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Abstract
The complexity of code reviews has driven ef-
forts to automate review comments, but prior ap-
proaches oversimplify this task by treating it as
snippet-level code-to-text generation and relying
on text similarity metrics like BLEU for evalu-
ation. These methods overlook repository con-
text, real-world merge request evaluation, and
defect detection, limiting their practicality. To
address these issues, we explore the full automa-
tion pipeline within the online recommendation
service of a company with nearly 400 million
daily active users, analyzing industry-grade C++
codebases comprising hundreds of thousands of
lines of code. We identify four key challenges:
❶ capturing relevant context, ❷ improving key
bug inclusion (KBI), ❸ reducing false alarm rates
(FAR), and ❹ integrating human workflows. To
tackle these, we propose ❶ code slicing algo-
rithms for context extraction, ❷ a multi-role LLM
framework for KBI, ❸ a filtering mechanism for
FAR reduction, and ❹ a novel prompt design for
better human interaction. Our approach, validated
on real-world merge requests from historical fault
reports, achieves a 2× improvement over standard
LLMs and a 10× gain over previous baselines.
While the presented results focus on C++, the un-
derlying framework design leverages language-
agnostic principles (e.g., AST-based analysis),
suggesting potential for broader applicability.

1. Introduction
Code review is essential for improving code quality and
detecting defects (Fagan, 2002). Modern Code Review
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(MCR) is widely used in open-source (Rigby et al., 2008;
2014; Rigby & Bird, 2013) and industrial settings (Sadowski
et al., 2018; Shan et al., 2022), typically involving: (A) code
submission, (B) reviewer examination, (C) feedback, and
(D) developer revisions.

Despite its benefits, MCR is labor-intensive and time-
consuming (Yang et al., 2016), driving research toward
automated review comment generation. Existing meth-
ods—whether retrieval-based (Gupta & Sundaresan, 2018;
Siow et al., 2020; Hong et al., 2022) or deep-learning-driven
(Tufano et al., 2021; 2022; Li et al., 2022b;a; Lin et al.,
2023; Lu et al., 2023)—often frame it as a snippet-level
code-to-text task. However, this oversimplification diverges
from the core goal of reviewers: detecting defects (Bacchelli
& Bird, 2013) (see Section A). Furthermore, current eval-
uations rely excessively on textual similarity metrics (e.g.,
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)), which
fail to measure real-world effectiveness (Lu et al., 2025).

Challenges. To address these limitations, we investigate a
full code review pipeline within a real-world online service
(Figure 1). Our system integrates with an internal DevOps
platform, generating review reports, filtering comments, and
aligning them with code lines. A detailed description of
this real-world workflow integration, designed for seamless
adoption by developers, is provided in Appendix B. This
deployment reveals four key challenges (Appendix C):

Capturing Proper Code Context: Effective review requires
analyzing dependencies beyond the immediate diff hunk
(e.g., variable declarations or method calls). However, exces-
sively long inputs degrade LLM performance, necessitating
efficient context extraction.

Improving Key Bug Inclusion (KBI): The goal of automated
review is to detect critical defects, yet existing methods rely
on textual similarity metrics, which fail to measure defect
detection capability. More robust evaluation methods, such
as Key-Bug Inclusion (KBI), are needed.

Reducing False Alarm Rates (FAR): Generative models of-
ten produce irrelevant or overly strict comments (e.g., nit-
picks, hallucinations), burdening developers. A robust fil-
tering mechanism is required to reduce false positives and
enhance signal-to-noise ratio.

Human-Centric Workflow Integration: Practical review tools

1



Towards Practical Defect-Focused Automated Code Review

Venn_diagram.pdfVenn_diagram.pdf

Check User White List Auto Review 
Workflow

Check File White ListCode Author Makes a Merge Request

Comment on WebsiteNotice the Participants Attach Comments to File Lines

Figure 1. The code review automation pipeline integrated into the online service.

must seamlessly integrate into developers’ workflows, ensur-
ing comment alignment with code lines while minimizing
cognitive overhead. Existing solutions often overlook this
critical usability aspect.

Our Approach. To address these challenges, we propose:
❶ A static analysis system using code slicing to extract
relevant context. ❷ A multi-role LLM framework with
chain-of-thought reasoning to enhance defect detection. ❸
A filtering mechanism to eliminate false positive nitpicks
and hallucinations. ❹ A line-aware prompt design for pre-
cise comment placement.

Evaluation. We validate our framework on real-world sys-
tem failures, including historical core dumps and fault re-
ports that caused significant financial losses. We evaluate it
using multiple open-source LLM engines, demonstrating a
2× performance improvement over standard LLM methods
and a 10× improvement over prior baselines. An ablation
study further confirms the contribution of each component,
highlighting the impact of code slicing, multi-role reasoning,
and filtering mechanisms.

Contributions. Our key contributions include being the first
to: ❶ Repository-Level and Merge-Request Granularity:
Elevating automated code review from snippet-level tasks to
repository-wide and merge-request (pull-request) granular-
ity. ❷ Integration with Real-World DevOps Workflows:
Deploying automation into a practical online review system
with more practical and objective evaluation metrics beyond
text similarity. ❸ Validation on Industry-Scale Defects:
Demonstrating effectiveness on real-world, high-impact fail-
ures in industry-level codebases instead of synthetic test
data. ❹ Code-Review-Oriented LLM Framework: De-
signing a specialized framework leveraging code slicing,
multi-role collaboration, and filtering mechanisms, achiev-
ing substantial improvement in code review performances.

2. Background: Code Review Automation
Automating code review is crucial for maintaining software
quality by identifying critical bugs early. The goal is to
detect severe issues in new merge requests and provide

necessary comments. In 2022, company reports showed
that 30% of severe P1+ incidents (asset losses exceeding
$350,000) and 24.04% of P4+ incidents stemmed from low-
level faults due to inadequate reviews. Even in 2024, change-
related core failures accounted for 67% of incidents, with
code change-related graded incidents comprising 19.54%,
highlighting the urgent need for effective automated review
tools. These tools help ensure thorough, compliant reviews,
reducing defect risks.

To understand reviewer needs, we surveyed a super reviewer
group, summarizing findings in Section D. Background on
code slicing and multi-role systems, key techniques in our
work, is introduced in Sections E and F.

3. Proposed Approach
3.1. Overview

Figure 2 illustrates our decoupling process of code review
automation architecture: 1) Code Slicing: Extracting code
from the diff hunk within repository context (Section 3.2); 2)
Multi-role Code Review System: Employing a multi-role
system to conduct reviews and compile the results (Section
3.3); 3) Redundancy Comment Filter Mechanism: Filter-
ing out redundant and irrelevant comments to avoid nitpicks
and hallucinations (Section 3.4); 4) Line Number Local-
ization: Ensuring precise identification of code lines where
issues occur (Section 3.5). To evaluate the automation, we
construct a dataset from historical fault reports, simulating
real-world merge requests that introduced defects (Section
3.6).

3.2. Code Slicing

Previous work used method-level or diff-level code snippets
as independent inputs. However, new code is integrated into
a larger codebase during reviews, and understanding the
structural context is crucial. We developed a code slicing
process that integrates multiple slicing strategies, selectable
based on the analysis needs. To avoid redundant slices, we
use a caching mechanism to enhance efficiency.

The pseudo code of our slicing algorithms is presented in
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Figure 2. An overview of our automated code review workflow.

Section G. Initially, the repository is cloned, and the merge
request commit is checked out. A static analysis tool is
then applied to generate abstract syntax trees (ASTs), which
serve as the foundation for our slicing process. Based on
data dependencies and control flow analysis, one or more
of the following four optional slicing algorithms may be
applied: 1) Original Diff: The basic code diff without trans-
formations, capturing essential changes in the commit. 2)
Parent Function: Locates the smallest parent function con-
taining the changes, providing functional context. 3) Left
Flow: Tracks the flow of all left-hand values (L-values) in
the function and control structures, focusing on the lifecycle
of variables. 4) Full Flow: Extends Left Flow by tracing
right-hand values (R-values) and collecting the signatures
of callee functions, offering coverage of variable usage and
modifications.

3.3. Multi-role Code Review System

Our multi-role code review system involves four key roles:
Reviewer, Meta-Reviewer, Validator, and Translator. These
roles collaborate to enhance the accuracy and efficiency
of the review process. The system design is illustrated in
Figure 3, and we detail the roles and their processes below.

❶ Reviewer: Reviews each code snippet generated by the
code slicing algorithm (Section 3.2) and provides detailed
comments on potential issues in a predefined format. ❷
Meta-Reviewer: Aggregates comments from multiple Re-
viewers, filtering and sorting them based on predefined
thresholds. It merges common issues across reviews. ❸
Validator: Validates and refines the merged comments, re-
scores them, and ensures that only comments exceeding a
certain threshold are retained. ❹ Translator: Translates the
final comments into the required language for multinational
teams, ensuring proper formatting for direct integration into
the development environment. Each role is integrated with
Chain-of-Thought technique, as detailed in Section H.

3.4. Redundancy Comment Filter Mechanism

LLMs often produce an overwhelming number of comments,
many of which are either nitpicks or hallucinations. To mit-
igate this issue, we implemented a Redundancy Comment
Filter Mechanism to reduce the number of irrelevant com-
ments.

Our filtering mechanism, integrated within the multi-role
system (Section 3.3), operates by answering three key ques-
tions for each comment: Q1: Is this comment a nitpick?
Typical nitpicks include excessive code comments, handling
unnecessary edge cases, or overly complex error handling.
Q2: Does the comment identify a fake problem (i.e., a
non-existent bug)? For example, if the comment flags a
function call to a known reliable internal library, null pointer
checks are considered irrelevant. Q3: How critical is the
issue identified by this comment? Minor issues, like miss-
ing comments, are less severe than potential core dumps or
infinite loops.

Each question is rated on a scale from 1 to 7, with 1 in-
dicating a nitpick, fake problem, or minimal issue, and 7
indicating a severe and real issue. The scoring scale (1 to
7) is inspired by other related work (McAleese et al., 2024).
We chose this scale to enable a fine-grained and manage-
able distinction. These scores form the basis of the filtering
process throughout the review workflow.

Coarse Filtering and Sorting by Reviewer. During the
review process, the Reviewer LLMs score each comment
based on Q1-Q3. Comments with Q1 or Q2 scores of 4 or
below are discarded. This specific threshold was established
heuristically to enhance interpretability and has been vali-
dated by developer feedback during internal piloting. The
remaining comments are then sorted based on their Q3 score
and truncated to the Top-N comments.

Fine Filtering and Sorting by Meta-Reviewer. The Meta-
Reviewer further refines the filtered comments by merging
those flagged by multiple Reviewers and removing com-
ments mentioned by only one Reviewer.

3



Towards Practical Defect-Focused Automated Code Review

Reviewers

Meta Reviewer

Validators

Translator

Traceback to Code FilterFilter, Sort & Truncation

Figure 3. The multi-role system for automating code review.

Validation and Re-scoring by Validators. Validators then
re-score the comments by revisiting the original code snip-
pets and applying the same Q1-Q3 criteria. A secondary
filter is applied, ensuring that only the most relevant and
critical comments proceed to translation and integration into
the development platform.

Integration with the Multi-role System. The filtered com-
ments are processed by the remaining multi-role compo-
nents, including translation (if necessary) and final submis-
sion to the development platform. This multi-stage process
ensures that the delivered comments are both relevant and
concise, minimizing redundancy and false alarms. The
heuristic approach to threshold definition described herein
was chosen to prioritize generalizability, interpretability,
and mitigate overfitting in this study. While providing a ro-
bust baseline, exploring adaptive or machine-learned thresh-
olds remains a valuable direction for future enhancement to
achieve more nuanced filtering.

3.5. Line Number Localization

A key challenge overlooked in prior work is the precise
localization of comments within the code. Unlike code sum-
marization tasks, code reviews require pinpointing specific
lines of code where issues are identified. Without this in-
formation, developers face inefficiencies in verifying and
addressing comments. For example, the change-involved
function has 94.54 lines of code in average based on our
statistics, missing line localization can result in significant
delays for developers.

We propose a code formatting approach inspired by
Aider(Gauthier, 2024), tailored for code review tasks. As
shown in Table 1, the format includes an operation label
(indicating whether a line is kept, added, or deleted), the
line number, and the code content. For non-contiguous code
lines, ellipses are used to indicate omissions.

Table 1. Code formatting with line position information.
linenumber|{kept code line} Represents lines that remain unchanged.

-linenumber|{deleted code line} Indicates lines that have been removed.

+linenumber|{added code line} Marks newly added lines.

...|... Indicates the omission of non-essential lines.

3.6. Offline Validation

To systematically assess the performance of our system, we
developed a dataset curated from the company’s fault report
platform. Each case in this dataset corresponds to an issue
that resulted in actual company losses. For each reported
fault, we trace back to the merge request that introduced the
fault and its subsequent fixing merge request. Using these,
we generate ideal reference comments containing details
such as affected files, specific lines of code, fault location,
root cause, suggested fix, example code, and issue category.
The motivation for conducting such validation is illustrated
in Section I.

4. Evaluation Design
4.1. Research Questions

We define the following research questions (RQs) to guide
our evaluation, whose detailed illustrations are in Section J:

RQ1: How does the overall performance of our framework
compare with previous works?

RQ2: How do code slicing algorithms impact the perfor-
mance of the framework?

RQ3: How do the different components of the multi-role
system impact the performance of our framework?

RQ4: How does the redundancy comment filter mechanism
address nitpicks and hallucinations?

RQ5: How does the representation of line number position
information impact overall performance and line number
localization success rate?

4.2. Dataset and Studied Models

The primary goal of code review is to prevent problematic
code from being merged into the target branch. To simulate
real-world code review scenarios, we collected data from a
company’s core framework team, which is responsible for
the production code of the short video recommendation core
service. This data was gathered using fault reports recorded
on an online platform. These cases come from four reposito-
ries and involve total 4,090 developers. By analyzing these
reports, we traced the merge requests (MRs) that introduced
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the issues and examined the specific commits to reproduce
the code snapshots. The detailed statistics are presented in
Section K.

Our framework supports multiple LLM engines. To mitigate
security risks, we only studied open-source models that can
be deployed locally. We exclusively selected large instructed
models due to the complex human-instruction-based tasks in
our workflow. The final list of models includes: LLaMA-3.1
(70B), Qwen2 (72B), Command R+ (104B), Mistral-large-
2407 (123B), and LLaMA3.1 (405B). The reasons for not
selecting other models are outlined in Section L.

4.3. Metrics

In accordance with the real-world developer expectations
discussed in Section D, we evaluate performance at the
merge request (MR) level using four metrics, with their
formal definitions provided in Section M:

❶ Key Bug Inclusion (KBI): Assesses the model’s ability
to recall critical issues that could lead to tangible losses. ❷
False Alarm Rate (FAR): Captures the proportion of irrel-
evant or erroneous comments, with two variants (FAR1 for
all MRs and FAR2 for MRs where key bugs are recalled).
❸ Comprehensive Performance Index (CPI): Balances
the completeness of key issue detection (KBI) and preci-
sion (100 − FAR), analogous to the F1-score. It is also
computed in two variants (CPI1 and CPI2). ❹ Line Lo-
calization Success Rate (LSR): Measures the accuracy of
line-level references by checking whether comments point
to the correct code lines.

4.4. Baselines and Experimental Setups

Since our framework focuses on C++, we selected state-
of-the-art baselines that support this language: CodeRe-
viewer (Li et al., 2022b): A T5 model pre-trained for code
review tasks and then fine-tuned. CCT5 (Lin et al., 2023): A
T5 model pre-trained on CodeChangeNet, then fine-tuned.
LLaMA-Reviewer (Lu et al., 2023): A large LLM fine-
tuned for code review tasks based on the LLaMA. DIS-
COREV (Ben Sghaier & Sahraoui, 2024): A T5 model
enhanced via cross-task knowledge distillation for code re-
view. The detailed experimental setups of our framework
and baselines are presented in Section N.

5. Evaluation Results
5.1. RQ1. Comparison with Baselines

We evaluated the performance of our framework on the fault
merge request dataset, comparing it with several baseline
approaches. Our framework was tested with different large
language model (LLM) engines. Our main experiments pri-
marily utilized a homogeneous setup, employing the same

Table 2. Overall performance comparison of our framework using
different LLM engines and baseline models. LLM engines marked
with * are quantized. “Val” indicates if Validator role was used.

Model Val KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑

Baselines
CodeReviewer — 0.00 97.78 0.00 – –
CCT5 — 2.22 97.58 2.32 90.91 3.57
LLaMA-Reviewer — 2.22 97.62 2.30 92.86 3.39
DISCOREV — 0.00 97.78 0.00 – –

Ours (Left Flow)
LLaMA3.1
(70B)

w/o 20.00 84.42 17.52 66.54 25.03
w 2.22 37.04 4.29 66.67 4.17

Qwen2
(72B)

w/o 40.00 91.21 14.42 83.57 23.29
w 26.67 90.63 13.87 81.52 21.83

Command R+
(103B)

w/o 20.00 92.99 10.38 76.08 21.78
w 4.44 85.00 6.86 62.50 7.95

Mistral-2407
(123B)

w/o 26.67 91.07 13.38 74.85 25.89
w 26.67 87.07 17.41 68.18 29.01

LLaMA3.1
(405B)*

w/o 31.11 87.81 17.51 67.98 31.56
w 20.00 75.37 22.07 43.52 29.54

Ours (Full Flow)
LLaMA3.1
(70B)

w/o 13.33 88.22 12.51 61.67 19.78
w 0.00 46.67 0.00 – –

Qwen2
(72B)

w/o 42.22 90.99 14.86 83.91 23.30
w 28.89 91.73 12.86 79.06 24.28

Command R+
(103B)

w/o 15.56 94.22 8.43 77.14 18.51
w 8.89 76.30 12.93 58.33 14.65

Mistral-2407
(123B)

w/o 28.89 90.68 14.09 75.44 26.55
w 28.89 86.11 18.76 67.30 30.68

LLaMA3.1
(405B)*

w/o 31.11 89.41 15.80 73.10 28.86
w 20.00 77.96 20.97 67.59 24.73

LLM across all roles. This approach was chosen to isolate
and clearly assess whether a single, powerful model could
effectively address key challenges in code review. Recog-
nizing the practical importance and potential benefits of
diverse model deployments, we also conducted extended
comparison experiments with heterogeneous LLM assign-
ments for reviewer and validator roles. These experiments,
detailed in Appendix O, show that strategic combinations,
such as pairing a strong validator with a smaller reviewer,
can achieve comparable or even superior performance while
potentially optimizing resource usage.

For baselines, since they do not prioritize comments, we
evaluated their comments based on whether they passed
their respective “quality estimation” filters, which assess
whether a code snippet requires a comment. The results are
in Table 2.

The results indicate that our framework significantly out-
performs the baselines by a factor of 10x across most key
metrics, such as key bug inclusion (KBI) and comprehen-
sive performance index (CPI). This marked improvement is
likely due to our framework’s end-to-end approach to code
review automation, which addresses the key challenges of
the task and introduces strategies specifically designed to
tackle each challenge.

Among the LLM engines tested in our primary setup,
LLaMA3.1-405B demonstrated the best overall perfor-
mance, which aligns with the general scaling laws of lan-
guage models where capability often increases with param-
eter count on complex tasks such as code review. However,
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our evaluations (detailed in Table 2) also included more
compact LLMs. These results show that certain smaller
models, particularly those with strong inherent reasoning ca-
pabilities, can still achieve competitive performance within
our framework. This finding is particularly relevant given
the industry trend towards increasing ’capacity density’ in
newer architectures, where smaller models are progressively
narrowing the performance gap. While the largest models
may provide peak effectiveness, these observations suggest
that a range of LLMs can be effectively utilized, allowing for
a balance between performance and computational resource
demands, a point further explored in our heterogeneous
model assignments (Appendix O).

Summary of RQ1. Our framework surpasses baseline ap-
proaches significantly (up to 10x on KBI/CPI), thanks to
its end-to-end design. LLaMA3.1-405B stands out among
tested engines, highlighting the role of model capability.
Investigations into heterogeneous LLM combinations also
suggest the potential for optimized deployments. (See Ap-
pendix T.1 for the extended conclusion.)

5.2. RQ2. Effectiveness of Code Slicing

We tested the four code slicing algorithms described in Sec-
tion 3.2: Original Diff, Parent Function, Left Flow, and Full
Flow. It is important to clarify that while our framework
does not employ an explicit Retrieval-Augmented Gener-
ation (RAG) pipeline, our code slicing mechanism is de-
signed with a RAG-aligned objective. Specifically, it serves
a similar purpose to RAG by strategically retrieving and
providing the LLM with only the most relevant contextual
code ’slices’ from the broader codebase. This process aims
to focus the model on pertinent information, thereby enhanc-
ing its reasoning and effectiveness in the code review task.
Our focus in this section is on KBI and CPI1, as these
metrics indicate how input content affects the maximum
recall capability of LLMs for code review.

The experiments were structured to evaluate the comments
generated by the large language models under different con-
ditions, including all comments, comments after applying a
coarse filter, and top-k ranked comments (based on scores
from Q3). We also tested multi-reviewer settings, where the
meta-reviewer merges the comments, and validator settings,
where validators further refine the comments. The average
results are shown in Table 3, based on the LLaMA3.1-405B-
AWQ-Int4 LLM engine. To provide further insight into
the variability of these results, the minimum and maximum
values for each reported metric across the three runs are
detailed in Appendix R.

The results reveal that using only the diff or parent func-
tion is less effective, while more detailed slicing (Left Flow
and Full Flow) improves performance, especially in key
bug inclusion. Surprisingly, Left Flow performs better than

Full Flow, likely due to the large language model’s reduced
capability when provided with longer contexts, which can
cause distraction. This finding supports our assumption that
providing targeted and relevant code context is critical for
maximizing LLM performance in code review tasks, an ob-
servation consistent with the principles underpinning RAG
systems where curated information significantly enhances
model outputs.

During our analysis of the recalled merge requests (MRs),
we found another interesting pattern. Although some slicing
algorithms perform worse overall, each algorithm uniquely
succeeds in specific cases. This means that each slicing strat-
egy provides valuable context in certain situations. Figure 4
presents a Venn diagram showing the union and differences
among the key bugs recalled by each slicing algorithm un-
der the “All” and “+Meta Reviewer” settings. Notably, Left
Flow and Full Flow recall most, with significant overlap,
but almost each method also uniquely recalls some.

This phenomenon mirrors how human reviewers oper-
ate—expanding their focus to different levels of granularity,
such as inspecting parent functions or understanding vari-
able usage in different contexts. Some defects are easier to
spot in one context, while others require a different view.
Therefore, a combination of various slicing strategies might
be a promising direction.

Summary of RQ2. Left Flow and Full Flow significantly
improve key bug inclusion and overall performance com-
pared to simpler slicing. Left Flow often outperforms Full
Flow, possibly because shorter context helps maintain fo-
cus. Notably, each slicing approach has exclusive successes,
suggesting that combining them could further improve de-
tection. (See Appendix T.2 for the extended conclusion.)

5.3. RQ3. Effectiveness of Multi-role System

To better understand the capabilities of our multi-role
system, we conduct experiments on: ❶ Leveraging the
non-determinism of large language models; ❷ The self-
correction capability (validator); ❸ The chain-of-thought
(CoT) prompting strategy.

5.3.1. NUMBER OF REVIEWERS

Previous research has shown that the non-determinism of
large language models (LLMs) can impact results. Specifi-
cally, with a best-of-N sampling approach, smaller LLMs
can sometimes match or surpass larger models. Since our
framework includes a multi-reviewer scenario, where a
meta-reviewer merges comments from multiple reviewers,
we conduct experiments to assess whether increasing the
number of reviewers improves performance.

The results in Table 4 show that increasing the number
of reviewers from one to three improves KBI but also
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Table 3. Impact comparison of different code slicing algorithms on key bug inclusion (KBI) and the comprehensive performance index
(CPI), based on LLaMA3.1-405B-AWQ-Int4. Experiments for a single reviewer are conducted three times to compute the average. “All”
represents all comments generated by the reviewer; “Coarse filter” refers to filtering using Q1 and Q2 scores during generation; “Top-k”
denotes truncated comments sorted by Q3 scores; “+Meta Reviewer” and “+Validator” settings are evaluated under Top-5 truncation.

Code Slicing
Algorithms

Single Reviewer Multi Reviewers

All Coarse Filter Top-10 Top-5 Top-3 + Meta Reviewer + Validator

KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑ KBI ↑ CPI1 ↑

Original Diff 23.70 5.71 17.04 12.70 16.30 12.75 14.81 12.48 11.11 10.90 13.33 5.24 11.11 10.46
Parent Function 31.85 5.52 22.22 15.18 17.04 13.57 14.81 13.40 8.15 9.63 20.00 11.01 11.11 10.81
Left Flow 37.04 9.77 33.33 12.80 32.59 13.94 25.93 14.26 17.78 12.77 31.11 17.51 20.00 22.07
Full Flow 39.26 9.67 32.59 11.95 31.85 13.18 25.93 13.90 13.33 10.23 31.11 15.80 20.00 20.97

Original Diff

Parent Function

Left Flow

Full Flow

All + Meta Reviewer

Figure 4. Venn diagram of recalled key bugs identified by different code slicing algorithms. The “All” setting represents all comments,
while the “+Meta Reviewer” setting denotes multi-reviewer comments merged by the meta-reviewer. To analyze per-category performance,
a breakdown across logic, security, and performance-related bugs is shown in Appendix P.

Table 4. Impact of increasing the number of reviewers from one to
three. The “+Meta Reviewer” setting represents the meta-reviewer
merging the reviewers’ comments, while the “+Validator” setting
denotes the validator refining the comments after the meta-reviewer.
All settings use Top-5 truncation of reviewer comments.

Processing Stage Reviewer Num KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑

Original Diff

+ Meta Reviewer 1 8.89 86.15 10.83 69.17 13.80
3 13.33 96.74 5.24 75.56 17.25

+ Validator 1 4.44 76.59 7.47 73.33 7.62
3 11.11 90.11 10.46 71.00 16.07

Parent Function

+ Meta Reviewer 1 15.56 80.37 17.36 73.81 19.52
3 20.00 92.41 11.01 73.15 22.92

+ Validator 1 6.67 63.70 11.26 55.56 11.59
3 11.11 89.48 10.81 65.33 16.83

Left Flow

+ Meta Reviewer 1 26.67 83.26 20.57 70.56 27.99
3 31.11 87.81 17.51 67.98 31.56

+ Validator 1 11.11 69.26 16.32 23.33 19.41
3 20.00 75.37 22.07 43.52 29.54

Full Flow

+ Meta Reviewer 1 22.22 78.04 22.09 71.17 25.10
3 31.11 89.41 15.80 73.10 28.86

+ Validator 1 15.56 71.78 20.06 61.43 22.17
3 20.00 77.96 20.97 67.59 24.73

leads to higher FAR1 and FAR2, which negatively affect
CPI1 and CPI2 in the “+Meta Reviewer” setting. How-
ever, after introducing the validator, the performance for
three reviewers significantly improves in terms of CPI1
and CPI2. While more reviewers boost KBI , they also in-
crease false alarms, making the validator essential to overall
performance.

Summary of RQ3.1. Increasing the number of reviewers
lifts key bug inclusion but raises false alarms. A valida-
tor mitigates these alarms, implying a trade-off between
coverage and precision. (See Appendix T.3 for extended
conclusions.)

5.3.2. SELF-CORRECTION ABILITY OF LLMS

In our framework, the validator refines and validates gen-
erated comments to correct hallucinations. Table 5 shows
that the validator lowers FAR1 and FAR2 but also reduces
KBI , indicating a trade-off between precision and recall.
Our analysis suggests such erroneous rejections of valid
comments by validators primarily stem from factors includ-
ing context propagation from earlier pipeline stages, minor
inaccuracies in comment positioning, occasional model in-
put token limits, and inherent scoring variances.

Summary of RQ3.2. Self-correction (validator) reduces
false alarms but can inadvertently discard critical bug-
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Table 5. The self-correction ability of LLMs through the Validator
role. “w/o” denotes without Validator, “w/” denotes with Validator.

Validator Status KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑

Original Diff
w/o 13.33 96.74 5.24 75.56 17.25
w/ 11.11 90.11 10.46 71.00 16.07

Parent Function
w/o 20.00 92.41 11.01 73.15 22.92
w/ 11.11 89.48 10.81 65.33 16.83

Left Flow
w/o 31.11 87.81 17.51 67.98 31.56
w/ 20.00 75.37 22.07 43.52 29.54

Full Flow
w/o 31.11 89.41 15.80 73.10 28.86
w/ 20.00 77.96 20.97 67.59 24.73

Table 6. Impact of Chain-of-Thought (CoT) on the framework, pre-
senting paired slicing algorithm comparisons. “SR” denotes Single
Reviewer, “MR” denotes Multi Reviewers. All multi-reviewer
settings use three reviewers and Top-5 truncation.

Stage CoT KBI↑ FAR1↓ CPI1↑ KBI↑ FAR1↓ CPI1↑

Original Diff Parent Function

SR - All w/o 20.74 97.08 5.12 31.11 96.91 5.60
w/ 23.70 96.74 5.71 31.85 96.98 5.52

SR - Top-5 w/o 17.04 89.17 13.05 16.30 94.57 8.03
w/ 14.81 89.11 12.48 14.81 87.67 13.40

MR - Meta w/o 15.56 82.74 16.36 17.78 89.09 13.52
w/ 13.33 96.74 5.24 20.00 92.41 11.01

MR - Val w/o 6.67 63.89 11.26 11.11 75.19 15.35
w/ 11.11 90.11 10.46 11.11 89.48 10.81

Left Flow Full Flow

SR - All w/o 34.81 95.16 8.49 40.00 94.40 9.83
w/ 37.04 94.36 9.77 39.26 94.48 9.67

SR - Top-5 w/o 20.74 92.37 11.10 20.74 91.94 11.50
w/ 25.93 90.15 14.26 25.93 90.43 13.90

MR - Meta w/o 17.78 88.74 13.79 26.67 82.81 20.90
w/ 31.11 87.81 17.51 31.11 89.41 15.80

MR - Val w/o 11.11 75.56 15.28 6.67 68.33 11.01
w/ 20.00 75.37 22.07 20.00 77.96 20.97

detecting comments. Balancing these factors is crucial. (See
Appendix T.3 for extended conclusions.)

5.3.3. EFFECTIVENESS OF CHAIN-OF-THOUGHT

We compared our specified CoT approach with free-form
reasoning. Table 6 shows that CoT prompts often excel in
complex slicing tasks (Left Flow, Full Flow), but in simpler
tasks (Original Diff, Parent Function), free-form can be just
as good or better.

Summary of RQ3.3. CoT prompting is especially benefi-
cial in complex contexts. For simpler code slices, the model
may perform well without explicit CoT guidance. As more
powerful reasoning models, such as GPT-O1 and DeepSeek-
R1, emerge, the advantage of specified CoT over free-form
reasoning may further diminish. (Appendix T.3)

5.4. RQ4. Effectiveness of Comment Filter Mechanism

The comment filter mechanism includes ❶ Coarse reviewer
filter, ❷ Top-k truncation, ❸ Meta-reviewer filter, and ❹
Validator validation. Table 7 shows that in flow-based slic-

Table 7. The KBI , FAR1, and CPI1 results for different code
slicing algorithms utilizing our filtering mechanism. This table
illustrates the impact of sequential filter stages, including different
Top-k truncation values (k=10, 5, 3) for single-reviewer paths.
For the multi-reviewer path results shown here (+Meta Reviewer,
+Validator), Top-k is set to 5. A comprehensive discussion of
Top-k sensitivity, covering both single-reviewer variations and
multi-reviewer settings, is presented in Appendix S.

l

Reviewer Filter / Trunc KBI↑ FAR1↓ CPI1↑ KBI↑ FAR1↓ CPI1↑

Original Diff Parent Function

Single

All 23.70 96.74 5.71 31.85 96.98 5.52
Coarse Filter 17.04 89.72 12.70 22.22 88.17 15.18
Top-10 16.30 89.43 12.75 17.04 88.53 13.57
Top-5 14.81 89.11 12.48 14.81 87.67 13.40
Top-3 11.11 89.14 10.90 8.15 88.15 9.63

Multi
+ Meta 13.33 96.74 5.24 20.00 92.41 11.01
+ Validator 11.11 90.11 10.46 11.11 89.48 10.81

Left Flow Full Flow

Single

All 37.04 94.36 9.77 39.26 94.48 9.67
Coarse Filter 33.33 92.03 12.80 32.59 92.65 11.95
Top-10 32.59 91.13 13.94 31.85 91.68 13.18
Top-5 25.93 90.15 14.26 25.93 90.43 13.90
Top-3 17.78 90.00 12.77 13.33 91.60 10.23

Multi
+ Meta 31.11 87.81 17.51 31.11 89.41 15.80
+ Validator 20.00 75.37 22.07 20.00 77.96 20.97

ing (Left Flow, Full Flow), adding these filters sequentially
decreases FAR1 and improves CPI1. In simpler slicing
(Original Diff, Parent Function), only the coarse filter proves
particularly effective, likely due to limited context causing
more hallucinations. A comprehensive sensitivity analy-
sis of the Top-k truncation hyperparameter k—detailing its
impact on single-reviewer paths with various k values (as
presented in Table 7) and an extended analysis within our
multi-reviewer framework—is provided in Appendix S.

Summary of RQ4. Our comment filter significantly reduces
false alarms and improves performance in more detailed
slicing methods. In simpler slicing, the coarse filter stage is
the most impactful step. (See Appendix T.4 for the extended
conclusion.)

5.5. RQ5. Line Number Position

Line number localization is crucial for real-world appli-
cations. We tested three formats: No: No line position
information is provided; Relative: Code is provided with a
separate list containing relative line positions; and Inline:
Position information is integrated directly into the code
using the format in Table 1.

Table 8 shows that providing line number information (es-
pecially inline) significantly improves performance and lo-
calization success rate (LSR).

Summary of RQ5. Embedding line numbers inline yields
the highest performance and LSR, likely because it helps the
model anchor comments to specific lines accurately. (See
Appendix T.5 for the extended conclusion.)
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Table 8. Impact of line number position information. “All” repre-
sents the average of all comments generated by reviewers, while
“+Meta Reviewer” denotes the multi-reviewer workflow with three
reviewers and Top-5 truncation. LSR (Line Success Rate) mea-
sures whether LLMs provide valid lines, regardless of correctness.

Position KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑ LSR↑

”All” Setting
No 30.37 95.66 7.58 93.12 11.17 90.54
Relative 42.96 94.60 9.58 92.75 12.32 92.69
Inline 37.04 94.36 9.77 90.66 14.79 91.11

”+ Meta Reviewer” Setting
No 17.78 90.70 12.21 72.71 21.53 –
Relative 17.78 93.52 9.50 76.04 20.41 –
Inline 31.11 87.81 17.51 67.98 31.56 –

6. Related Work
Code review comments play a crucial role in maintaining
software quality, leading to significant research efforts in
automating this process. Early studies, such as Gupta
& Sundaresan (2018), employed retrieval-based methods,
utilizing LSTM models to match new code snippets with
historical changes to recommend comments. Siow et al.
(2020) advanced this approach by incorporating attention
mechanisms to capture semantic nuances more effectively.

With the advent of deep learning, the focus shifted towards
automated comment generation. Pioneering efforts by Tu-
fano et al. (2021; 2022) introduced models trained on di-
verse datasets, including technical texts and code snippets.
Subsequent innovations included specialized models such
as CodeReviewer (Li et al., 2022b), which leveraged pre-
training on code review data, and AUGER (Li et al., 2022a),
which used review tags to streamline the task. Another ap-
proach, CommentFinder (Hong et al., 2022), presented an
efficient retrieval-based model tailored to new code. More
recently, LLaMA-Reviewer (Lu et al., 2023) trained large
language models specifically for code review tasks, and
DISCOREV (Ben Sghaier & Sahraoui, 2024) improved
performance by applying cross-task knowledge distillation
across successive tasks, and Yu et al. (2024b) focused on
fine-tuning LLMs to improve both the accuracy and com-
prehensibility of automated code reviews. Alongside these
advancements in direct comment generation, recent stud-
ies have also explored the application of LLMs to other
related aspects of the software development lifecycle, such
as enhancing code reviewer recommendation (Wang et al.,
2024) and automating commit message generation (Tao
et al., 2024), underscoring the expanding utility of large
models in diverse software engineering contexts.

Despite these advances, previous works have oversimplified
the code review process by treating it as a set of snippet-
level code-comment pairs. These approaches typically split
merge requests into independent snippets and framed the
task as a one-to-one neural machine translation (NMT) prob-
lem, converting code into natural language. While innova-

tive, this approach provides a limited and idealized view
of code review, often evaluated with text similarity metrics,
such as BLEU or ROUGE, which do not fully capture the
expectations of real-world developers for finding defects.

In practice, code review is more complex, evaluated at the
level of entire merge requests of repository codebases rather
than individual code-comment pairs. The focus on text
similarity fails to consider the broader context, including
how comments address the full scope of changes in a MR.
Although contributing valuable insights, these studies fall
short of replicating the holistic, real-world workflow.

7. Conclusion
Motivated by the limitations of prior research that oversim-
plified code review automation and fell short of practical
applications, we explored the complete automation pipeline
within a real-world company. We identified and addressed
key challenges such as capturing relevant code context, im-
proving key bug inclusion (KBI), reducing false alarm rates
(FAR), and integrating human-centric workflows. Our ap-
proach introduces four code slicing algorithms, a multi-role
LLM framework, a comment filtering mechanism, and a
prompt format with inline line number localization. Evalua-
tions on real-world data demonstrated that we significantly
outperforms existing methods, achieving up to a 10x im-
provement in the comprehensive performance index (CPI)
over previous baselines.

Key insights include: ❶ Flow-based slicing (Left Flow and
Full Flow) provided better context and outperformed sim-
pler methods. ❷ Increasing the number of reviewers im-
proved KBI but required validation to manage false alarms
effectively. ❸ The validator role reduced hallucinations
but slightly lowered KBI, highlighting a trade-off between
precision and recall. ❹ Chain-of-thought guidance proved
more valuable in complex slicing scenarios. ❺ Inline line
number localization enhanced both comment accuracy and
localization success rates.

Looking ahead, four key areas for future research are: ❶
Enhancing code slicing algorithms to capture more rele-
vant context, potentially combining different slicing levels.
❷ Refining LLM interactions and enhancing engine LLM
capability to improve key bug recall. ❸ Further optimiz-
ing the filtering mechanism, including the investigation of
adaptive or learned thresholds, to reduce nitpicks and hallu-
cinations more effectively. ❹ Streamlining pipeline to make
automation more accessible.

Limitation. We discuss limitations in Section V.

Data Availability. We publicly release our codes at https:
//zenodo.org/records/14779175. Details regard-
ing their open-source status can be found in Section U.
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A. The Central Role of Defect Detection in Code Review
Identifying defects has consistently been recognized as the core and most fundamental goal of code review. This under-
standing aligns with its historical origins, current industry expectations, state-of-the-art research directions, and pressing
real-world needs:

• Historical Foundations: Defect detection was the original purpose of code reviews, tracing back to the concept of
code inspection proposed by Michael Fagan at IBM in 1976 (Fagan, 2002). Fagan Inspections introduced a structured
process aimed at reducing long-term costs by detecting and fixing defects early. Subsequent decades of research
continued to center on discovering and resolving faults (Ackerman et al., 1989; Sommerville, 2011; Votta Jr, 1993).

• Contemporary Expectations: Empirical studies show that both developers and managers consider defect detection
the primary expectation of code reviews (Bacchelli & Bird, 2013). For example, a comprehensive survey involving 165
managers and 873 programmers at Microsoft revealed that while code review can serve multiple functions, identifying
defects remains the foremost motivation for all stakeholders.

• Current Research Directions: Recent state-of-the-art (SOTA) work in automated code review—particularly
generation-based methods—continues to emphasize defect detection as the core research objective (Tufano et al.,
2024). While these studies simulate code review by injecting known defects, our approach leverages actual, historically
documented defects, providing a more realistic and robust evaluation scenario.

• Real-World Industrial Needs: Industry practitioners, especially “super reviewers” overseeing thousands of developers
and large codebases, highlight an urgent and practical need for more effective defect detection. These expectations
were extracted from the Objectives and Key Results set by approximately 50 experienced super reviewers (the concept
comes from Kononenko et al.(Kononenko et al., 2016)) within a major production environment of 4000+ developers.

In conclusion, defect detection stands as the central and most essential aspect of code review. While other dimensions—such
as code improvement, comprehension, and communication—do appear frequently, they often do not align with the urgent
expectations of practitioners. This disconnect between what teams urgently need (effective defect detection) and what
reviews often deliver (broader but less critical commentary) warrants a focused research effort (Bacchelli & Bird, 2013).

B. Detailed Real-World Workflow Integration
As briefly mentioned in the Introduction and illustrated in Figure 1, our automated code review framework is deeply
integrated into the real-world Continuous Integration/Continuous Deployment (CI/CD) pipeline and DevOps platform of a
large-scale online service company. This appendix provides a more detailed description of this integration, designed to be
seamless for developers and provide actionable feedback directly within their existing workflows.

The primary goal of this integration is to automate aspects of the code review process without disrupting established
development practices, thereby enhancing both efficiency and code quality. The workflow is triggered upon the submission
or update of a Merge Request (MR) within the company’s internal DevOps system and proceeds through several automated
stages:

1. MR Trigger and Initial Verification: When a developer submits an MR, a webhook notifies our automated review
system. The system first performs essential verification checks. This includes confirming the submitting user’s
permissions and ensuring that the changed files fall within the scope of automated review (e.g., correct programming
language, project-specific configurations for review). This step is crucial for security, access control, and efficient
resource allocation.

2. Code Analysis and Comment Generation Launch: Once the MR is verified, the system retrieves the relevant code
changes. The core analysis process is then launched:

• Code Slicing: The modified code segments are processed by our code slicing algorithms (detailed in Section 3.2)
to extract relevant contextual information necessary for effective review.

• Multi-role Review: These code slices, along with their context, are distributed to our multi-role LLM framework
(described in Section 3.3). Each role, potentially with specialized roles (e.g., Reviewer, Validator), analyzes the
code to identify potential issues and generate draft review comments.
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3. Comment Filtering and Refinement: The raw comments generated by the LLM roles undergo a rigorous filtering
process using our Redundancy Comment Filter Mechanism (explained in Section 3.4). This multi-stage process
(involving Q1-Q3 scoring, coarse filtering, meta-reviewer processing, and validator re-scoring) aims to eliminate
nitpicks, false positives, and less critical suggestions, ensuring that only high-quality, actionable comments proceed.

4. Seamless Injection into DevOps Platform and Developer Notification: This stage is critical for effective real-world
integration:

• DevOps System Integration: The filtered and validated comments are programmatically injected into the
company’s internal DevOps platform using its provided APIs. Each comment is associated with the specific MR
and the relevant commit.

• Line-Aware Comment Positioning: A key feature for developer adoption is the precise positioning of each
comment directly at the relevant line number(s) in the diff view of the MR. This is achieved by accurately
parsing diff hunks and mapping comment locations. The effectiveness and importance of this line-aware comment
injection for providing clear, contextualized, and actionable feedback was specifically evaluated in Section 5.5
(RQ5) and found to be highly valued by developers.

• Developer Notification: Developers (typically the MR author and assigned human reviewers) are notified of
the automated review comments through the DevOps platform’s standard notification mechanisms (e.g., email,
internal messaging/chat system integration). The comments appear within the MR’s discussion or review interface,
similar to comments made by human colleagues.

This end-to-end automated workflow, from MR submission to the delivery of precisely positioned, filtered comments
directly within the developers’ familiar DevOps environment, constitutes a seamless integration into their daily activities.
It minimizes context switching, presents feedback in an actionable format, and leverages existing platform features for
discussion and resolution of the identified issues. The positive developer feedback regarding the non-intrusiveness and utility
of the system, particularly due to reliable line-aware comment placement, substantiates our claim of successful real-world
workflow integration. This integration was a prerequisite for addressing the key challenges outlined in Section C within a
practical, industrial setting.

C. Four Challenges Identified in Code Review Process
Challenge 1: Capturing Proper Code Context. During the merge request process, code is integrated into the repository.
Prior studies often split the input into method-level or diff hunk-level segments, which introduces two major problems: ❶
the omission of critical context beyond the method, hunk, or even file level, such as variable declarations, definitions, and
assignments—particularly in languages like C++—which misleads large language models (LLMs) into generating false
alarms or missing key bugs; and ❷ the truncation of long code snippets, leading to significant omissions. However, feeding
excessively long inputs to LLMs also degrades performance due to the models’ sensitivity to the relative position of the
target sequence (Hsieh et al., 2024; Liu et al., 2024). Therefore, finding an optimal way to capture proper code context is
essential.

Challenge 2: Improving Key Bug Inclusion (KBI). A primary goal of automated code review is to identify key bugs
introduced by new merge requests that could compromise system reliability and performance. In 2022, 30% of severe P1+
incidents (asset loss > $350,000) and 24.04% of P4+ incidents in the company were attributed to preventable low-level
faults, highlighting the need for robust code reviews and automated systems. Prior studies have validated models based on
overall text similarity metrics, which are often misleading. Text similarity does not necessarily correlate with a model’s
recall ability, as higher similarity scores may reflect linguistic style rather than the identification of critical bugs(Lu et al.,
2025). OpenAI researchers have proposed Critique-Bug Inclusion (CBI) as a key metric for evaluating LLM performance
(McAleese et al., 2024), which we adopt for our task. Increasing the KBI capability of the framework is a key focus of our
approach.

Challenge 3: Reducing False Alarm Rates (FAR). Generative models frequently produce redundant or irrelevant comments,
including nitpicks and hallucinations, even for a single code snippet (McAleese et al., 2024). In real-world scenarios, merge
requests often contain numerous code snippets, and managing redundant comments can overwhelm human reviewers. Most
previous studies (Gupta & Sundaresan, 2018; Siow et al., 2020; Tufano et al., 2021; 2022; Li et al., 2022a; Hong et al., 2022)
have not addressed this issue, simplifying the review task to merely generating natural language comments from problematic
code. Some works attempted to introduce discriminators to assess comment quality (Lin et al., 2023; Li et al., 2022b), but
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these approaches have been shown to be ineffective (McAleese et al., 2024). Thus, a robust filtering mechanism is needed to
minimize redundant comments and reduce false alarms.

Challenge 4: Human-Centric Workflow Integration. Simplified code review tasks often overlook essential real-world
workflow components, such as attaching comments to specific code lines. This step reduces the cognitive load on developers
by making it easier to verify the validity of comments. Despite its importance, this aspect is frequently ignored in previous
work (Gupta & Sundaresan, 2018; Siow et al., 2020; Tufano et al., 2021; 2022; Li et al., 2022a; Hong et al., 2022; Lin et al.,
2023; Li et al., 2022b), which hinders real-world usability. Incorporating such functionality is critical for improving user
experience alongside KBI and FAR.

D. Demands and Expectations from Reviewers
We conducted qualitative studies, including surveys and in-depth interviews, to understand the expectations and demands
for automated code review from a group of 50 experienced ”super reviewers” within a large technology company’s core
infrastructure teams. From the reviewers’ perspective, an effective automation solution must fulfill two primary demands
regarding its operational behavior and meet three key expectations concerning the quality and utility of its feedback:

The two demands, which aim to simulate desirable aspects of human review, are:

• D1: Automation should operate at the merge request level, reviewing all changes holistically rather than focusing on
partial code snippets or individual diff hunks.

• D2: Automation should incorporate global repository knowledge beyond the diff, enabling access to broader information
such as variable declarations or function definitions not included in the immediate changes.

The three key expectations for the generated feedback are:

• E1: Identify as many key issues as possible, thereby reducing the number of missed critical bugs. This directly
informed our Key Bug Inclusion (KBI) metric, introduced in the Introduction. In our interviews, developers consistently
emphasized that ”catching critical bugs” is the absolute top priority for any automated review tool.

• E2: Minimize nitpicking comments and hallucinations (i.e., non-existent issues), which corresponds to reducing the
False Alarm Rate (FAR). This is crucial for lessening the burden on human reviewers when verifying automated
feedback. Developers particularly stressed this point, noting that reducing irrelevant comments is vital for the adoption
and continued trust in an automated system, with one sentiment being that ”even one false positive can erode trust.”
Initial feedback from the system’s current deployment within an internal development team has further underscored
this, revealing FAR to be an especially sensitive metric directly impacting developer perception and engagement.

• E3: Support human-centric interaction by attaching comments precisely to the correct code lines. This aids reviewers
or code owners in efficiently verifying issues and prevents confusion or misleading information, a factor captured by
our Line Localization Success Rate (LSR).

The demand D2 aligns with Challenge 1 (Capturing Relevant Context) from the Introduction, while expectations E1,
E2, and E3 correspond to Challenges 2 (Improving KBI), 3 (Reducing FAR), and 4 (Integrating Human Workflows)
respectively. Previous work primarily focused on aspects related to E1, often using text similarity as an indirect proxy,
but this does not guarantee precision or the detection of key bugs, rendering such approaches less suitable for demanding
real-world applications. In contrast, our approach, informed by these direct developer insights, addresses these challenges
comprehensively. We introduce a set of merge-request level evaluation metrics tailored to these real-world demands, including
Key Bug Inclusion (KBI), False Alarm Rate (FAR), Comprehensive Performance Index (CPI), and Line Localization Success
Rate (LSR).

While our metrics and system design are thus grounded in extensive interactions with professional developers and initial
deployment feedback, we acknowledge that formal, systematic user studies evaluating perceived review quality and overall
system utility have not yet been conducted. Such studies represent an important avenue for future work to further strengthen
the validation of our approach.
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E. Background: Code Slicing
Providing the entire repository as input ensures comprehensive context, but large language models (LLMs) have token
limitations. Increasing the input size within these constraints can reduce model performance and lead to delays in inference
(Hsieh et al., 2024; Liu et al., 2024). Code slicing offers a potential solution by efficiently providing sufficient context while
remaining concise. This technique uses static analysis to form code units, parsing code into an abstract syntax tree and
slicing it based on node relationships. For large code snippets, code slicing divides them into small, independent segments.
For small snippets, like diff hunks in code reviews, it enriches the context by retrieving statements and variable usages
related to the changes. While code slicing has been effectively applied to tasks such as vulnerability detection (Li et al.,
2018; 2021; Cheng et al., 2021; Yu et al., 2023), its explicit and systematic integration into LLM-based automated code
review pipelines—specifically for enhancing context-aware defect localization and guiding comment generation—appears
to be less explored in prior literature. While Lu et al. (2024) made initial attempts at testing context components, the bulk of
prior research in automated code review has remained largely centered on snippet-level analysis or comment naturalness.
Consequently, the richer repository-level contextual understanding, such as that afforded by code slicing, has often been
underutilized. To address real-world needs and explore this promising direction, we designed four code slicing algorithms
that provide appropriate context for automated reviews.

F. Background: Large Language Models and Multi-role Systems for Software Engineering
Transformer-based large language models (LLMs)(Vaswani et al., 2017) have achieved notable success in natural language
processing tasks(Ray, 2023). The ongoing evolution and refinement of these models involve diverse research efforts,
including explorations into advanced knowledge integration techniques (Liang et al., 2025) and the development of robust
safeguards against potential misuses (Jiang et al., 2025). Given that LLMs now often include code in their training
corpora, they have developed strong abilities in code-related tasks alongside their general language capabilities. This
blurs the line between code-specific and general models. For instance, GPT-4 excels in code generation, while models
like ChatGPT (Achiam et al., 2023) and LLaMA (Touvron et al., 2023) have shown potential in generating commit
messages (Zhang et al., 2024), tests (Chen et al., 2024b; Schäfer et al., 2023), method renaming (AlOmar et al., 2024), log
analysis (Ma et al., 2024a;b), and smart contract vulnerability detection(Yu et al., 2024a; 2025; Yuan et al., 2025).

Complex tasks like automated code review, which demand deep-level reasoning, often exceed the capabilities of individual
LLMs. Multi-role systems have emerged as an effective approach to decompose and tackle such tasks, assigning specialized
roles to different LLM roles that collaborate to solve the overall problem (Guo et al., 2024; Chen et al., 2024a). In this work,
we adopt a multi-role system utilizing mainstream open-source LLMs with large parameter counts to enhance Key Bug
Inclusion (KBI) and filter redundant comments, thereby making the code review process more efficient and precise.

G. Code Slicing Algorithms
The code slicing process in this paper is composed of several interrelated steps designed to isolate, identify, and group
code statements relevant to a given set of changes. Specifically, the detailed algorithms of our approach are presented in
Algorithms 1–9, each focusing on a different aspect or mode of slice generation. These algorithms work together as follows:

• Algorithm 1 (CodeSlicing) drives the entire process: It clones the target repository at the specified commit, initializes
data structures, and orchestrates the slicing workflow for each file.

• Algorithm 2 (ProcessAST) processes each file’s Abstract Syntax Tree (AST) using a chosen slicing option, determining
which statements intersect with the diff and storing those statements in a cache.

• Algorithm 3 (GenerateNewSlice) takes contiguous segments of diff statements as seeds and expands them according
to the chosen slicing strategy, removing statements from the cache once they are incorporated into a slice.

• Algorithm 4 (GetContiguousDiffSegment) serves as a helper function that extracts a cohesive set of adjacent
statements from the cache, ensuring that logically connected changes are processed together.

• Algorithm 5 (ApplySlicingAlgorithm) acts as a dispatcher, selecting one of four specific slicing methods based on the
chosen option:

– Algorithm 6 (OriginalDiff): Focuses on the original diff statements and their direct dependencies.
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– Algorithm 7 (ParentFunction): Retrieves the smallest function containing all diff statements, providing function-
level context for the slice.

– Algorithm 8 (LeftFlow): Performs a backward data-flow trace from the diff statements by analyzing L-values
and their defining statements.

– Algorithm 9 (FullFlow): Extends LeftFlow by also including forward data-flow tracing for R-values and
callees, capturing both backward and forward dependencies.

Through this sequence of algorithms, relevant code segments are iteratively located, expanded, and grouped, resulting in a
collection of slices tailored to the user’s chosen level of context or detail.

Algorithm 1 CodeSlicing
1: main CodeSlicing
2: Input: repository, commit, slicingOption
3: Output: slices
4: clone repository and checkout to commit
5: ASTs← ApplyStaticAnalysisTool(repository)
6: cache← InitializeCache()
7: slices← [] {Initialize slice list}
8: for each AST in ASTs do
9: ProcessAST(AST , slicingOption, cache)

10: end for
11: while not cache.isEmpty() do
12: seed← GetContiguousDiffSegment(cache)
13: newSlice← GenerateNewSlice(seed, cache, slicingOption)
14: slices.append(newSlice)
15: end while
16: end main

Algorithm 2 ProcessAST
1: function ProcessAST
2: Input: AST, option, cache
3: Output: updated cache
4: slice← ApplySlicingAlgorithm(AST, option)
5: for each statement in slice do
6: if statement intersects with diff then
7: cache.add(statement)
8: end if
9: end for

10: end function

H. Integration of Chain-of-Thought (CoT) in the Review Process
We integrate Chain-of-Thought (CoT) prompts to guide the roles in the review process. Below are the CoT prompts for each:

For the Reviewer:

1. System Introduction: Introduces the task and provides guidance related to the code repository and input format.

2. Understand: Helps the model comprehend the purpose of the code changes.

3. Analyze: Instructs the model to analyze the code for defects or performance issues.

4. Re-evaluate: Guides the model to review its analysis, minimizing nitpicks and hallucinations. Three specific questions
are posed to quantify nitpicks, hallucinations, and severity, inspired by (McAleese et al., 2024).
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Algorithm 3 GenerateNewSlice
1: function GenerateNewSlice
2: Input: seed, cache, option
3: Output: newSlice
4: newSlice← [] {Start forming a new slice from the seed}
5: Add seed statements to newSlice
6: Remove seed statements from cache
7: for each statement in newSlice do
8: Expand the slice {Expanding the slice}
9: expandedSlice← ApplySlicingAlgorithm(statement, option)

10: for each expStatement in expandedSlice do
11: if expStatement is in cache then
12: newSlice.append(expStatement)
13: cache.remove(expStatement)
14: end if
15: end for
16: end for
17: end function

Algorithm 4 GetContiguousDiffSegment
1: function GetContiguousDiffSegment
2: Input: cache
3: Output: contiguousSegment
4: contiguousSegment← Extract a contiguous segment of cached diff statements
5: end function

Algorithm 5 ApplySlicingAlgorithm
1: function ApplySlicingAlgorithm
2: Input: AST, option
3: Output: sliced statements
4: switch (option)
5: case “OriginalDiff”:
6: OriginalDiff(AST)
7: case “ParentFunction”:
8: ParentFunction(AST)
9: case “LeftFlow”:

10: LeftFlow(AST)
11: case “FullFlow”:
12: FullFlow(AST)
13: end switch
14: end function

Algorithm 6 OriginalDiff
1: function OriginalDiff
2: Input: AST
3: Output: sliced set S
4: D ← diff statements in AST
5: S ← ∅
6: for each d in D do
7: S ← S ∪ {d}∪ dependencies of d
8: end for
9: end function
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Algorithm 7 ParentFunction
1: function ParentFunction
2: Input: AST
3: Output: sliced set S
4: D ← diff statements in AST
5: F ← smallest function containing all D
6: S ← all statements and declarations in F
7: end function

Algorithm 8 LeftFlow
1: function LeftFlow
2: Input: AST
3: Output: sliced set S
4: D ← diff statements in AST
5: S ← ∅
6: for each d in D do
7: L← all L-values affected by d
8: for each l in L do
9: S ← S∪ backward trace of l

10: end for
11: end for
12: end function

Algorithm 9 FullFlow
1: function FullFlow
2: Input: AST
3: Output: sliced set S
4: D ← diff statements in AST
5: S ← LeftFlow(AST )
6: for each d in D do
7: R← all R-values and callees affected by d
8: for each r in R do
9: S ← S∪ forward trace of r

10: end for
11: end for
12: end function
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5. Organize Your Thoughts: Directs the model to write a detailed review comment specifying the issue, affected lines,
root cause, recommended solution, and example code.

6. Final Comment: Instructs the model to output the final comment in JSON format.

For the Meta-Reviewer:

1. System Introduction: Introduces the task of merging Reviewer comments and provides guidelines on the required
format.

2. Analyze: Instructs the model to analyze Reviewer comments, focusing on patterns, discrepancies, and insights.

3. Organize and Sort Final Comments: Guides the model to format the refined comments in a prioritized JSON list,
calculating the overall scores and sorting by criticality.

For the Validator:

1. System Introduction: Similar to the Reviewer, but with a focus on accuracy and relevance.

2. Validate the Comment: Guides the model to review and validate the existing comments, aiming to reduce false alarms.

3. Refine the Comment: Ensures the comment is refined for clarity and correctness.

4. Final Comment: Outputs the validated comment in a JSON format suitable for the development environment.

For the Translator:

1. System Introduction: Introduces the translation task and explains the input format.

2. Translation and Formatting Requirements: Guides the model to translate items into the target language, ensuring
proper formatting.

3. Translated Comments: Outputs the translated comments in JSON format for direct integration into the development
environment.

I. Rationale for Offline Validation
The primary goal of our review system is to recall as many historical faults as possible while minimizing irrelevant comments
that could burden developers. Each recalled fault suggests that our system could potentially prevent similar future issues.

To evaluate the system, we use several key performance metrics, including the key bug inclusion rate (KBI), false alarm rate
(FAR), comprehensive performance index (CPI), and line localization success rate (LSR), which are defined in Section 4.3.
The CPI serves as an overall measure, balancing the trade-off between effective bug detection (KBI) and minimizing false
alarms (FAR).

We hypothesize that this validation approach, which goes beyond simple text similarity metrics, provides a more accurate
measure of the system’s ability to handle real-world code review challenges. For instance, a change from “and” logic to
“or” in code can fundamentally alter the program’s behavior, but such a subtle difference may be missed by conventional
text-based comparisons. Additionally, we observed that the same issue is often described in multiple ways, complicating
simple text-based comparisons and highlighting the need for more nuanced metrics.

J. Research Questions in Detail
RQ1: How does the overall performance of our framework compare with previous works? This question evaluates our
framework’s overall performance against existing baselines, focusing on metrics such as KBI, FAR, and CPI (defined
in Section 4.3). Since our framework decouples from base LLMs, we utilize various open-source large language model
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(LLM) engines to provide a comprehensive evaluation. Specifically, for RQ2-5, We conduct ablation studies using the
LLaMA3.1-405B LLM engine, which is one of the most representative models.

RQ2: How do code slicing algorithms impact the performance of the framework? This question investigates the effect of
code slicing on the code review process. As the first to apply code slicing in this context, we compare the effectiveness
of four slicing algorithms and study the results using a Venn diagram. This analysis focuses primarily on KBI and CPI,
particularly the ability to recall key bugs.

RQ3: How do the different components of the multi-role system impact the performance of our framework? This question
explores the influence of various components of our multi-role system, including the number of reviewers, the self-correction
capability of LLMs (validator), and the impact of Chain-of-Thought (CoT) prompts. We measure KBI, FAR, and CPI to
assess overall performance.

RQ4: How does the redundancy comment filter mechanism address nitpicks and hallucinations? This question evaluates
the effectiveness of our redundancy comment filter mechanism in reducing nitpicks and hallucinations. We sequentially
evaluate the contribution of each component of the filter mechanism, with a focus on KBI, FAR, and CPI.

RQ5: How does the representation of line number position information impact overall performance and line number
localization success rate? This question assesses the impact of our code representation format on overall performance and
the line localization success rate (LSR). We compare our method with two other formats: no line position information and
supplementary line position in a separate list. Here, LSR is considered alongside KBI, FAR, and CPI.

K. Dataset Statistics
A key point that may lead to misunderstanding is that our evaluation cases operate at the merge-request level, rather than
focusing on isolated code snippets. Over the past three years (starting from 2021), we have collected all recorded faulty
merge requests from four repositories maintained by over 4,000 developers. Fault selection follows a practical criterion:
each fault must have caused a user-visible issue and been formally logged in the company’s internal defect tracking system
(Section 3.6). This result-oriented strategy emphasizes real impact, even if it does not fully cover all C++ error types. Each
merge request often involves multiple, interdependent code changes, making the evaluation scenario more complex and
realistic than snippet-level analyses.

Our focus is on C++ code, as it represents a critical portion of the company’s software infrastructure. The dataset consists of
45 real-world fault reports, each corresponding to a significant issue that caused financial losses, along with the associated
merge request snapshots. Among these 45 cases, 12 are logic errors, 31 are code security errors, and 2 are performance-
related errors. We have released a desensitized JSON folder of fault descriptions in our Zenodo repository.1 The dataset
includes both edge and typical cases, e.g.:

• Case 4694 23117: array out-of-bounds and null-pointer dereference.

• Case 16231 13308: misuse of boost::random::beta distribution.

On average, each merge request includes 8.02 changed C++ files, with 416.8 newly added lines spread across 14.84 modified
functions (a total of 1,403.36 lines affected). Unlike previous datasets that focus on individual code snippets, the faults in
our dataset span multiple, interconnected code changes at the merge-request level.

The CodeReviewer dataset (Li et al., 2022b) is a well-known benchmark for code review comment generation. However, we
do not adopt it because (1) it is a snippet-level dataset lacking repository-level context, and (2) it does not focus on defect
detection and lacks structured fault reports for comprehensive understanding (Lu et al., 2025). These limitations reduce its
applicability to real-world, defect-focused code review automation.

To provide context, we compare our dataset’s scale with that of CodeReviewer. Table 9 juxtaposes the size and complexity of
the datasets, demonstrating that ours is of comparable magnitude, but situated at a more realistic granularity (merge-request
level) that better reflects practical development workflows.

1https://zenodo.org/records/14779175
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Table 9. Dataset statistics. The statistics of the CodeReviewer dataset are estimated based on the language distribution (Li et al., 2022b)
and the distribution of comment types (Bacchelli & Bird, 2013).

Dataset # of Code Snippets LOC (Lines of Code)

CodeReviewer Test (C++ Subset) 814 ∼147k
CodeReviewer Test (C++ & Defects Subset) 114 ∼21k
Ours (Merge-Request Level) 668 ∼63k

L. Excluded Models and Justifications
Our framework is designed to be model-agnostic and independent of any specific base model. However, for the purposes of
our study, we only present results on selected representative open-source models. Below, we outline the reasons for not
including certain other models in our experiments:

• Closed-Source Models: This category includes proprietary models such as the GPT series and the Claude series. These
models remain inaccessible for self deployment due to their closed nature, and utilizing fault reports for evaluation
poses potential security and data transmission risks.

• Small and Weak Models: We also experimented with several smaller or less powerful models as the base model for
our framework, including Gemma-2-27B, CodeGemma-7B, MiniCPM3-4B, GLM-4-9B-Chat, CodeGeeX4-All-9B,
DeepSeek-V2-Lite-Chat, DeepSeek-Coder-V2-Lite, CodeLlama-70B, Phi-3-Medium-128K, Phi-3.5-MoE, and Aya-23-
35B. Unfortunately, these models frequently failed due to their limited capabilities, making it unfair to include them in
comparisons under such conditions.

• Excessively Large Models: Our experiments were conducted on an infrastructure consisting of eight A100-40G
GPUs. However, since FP8 quantization is not supported on Ampere-architecture A100s, we were unable to deploy
mixture-of-experts (MoE) models with a very high parameter count. This limitation prevented us from testing models
such as DeepSeek-V2-Chat-0628, DeepSeek-Coder-V2, and Mixtral-8x22B-Instruct.

M. Metric Formulations
We intentionally avoid BLEU and ROUGE due to their limitations in evaluating the quality of code review comments:

1. Our task involves many-to-many mappings between code and reviews, violating BLEU’s single-reference assumption.

2. Code review requires reasoning and domain expertise; recent studies show that BLEU and ROUGE fail to reflect
quality in such tasks.

3. Real fault reports and LLM-generated comments differ significantly in style and expression, making surface-level
textual similarity unreliable.

Regarding vagueness: rather than evaluating linguistic style, we focus on outcome-based metrics that directly reflect the
effectiveness of review comments. Specifically, we propose three core metrics—Key Bug Inclusion (KBI), False Alarm
Rate (FAR), and the composite Comprehensive Performance Index (CPI)—which are objective, interpretable, and
domain-relevant. Further discussion on their behavior and limitations is provided in Appendix Q.

M.1. Key Bug Inclusion (KBI)

By “key bugs,” we refer to issues that can lead to tangible losses (e.g., performance degradation or potential future failures),
even if the negative impact is not immediate. The P1-P4 incidents mentioned in our dataset (Section 4.2) all qualify as key
bugs. This framing ensures our focus remains on high-impact defects rather than trivial concerns. KBI measures the model’s
ability to recall key issues that cause system faults. It is calculated as the percentage of recalled key issues out of the total
issue set:

KBI =
Number of recalled key issues

Total number of key issues
× 100 (1)
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M.2. False Alarm Rate (FAR)

FAR evaluates the extent to which the model generates irrelevant or erroneous comments (false alarms). We consider all
comments unrelated to key issues mentioned in the fault reports as false alarms. FAR is calculated as the percentage of false
alarm comments relative to total comments. Two types of FAR are defined:

1. FAR1: Calculates the False Alarm Rate for each individual MR and then averages these rates across all MRs to
provide an overall measure of the model’s ability to avoid false alarms.

FAR1 =
1

N

N∑
i=1

(
Number of false alarm comments in MRi

Total number of comments in MRi
× 100

)
(2)

2. FAR2: Focuses on MRs where key bugs were successfully recalled, offering insight into precision when key issues
are identified.

FAR2 =
1

M

M∑
j=1

(
Number of false alarm comments in recalled MRj

Total number of comments in recalled MRj
× 100

)
(3)

Where N is the total number of MRs, and M is the number of MRs where key bugs were recalled.

M.3. Comprehensive Performance Index (CPI)

To balance KBI and FAR, we propose the Comprehensive Performance Index (CPI), which harmonizes KBI and FAR in a
similar manner to the F1-Score. CPI evaluates the completeness of key issue detection and the precision of the model’s
comments. Two versions of CPI:

1. CPI1: Based on FAR1, considering all MRs.

CPI1 = 2× KBI× (100 - FAR1)

KBI + (100 - FAR1)
(4)

2. CPI2: Based on FAR2, focusing on MRs where key bugs were recalled.

CPI2 = 2× KBI× (100 - FAR2)

KBI + (100 - FAR2)
(5)

M.4. Line Localization Success Rate (LSR)

LSR evaluates the model’s ability to successfully associate comments with the valid code lines. A success is recorded if the
correct line number is provided and valid in the code. LSR is calculated as the percentage of correct line number cases:

LSR =
1

N

N∑
i=1

(
Number of correct line number cases in MRi

Total number of comments in MRi
× 100

)
(6)

N. Experimental Setups in Detail
The code slicing component of our framework is implemented using Cppcheck(Marjamäki, 2024), while the LLM engines
are integrated through an API supported by the vLLM framework (Kwon et al., 2023), and baselines are integrated via
Flask(Organization, 2024). All models and baselines are hosted on a server equipped with an AMD EPYC 7702 CPU and
eight Nvidia A100-40G GPUs. For large models such as LLaMA3.1-405B, we utilize an Int4 version quantized using
AWQ (Lin et al., 2024). For other models, we use the original half-precision floating-point format (FP16). For context on
overall throughput for large-scale evaluations, processing our entire dataset, which includes many large merge requests
(often over 20 modified files each), with models having 120B activated parameters took approximately 9 hours on our server
setup.
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Figure 5. Runtime per merge request under different slicing algorithms and LLaMA3.1-405B as base models. The most time-consuming
algorithm is Function, due to its inclusion of the largest extra context. However, all runtimes are within an acceptable range based on our
analysis.
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Regarding typical per-merge request runtime, we report detailed timings using violin plots. Figure 5 illustrates these
distributions.

The median runtime per MR is 6.2 minutes. The overall CI/CD pipeline (including compilation, analysis, and deployment
checks) typically takes 15–30 minutes. Our module runs in parallel from the beginning and does not introduce blocking
delays. Thus, we believe the overhead is acceptable in practical scenarios.

O. Performance of Heterogeneous Model Combinations
While our primary experiments (Section 5.1) employ a homogeneous Large Language Model (LLM) setup across all
roles to isolate the impact of a single powerful model, exploring heterogeneous model combinations offers the potential
for optimizing both performance and resource utilization. This section details supplementary experiments where LLM
assignments for reviewer and validator roles were varied. The results, presented in Table 10, demonstrate that strategically
pairing a strong validator model with a computationally less intensive (i.e., smaller) reviewer model can yield performance
comparable or, in certain metrics, even superior to configurations relying solely on a powerful model for both roles.

Table 10. Performance under different reviewer-validator model combinations and slicing algorithms. The results suggest that the validator
plays a more critical role, as it is closer to the final decision output. Interestingly, a combination of a weaker reviewer and a stronger
validator can achieve comparable or even superior performance, indicating potential room for improvement through heterogeneous model
pairing.

Slicing Algorithm KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑

LLaMA3.1-405B as reviewer, LLaMA3.1-70B as validator
Original Diff 2.22 42.22 4.28 0.00 4.35
Parent Function 6.67 20.00 12.31 0.00 12.50
Left Flow 2.22 39.26 4.29 66.67 4.17
Full Flow 0.00 35.56 – – –

LLaMA3.1-70B as reviewer, LLaMA3.1-405B as validator
Left Flow 17.78 55.74 25.37 51.04 26.08
Full Flow 13.33 66.11 19.14 45.83 21.40

LLaMA3.1-405B as both reviewer and validator
Original Diff 11.11 90.11 10.46 71.00 16.07
Parent Function 11.11 89.48 10.81 65.33 16.83
Left Flow 20.00 75.37 22.07 43.52 29.54
Full Flow 20.00 77.96 20.97 67.59 24.73

P. Performance by Error Category
To better understand the effectiveness of different slicing strategies, we analyze their performance across three fault
categories: logic, security, and performance-related bugs. As shown in Table 11, different slicing strategies exhibit distinct
strengths across fault categories. Specifically, flow-based slicing (i.e., Left Flow and Full Flow) is particularly effective for
identifying security issues. This is likely because these methods capture detailed jump, data, and control flow information,
including the lifecycle of variables, which are often crucial for uncovering security vulnerabilities. In contrast, logic bugs
appear to benefit more from the broader and more continuous context provided by parent function slicing, which can aid
LLMs in understanding the overarching code logic and intent. Performance issues remain the most difficult to detect, as they
tend to be subtle and delayed in manifestation.

Q. Discussion on High FAR
The initially reported False Alarm Rate (FAR) in Table 2 appears relatively high. This is partly due to our strict definition: if
the framework fails to detect the key bug in a merge request but still generates comments, we consider the FAR for that
request to be 100%. To offer a more nuanced perspective, we introduce FAR2, a metric that evaluates only cases where the
key bug is successfully recalled. Under the ”LLaMA3.1 405B + Left Flow + with Validator” configuration (Table 2), we
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Table 11. Performance by error category. Flow-based slicing excels in detecting security-related bugs, while function-level context
enhances logic bug identification. Performance bugs remain hard to detect due to their implicit and non-local nature.

Category KBI↑ FAR1↓ CPI1↑ FAR2↓ CPI2↑

Left Flow
Overall 20.00 75.37 22.07 43.52 29.54
Security 25.81 73.92 25.94 48.96 34.28
Logic 8.33 75.00 12.50 0.00 15.38
Performance 0.00 100.00 0.00 – –

Full Flow
Overall 20.00 77.96 20.97 67.59 24.73
Security 25.81 72.31 26.71 67.71 28.69
Logic 8.33 97.22 4.17 66.67 13.33
Performance 0.00 50.00 0.00 – –

Original Diff
Overall 11.11 90.11 10.46 71.00 16.07
Security 16.13 88.87 13.17 71.00 20.73
Logic 0.00 91.67 0.00 – –
Performance 0.00 100.00 0.00 – –

Parent Function
Overall 11.11 89.48 10.81 65.33 16.83
Security 3.23 91.94 4.61 50.00 6.06
Logic 33.33 81.39 23.89 69.17 32.03
Performance 0.00 100.00 0.00 – –

reduce FAR2 to below 50%.

In practical scenarios, verifying the correctness of comments with a team of five experienced C++ developers—simulating
a real-world inspection process—took approximately six minutes per new case. This time can be further reduced if the
reviewers are already familiar with the codebase or if a significant portion of the comments pertain to minor suggestions
(e.g., unnecessary try-catch statements).

Although FAR is a stringent metric—classifying all non-key-bug comments as false alarms—it provides an objective and
quantifiable baseline. In contrast, prior work often relies on subjective assessments such as ”usefulness” or ”goodness,”
which can vary significantly among reviewers. We view FAR as a foundational measure, with future research potentially
refining it to better align with industry-specific tolerance thresholds.

R. Min/Max Performance Ranges of Slicing Algorithms
To provide a more comprehensive understanding of the performance of our code slicing algorithms, beyond the average
metrics presented in Section 5.2 (RQ2, Table 3), this appendix details the minimum and maximum values observed for key
metrics across three experimental runs. This analysis addresses the need to understand result variability and offers deeper
insights into the consistency and raw potential of each slicing strategy, particularly before extensive filtering is applied.

Table 12 presents these min-max performance ranges for the four slicing algorithms under various stages of the single-
reviewer filtering pipeline. As emphasized in our response to reviewer feedback, the ”Single Reviewer – All” setting is
particularly insightful, as it reflects the unfiltered, raw output from the Large Language Model when provided with context
from different slicing methods. This setting best illustrates the inherent potential of each slicing algorithm to surface relevant
information.

Examining the ”Single Reviewer – All” setting in Table 12, we can observe the initial capabilities of each slicing algorithm.
For instance, Flow-based methods (Left Flow and Full Flow) demonstrate a high Key Bug Inclusion (KBI) potential,
with Full Flow reaching up to 40.00% and Left Flow also achieving a maximum of 40.00%. Parent Function also shows
substantial KBI, peaking at 35.56%, while Original Diff ranges from 17.78% to 28.89%. In terms of consistency in this
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raw KBI output, Full Flow exhibits a relatively tight range (37.78%–40.00%, a spread of approx. 2.22%), suggesting more
stable high performance across runs compared to Left Flow (spread of approx. 6.67%) or Original Diff (spread of approx.
11.11%). As expected, the False Alarm Rate (FAR1) for all methods in the ”All” setting is uniformly high, typically in the
90s range, given the absence of any filtering.

As comments pass through subsequent filtering stages (Coarse Filter, Top-10, Top-5, Top-3), the min-max ranges for
metrics like KBI and FAR1 evolve. For example, while the maximum KBI potential might be reduced by aggressive
Top-k truncation (e.g., for Left Flow, KBI max drops from 40.00% at ”All” or ”Coarse Filter” to 22.22% at ”Top-3”), the
filtering stages generally aim to reduce FAR while preserving KBI, leading to improvements in Comprehensive Performance
Index (CPI) metrics. The ranges also provide insights into the stability of these improvements. For instance, under ”Single
Reviewer – Top-5,” Left Flow shows a KBI range of (20.00%, 31.11%) and Full Flow (22.22%, 31.11%), indicating that
even after significant filtering, these methods can still achieve high bug recall in some runs.

This min-max analysis complements the average performance data presented in RQ2. It highlights that while average
performance provides a general comparative measure, the variability across runs can differ between algorithms and filter
settings. Understanding these ranges is valuable for assessing the robustness of each approach and identifying methods that
not only perform well on average but also maintain consistency or offer high peak performance.

Table 12. Min–max ranges of key metrics under different code slicing strategies for single reviewer settings.

Slicing Algorithm KBI↑ FAR1 ↓ CPI1 ↑ FAR2 ↓ CPI2 ↑
Single Reviewer – All

Original Diff (17.78, 28.89) (95.43, 98.07) (3.48, 7.89) (84.18, 89.16) (13.47, 20.44)
Parent Function (26.67, 35.56) (96.73, 97.35) (4.82, 5.96) (90.06, 91.14) (14.18, 15.16)
Left Flow (33.33, 40.00) (94.04, 94.73) (9.31, 10.11) (88.80, 92.39) (12.79, 16.77)
Full Flow (37.78, 40.00) (93.81, 95.24) (8.45, 10.72) (90.07, 93.29) (11.39, 15.91)

Single Reviewer – Coarse Filter
Original Diff (15.56, 20.00) (84.89, 92.40) (10.21, 17.21) (76.23, 80.01) (17.60, 20.00)
Parent Function (15.56, 26.67) (87.36, 88.91) (13.94, 16.33) (75.92, 91.01) (13.15, 22.27)
Left Flow (24.44, 40.00) (91.75, 92.20) (11.83, 13.68) (77.17, 90.38) (15.15, 23.61)
Full Flow (31.11, 33.33) (91.73, 93.78) (10.48, 13.07) (87.69, 90.70) (14.54, 17.64)

Single Reviewer – Top-10
Original Diff (13.33, 20.00) (84.83, 91.81) (10.26, 17.26) (70.83, 79.69) (18.30, 20.15)
Parent Function (13.33, 22.22) (87.44, 89.61) (11.68, 15.13) (72.08, 88.39) (15.25, 18.76)
Left Flow (31.11, 33.33) (90.58, 91.55) (13.29, 14.68) (78.42, 87.12) (18.21, 26.20)
Full Flow (28.89, 35.56) (90.05, 92.68) (11.85, 15.55) (83.62, 88.77) (16.17, 21.57)

Single Reviewer – Top-5
Original Diff (13.33, 17.78) (84.44, 91.63) (10.28, 16.59) (67.78, 75.00) (18.35, 20.78)
Parent Function (11.11, 17.78) (86.22, 89.22) (10.94, 14.64) (63.00, 80.00) (17.09, 20.81)
Left Flow (20.00, 31.11) (89.19, 91.33) (12.09, 16.05) (67.78, 78.89) (23.57, 29.26)
Full Flow (22.22, 31.11) (90.04, 90.67) (13.51, 14.45) (75.17, 80.00) (22.00, 26.51)

Single Reviewer – Top-3
Original Diff (8.89, 13.33) (84.07, 92.22) (8.30, 14.51) (60.00, 63.89) (14.37, 19.48)
Parent Function (6.67, 8.89) (86.67, 88.89) (8.33, 10.67) (50.00, 66.67) (11.11, 15.09)
Left Flow (13.33, 22.22) (88.89, 91.48) (10.40, 14.81) (52.78, 66.67) (20.80, 28.57)
Full Flow (11.11, 15.56) (90.74, 92.22) (9.40, 10.93) (63.89, 66.67) (16.67, 21.67)

S. Sensitivity Analysis of Top-k Truncation in Multi-Reviewer Settings
This section details experiments evaluating the impact of different Top-k truncation values (k) on performance within our
multi-reviewer framework, where all settings utilize three reviewers. The results, presented in Table 13, indicate that the
optimal choice of k is often contingent on the employed slicing strategy and the specific evaluation metrics prioritized.
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• For slicing strategies that typically generate a sparser set of initial comments, such as Original Diff and Parent
Function:

– With Original Diff, k = 3 (Top-3) generally yields favorable CPI1 results (9.30 before validation, 11.81 after)
and achieves the highest KBI (15.56) before validation. After validation, while Top-5 or Top-10 showed slightly
higher KBI (11.11 vs. 8.89 for Top-3), Top-3 maintained the best CPI1.

– For Parent Function, the trends are more varied. Before validation, Top-5 led to the highest KBI (20.00), while
Top-10 had the best CPI1 (11.04). After validation, k = 3 achieved the best CPI1 (13.62) with KBI comparable
to other k values.

• For richer slicing strategies such as Left Flow and Full Flow, which capture more extensive context and often produce
more candidate comments:

– With Left Flow, larger k values (Top-10 or Top-5) consistently outperformed Top-3 in KBI both before and after
validation. Top-5 generally provided the best CPI1 (17.51 before validation, 22.07 after).

– With Full Flow, Top-10 initially showed the highest KBI (35.56) before validation. However, a notable behavior
was observed in this specific case with Top-10 truncation, particularly after the Validator stage: there is a significant
drop in KBI (from 35.56 to 13.33) and CPI1 (from 15.92 to 12.01). In contrast, Top-5 for Full Flow maintained a
higher KBI (20.00) and CPI1 (20.97) post-validation. We attribute this decline for Top-10 to the large volume of
text processed when k = 10 for a verbose slicing method like Full Flow. This may approach the context token
limits of the LLaMA3.1 engine during the validation phase, potentially reducing the validator’s effectiveness.

Overall, these findings demonstrate that while the optimal k can be tuned, the Top-k filter’s behavior is generally stable across
reasonable threshold ranges. Furthermore, it is adaptable to the context richness provided by different slicing algorithms,
allowing for optimized configurations based on the desired balance between metrics like KBI and FAR.

T. Extended Conclusions
T.1. RQ1 Extended Conclusion

Conclusion 1 (Original)

Our framework surpasses baseline approaches significantly, achieving up to 10x better performance on key metrics
like KBI and CPI. This success is attributed to our comprehensive approach to code review automation, which
addresses the full pipeline and its associated challenges. Additionally, LLaMA3.1-405B emerged as the best-
performing LLM engine, reinforcing the importance of model size and capability in achieving optimal results.
Further investigations into LLM configurations show that heterogeneous setups, such as pairing a strong validator
with a smaller reviewer, can yield comparable or even improved performance (details in Appendix O).

T.2. RQ2 Extended Conclusion

Conclusion 2 (Original)

The results show that Left Flow and Full Flow significantly improve key bug inclusion (KBI) and overall perfor-
mance (CPI1) compared to simpler approaches like Original Diff and Parent Function. Among them, Left Flow
performs better in more settings, likely due to its more concise context, which helps the large language model
maintain focus without being overwhelmed. Each code slicing algorithm, however, has exclusive cases where it
performs well, suggesting that combining different strategies could further enhance key bug detection in future work.
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Table 13. The impact of Top-k truncation on comment quality under different slicing algorithms. All settings use three reviewers.

Top-k KBI↑ FAR1↓ CPI1↑

Original Diff (Multi Reviewer + Meta Reviewer)
Top-10 13.33 94.90 7.37
Top-5 13.33 96.74 5.24
Top-3 15.56 93.37 9.30

Parent Function (Multi Reviewer + Meta Reviewer)
Top-10 15.56 91.44 11.04
Top-5 20.00 92.41 11.01
Top-3 11.11 94.19 7.63

Left Flow (Multi Reviewer + Meta Reviewer)
Top-10 31.11 88.93 16.33
Top-5 31.11 87.81 17.51
Top-3 17.78 91.96 11.07

Full Flow (Multi Reviewer + Meta Reviewer)
Top-10 35.56 89.74 15.92
Top-5 31.11 89.41 15.80
Top-3 24.44 90.04 14.16

Original Diff (Multi Reviewer + Meta Reviewer + Validator)
Top-10 11.11 89.07 11.02
Top-5 11.11 90.11 10.46
Top-3 8.89 82.41 11.81

Parent Function (Multi Reviewer + Meta Reviewer + Validator)
Top-10 11.11 85.11 12.73
Top-5 11.11 89.48 10.81
Top-3 11.11 82.41 13.62

Left Flow (Multi Reviewer + Meta Reviewer + Validator)
Top-10 22.22 82.04 19.87
Top-5 20.00 75.37 22.07
Top-3 8.89 83.70 11.50

Full Flow (Multi Reviewer + Meta Reviewer + Validator)
Top-10 13.33 89.07 12.01
Top-5 20.00 77.96 20.97
Top-3 11.11 73.70 15.62
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T.3. RQ3 Extended Conclusion

Conclusion 3.1 (Original)

Increasing the number of reviewers improves key bug inclusion (KBI) but also increases false alarms (FAR1 and
FAR2). Validators are essential for maintaining comprehensive performance (CPI1 and CPI2) by reducing false
alarms. While leveraging multiple reviewers is beneficial, the added computational cost and need for validation
must be considered in practical implementations.

Conclusion 3.2 (Original)

The self-correction ability of LLMs, as implemented by the validator role, improves precision by reducing false
alarms (FAR1 and FAR2) but may reduce key bug inclusion (KBI). This indicates a trade-off between precision
and recall. The validation process is valuable for reducing hallucinations, but care must be taken to ensure that
important bug-detecting comments are not removed.

Conclusion 3.3 (Original)

The effectiveness of Chain-of-Thought (CoT) guidance varies based on the complexity of the code slicing algorithm.
While LLMs perform better without CoT in simpler formats like Original Diff and Parent Function, CoT significantly
improves results in more complex flow-based slicing (Left Flow and Full Flow). This suggests that CoT guidance is
especially valuable when handling more intricate contexts. However, as more powerful reasoning models, such as
GPT-O1 and DeepSeek-R1, emerge, the advantage of specified CoT over free-form reasoning may further diminish.

T.4. RQ4 Extended Conclusion

Conclusion 4 (Original)

The comment filter mechanism effectively reduces false alarms (FAR1) and improves overall performance (CPI1)
in flow-based slicing methods (Left Flow and Full Flow). For simpler slicing methods (Original Diff and Parent
Function), the coarse filter is the most effective stage, as these methods lack sufficient code details to accurately
filter nitpicks and hallucinations.

T.5. RQ5 Extended Conclusion

Conclusion 5 (Original)

Adding line number information improves both performance and localization success rate (LSR). The inline format
outperforms the relative format, likely because embedding position data directly into the code allows for better
association of comments with specific lines.

U. Status of Our Open-Source Code Artifacts
We have open-sourced all the core components of our framework and the experiments reported in the paper, except the
certain non-essential, company-specific modules are not included. To achieve this, we carefully modularized the framework
and separated any company-internal interfaces, ensuring that external users can readily experiment, customize, and extend
the system.

As for the omitted modules, these are excluded for three main reasons:

• They are not generally useful beyond our specific internal environment, offering little to no benefit for external
adaptation.

• They depend on proprietary interfaces and data sources that are inherently inaccessible to external researchers.
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• Including them risks violating the double anonymity requirement, not due to mere vocabulary or text replacements,
but because their logic and usage patterns could reveal organizational details. For code and comments that could be
anonymized, we have already performed the necessary replacements.

V. Threats to Validity
A recognized threat to the external validity of our study is that the presented evaluation and results are exclusively for C++
projects. This current language focus in our implementation is primarily due to the choice of Cppcheck for code slicing, a
tool specific to C++. We prioritized C++ due to its significant presence in the core framework code of many companies.
However, the underlying framework and its core principles—including the AST-based code slicing methodology and the
prompting strategies for LLMs—are designed to be largely language-agnostic. These components do not inherently rely on
C++-specific features. Consequently, extending the framework to support other compiled languages is considered feasible,
mainly requiring the integration of suitable language-specific AST parsing tools or static analyzers.

Another potential threat arises from how we calculate the False Alarm Rate (FAR). In our study, we classify all comments
not directly related to the key bug as false alarms. However, some of these comments may still identify relevant issues, such
as potential risks or code quality concerns, that do not immediately lead to system failures but warrant attention. As a result,
the actual FAR may be lower than our reported figures. Despite this, we chose this conservative approach to emphasize
critical issues and minimize the burden on developers, making our assumption practical in the context of prioritizing key
bugs.
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