang et al., 2024d) identify redundant visual tokens by analyzing the cross-attention scores
between textual instructions and visual patches. While effective for tasks like VQA, this paradigm
is fundamentally incompatible with the offline indexing phase of VDR, as it requires a query to de-
termine token importance. The second paradigm is vision-centric compression (Ye et al., 2025b;
Jiang et al., 2024a), which is query-agnostic and thus more suitable for offline processing. This
category includes token merging approaches like ToMe (Bolya et al., 2022), which progressively
combines similar tokens, and token pruning methods like FasterVLM (Zhang et al., 2024b), which
uses the attention scores of the [CLS] token within the vision encoder to rank and discard less
salient patches. However, these vision-centric methods often suffer from their own limitations, such
as information dilution from merging or retaining redundant tokens due to the concentrated nature of
attention. Crucially, most pruning strategies are designed for and evaluated on generative tasks, and
their direct application to the offline retrieval setting is underexplored (Lassance et al., 2023; Acqua-
via et al., 2023; Liu et al., 2024). They are not tailored to preserve the fine-grained, discriminative
features essential for the late-interaction mechanism in multi-vector retrieval.

A.3 EFFICIENT DOCUMENT RETRIEVAL

The pursuit of efficiency in multi-vector retrieval (Wu et al., 2024; Park et al., 2025; Shrestha et al.,
2024; Bian et al., 2025; Scheerer et al., 2025), a challenge amplified in the visual domain, has been
addressed through two main orthogonal approaches: Dimension Reduction and Token Reduc-
tion. Dimension reduction aims to shrink the size of each embedding vector (Su et al., 2021; Yoon
et al., 2024; Wang et al., 2025a). A prominent example is ColBERTv2 (Santhanam et al., 2021),
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which employed product quantization to compress embeddings. This principle was later inherited
by ColPali (Faysse et al., 2024), which uses a simpler projection layer for the same purpose. The
second, more impactful approach is token reduction, which focuses on decreasing the number of
vectors stored per document and can be divided into pruning and merging strategies (Liu et al.,
2023; Mao et al., 2025; Cheng et al., 2024b). However, recent empirical studies (Ma et al., 2025)
have highlighted that token merging strategies, which aggregate multiple embeddings into a smaller
set of representative vectors (e.g., via spatial pooling or semantic clustering (Clavié et al., 2024)),
are considered more appropriate for the offline VDR context as they retain information from all
patches. Our work, DocPruner, revisits the pruning paradigm by introducing a novel adaptive,
query-agnostic mechanism that sidesteps the pitfalls of static pruning, offering a storage-efficient
alternative to merging-based approaches.
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B ALGORITHM WORKFLOW

We formalize the complete workflow of our proposed framework in two distinct algorithms. Al-
gorithm 1 details the offline indexing phase, where DocPruner generates a compact set of docu-
ment embeddings by adaptively pruning patches based on their attention-derived importance scores.
Subsequently, Algorithm 2 illustrates the online retrieval phase, where the final relevance score is
efficiently computed via a MaxSim operation using this pruned set of embeddings.

Algorithm 1: The DocPruner Adaptive Pruning (Offline Indexing Phase)
Input: A document page d;
A VLM encoder Φ(·) that outputs patch embeddings and attention weights;
A sensitivity controller hyperparameter k.
Output: A pruned set of patch embeddings D′

d.

/* Step 0: VLM Forward Pass */
{Dd,A

(L)} ← Φ(d) // Extract embeddings Dd = {dj}Ld
j=1 and final layer attention

A(L)

/* Step 1: Quantifying Patch Importance */
Let g be the index of the global token (e.g., [EOS])
Initialize an empty list of importance scores Id
for j ← 1 to Ld do

Ā
(L)
g,j ← 1

H

∑H
h=1 A

(L)
h,g,j

I(dj)← Ā
(L)
g,j // Importance is attention to patch j (Eq. 2)

Append I(dj) to Id
end
/* Step 2: Adaptive Thresholding */

µd ← 1
Ld

∑Ld

j=1 I(dj) // Calculate mean importance (Eq. 3)

σd ←
√

1
Ld

∑Ld

j=1(I(dj)− µd)2 // Calculate std dev of importance (Eq. 4)

τd ← µd + k · σd // Define the document-specific threshold

D̂′
d ← {} // Initialize preliminary pruned set

for j ← 1 to Ld do
if I(dj) > τd then

D̂′
d ← D̂′

d ∪ {dj} // Keep patch if importance > threshold (Eq. 5)
end

end
/* Step 3: Finalizing with Robustness Guarantee */
if D̂′

d = ∅ then
j∗ ← argmax

j∈{1,...,Ld}
I(dj)

D′
d ← {dj∗} // Keep the single most important patch (Eq. 6)

else
D′

d ← D̂′
d // Use the preliminary pruned set (Eq. 6)

end
return D′

d
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Algorithm 2: Scoring with Pruned Embeddings (Online Retrieval Phase)
Input: A textual query q;
The pruned document embedding set D′

d (from Algorithm 1);
A VLM encoder Φ(·) for query encoding.
Output: The relevance score s′(q, d).

/* Step 1: Encode Query */
Q← Φ(q) // Encode q into token embeddings Q = {qi}Lq

i=1

/* Step 2: Compute Score with Pruned Embeddings */
s′(q, d)← 0
for qi ∈ Q do

max sim← −∞
for dj ∈ D′

d do
sim← q⊤

i dj

if sim > max sim then
max sim← sim

end
end
s′(q, d)← s′(q, d)+ max sim // Aggregate max similarity per query token (Sec
3.2.3)

end
return s′(q, d)
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C DETAILS OF BENCHMARKS

This section provides detailed descriptions of the benchmarks used in our evaluation to validate the
performance of DocPruner.

C.1 VIDORE-V2 BENCHMARK

The ViDoRe-V2 benchmark (Macé et al., 2025) was designed to address the saturation of its prede-
cessor, ViDoRe-V1 (Faysse et al., 2024), where top models were achieving near-perfect scores. It in-
troduces more realistic and challenging retrieval scenarios by incorporating several key features: (1)
Blind Contextual Querying, where query generation models have limited context, forcing them to
create non-extractive questions that better mimic real user behavior; (2) Long and Cross-Document
Queries, which require models to retrieve information from multiple pages or across different docu-
ments; and (3) a Hybrid Generation Process, combining synthetic query generation with extensive
human-in-the-loop filtering to ensure high query quality. The benchmark comprises four diverse
datasets: esg-reports-v22, biomedical-lectures-v23, economics-reports-v24, and esg-reports-human-
labeled-v25, making it a robust testbed for model generalization.

Illustration of visual document examples from ViDoRe-V2 benchmark (Macé et al., 2025) can be
seen in Figures 6, 7, and 8.

Figure 6: Illustration of visual document examples from ESG and ESG-human datasets (The latter is fully
labelled by hand, and has no overlap of queries with its synthetic counterpart). They focus on the theme of
ESG reports from the fast food industry.

2https://huggingface.co/datasets/vidore/esg_reports_v2
3https://huggingface.co/datasets/vidore/biomedical_lectures_v2
4https://huggingface.co/datasets/vidore/economics_reports_v2
5https://huggingface.co/datasets/vidore/esg_reports_human_labeled_v2
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Figure 7: Illustration of visual document examples from Biomedical Lectures datasets. It focuses on the theme
of MIT courses in anatomy (precisely tissue interactions).

Figure 8: Illustration of visual document examples from Economics Reports datasets. It focuses on the theme
of World economic reports from 2024.
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C.2 JINAVDR-BENCH

JinaVDR-Bench was introduced alongside Jina Embeddings v4 (Günther et al., 2025) to evaluate a
new generation of unified embedding models capable of producing both single-vector (dense) and
multi-vector representations from a single architecture. The benchmark is notable for its breadth,
covering a wide array of document types and retrieval tasks. Its datasets include academic pa-
pers (Astro-ph), financial reports (DocILE, DeepForm), presentation slides (SlideVQA), technical
manuals, and infographics (InfographicsVQA), among others. This diversity tests a model’s ability
to handle documents with varying layouts, languages (it includes multilingual splits), and content
(e.g., text-heavy, table-rich, or figure-dominant). By providing a standardized evaluation across
these heterogeneous sources, JinaVDR-Bench serves as a comprehensive tool for assessing the ver-
satility and robustness of VDR models. To evaluate the multilingual generalization of DocPruner,
we choose europeana-de-news6, beverages-catalogue-ru7, shanghai-master-plan8, and automobile-
catalogue-jp9 for German, Russian, Chinese, and Japanese visual documents, respectively.

Illustration of visual document examples from JinaVDR-Bench (Günther et al., 2025) can be seen
in Figures 9, 10, 11, and 12.

Figure 9: Illustration of visual document examples from German datasets. It focuses on the records of the
European online collection by selecting scans of German news articles.

C.3 VISUALIZATION OF PRUNED DOCUMENT CASES

This section illustrate the visual examples of pruned documents, as depicted by Figures 13 and 14.

6https://huggingface.co/datasets/jinaai/europeana-de-news
7https://huggingface.co/datasets/jinaai/beverages_catalogue_ru
8https://huggingface.co/datasets/jinaai/shanghai_master_plan
9https://huggingface.co/datasets/jinaai/automobile_catalogue_jp
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Figure 10: Illustration of visual document examples from Russian datasets. It focuses on the beverage catalogs
on Google search and downloading PDFs.

Figure 11: Illustration of visual document examples from Chinese datasets. It focuses on the theme of Shang-
hai master plan document taken from (Shanghai Municipal People’s Government Urban Planning and Land
Resource Administration Bureau, 2018).
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Figure 12: Illustration of visual document examples from Japanese datasets. It focuses on the theme of
marketing document from Toyota Japanese website.

Figure 13: Illustration of visual document example one. Comparison of fixed-ratio pruning (top row) and
random pruning (bottom row) at ratios of 10%, 50%, and 90% (from left to right). Gray patches are pruned and
excluded from the multi-vector computation.
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Figure 14: Illustration of visual document example two. Comparison of fixed-ratio pruning (top row) and
random pruning (bottom row) at ratios of 10%, 50%, and 90% (from left to right). Gray patches are pruned and
excluded from the multi-vector computation.
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D DETAILS OF BASELINES

This section provides a detailed description of the implementation logic and hyperparameter settings
for the baseline methods evaluated in Section 4.1. For each baseline, we empirically explored the
specified hyperparameter space and selected the configurations that yielded the most representative
performance trade-offs for presentation in our main results.

D.1 MERGING-BASED METHODS

D.1.1 SEM-CLUSTER

Implementation Logic. This method performs semantic merging of patch embeddings. For each
document, it first normalizes all patch embeddings. Then, it computes a pairwise distance matrix
based on cosine similarity (distance = 1 - cosine similarity). Using this matrix, it
applies hierarchical agglomerative clustering with the ’ward’ linkage method. The total number
of patch embeddings is reduced by a merging factor, which determines the target number of clus-
ters (i.e., num clusters = num patches / merging factor). Finally, the embeddings
within each resulting cluster are averaged to produce a single centroid embedding, forming the new,
smaller set of representations for the document.

Hyperparameters.

• Merging Factor: Defines the ratio by which the number of patch embeddings is reduced.
A higher factor results in fewer clusters and thus more aggressive merging.

– Selection Range: {2, 4, 9, 16, 25}.

D.1.2 1D-POOLING

Implementation Logic. This strategy treats the patch embeddings as a 1D sequence. It groups
consecutive embeddings into non-overlapping windows of size equal to the merging factor. If the
total number of patches is not divisible by the factor, the sequence is padded with zero vectors to
ensure complete windows. The embeddings within each window are then averaged to create a single
merged embedding. This effectively downsamples the sequence of patch embeddings.

Hyperparameters.

• Merging Factor: Specifies the size of the pooling window, i.e., the number of sequential
patch embeddings to be averaged into one.

– Selection Range: {2, 4, 9, 16, 25}.

D.1.3 2D-POOLING

Implementation Logic. This method assumes a spatial arrangement of patches. The patch em-
beddings are first organized into a 2D grid that approximates their original spatial layout in the
document image. This grid is padded with zero vectors to ensure its dimensions are divisible by the
pooling kernel size. A 2D average pooling operation is then applied. The merging factor, which
must be a perfect square, defines the area of the pooling window (e.g., a factor of 4 corresponds
to a 2x2 kernel). A mask is used during pooling to correctly normalize the averages, ensuring that
padded areas do not contribute to the final merged embeddings.

Hyperparameters.

• Merging Factor: Defines the area of the 2D pooling window.

– Selection Range: {4, 9, 16, 25}.
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D.2 PRUNING-BASED METHODS

D.2.1 RANDOM

Implementation Logic. This naive baseline discards patch embeddings without considering their
content. For each document, a specified pruning ratio of the total patch embeddings are selected
uniformly at random and removed from the set. To ensure at least one patch remains, the implemen-
tation prevents pruning all patches even if the ratio is 1.0. This serves as a fundamental benchmark
to gauge the performance loss from non-informed pruning.

Hyperparameters.

• Pruning Ratio: A float between 0.0 and 1.0 that specifies the fraction of patch embeddings
to be randomly discarded.

– Selection Range: {0.1, 0.3, 0.5, 0.7, 0.9}.

D.2.2 ATTENTION-PLUS-SIMILARITY

Implementation Logic. This adaptive method computes a composite score for each patch to de-
cide whether to prune it. The score is a weighted sum of two components: (1) an importance score,
derived from the attention weight the global [EOS] token pays to the patch, and (2) a represen-
tativeness score, calculated as the cosine similarity between the patch embedding and the [EOS]
embedding. The final score is pruned using an adaptive threshold calculated as µ + k · σ, where µ
and σ are the statistics of the composite scores for that document. The results presented in the paper
were based on an empirical grid search over all hyperparameter combinations, selecting the optimal
α for k = 0 and k = 1 respectively to show representative results.

Hyperparameters.

• Adaptation Factor (k): A coefficient that controls the strictness of the dynamic pruning
threshold. A higher value leads to a more aggressive pruning.

– Selection Range: {−0.5,−0.25, 0, 0.25, 0.5, 1}.
• Weighting Factor (α): A float between 0.0 and 1.0 that balances the contribution of the

importance score (attention) and the representativeness score (similarity).
– Selection Range: {0.1, 0.3, 0.5, 0.7, 0.9}.

D.2.3 PIVOT-THRESHOLD

Implementation Logic. This advanced adaptive baseline employs a two-stage pruning process.
It first identifies an “important set” of patches by applying an adaptive attention-based threshold
(µ + k · σ of [EOS]-to-patch attention scores), similar to the core mechanism of DocPruner.
Within this important set, it selects a fixed pivot num of patches as “pivots”. For the remaining
non-pivot patches in the important set, it calculates a duplication score, defined as the maximum
cosine similarity to any of the pivots. A second adaptive threshold (µdup + kdup · σdup of these
duplication scores) is then used to prune non-pivot patches that are deemed too similar to the pivots.
We found kdup = 1 and pivot num = 10 were consistently optimal via empirical search. Therefore,
the results presented fix these two hyperparameters and show the performance trade-off by varying
the adaptation factor k.

Hyperparameters.

• Adaptation Factor (k): Controls the threshold for initial importance-based filtering stage.
– Selection Range: {−0.5,−0.25, 0, 0.25, 0.5, 1}.

• De-duplication Factor (kdup): Controls the similarity threshold for the second stage.
– Selection Range: {−0.5,−0.25, 0, 0.25, 0.5, 1}.

• Pivot Num: The number of pivot tokens to select from the important set for the de-
duplication stage.
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– Selection Range: {5, 10, 15, 20}.
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E MORE EXPERIMENTAL ANALYSIS

E.1 MORE EXPERIMENT ON VIDORE-V2

Performance comparison (nDCG@5) between DocPruner and baselines on ViDoRe-V2 benchmark
across four datasets on ColQwen2.5, ColNomic, and Jina Embedding V4 can be seen in Figures
15, 16, and 17, respectively. Pruning ratio distribution of DocPruner on ColQwen2.5, ColNomic,
and Jina Embedding V4 can be seen in Figures 18, 19, and 20, respectively.

Figure 15: Performance comparison (nDCG@5) of ColQwen2.5 between DocPruner and baselines on
ViDoRe-V2 benchmark across four datasets.
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Figure 16: Performance comparison (nDCG@5) of ColNomic between DocPruner and baselines on ViDoRe-
V2 benchmark across four datasets.

Figure 17: Performance comparison (nDCG@5) of Jina Embedding V4 between DocPruner and baselines
on ViDoRe-V2 benchmark across four datasets.
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Figure 18: Pruning ratio distribution of ColQwen2.5 using DocPruner across four datasets of ViDiRe-V2
over a adaptation factor k range of {-0.5, -0.25, 0, 0.25, 0.5, 1}.

Figure 19: Pruning ratio distribution of ColNomic using DocPruner across four datasets of ViDiRe-V2 over
a adaptation factor k range of {-0.5, -0.25, 0, 0.25, 0.5, 1}.

Figure 20: Pruning ratio distribution of Jina Embedding V4 using DocPruner across four datasets of ViDiRe-
V2 over a adaptation factor k range of {-0.5, -0.25, 0, 0.25, 0.5, 1}.
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E.2 MORE EXPERIMENT ON JINAVDR

Performance comparison (nDCG@5) between DocPruner and baselines on JinaVDR benchmark
across four multilingual datasets on ColQwen2.5, ColNomic, and Jina Embedding V4 can be seen
in Figures 21, 22, and 23, respectively.

Figure 21: Performance comparison (nDCG@5) of ColQwen2.5 between DocPruner and baselines on Ji-
naVDR benchmark across four datasets.
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Figure 22: Performance comparison (nDCG@5) of ColNomic between DocPruner and baselines on JinaVDR
benchmark across four datasets.

Figure 23: Performance comparison (nDCG@5) of Jina Embedding V4 between DocPruner and baselines
on JinaVDR benchmark across four datasets.
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E.3 MORE VARIANT STUDY

Performance comparison (nDCG@5) between DocPruner and other variants on ViDoRe-V2 bench-
mark across four datasets on ColQwen2.5, ColNomic, and Jina Embedding V4 can be seen in
Figure 24. The prompt used for evaluating attention-threshold-nfp is shown below.

Prompt Template for attention-threshold-nfp

Analyze this document page. Assign high importance to
regions containing text, tables, charts, and meaningful
figures. Assign low importance to decorative graphics,
logos, empty space, and repeating headers or footers.

Figure 24: Performance comparison between DocPruner and other variants on ViDoRe-V2 benchmark across
four datasets.
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E.4 MORE ANALYSIS OF ADAPTATION FACTOR

The adaptation factor, k, is the central hyperparameter in the DocPruner framework, governing the
delicate trade-off between storage compression and retrieval performance. Its significance lies not
in setting a fixed threshold, but in modulating a dynamic one, τd = µd + k · σd, which is tailored
to the unique statistical properties of each document’s attention score distribution. As illustrated in
Figures 25-28, the interaction between k and the distribution’s shape (characterized by its mean µd

and standard deviation σd) is the key to DocPruner’s adaptive behavior.

Furthermore, we observe a consistent principle across different VDR models (ColQwen2.5, Jina
Embedding V4, and ColNomic). While the absolute attention scores and the specific shapes of the
distributions may differ, each model fundamentally learns to assign higher attention to semantically
meaningful regions. DocPruner’s statistical approach is robust to these model-specific variations,
as it operates on the relative distribution of scores within each document. This intrinsic, document-
relative nature is why a single k value (e.g., k=-0.25) can yield a desirable balance of ∼50% com-
pression and near-lossless performance across diverse models and datasets.

In summary, the adaptation factor k is not a simple cutoff value but a sensitivity parameter. It lever-
ages the statistical fingerprint of each document’s attention distribution to determine the appropriate
pruning intensity. This enables DocPruner to automatically apply a “one-size-fits-one” strategy:
conservative pruning for information-rich pages and aggressive pruning for sparse ones, achieving a
robust and efficient compression solution for real-world visual document retrieval.

Figure 25: The attention score distribution and number of kept vectors (wrt. different adaption factor setting) of
the representative document from ESG subset of ViDoRe-V2. The raw document is shown in top-left corner,
and the rest represent histograms corresponding to ColQwen2.5, Jina Embedding V4, and ColNomic.
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Figure 26: The attention score distribution and number of kept vectors (wrt. different adaption factor setting)
of the representative document from Biomedical subset of ViDoRe-V2. The raw document is shown in top-left
corner, and the rest represent histograms corresponding to ColQwen2.5, Jina Embedding V4, and ColNomic.

Figure 27: The attention score distribution and number of kept vectors (wrt. different adaption factor setting)
of the representative document from Economics subset of ViDoRe-V2. The raw document is shown in top-left
corner, and the rest represent histograms corresponding to ColQwen2.5, Jina Embedding V4, and ColNomic.
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Figure 28: The attention score distribution and number of kept vectors (wrt. different adaption factor setting) of
the representative document from ESG Human subset of ViDoRe-V2. The raw document is shown in top-left
corner, and the rest represent histograms corresponding to ColQwen2.5, Jina Embedding V4, and ColNomic.
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F BROADER IMPACT

The development of DocPruner carries significant positive impacts that extend from the research
community to industrial applications and ultimately to society at large. DocPruner addresses a
critical, practical bottleneck in state-of-the-art VDR, and its implications can be understood on three
distinct levels.

First, within the academic and research community, DocPruner encourages a paradigm shift.
While much of the recent focus has been on scaling up models to achieve marginal gains in accuracy,
our work highlights the paramount importance of computational and storage efficiency. By provid-
ing a simple yet effective framework for making powerful multi-vector models practical, we hope
to inspire more research into resource-aware AI. This can enable researchers, particularly those in
resource-constrained environments, to conduct larger-scale experiments and explore more complex
VDR tasks that were previously computationally prohibitive. Our work serves as a proof-of-concept
that “smarter” resource management can be as impactful as “bigger” models.

Second, for industry and commercial applications, DocPruner offers a direct and substantial eco-
nomic benefit. The prohibitive storage costs associated with multi-vector embeddings are a major
barrier to the widespread adoption of advanced VDR systems in enterprise settings. By reducing
storage requirements by 50-60% with negligible performance loss, DocPruner makes it econom-
ically feasible for businesses in sectors like legal, finance, healthcare, and e-commerce to deploy
high-fidelity document search and analysis tools. This can unlock new efficiencies in knowledge
management, accelerate workflows that rely on searching vast archives of visually-rich documents
(e.g., contracts, financial reports, patent filings), and ultimately democratize access to state-of-the-art
retrieval technology for a wider range of organizations.

Finally, on a broader societal level, the principles behind DocPruner contribute to making informa-
tion more accessible and discoverable. Public institutions such as libraries, museums, and govern-
ment archives are custodians of immense collections of digitized historical and cultural documents.
The ability to affordably index and search these visual archives at a fine-grained level can empower
educators, historians, and the general public, fostering new avenues for research and learning. By
lowering the technological and financial barriers to building powerful search systems, our work
can help preserve and unlock the value latent within our collective cultural and scientific heritage,
contributing to a more informed and connected society.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized LLMs primarily for the purpose of language re-
finement and improving the clarity and readability of our writing. The LLM was employed as an
editing assistant to help polish sentence structures, correct grammatical errors, and ensure consis-
tency in terminology. The core scientific ideas, the design and implementation of the DocPruner
framework, the execution of experiments, and the analysis of the results were all conceived and con-
ducted exclusively by the authors. The LLM’s role was strictly limited to enhancing the quality of
the English prose and did not contribute to the intellectual content of the research.
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