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Figure 1: Zero-shot Long-horizon Manipulation Our approach trains a library of generalist manipulation skills
in simulation and transfers them zero-shot to long-horizon manipulation tasks. We show a single, text-conditioned
agent can manipulate unseen objects, in arbitrary poses and scene configurations, across long-horizons in the
real world, solving challenging manipulation tasks with complex obstacles.

Abstract: Sim2real for robotic manipulation is difficult due to the challenges of1

simulating complex contacts and generating realistic task distributions. To tackle2

the latter problem, we introduce ManipGen, which leverages a new class of poli-3

cies for sim2real transfer: local policies. Locality enables a variety of appealing4

properties including invariances to absolute robot and object pose, skill ordering,5

and global scene configuration. We combine these policies with foundation models6

for vision, language and motion planning and demonstrate SOTA zero-shot per-7

formance of our method to Robosuite benchmark tasks in simulation (97%). We8

transfer our local policies from simulation to reality and observe they can solve9

unseen long-horizon manipulation tasks with up to 8 stages with significant pose,10

object and scene configuration variation. ManipGen outperforms SOTA approaches11

such as SayCan, OpenVLA and LLMTrajGen across 50 real-world manipulation12

tasks by 36%, 76% and 62% respectively. All code, models and datasets will be13

released. Video results at manipgen.github.io14

Keywords: Sim-to-Real Transfer, Long-horizon Manipulation15

1 Introduction16

How can we develop generalist robot systems that plan, reason, and interact with the world like17

humans? Tasks that humans solve during their daily lives, such as those shown in Figure 1, are18
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incredibly challenging for existing robotics approaches. Cleaning the table, organizing the shelf,19

putting items away inside drawers, etc. are complex, long-horizon problems that require the robot20

to act capably and consistently over an extended period of time. Furthermore, such a generalist21

robot should be able to do so without requiring task-specific engineering effort or demonstrations.22

Although large-scale data-driven learning has produced generalists for vision and language [1], such23

models don’t yet exist in robotics due to the challenges of scaling data collection. It often takes24

significant manual labor cost and years of effort to just collect datasets on the order of 100K-1M25

trajectories [2, 3, 4, 5]. Consequently, generalization is limited, often to within centimeters of an26

object’s pose for complex tasks [6, 7].27

Instead, we seek to use a large-scale approach via simulation-to-reality (sim2real) transfer, a cost-28

effective technique for generating vast datasets that has enabled training generalist policies for loco-29

motion which can traverse complex, unstructured terrain [8, 9, 10, 11, 12, 13]. While sim2real transfer30

has shown success in industrial manipulation tasks [14, 15, 16], including with high-dimensional31

hands [17, 18, 19, 20], these efforts often involve training and testing on the same task in simulation.32

Can we extend sim2real to open-world manipulation, where robots need to solve any task from33

text instruction? The core bottlenecks are: 1) accurately simulating contact dynamics [21] - for34

which strategies such as domain randomization [17, 22], SDF contacts [23, 14, 15], and real world35

corrections [16] have shown promise, 2) generating all possible scene and task configurations to36

ensure trained policies generalize and 3) acquiring long-horizon behaviors themselves, which may37

require potentially intractable amounts of data for as the horizon grows.38

To address points 2) and 3), our solution is to note that for many manipulation tasks of interest,39

the skill can be simplified to two steps: achieving a pose near a target object, then performing40

manipulation. The key idea is that of locality of interaction. Policies that observe and act in a region41

local to the target object of interest are by construction:42

• absolute pose invariant: they reason over a smaller set of relative poses between objects and robot.43

• skill order invariant: transition from the termination to initiation of policies via motion planning.44

• scene configuration invariant: they solely observe the local region around the point of interaction.45

We propose a novel approach that leverages the strong generalization capabilities of existing founda-46

tion models such as Visual Language Models (VLMs) for decomposing tasks into sub-problems [1],47

processing and understanding scenes [24] and planning collision-avoidant motions [25]. Specifically,48

given a text prompt, our approach outputs a plan to solve the task (using a VLM), estimates where to49

go and moves the robot accordingly (using motion planning) and deploys local policies to perform50

interaction. As a result, a simple scene generation approach can produce strong transfer results across51

many manipulation tasks (Fig. 1).52

Our contribution is an approach to training agents at scale solely in simulation that are capable53

of solving a vast set of long-horizon manipulation tasks in the real world zero-shot. Our method54

generalizes to unseen objects, poses, receptacles and skill order configurations. To do so, our method,55

ManipGen, 1) introduces a novel policy class for sim2real transfer 2) proposes techniques for training56

policies at scale in simulation 3) and deploys policies via integration with VLMs and motion planners.57

We perform a thorough, real world evaluation of ManipGen on 50 long-horizon manipulation tasks58

in five environments with up to 8 stages, achieving a success rate of 76%, outperforming SayCan,59

OpenVLA and LLMTrajGen by 36%, 76% and 62%.60

2 Related Work61

Long-horizon Robotic Manipulation Sense-Plan-Act (SPA) has been explored extensively over the62

past 50 years [26, 27, 28, 29, 30, 31]. Traditionally, SPA assumes access to accurate state estimation,63

a well-defined model of the environment and low-level control primitives. SPA, while capable of64

generalizing to a broad set of tasks, can require manual engineering and systems effort to set up [32],65

struggles with contact-rich interactions [33, 34] and fails due to state-estimation errors [35]. By66

contrast, our method can be deployed to new tasks using generalist models which have minimal setup67
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Figure 2: ManipGen Method Overview (left) Train 1000s of RL experts in simulation using PPO (middle)
Distill single-task RL experts into generalist visuomotor policies via DAgger (right) Text-conditioned long-
horizon manipulation via task decomposition (VLM), pose estimation and goal reaching (Motion Planning) and
sim2real transfer of local policies

cost, train polices for contact-rich interactions and handle state-estimation issues by training with68

significant local randomization.69

Zero/Few-shot Manipulation Using Foundation Models The robotics community has begun to70

investigate VLM’s capabilities for controlling robots in a zero/few-shot manner [36, 37, 38, 39, 40,71

41, 42, 43, 44]. Work such as SayCan [36] and TidyBot [39] are similar to our own. They behavior72

clone / design a library of skills and use LLMs to perform task planning over the set of skills. Our73

work focuses primarily on designing the structure of skills for low-level control, decomposing them74

into motion planning and sim2real local policies. On the other hand, works such as LLMTrajGen [45]75

and CoPa [46] directly prompt VLMs to output sequences of end-effector poses, but are limited to76

short horizon tasks. Finally, PSL [44] and Boss [42] use LLMs to accelerate the RL training process77

for long-horizon tasks, yet must train on the test task, unlike our method which can solve a wide array78

of manipulation tasks zero-shot.79

Sim2real approaches in robotics Transfer of RL policies trained with procedural scene generation80

has produced generalist robot policies for locomotion [8, 9, 11, 10, 12]. However, the robot is81

often trained for a single skill, such as walking, or a limited set of similar skills, such as walking at82

different velocities or headings. Sim2real transfer has also been explored for transferring dexterous83

manipulation skills [17, 22, 18, 47, 19] and contact-rich manipulation [14, 15, 16]. In our work,84

we train a variety of skills for manipulation and demonstrate zero-shot capabilities on a large set85

of unseen tasks. We outperform methods that use end-to-end sim2real transfer [48] as well as real86

world corrections [16], ManipGen is orthogonal to human correction approaches, and can benefit87

from real-world data as well.88

3 Methods89

To build agents capable of generalizing to a wide class of long-horizon robotic manipulation tasks,90

we propose a novel approach (ManipGen) that hierarchically decomposes manipulation tasks, takes91

advantage of the generalization capabilities of foundation models for vision and language and92

uses large-scale learning with our proposed policy class to learn manipulation skills. We begin by93

describing our framework (Fig. 2) and formulate local policies. We then discuss how to train local94

policies for sim2real transfer. Finally, we outline deployment: integrating VLMs, Motion Planning95

and sim2real policy learning to foster broad generalization.96

3.1 Framework97

We can decompose any task the robot needs to complete into a problem of learning a set of temporally98

abstracted actions (skills) as well as a policy over those skills [49]. Given a language goal g, and99

observation O, we can select our policy over skills, pθ(gk|g,O) to be a pre-trained VLM, where gk is100
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skill k. State-of-the-art VLMs can decompose robotics tasks into language subgoals [36, 37, 38, 39]101

because they are trained using a vast corpus of internet-scale data and have captured powerful, visually102

grounded semantic priors for what various real world tasks look like.103

Any policy class can be used to define the skills, denoted as pϕk
(at|gk, Ot), which take in the104

kth sub-goal gk and current observation Ot. However, note that many manipulation skills (e.g.105

picking, pushing, turning, etc.) can be decomposed into a policy πreach to achieve target poses near106

objects Xtarg,k followed by policy πloc for contact-rich interaction. Accordingly, pϕk
(at|gk, Ot) =107

πreach(τreach|gk, Ot)πloc(a
t
loc|Ot

loc). To implement πreach, we need to interpret language sub-goals108

gk to take the robot from its current configuration qk,i to some target configuration qk,f such that Xee109

(the end-effector pose) is close to Xtarg,k. Thus, we structure the VLM’s sub-goal predictions, gk, as110

tuples containing the following information (object, skill). We then interpret these plans into robot111

poses by pairing any language conditioned pose estimator or affordance model (to predict Xtarg,k)112

with an inverse kinematics routine (to compute qk,f ). Motion planning can predict actions τreach to113

achieve the target configuration qk,f while avoiding collisions.114

Finally, we instantiate local policies (πloc) to be invariant to robot and object poses, order of skill115

execution and scene configurations with: 1) initialization region sinit near a target region/object of116

interest which has pose Xtarg,k, 2) local observations Ot
loc, independent of the absolute configuration117

of the robot and scene and only observing the environment around the interaction region and 3) actions118

atlocrelative to the local observations. Overall: πloc(a
t
loc|Ot

loc), sinit = {s | ||Xee −Xtarg,k||2 < ϵ}.119

3.2 Training Local Policies for Sim2Real Manipulation120

To train local policies, we adapt the standard two-phase training approach [47, 12, 11, 50, 19, 16] in121

which we first train state-based expert policies using RL, then distill them into visuomotor policies122

for transfer. Although local policies can generalize automatically across scene arrangements, robot123

configurations, and object poses, they must be trained across a wide array of objects to foster object-124

level generalization. To do so, we train a vast array of single-object state-based experts and then125

distill them into generalist visuomotor policies per skill.126

While such local policies can cover a broad set of manipulation skills (pick and place, articu-127

lated/deformable object manipulation, assembly, etc.), in this work, we focus on training the following128

skills πloc: pick, place, grasp handle, open and close as a minimal skill library to demonstrate129

generalist manipulation capabilities for a specific class of tasks. Pick grasps any free rigid objects.130

Place sets the object down near the initial pose. Grasp Handle grasps the handle of any door or131

drawer. Open and Close pull or push doors and drawers to open or close them.132

To train robust local policies via RL, they require a diverse set of training environments, carefully133

designed observations and action spaces and well-defined reward functions enabling them to acquire134

behaviors in a manner that will transfer to the real world. We describe how to in this section.135

Data Generation We need to first specify a set of objects to manipulate, an environment, and an initial136

local state distribution. For pick/place, we train on 3.5K objects from UnidexGrasp [51], randomly137

spawned on a table top. To ensure local policies can learn obstacle avoidance and constrained138

manipulation, we spawn clutter objects and obstacles in the scene. We sample initial poses in a139

half-sphere, with the gripper pointing toward the object (for picking) and near the placement location140

(for placing). For local articulated object manipulation, the region of interaction only contains the141

handle (2.6K objects of Partnet [52]) and door/drawer surface (designed as cuboids). We randomize142

the size, shape, position, orientation, joint range, friction and damping coefficients, covering a wide143

set of real world articulated objects. We sample initial poses in a half-sphere around the handle144

(for grasp handle) and a randomly sampled initial joint pose (open/close). Finally we collect valid145

pre-grasp poses (antipodal sampling [53]) for picking and grasping handles and rest poses (from146

UnidexGrasp) for learning placing.147

Observations We use a single observation space for all RL experts, accelerating learning by incor-148

porating significant amounts of privileged information. Blind local policies can struggle to learn to149
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manipulate objects with complex geometries as it is often necessary to have some notion of object150

shape to know how to manipulate. Thus, we propose to use a low-dimensional representation of the ob-151

ject shape by performing Farthest Point Sampling (FPS) on the object mesh with a small set number of152

desired key-points K (16). Furthermore, to ease the burden of credit assignment and thereby accelerate153

learning, we incorporate the individual reward components {r} and an indicator for the final observa-154

tion 1{t = T}. RL observations are Ot = ⟨Xt
ee,

˙Xee
t
, Xt

obj , {FPSt
obj}Kk=1, {r}t,1{t = T}⟩155

Actions We use the action space from Industreal [14] which has been shown to successfully transfer156

manipulation policies from sim2real for precise assembly tasks. Our policies predict delta pose157

targets for a Task Space Impedance (TSI) controller, where a = [∆x; ∆θ], where ∆x is a position158

error and ∆θ is a axis-angle orientation error.159

Rewards We train RL policies (πlock ) in simulation using reward functions we design to elicit the160

desired behavior per skill k. We propose a reward framework that encompasses our local skills:161

r = c1ree + c2robj + c3ree,obj + c4raction + c5rsucc. r specifies behavior for a broad range of162

manipulation tasks which involve moving the end-effector to specific poses (often right before contact)163

as well as a target object to desired poses and need to do so while maintaining certain constraints on164

the relative motion between the end-effector and the object as well as pruning out undesirable actions.165

ree encourages reaching/maintaining specific end-effector poses, robj restricts/encourages specific166

object poses or joint configurations, ree,obj constrains the end-effector motion relative to the object(s)167

in the scene, raction restricts or penalizes undesirable actions and rsucc is a binary success reward.168

Please see the website for detailed descriptions of the task specific reward functions.169

3.3 Generalist Policies via Distillation170

In order to convert single-object, privileged policies into real world deployable skills, we distill them171

into multi-object, generalist visuomotor policies using DAgger [54].172

Multitask Online Imitation Learning Empirically the standard, off-policy version of DAgger with173

interleaved behavior cloning (to convergence) and large dataset collection does not perform well. The174

policy ends up modeling data from policies whose state visitation distributions deviate significantly175

from the current policy. On the other hand, on-policy variants of DAgger, which take a single gradient176

step per environment step [10, 47, 50, 19], can produce unstable results in the multi-task regime since177

the policy only gets data from a single object in a batch. We introduce a simple variant of DAgger178

which smoothly trades off between the two extremes by incorporating a replay buffer of size K that179

holds the last K ∗ B trajectories in memory. Training alternates between updating the agent for a180

single epoch on this buffer and collecting a batched set of trajectories (size B) from the environment181

for the current object.182

Observation Space Design for Locality For local policies to transfer effectively to the real robot,183

the observation space and augmentations must be designed with transfer in mind. To imitate a184

privileged expert, our observation space must be expressive - providing as much information as185

possible to the agent. The observations must also be local to enable all of the properties of locality,186

and augmentations must ensure the policy is robust to noisy real world vision.187

Local observations use wrist camera depth maps. Depth maps transfer well from sim2real for188

locomotion [10, 11, 12, 50], and wrist views are inherently local and improve manipulation per-189

formance [55, 56, 57]. To further enforce locality, we clamp depth values and normalize them.190

Since local wrist-views often get extremely close to the object during execution, it can become191

difficult for the agent to understand the overall object shape. Thus, we include the initial local192

observation O0
loc,depth at every step with a segmentation mask of the target object (O0

loc,seg) so193

that the local policy is aware of which object to manipulate. We transform absolute proprioception194

into local by computing observations relative to the first time-step (Oloc,ee = [X0
ee,t −X0

ee]) and195

incorporate velocity information ( ˙Oloc,ee,t), which improves transfer. Our observation space is196

Ot
loc = ⟨Ot

loc,depth, O
0
loc,seg, O

0
loc,depth, O

t
loc,ee,

˙Ot
loc,ee⟩.197
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Augmentations To enable robustness to noisy real world observations, namely edge artifacts and198

irregular holes, we augment the clean depth maps we obtain in simulation. For edge artifacts, in which199

we observe dropped pixels and noisiness along edges, we use the correlated depth noise via bi-linear200

interpolation of shifted depth from [58] which tends to model this effect well. We also observe201

that real world depth maps tend to have randomly placed irregular holes (pixels with depth 0). As a202

result, we compute random pixel-level masks and Gaussian blur them to obtain irregularly shaped203

masks that we then apply to the depth image. We also use random camera cropping augmentations204

which has been shown to improve visuomotor learning performance [57]. Finally, we augment the205

proprioceptive observations to ensure robustness to exact measurements, adding uniformly random206

noise to the translation and rotation.207

3.4 Zero-shot Text Conditioned Manipulation208

Given our framework and trained local policies, how do we now deploy them in the real-world, to209

solve a wide array of manipulation tasks in a zero shot manner?210

To enable our system to solve long-horizon tasks, pθ(gk|g,O), decomposes the task into a skill chain211

to execute given goal g. We implement pθ as GPT-4o, a SOTA VLM. Given the task prompt g,212

descriptions of the pre-trained local skills and how they operate, and images of the scene O, we213

prompt GPT-4o to give a plan for the task structured as a list of (object, skill) tuples. For example,214

for the task shown in Fig. 2, GPT outputs ((handle, open), (rice pick), (microwave, place), (handle,215

close)). We then need a language conditioned pose estimator (to compute Xtarg,k) that generalizes216

broadly; we opt to use Grounded SAM [24] due to its strong open-set segmentation capabilities.217

To estimate Xtarg,k, we can segment the object pointcloud, average it to get a position and use its218

surface normals to select a collision-free orientation. One issue is that Grounding Dino [59], used in219

Grounded SAM, is very sensitive to the prompt. As a result, we pass its predictions back into GPT-4o220

to adjust the object prompts to capture the correct object.221

For predicting τreach, while any motion planner can be used, we select Neural MP [25] due to its fast222

planning time (3s) and strong real-world planning performance. Given Xtarg,k, we compute target223

joint state qk,f , plan with Neural MP open-loop and execute the predicted τreach on the robot using a224

PID joint controller. We then execute the appropriate local policy (as predicted by the VLM) on the225

robot to perform manipulation. We alternate between motion planning and local policies until the226

task is complete. Finally, we note that the particular choice of models is orthogonal to our method.227

4 Experimental Results228

We pose the following experimental questions that guide our evaluation: 1) Can an autonomous229

agent control a robot to perform a wide array of long-horizon manipulation tasks zero-shot? 2) How230

does our approach compare to methods that learn from online interaction? 3) For direct sim2real231

transfer, how do Local Policies compare against end-to-end learning and other transfer techniques232

that leverage human correction data? 4) To what degree do the design decisions made in ManipGen233

affect the performance of the method?234

4.1 Simulation Comparisons and Analysis235

Robosuite Benchmark Results We first evaluate against the long-horizon manipulation tasks used236

in PSL [44] from the Robosuite benchmark [60] in simulation. We compare to end-to-end RL meth-237

ods [61], hierarchical RL [62, 44], task and motion planning [63] and LLM planning [36]. In these238

experiments, we zero-shot transfer our trained policies to Robosuite and evaluate their performance239

against methods that use task specific data (Tab. 1). ManipGen outperforms or matches PSL, the SOTA240

method on these tasks, across the board, achieving an average success rate of 97.33% compared to241

95.83%. These results demonstrate that ManipGen can outperform methods that are trained on the task242

of interest [44, 62, 61] as well as planning methods that have access to privileged state info [63, 36].243
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Bread Can Milk Cereal CanBread CerealMilk Average

Stages 2 2 2 2 4 4

DRQ-v2 52% 32% 2% 0% 0% 0% 14%
RAPS 0% 0% 0% 0% 0% 0% 0%
TAMP 90% 100% 85% 100% 72% 71% 86%
SayCan 93% 100% 90% 63% 63% 73% 80%

PSL 100% 100% 100% 100% 90% 85% 96%

Ours 100% 100% 99% 97% 97% 91% 97%

Table 1: Robosuite Benchmark Results. ManipGen zero-shot transfers to Robosuite, outperforming end-to-
end and hierarchical RL methods as well as traditional and LLM planning methods.

Tasks Ours Transic Direct
Transfer

DR. & Data
Aug. [48] HG-Dagger [68] IWR [69] BC [65]

Stabilize 95% 100% 10% 35% 65% 65% 40%
Reach and Grasp 95% 95% 35% 60% 30% 40% 25%

Insert 80% 45% 0% 15% 35% 40% 10%

Avg 90% 80% 15% 36.7% 43.3% 48.3% 25%

Table 2: Transic Benchmark Results ManipGen achieves SOTA results on the Transic [16] benchmark in
terms of task success rate without using any real world data, outperforming direct transfer, imitation learning
and human-in-the-loop methods.

ManipGen Analysis and Ablations. We study design decisions proposed in our method by training244

single object pick policies on 5 objects (remote, can, bowl, bottle, camera) and testing on out held out245

poses. We begin with our observation space design choices: ManipGen achieves 97.44% success246

rate in comparison to (94.33%, 96.64%, 97.25%) for removing key-point observations, success247

observation and reward observations respectively. Incorporating key-point observations is the most248

impactful change, enabling the agent to perceive the shape of the target object. Next, we evaluate249

how the level of locality (the size of the region around the target object that we initialize over)250

affects learning performance. At convergence, we find that ManipGen (8cm max distance from251

target) achieves 97.44% success rate while performance diminishes with increasing distance (95.65%,252

89.55%, 72.52%) for 16cm, 32cm and 64cm respectively.253

For DAgger, we analyze our observation design choices and find that including velocity information,254

the first observation, and changing proprioception to be relative to the first frame are crucial to the255

success of our method. While ManipGen gets 94.3% success, removing velocity info and using256

absolute proprioception hurt significantly (89.92% and 90.94%) while removing the first observation257

drops performance to 93.13%. We also vary the DAgger buffer size, from 1 (on-policy), 10, 100, and258

1000 (off-policy) for multitask training (with 3.5K objects, not 5). We find that 100 performs best,259

achieving 85% in simulation averaged across 100 held out objects, out performing (78%, 82% and260

75%) for 1, 10 and 1000 respectively.261

4.2 Real World Evaluation262

FurnitureBench Results To evaluate the sim2real capabilities of local policies (Tab. 2), we deploy263

ManipGen on FurnitureBench [64], comparing against a wide array of direct-transfer [48], imitation264

learning [65, 66], offline RL [67] and human-in-the-loop methods [16, 68, 69] from Transic [16].265

These tasks are single stage; we train local policies to perform pushing (Stabilize), picking (Reach266

and Grasp) and insertion (Insert). We predict a start pose to initialize the local policy from and267

deploy the simulation-trained policies. ManipGen matches or outperforms end-to-end direct transfer268

methods (75%, 53.3%), imitation methods (55%, 82.7%, 65%, 75%, 86.7%) and sim2real methods269

that leverage additional correction data [16]. For Insert, local policies are able to outperform Transic270

without using any real world data, achieving 80% while Transic achieves 45%. These experiments271

demonstrate ManipGen improves over end-to-end learning and is capable of handling challenging272

initial states, contact-rich interaction and precise motions.273

Zero-shot Long-horizon Manipulation To test the generalization capabilities of our method, we274

propose 5 diverse long-horizon manipulation tasks (Fig. 1) which involve pick and place, obstacle275
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Cook Replace CabinetStore DrawerStore Tidy Avg

Stages 2 4 4 6 8 4.8

OpenVLA 0% (0.1) 0 (0.0) 0% (0.0) 0 (0.0) 0 (0.0) 0% (.02)
SayCan 80% (1.7) 10% (1.3) 70% (3.5) 20% (3.6) 20% (4.8) 40% (3.0)
LLMTrajGen 70% (1.5) 0% (0.6) 0% (0.6) 0% (1.0) 0% (2.6) 14% (1.3)
Ours 90% (1.9) 80% (3.7) 90% (3.9) 60% (4.7) 60% (7.2) 76% (4.3)

Table 3: Zero-shot Long Horizon Manipulation We report task success rate and average number of stages
completed per real world task. ManipGen outperforms all methods on each task, achieving 76% with 4.28/4.8
stages completed on average.

avoidance and articulated object manipulation. Cook: put food into a pot on a stove (2 stages),276

Replace: take a pantry item out of the shelf, put it on a tray and take an object from the tray and put277

it in the shelf (4 stages), CabinetStore: open a drawer in the cabinet, put an object inside and close it278

(4 stages). DrawerStore: open a drawer, put two personal care items inside and close the drawer279

(6 stages) and Tidy: clean up the table by putting all the toys into a bin (8 stages). Each task has a280

unique object set (5 objects), receptacle (pot, shelf, etc.) and text description. We run 10 evaluations281

per task, randomizing which objects are present and their poses, receptacle poses, and target poses.282

All poses are randomized over the table and we select a diverse set of evaluation objects.283

Comparisons We evaluate SOTA text-conditioned manipulation approaches: SayCan [36] and284

LLMTrajGen [45]. For SayCan, we use our VLM and motion planning system with engineered285

primitives for interaction; testing the importance of training local policies. We compare against a286

pre-trained model for manipulation, OpenVLA [70]. For each task, we collect 25 demonstrations on287

held out objects in held out poses and scene configurations and fine-tune OpenVLA per task. We pass288

in a text prompt specifying the task, recording the task success rate and number of stages completed.289

Across all 5 tasks (Tab. 3), we find that ManipGen outperforms all methods, achieving 76% zero-shot290

success rate overall. Note that we have not trained our local policies on any of these specific objects291

or in these specific configurations; there is no adaptation in the real world. ManipGen is able to avoid292

obstacles while performing manipulation of unseen objects in arbitrary poses and configurations.293

Failure cases for our method resulted from 1) vision failures as open-set detection models such as294

Grounding Dino [59] detected the wrong object, 2) imperfect motion planning, resulting in collisions295

with the environment during execution which dropped objects sometimes and 3) local policies296

failing to manipulate from sub-optimal initial poses. In general, DrawerStore and Tidy are the most297

challenging tasks due to their horizon, and consequently all methods, including our own perform298

worse (60% for ours, 20% for best baseline).299

SayCan is the strongest baseline (40% success), achieving non-zero success on every task by lever-300

aging the generalization capabilities of vision-language foundation models in a structured manner.301

However, when initial poses are not ideal or the task requires contact-rich control, pre-defined primi-302

tives fall apart (10-20% success). LLMTrajGen, while capable of performing top-down unconstrained303

pick and place (Cook: 70%), only makes partial progress on tasks requiring obstacle avoidance304

(Replace) or articulated object manipulation (Store) as its prompts struggle to cover those cases well.305

Finally, OpenVLA failed to solve any task, failing to generalize to held out objects and poses even306

though it was the only method that was given few-shot data. We attempted to evaluate it on its training307

objects and it still performs poorly with strong pose randomization.308

5 Discussion309

We present ManipGen, a method for solving long-horizon manipulation tasks with unseen objects in310

unseen configurations by training generalist policies for sim2real transfer. We propose local policies,311

a novel policy class for sim2real transfer that is pose, skill order and scene configuration invariant,312

enabling broad generalization. For deployment, we take advantage of the generalization capabilities313

of foundation models for vision, language and motion planning to solve long-horizon manipulation314

tasks from text prompts. Across 50 real-world long-horizon manipulation tasks, our method achieves315

76% zero-shot success, outperforming SOTA planning and imitation methods on every task.316
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[32] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in405

belief space for partially observable task and motion problems. In 2020 IEEE International406

Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.407

[33] M. T. Mason. Mechanics of robotic manipulation. MIT press, 2001.408

[34] D. E. Whitney. Mechanical assemblies: their design, manufacture, and role in product develop-409

ment, volume 1. Oxford university press New York, 2004.410
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Appendix531

A Experiment Details532

A.1 Training and Deployment Details533

Architecture and Training We train all RL policies at scale using PPO [71] in GPU-parallelized534

simulation [72] (Fig. 3). We train for 500 epochs, with an environment batch size of 8192 and max535

episode length of 120 steps per skill. To learn visuomotor policies to perform high-frequency (60536

Hz) end-effector control, we pair Resnet-18 [73] and Spatial Soft-max [74] with a two layer MLP537

decoder (4096 hidden units). Finally, for training, minimizing Mean Squared Error loss is sufficient538

for learning multitask policies via DAgger. In early experiments, we found that our architecture539

performs comparably to using LSTMs [75], Transformers [76], and ACT [6] and is faster to train540

(5-10x) and deploy (2x).541

Hardware Setup We use the Franka Panda robot arm with the UMI [77] gripper fingertips and a542

wrist-mounted Intel Realsense d405 camera for obtaining local observations (84x84 resolution). We543

perform hole-filling and smoothing to clean the depth maps. For real world control, we use a TSI544

end-effector controller at 60 Hz with (Leaky) Policy Level Action Integration (PLAI) [14]. We use545

Leaky PLAI with .001 position action scale, .05 rotation action scale for pick and .005 rotation action546

scale for all other skills. Finally, we use 4 calibrated Intel Realsense d455 cameras for global view547

observations (640x480).548

Figure 3: Training Environments We train local policies (left to right) on picking, placing, handle grasping,
opening and closing.
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