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Abstract
Recent research has shown the potential of Nash
Learning via Human Feedback for large language
model alignment by incorporating the notion of a
preference model in a minimax game setup.

We take this idea further by casting the alignment
as a mirror descent algorithm against the adaptive
feedback of an improved opponent, thereby re-
moving the need for learning a preference model
or the existence of an annotated dataset altogether.

The resulting algorithm, which we refer to
as Language Alignment via Nash-learning and
Adaptive feedback (LANA), is capable of self-
alignment without the need for a human-annotated
preference dataset. We support this statement with
various experiments and mathematical discussion.

1. Introduction
The standard approach for Large Language Model (LLM)
alignment involves optimizing a reward function that is
learned explicitly (RLHF) (Christiano et al., 2017) or im-
plicitly (DPO) (Rafailov et al., 2024) by accessing human-
generated feedback. Other alternatives integrate human-
generated feedback by learning a preference model that
takes two responses, denoted as y and y′ (conditioned on a
prompt x), as input and produces a preference score (a num-
ber between 0 and 1), indicating the preference of response
y over response y′ given the context/prompt x. These prefer-
ence models are then cast as the utility of a game-theoretic
framework, leading to the notion of Nash Learning via Hu-
man Feedback (NLHF) (Munos et al., 2023). The solution
offered by the Nash equilibrium of the preference model
is argued to be more aligned with the diversity of human
preferences.

Within a similar minimax game setup, we propose another
alternative that uses the adaptive feedback of an improved
opponent without the need for a fixed/learned preference
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model or pre-generated preference data. This is similar
to the transition from RLHF to self-reward DPO (Yuan
et al., 2024). (Yuan et al., 2024) proposed an offline self-
feedback procedure for generating new data for DPO to
incorporate into further alignment training. However, no
training methodology has yet been proposed to directly in-
corporate self-evaluating reward functions in the alignment
training. This is because self-evaluation could still be noisy
and lead to biased and sub-optimal demonstrations. There-
fore, learning from such data directly does not guarantee
a better optimal model. The main contribution of this pa-
per is to show that self-reward training processes exist that
are robust to sub-optimal and noisy iterative self-reward
mechanisms.

Comparison with related works Two important distinc-
tions of our work compared to related works (Munos et al.,
2023; Rosset et al., 2024; Yuan et al., 2024; Wu et al., 2024)
are:

• All the previous works assume that a preference model
is learned in advance, analogous to the concept of
reward models in RLHF. However, in our setup we
assume we lack access to such a learned preference
model or human-annotated preference dataset. Instead,
the LLM policies improve through adaptive feedback
from improved opponents.

• All the existing works avoid a faithful game-theoretic
implementation, such as the two-timescale update, to
avoid complex hyperparameter tuning and unstable
performance. While this might be true in a generic
game-theoretic setup, it seems to be overthinking in the
context of LLM alignment. This is because complex
policy behaviors are inherently avoidable as a result
of a shared common worldview learned in the initial
foundation model.

Aside from the self-evaluating assumption, our work is also
different from (Munos et al., 2023) in that it sets up a modi-
fied Mirror Descent algorithm to incorporate the KL regu-
larization with respect to the reference policy. However, our
proposed method is reference policy-free.

(Chen et al., 2024) proposed self-play in a supervised fine-
tuning (SFT) context and not in alignment training.
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2. Language Alignment via Nash-learning and
Adaptive feedback

We derive the new alignment algorithm using mirror ascent
algorithm with improved opponent (MAIO) (Munos et al.,
2020). It defines a sequence of policies (πi,t)t≥0 for a zero-
sum game according to the following updates for all i ∈ 1, 2
and for all t ≥ 0:

πi,t+1 = arg max
πi∈∆(Y)

[γtπi.Q
π̃−i,t

i −Dϕ(πi, πi,t)] (1)

where γt is a learning rate, Dϕ is a Bregman divergence,
more specifically a KL distance in our case and Q

π̃−i,t

i is
the reward of the player i against the improved opponent
π̃−i,t

2.1. Sampling from improved Opponent π̃

Improved policies can take different forms, such as greedy,
best response, MCTS, extra-gradient method, etc.

The improved policy might also be an optimally aligned
model πExpert. However, we assume that we haven’t
learned such a model yet. In other words, we haven’t trained
a preference/reward model in advance, and we are learning
this as the game progresses. We hypothesize that one might
rely on the self-evaluation of the LLM policy to derive sam-
ples from such an improved policy. For example, for a given
prompt x, we sample two responses y and y′.

Each player generates two answers and queries the opponent
using the following evaluation prompt template:
“User
Given a piece of instruction and two of its possible
responses, output 1 or 2 to indicate which response is better.
Instruction: instruction,
Response 1: y
Response 2: y’?
Assistant
Preferred response is -”.

y is the preferred answer for user i if:
π−i(eval prompt)[−1][tokenizer(”1”)] >
π−i(eval prompt)[−1][tokenizer(”2”)] and y′ otherwise.

Every player then treats the preferred answer as the sample
of an improved opponent and the rejected answer as their
own, aiming to maximize their expected win rate under the
setup described in equation 1 setup.

We show that while this setup leads to noisy outcomes (e.g.,
the opponent may be wrong) and changing utilities (the pref-
erence measure for the exact same response is not identical
over the course of the game since the parameters get updated

Algorithm 1 LANA
Input: prompt distribution X , An instruct-tuned LLM
model policy π, eval prompt
Initialize π1, π2 ← π
repeat

x ∼ X
for i = 1 to 2 do
(y, y′) ∼ πi(x)
Optimize πi using SGD with loss:
if π−i(eval prompt) indicates (y′ ≻ y) then

loss := log(π−i(x, y
′)/πi(x, y))

else
loss := log(π−i(x, y)/πi(x, y

′))
end if

end for
until Convergence or out of available compute resource

at every step), with the correct choice of proxy reward and
slower learning dynamics, the game converges to a better
policy.

3. Algorithm
Let the reward be adaptively evaluated at each time t using
the policies of the players as follows:

Q
π̃−i,t

i = log(πi,t/π̃−i,t)/γt (2)

In section 5.1, we show that if we plug this into the op-
timization Eq. 1, we end up with Algorithm 1 which we
refer to as LANA, short for Language Alignment via Nash-
learning and Adaptive feedback. Note how it can alter-
natively be viewed as an online, two-player, simplified
(reference-free, sigma-free) version of Direct Preference Op-
timization (DPO) without the need for a human-annotated
preference dataset.

4. Experiments
4.1. Experiment Setup

4.1.1. DATA

We randomly selected 3K prompts from (Argilla & Face,
2024). We only use the prompts and not the generated
responses. For testing aside from common methodology we
also utilized pre-processed version of the UltraFeedback test
dataset (Cui et al., 2023) and different categories of (Huang
et al., 2024) for deeper understanding.

4.1.2. BASE MODEL

We used the Phi-3-mini-4k-instruct (Abdin et al., 2024)
for most of our experiments. This model is a mini model
containing only 3.8b parameters which is helpful for faster
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Table 1. Alpca-eval after training on only 3K instructions

MODEL LC WIN RATE WIN RATE STD

LANA 22.50 21.35 1.26
PHI-MINI 20.84 19.98 1.20

Table 2. Unlike other Self-rewarding LM, LANA don’t face a sig-
nificant drop in reasoning tasks.

TASK LANA BASE

GSM8K-5SHOT 0.7703 0.7756
HELLASWAG 0.7822 0.7841
ARC-CHALLENGE 0.5674 0.5785
HELLASWAG 0.7822 0.7841

experimentation and lack of resources.

4.1.3. HYPERPARAMETERS

The y, y′ were generated using a temperature of 0.1 with
maximum length of 128 tokens. We also limited the prompt
to a maximum of 256 tokens. These choices were due to
resource limitations. The learning rate for SGD optimization
was set to 0.0003, and each batch size was 4. Both players
parameterized their base models using LoRA (Hu et al.,
2021) with a rank of 16.

4.2. Results

Alpaca evaluation (Li et al., 2023; Dubois et al., 2024; 2023)
results are shown in Table 1. It shows noticeable improve-
ment after training using LANA on 3K prompts without
access to any human-annotated preference dataset.

We also measured the model’s performance using LLM-
Evaluation Harness (Gao et al., 2023), with results shown
in Table 2 and MT-Bench (Zheng et al., 2023), shown in
the spider plot in Fig. 2. The most significant observation
is that, unlike other self-reward mechanism such as (Yuan
et al., 2024), not only is there no noticeable drop in reason-
ing tasks, but it also seems to perform noticeably better in
GSM8K task in MT-bench, matching that of GPT-3.5-turbo,
despite being a mini model of 3.8b parameters.

Next we utilized the annotated preference data set in the
pre-processed version of the UltraFeedback test dataset (Cui
et al., 2023) and different categories in (Huang et al., 2024)
to gain a better understanding across different task cate-
gories. The results are demonstrated in Fig. 1. They show
that LANA helped improve the win rate across all tasks,
with some more noticeable improvements in categories such
as riddle, theory of mind and plan category, again confirm-
ing our assertion regarding the improvements in logical
reasoning tasks using LANA without an annotated dataset.

4.3. Ablation study

We tested two additional models, Mistral-7B-Instruct-v0.1
(Jiang et al., 2023) and Gemma-2b-it (Team et al., 2024).
Both led to negligible improvements as shown in Fig. 3.
While we cannot rule out other reasons, we suspect this im-
plies that the choice of the base model is crucially important.
This could mean that the lower quality of training data in
these models leads to noisier self-evaluations, which in turn
seem to cancel out the progress made during alignment. In
contrast, the Phi model training data appears to be collected
using the ”TextBook all you need” methodology (Gunasekar
et al., 2023).

5. Mathematical Discussions
Two points need to be addressed:

• How LANA loss function is derived from Eq. 1?

• Does the game converge, and it what sense?

5.1. LANA loss derivation

An alternative way to define Eq. 1 is through mirror maps
(Bubeck et al., 2015). A mirror map is a mapping induced
by the convex function ϕ, which maps primal variables to
dual variables. Given a convex function ϕ, the mirror map is
essentially the gradient∇ϕ. For the KL divergence case, the
mirror map associated with the negative entropy function is
given by the following gradients:

∇ϕ(π) = log(π) (3)

Then the alternative definition for Eq. 1 is:

πi,t+1 = arg min
πi∈∆(Y)

Dϕ(πi, zi,t+1) (4)

where zi,t+1 is such that:

∇ϕ(zi,t+1) = ∇ϕ(πi,t) + γQ
π̃−i,t

i (5)

In other words, gradient descent steps are performed in mir-
ror space (policy log-likelihood) instead of in LLM weights
space.

Combining the above equations with reward Eq.2 yields:

πi,t+1 = arg min
πi∈∆(Y)

Eπi
[log(π̃−i,t/πi,t)]−H(πi) (6)

We instead minimize the upper bound by ignoring the en-
tropy term:
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Figure 1. Preference Data set are pre-processed version of the UltraFeedback test dataset (Cui et al., 2023) and different categories in
(Huang et al., 2024).

loss := Eπi log(π̃−i,t/πi,t) (7)

which we pass as the loss to SGD for optimization.

We also note that the choice of Q is essential in deriving
such a bound, and it is not simply the result of ignoring
the KL term in equation 1. The KL term in Eq. equation 1
−DKL(π, πi,t) = H(π)−H(π, πi,t) has two goals: first, to
encourage exploration for π via the entropy maximization
term H(π); and second, to avoid reward hacking so that
π doesn’t deviate too much from the past policy πi,t by
minimizing the cross-entropy H(π, πi,t). The cross-entropy
term is still captured in the objective of Eq. 7. However, our
experiments show that entropy term is not important, and
therefore for the sake of simplicity is removed from the loss
term.

5.2. Convergence

Let’s drop the player index notation as the game is symmet-
ric.

Lemma 5.1. (Munos et al., 2020) Let p ≥ 1 and q ≥ 1 such
that 1/p + 1/q = 1. Let ϕ be a strongly convex function
with respect to the ℓp-norm ∥ · ∥p with some modulus σ, i.e.,

for any π, π′,

ϕ(π) ≥ ϕ(π′) +∇ϕ(π′) · (π − π′) +
σ

2
∥π − π′∥2.

Write Dϕ the associated Bregman divergence: for π, π′,

Dϕ(π, π
′)

def
= ϕ(π)− ϕ(π′)−∇ϕ(π′) · (π − π′).

Let δ be a vector of dimension |Y|. Define πt+1 as

πt+1 = arg max
π∈∆(Y)

[π.δt −Dϕ(π, πt)] , (8)

Then for any π ∈ ∆(Y), we have,

Dϕ(π, πt+1) ≤ Dϕ(π, πt) + (πt − π).δt + (2/σ)∥δt∥2q.

Using the last lemma with the choice of Q in eq. 2 and Dϕ

being a DKL distance, we have

δt = γt log(π̃t/πt)

It follows that
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Figure 2. MT-Bench: Unlike other self-rewarding LMs, not only is there no drop in reasoning tasks, but there is also a significant increase
in GSM8k, matching that of GPT-3.5-turbo. In other tasks, performance seems to be affected slightly.

DKL(π, πt+1) ≤
DKL(π, πt) + (π − πt).γt log(πt/π̃t) + (2/σ)∥δt∥2q
≤ DKL(π, πt) + (π.γt log(πt/π̃t) + (2/σ)∥δt∥2q

≤ (1− γt)DKL(π, πt) + γtDKL(π, π̃t) + (2/σ)∥δt∥2q (9)

where the second inequality is the result of KL(πt, π̃t) >
0 and the last inequality is the result of re-writing
log(πt/π̃t) = log(π/π̃t) ∗ log(πt/π)

By iterating the inequality and assuming the norm is
bounded (for example, by ensuring that the policy probabil-
ity does not have zero support), we can make the following
conclusion for a fixed learning rate γt = γ:

DKL(π
∗, πT ) ≤

DKL(π
∗, π̃c) + (1− γ)TDKL(π

∗, π0) + (2/γσ)∥δt∥2q
≤ DKL(π

∗, π̃c) + e−γTDKL(π
∗, π0) + (2/γσ)∥δt∥2q (10)

where π∗ is Nash equilibrium, c =
argmaxt∈0,...,T DKL(π

∗, π̃t). From it, we can con-
clude convergence on average but last iterate convergence
is not guaranteed (unless DKL(π

∗, π̃c) = 0).

5.3. Future works

An important future direction is to test LANA across differ-
ent and larger models to assess the role of the base model.
Additionally, we didn’t have enough compute to train on
more than 3k prompts. The question remains how much
more improvement LANA alignment would have provided
with continued training on more instructions.

Moreover, sampling during training leads to highly ineffi-
cient training. Tricks such as PagedAttention (Kwon et al.,
2023) are also not applicable during training. Improving the
training efficiency of LANA is another important area for
future work.
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