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ABSTRACT

Multimodal Large Language Models (MLLMs) achieve strong performance on
tasks like image captioning and visual question answering, but remain prone to
hallucinations, where generated text conflicts with the visual input. Prior work
links this partly to insufficient visual attention, but existing attention-based detec-
tors and mitigation typically apply uniform adjustments across layers and heads,
obscuring where errors originate. In this paper, we first show these methods fail
to accurately localize problematic layers. Then, we introduce two diagnostics:
Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image
Attention Focus (IAF) which scores attention heads within those layers. Analysis
shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant
correction. Guided by these signals, we propose Dynamic Layer-wise Entropy
and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that
dynamically localizes and corrects errors during inference with negligible over-
head. Results show our D-LEAF delivers a 53% relative improvement on stan-
dard captioning benchmarks, and on VQA both accuracy and F1-score improve
by approximately 4%, substantially suppressing hallucinations while preserving
efficiency.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have gained increasing attention for their ability to
process and integrate visual and textual information. This design allows them to achieve strong per-
formance on a variety of vision-language tasks, such as image captioning, visual question answer-
ing, and text-to-image generation (Chen et al., 2023; Zhu et al., 2023; Liu et al., 2024a). However,
MLLMs often produce content that contradicts the image or the instructions, which is known as
hallucination. These inconsistencies often lead to reliability issues in practical applications, partic-
ularly in domains where accuracy and factual consistency are critical (He et al., 2023; Guo et al.,
2024; Zhou et al., 2025).

Traditional strategies to mitigate hallucinations in vision-language models involve instruction fine-
tuning or reinforcement learning on carefully curated datasets (Gunjal et al., 2024; Jiang et al.,
2024). Although effective, these approaches are typically resource-intensive and difficult to scale.
To overcome these challenges, recent research has shifted to inference-time methods, mitigating
hallucinations by enhancing semantic stability (Chen et al., 2025; Wang et al., 2025a; Tang et al.,
2025) or applying contrastive decoding techniques (Wang et al., 2024; Liang et al., 2025; Jiang
et al., 2025a) to adjust the distribution of the final output logits. Although these methods are more
effective than training-based algorithms, they still cannot sufficiently eliminate hallucinations and
incur a higher inference latency relative to the baseline.

In addition, a deeper limitation is mechanistic: prior methods rarely identify where hallucinations
arise in the attention stack. Several studies implicate over-reliance on the language stream (e.g.,
“anchor patterns” (Huang et al., 2024) or “textual inertia” (Liu et al., 2024b)) and respond with
global adjustments that increase visual weighting (Sarkar et al., 2025; Jiang et al., 2025b). However,
in practice, we find that these interventions frequently apply undifferentiated suppression across all
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The image features a wooden benchair 

located in front of a building … The 

building is made of concrete, and it has 

a brick-like texture …

Self-Attention Layer

Feed-Forward Layer

… …

ℎ15 ℎ18 ℎ29… ℎ𝑏𝑒𝑠𝑡

The image features a wooden bench 

situated in a courtyard … The bench 

is located in the middle of the scene, 

with a dining table nearby …

Attention Value Adjustment

Entropy value is too high!

Figure 1: The workflow of D-LEAF. During inference, when a layer’s attention-module entropy
exceeds a dynamic threshold, D-LEAF then corrects the attention heads exhibiting insufficient vi-
sual focus, suppressing hallucinations (e.g., the phrase “dining table”).

selected attention modules. This can disrupt correctly functioning heads and thus limit hallucination
reduction (see in Figure 2).

To address these issues, we adopt a localize before correct strategy. We first introduce two com-
plementary diagnostics that operate during the forward pass: (1) Layer Image-Attention Entropy
(LIAE), which flags unreliable layers; and (2) Image-Attention Focus (IAF), which identifies the
specific attention heads within those anomalous layers that require correction. Guided by LIAE and
IAF, we propose D-LEAF (Dynamic Layer-wise Entropy and Attention Fusion), a lightweight and
plug-and-play method that dynamically identifies unreliable attention components and applies se-
lective, fused corrections to only the flagged heads, avoiding blanket suppression. As illustrated in
Figure 1, when the attention entropy of a layer exceeds a dynamic threshold, D-LEAF pinpoints low
focus heads and injects fused corrective signals, which suppress hallucinated content (e.g., removing
the spurious phrase ‘dining table’) while preserving faithful details.

In experiments, we evaluate D-LEAF on three representative MLLM architectures across three stan-
dard multimodal hallucination benchmarks, comparing against six state-of-the-art correction meth-
ods. Results show D-LEAF consistently delivers the strongest suppression, reducing hallucinations
by up to 53% versus the baseline and improving VQA accuracy and F1 by approximately 4%, with
only 8% throughput drop relative to greedy decoding.These results demonstrate that D-LEAF strikes
an optimal balance between factual reliability, descriptive detail, and high inference speed. Our con-
tributions are summarized as follows:

• First, we analyze prior attention-head-based suppression methods and show that (i) some
attention heads can focus on the correct image information and (ii) blindly suppressing all
heads across layers can harm correct ones, leading to ineffective hallucination mitigation.
To address this, we propose two inference-time diagnostics LIAE and IAF to dynamically
and precisely localize anomalous layers and specific heads requiring correction.

• Second, we propose a novel method, called D-LEAF. D-LEAF is a lightweight plug-and-
play method that suppresses hallucinations through layer-by-layer corrections during in-
ference: LIAE flags problematic layers, and IAF selects heads to receive fused corrective
signals.

• Third, we validate the effectiveness of D-LEAF through extensive experiments on three
leading MLLMs in three multimodal hallucination benchmarks, achieving up to a 53%
reduction in hallucinations with only 8% throughput overhead relative to greedy decoding,
without relying on additional tools.

2 RELATED WORK

Hallucination and Mitigation in MLLMs. In natural language processing, hallucinations orig-
inally denote generated content that is inconsistent with the context or facts (Huang et al., 2025).
In MLLMs, this manifests as factual errors, incorrect image descriptions, or misidentified object
attributes/relationships (Liu et al., 2024a). Previous research on hallucination mitigation can be di-
vided mainly into two categories: training-based algorithms and training-free algorithms. Training-
based methods apply visual instruction tuning (Gunjal et al., 2024), external expert guidance (Chen
et al., 2024), or reinforcement learning from human feedback (RLHF) (Sun et al., 2023), but they
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typically require substantial compute and are difficult to deploy in resource-constrained settings.
Thus, lightweight training-free methods have attracted growing interest. A prominent line is con-
trastive decoding, which mitigates spurious output by comparing model predictions under varying
conditions. For example, VCD (Leng et al., 2024) contrasts the output distributions conditioned on
original and distorted visual inputs to identify and suppress hallucinated content; MoLE (Liang et al.,
2025) employs a Mixture of Experts for inter-layer contrast decoding; DAMRO (Gong et al., 2024)
reduces the impact of background outlier tokens; OPERA (Huang et al., 2024) performs multiple
rollbacks combined with token aggregation to suppress hallucinations; DoLA (Chuang et al., 2023)
leverages layer-wise contrasts to enhance factuality; and HALC (Chen et al., 2024) contrasts output
distributions across different visual contexts and uses visual matching scores to guide beam-search
candidate selection. Despite their effectiveness, these approaches still introduce additional decod-
ing overhead, e.g., HALC incurs a 2.4× increase in inference time compared to standard greedy
decoding. Thus, this motivates us to design a lightweight, plug-and-play method without relying on
additional tools.

Interpretability-driven Mitigation in MLLMs Hallucination. Numerous studies have exam-
ined the underlying causes of hallucinations to guide the development of more fine-grained
architecture-level suppression methods. Reported factors include excessive prior knowledge of
LLM (Liu et al., 2024b), insufficient attention to images (Jiang et al., 2025b; Sarkar et al., 2025;
You et al., 2025), and excessive attention to summary words (Huang et al., 2024). Among these
mitigation strategies, attention-head-based hallucination suppression methods show promise. For
example, ASCD (Wang et al., 2025b) employs positive and negative steering as two complementary
mechanisms to adapt the internal attention distributions of the model. AD-HH (Yang et al., 2025)
first identifies the heads prone to hallucination offline and then detects and suppresses these heads in
real time during the model’s forward pass. In contrast, SPIN (Sarkar et al., 2025) and SVAR (Jiang
et al., 2025b) indiscriminately mute a subset of heads in specific layers to force the model to focus
more on visual input. However, because these approaches apply uniform corrections across all lay-
ers, they lack flexibility and can still fail to eliminate hallucinations in certain cases, as illustrated in
Figure 2. To address these issues, we conducted a systematic analysis of attention-module behavior
during the forward pass of the model and introduced LIAE for layer-wise detection of problem-
atic heads within each decoder module. By applying targeted per-layer corrections to these specific
attention heads, our method more precisely suppresses hallucinations.

What are the colors of the 

dogs from right to left?

The colors of the dogs are white and black.

The colors of the dogs are brown and black.

Selective Modification

Indiscriminate Modification

LLaVA Output

Other Methods

Our Method

Figure 2: A motivating example of using selective attention correction in a visually ambiguous
scenario.

3 UNDERSTANDING MLLM HALLUCINATION

In this section, we present empirical analyses to investigate the internal mechanisms behind hallu-
cination in MLLMs from the perspective of attention. Although prior attention-based hallucination
mitigation methods have achieved promising results, we observe that they still fail to produce correct
answers in semantically ambiguous scenarios, as illustrated in Figure 2. We therefore re-examine
these approaches in detail. We hypothesize that indiscriminately suppression of attention heads
across all layers reduces hallucinations but biases the model toward generating shorter outputs.
We aim to answer these three research questions: (i) Are poorly performing heads uniformly dis-
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tributed across layers?; (ii) How does head suppression reduce hallucinations?; (iii) What costs does
suppression of poorly performing heads incur?

3.1 INDISCRIMINATE CORRECTION LEADS TO ERRORS

Are poorly performing heads uniformly distributed across layers? Prior attention-correction
strategies such as SPIN (Sarkar et al., 2025) and SVAR (Liu et al., 2024b) suppress the lowest-
scoring heads at the intra-layer level. We argue that ignoring inter-layer head performance can
inadvertently suppress functionally correct heads, and thus fail to eliminate hallucinations. As illus-
trated in the middle of Figure 2, applying SPIN to LLaVA in a visually ambiguous scenario does
not prevent the model’s hallucinated outputs. We hypothesize that this phenomenon arises because
poorly performing attention heads are not uniformly distributed across all layers, but instead cluster
within specific layers.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y 
of

 T
op

-5
0 

H
ea

ds

Average: 507.81

Figure 3: Distribution of abnormal
attention heads across layers.

To further verify this hypothesis, we randomly sampled 500
images from the COCO2014 validation set and extracted the
hallucinated tokens generated by the model. We rank every
attention head across all layers by their SPIN scores, select
the 50 lowest performing heads, and visualize their distribu-
tion to reveal how these underperformers cluster across lay-
ers. As illustrated in Figure 3, this distribution markedly devi-
ates from uniformity, with the majority of layers falling below
the mean. This suggests that indiscriminately modifying the
lowest-scoring anomalous attention heads across all layers is
not a principled or effective strategy.

Based on the above assumptions, in the context of Figure 2, we rank all attention heads globally
by their SPIN scores, select the k worst performing heads (using the same k as SPIN) and suppress
them. As shown on the right side of Figure 2, this global suppression successfully prevents the model
from hallucination. These results motivate us to design a metric to dynamically localize anomalous
attention heads during the model’s forward pass.

3.2 MUTING LOW-FOCUS HEADS REDUCES HALLUCINATIONS AT THE COST OF ACCURACY

CHAIRS CHAIRI F1 Length0

20

40

60

80

100
Random Worst Best Base

Figure 4: The impact of different
suppression methods in LLaVA.

In this part, we answer the questions ‘How does head suppres-
sion reduce hallucinations?’ and ‘What costs does suppres-
sion of poorly performing heads incur?’. Inspired by (Li et al.,
2023a), we investigate whether there exist attention heads that
can correctly capture image content. Following (Rohrbach
et al., 2018), we adopt the CHAIR metrics, namely CHAIRS

and CHAIRI , as defined in equation 6, and conduct experi-
ments on LLaVA-7B. The detailed definitions of these metrics
are provided in the Appendix B.1.

We first partition the attention heads by ranking them within
each layer according to their cumulative attention over the image tokens. Based on this ranking, we
suppress 15% of the heads per layer, yielding four experimental settings: (i) no intervention, (ii)
suppressing the heads with the highest attention scores, (iii) suppressing the heads with the lowest
attention scores, and (iv) randomly suppressing heads. We then evaluate each setting using four
metrics: CHAIRS , CHAIRI , F1, and output length (Length), as illustrated in Figure 4.

Our results demonstrate that attention heads with high focus on image tokens indeed contribute to
visual understanding, as suppressing them leads to a substantial increase in hallucination rates, ap-
proximately twice that of the baseline. Conversely, suppressing heads with low image attention can
significantly reduce hallucination rates, but this comes at the cost of shorter outputs and a decrease in
F1 scores. We attribute this drawback to the indiscriminate suppression of heads across all layers, as
discussed above. Moreover, our experiments reveal that modifying only a small subset of attention
heads can substantially alter the model’s output, which is consistent with the findings in Kang et al.
(2025a;b).
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Building on these observations, we hypothesize that increasing the visual focus of underperform-
ing attention heads can reduce hallucinations, and that self-correction can be achieved by directly
leveraging higher-scoring heads within the abnormal layers.

4 D-LEAF

We investigate in depth the internal mechanisms behind hallucinations in the last section. In this sec-
tion, we introduce the Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF) framework to
mitigate hallucinations. Our method dynamically detects anomalous behaviors in the MHA modules
of MLLMs during the forward pass and applies real-time corrections to the identified problematic
components, thereby improving the reliability of the model’s outputs, as shown in Figure 23. We
begin by introducing a novel metric Layer Image Attention Entropy (LIAE) for detecting anoma-
lous behavior within each decoder module and describe how, once a module is flagged, we use a
additional indicator Image Attention Focus (IAF) to pinpoint the exact attention heads that need
to be corrected. We also present significance tests and correlation analyses for these metrics (see
Appendix C for introductions to these tools). Finally, we detail the complete algorithmic workflow.
We have verified the validity and effectiveness of these indicators in Appendix D.2 and replicated all
analyses presented in this section on Shikra to validate the generalizability of our proposed metrics;
details are provided in Appendix D.3.

4.1 DYNAMIC LAYER SELECTION

As discussed before, prior methods typically rank attention heads within each layer and directly
suppress those with the lowest scores. However, this intra-layer ranking ignores cross-layer context:
if a given layer already exhibits higher overall attention scores than other layers, its comparatively
weaker heads may still be performing adequately. As a result, suppressing them indiscriminately
can fail to reduce and may even exacerbate hallucinations.

Real Hallucinated
Object token type

3.4520
3.4540
3.4560
3.4580
3.4600
3.4620
3.4640
3.4660
3.4680

LI
A

E

p < 0.001

Figure 5: LIAE Distribution across
object token types in MiniGPT-4.

Although several layer selection methods have been proposed,
particularly in contrastive decoding, for instance, DeCo (Wang
et al., 2024), which mixes the maximum-probability logits
from a selected layer with those of the final layer, and MoLE
(Liang et al., 2025), which adopts a hybrid selection strategy
by comparing intermediate logits against the final layer, these
approaches rely on a baseline, typically the output of the last
layer. However, such a baseline is infeasible for attention-
head-based corrections, since modifications to attention occur
during the forward pass and each layer’s perturbation directly
propagates to subsequent computations. This motivates the
need for a new dynamic metric to detect abnormal layers.

Prior work has shown that, during inference in MLLMs, only a
subset of attention heads are functionally engaged, and that elevated attention-head entropy is asso-
ciated with a higher likelihood of hallucination (Kang et al., 2025b; Jiang et al., 2025b). Therefore,
to capture the overall state of all attention heads in the current layer, we first introduce the Maximum
Attention Matrix (MAM). For the i-th token of an MLLM output ti, we define the MAM of the l-th
layer:

MAM(l)
n = max

h=1,...,H
A(l)

h,n, n = 1, . . . , N. (1)

where A
(l)
h,n represents the attention of the h-th attention head in the l-th layer to the image token n.

Each entry of the MAM at layer l represents, for a given image token n, the highest attention score
that any of that layer’s attention heads assigns to n.

With MAM, we introduce a metric called Layer Image Attention Entropy (LIAE), which quantifies
whether a given layer contains attention heads exhibiting overly diffuse focus and therefore require
correction.

LIAE(l) = −
N∑

n=1

P(MAM(l)
n )logP(MAM(l)

n ) (2)
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To validate the effectiveness of the metrics we proposed, we first randomly selected a subset of 500
images from the COCO 2014 validation set (Lin et al., 2014). We chose MiniGPT-4 for subsequent
analysis. To show whether LIAE can significantly distinguish the differences between layers when
the model generates real words and hallucinated words, we use greedy search in the decoding pro-
cess of the above model to generate captions for the selected images, prompted by “Please help me
describe the image in detail.” We use the ground truth annotation to identify the real and halluci-
nated words. We then calculated and plotted the distribution of LIAE when the model generated
hallucinated words and real words.

To evaluate the significance of these metrics, which independent and non-normally distributed across
real and hallucinated tokens, we apply the Wilcoxon signed-rank test (Wilcoxon, 1992). With p <
0.001, in Figure 5, we confidently observe in these two models that hallucinated tokens exhibit
significantly higher LIAE compared to real tokens.

Accordingly, based on the above experiments, we use LIAE to localize layers that contain anomalous
attention heads. For completeness, we report in Appendix D.2 additional experiments that use Layer
Image Attention Focus (LIAF) and a hybrid of the two (LIAS) as alternative criteria for abnormal-
layer detection, together with ablations. We find that LIAE is more sensitive and achieves the best
performance; therefore, we adopt LIAE as the sole metric for abnormal-layer localization.

4.2 ATTENTION HEAD LOCALIZATION

After pinpointing abnormal layers, we must identify the specific attention heads within them that
require modification. Motivated by the “text inertia” phenomenon (Liu et al., 2024b), we introduce
Image Attention Focus (IAF), a metric that quantifies the extent to which each attention head attends
to image tokens (i.e., visual regions).

IAF(l)
h =

N∑
n=1

A(l)
h,n (3)

Real Hallucinated
Object token type

-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

IA
F

p < 0.001

Figure 6: IAF Distribution across
object token types in MiniGPT-4.

Similarly, to validate the effectiveness of these two metrics,
we repeated the Wilcoxon signed-rank test described above in
MiniGPT-4. As shown in Figure 6, we plotted the distributions
and found that, at p < 0.001, every attention head exhibits sig-
nificantly higher IAF for real tokens than for hallucinated ones.

Analogous to LIAE, to validate the soundness of our metric,
we also evaluate Image Attention Entropy (IAE) and a hy-
brid of IAF and IAE for identifying and correcting anomalous
attention heads; implementation details are provided in Ap-
pendix D.2. Across multiple model architectures, however, we
find that using IAF alone consistently achieves the strongest
hallucination suppression.

We also verified the reliability of our metrics on other model
architectures, with specific results provided in Appendix D.3.

4.3 MIXED ATTENTION MATRIX CORRECTION

Building on the aforementioned layer selection and head localization, we could detect anomalous
heads during the model’s forward pass. Our prior experiments indicate that disrupting attention
heads with stronger focus on visual tokens causes disproportionately greater degradation and, in
particular, increases the model’s propensity to produce hallucinated outputs. Moreover, directly
suppressing attention heads with insufficient attention leads to a decline in the quality of the model’s
output content. Therefore, we hypothesis that hallucinations stem in part from certain heads al-
locating insufficient attention to visual regions. To remedy this, we introduce a mixed correction
approach that leverages well-performing heads to refine the under-performing heads.

Al
h,v = γAl

best,v + (1− γ)Al
h,v (4)
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where Al
h,v and Al

best,v denote, respectively, the visual-token submatrices of the attention matrices
for the heads requiring correction and the highest-scoring heads at layer l.

4.4 DYNAMIC LAYER-WISE ENTROPY AND ATTENTION FUSION

Based on these findings, we propose a two-stage detection and correction algorithm to effectively
suppress model hallucinations. Unlike traditional attention-head-based hallucination suppression
methods, we introduce a dynamic detection baseline Best Attention Score (BAS) that monitors the
model’s forward pass and pinpoints the specific layer where anomalies arise.

BAS = min(BAS,LIAE(l)), l = 1, 2, . . . , L. (5)

BAS denotes the best score of the layer encountered so far in the forward pass, and it is updated
incrementally. During inference, if the current layer’s LIAE is lower than BAS, we set BAS equal
to LIAE; if LIAE exceeds BAS, we deem the attention heads in this layer to be underperforming
and therefore in need of correction. We then rank all heads in the current layer by their IAF values,
select the n worst-performing heads, and update their attention matrices according to equation 4.

Our dynamic localization-and-correction algorithm not only suppresses hallucinations at a finer
granularity within the model’s architectural layers but also leverages inter-layer relationships to pin-
point anomalies with greater accuracy. The detailed workflow of the algorithm and its pseudo-code
is provided in the Appendix D.5.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets. We conducted a detailed evaluation of our proposed algorithm using three established
benchmarks: CHAIR Rohrbach et al. (2018), POPE Li et al. (2023b), and MMHal-Bench Sun et al.
(2023). These benchmarks were used to assess the effectiveness of our method in suppressing model
hallucinations. Detailed descriptions of the benchmarks are provided in Appendix B.1.

Models and Baselines. We evaluate our method D-LEAF on 5 models: LLaVA-1.5 (7B) (Liu
et al., 2024a), MiniGPT-4 (Zhu et al., 2023), Shikra (Chen et al., 2023), InstructBLIP (Dai et al.,
2023) and Qwen-VL Bai et al. (2023). And we compare it with several existing SOTA training-free
hallucination suppression algorithms, including Greedy Search and Nuclear Sampling, SPIN (Sarkar
et al., 2025), PAI (Liu et al., 2024b), VCD (Leng et al., 2024), and DAMRO (Gong et al., 2024).
More details are provided in Appendix B.2.

Evaluation Metric. CHAIR provided two indicators: CI , which indicates the hallucination rate
at the instance-level, and CS , which the hallucination rate at the sentence-level. They are calculated
with the following equation:

CHAIRI =
|{hallucinated objects}|
all mentioned objects

, CHAIRS =
|{captions with hallucinated objects}|

all captions
. (6)

Implementation Details. All experiments are run in Pytorch using vGPU-48GB. We used a batch
size of 1 and set the model’s maximum output length to 512 tokens. For each configuration, we
report the average and standard deviation over 3 runs with different random seeds {42, 927, 111}
in POPE and 5 runs with different random seeds {42, 3, 11, 927, 111} in CHAIR. For the image
captioning and VQA tasks, we set the number of attention heads that need to be modified on each
layer between 3 and 5, γ is set within the range of 0.7 to 0.9.

5.2 MAIN RESULTS

Long Sequence Hallucination Evaluation. We evaluate the CHAIR result of five models, as
presented in Table 1. Our D-LEAF method significantly outperforms previous state-of-the-art ap-
proaches across all metrics on hallucination and models. Specifically, on MiniGPT-4 our model
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Table 1: CHAIR hallucination evaluation results. The best result is highlighted in bold, and the
second-best is underlined. The values reported are the mean performance.

Method LLaVA MiniGPT-4 Shikra InstructBLIP Qwen-VL

CS CI CS CI CS CI CS CI CS CI

Greedy 47.08 ±1.54 13.00 ±0.59 34.00 ±1.98 10.82 ±0.59 54.64 ±2.84 14.96 ±1.37 48.12 ±2.98 14.18 ±1.12 46.88 ±1.56 12.72 ±0.36

Sampling 53.44 ±2.21 16.30 ±1.26 33.80 ±1.17 11.78 ±0.62 57.10 ±1.80 16.14 ±0.88 47.04 ±1.47 13.24 ±0.77 47.04 ±1.47 13.24 ±0.77

VCD 55.38 ±1.17 15.20 ±1.21 – – 55.16 ±2.25 14.96 ±1.26 – – 51.40 ±2.21 13.62 ±0.75

PAI 35.28 ±1.69 9.46 ±0.67 27.92 ±1.47 10.06 ±0.89 54.64 ±2.51 14.02 ±1.49 59.24 ±2.00 16.10 ±0.67 47.64 ±2.26 12.92 ±0.68

DAMRO 46.44 ±1.66 12.78 ±0.60 – – – – – – – –
SPIN 29.04 ±2.46 8.70 ±0.55 24.56 ±1.62 9.40 ±1.74 38.56 ±2.35 10.88 ±0.56 48.80 ±2.65 14.04 ±1.23 33.72 ±2.54 9.42 ±0.48

D-LEAF 23.44 ±2.63 6.72 ±0.49 11.56 ±1.69 4.72 ±0.95 26.35 ±1.32 10.62 ±0.87 22.44 ±2.75 8.48 ±5.93 25.24 ±1.55 7.96 ±1.65

Table 2: Quantitative comparison on Muti-turn POPE. The best result is highlighted in bold, and the
second-best is underlined. The values reported are the mean performance.

Model Method Random Popular Adversarial

Accuracy F1 Accuracy F1 Accuracy F1

LLaVA

Greedy 86.63 ±0.78 85.32 ±0.92 79.22 ±0.23 78.23 ±0.66 76.98 ±0.16 76.71 ±0.41

Sampling 83.94 ±0.59 83.30 ±0.44 76.30 ±0.15 75.05 ±0.35 72.70 ±1.61 73.44 ±2.85

PAI 77.02 ±4.62 72.96 ±6.94 75.68 ±0.12 72.65 ±0.25 75.07 ±0.55 72.41 ±0.75

DAMRO 86.67 ±0.87 85.53 ±1.09 79.23 ±0.28 78.28 ±0.71 77.01 ±0.17 76.74 ±0.42

SPIN 86.29 ±0.16 84.80 ±0.38 81.81 ±2.85 80.47 ±2.60 80.31 ±4.33 79.47 ±4.01

D-LEAF 87.76 ±0.47 86.65 ±0.72 84.75 ±3.21 83.67 ±3.00 84.94 ±3.35 82.09 ±2.87

MiniGPT-4

Greedy 70.17 ±3.68 68.33 ±3.82 64.01 ±4.39 63.16 ±5.57 63.06 ±2.48 62.52 ±1.17

Sampling 70.34 ±5.48 60.96 ±9.00 62.92 ±5.22 54.41 ±8.31 60.30 ±4.70 55.52 ±7.78

PAI 68.45 ±9.67 64.12 ±7.14 59.66 ±8.49 57.31 ±6.45 60.93 ±6.52 56.38 ±5.42

SPIN 72.89 ±2.44 69.04 ±2.19 66.10 ±2.36 64.33 ±4.18 64.88 ±3.05 67.34 ±2.66

D-LEAF 74.95 ±0.62 72.17 ±0.77 67.51 ±0.09 66.02 ±0.15 67.62 ±0.41 65.17 ±0.46

Shikra

Greedy 80.75 ±0.56 80.35 ±0.54 74.95 ±1.88 75.66 ±1.22 73.37 ±1.97 75.89 ±1.03

Sampling 81.67 ±0.65 81.55 ±0.69 77.58 ±0.36 78.67 ±0.51 72.94 ±1.45 75.37 ±0.68

PAI 71.00 ±0.25 74.03 ±0.22 70.10 ±0.39 73.38 ±0.60 64.97 ±0.62 70.65 ±0.09

SPIN 64.68 ±0.03 61.66 ±0.78 59.73 ±0.16 60.06 ±0.61 58.17 ±0.11 61.09 ±0.71

D-LEAF 82.36 ±1.12 83.32 ±1.14 79.12 ±0.61 79.89 ±0.73 75.15 ±2.10 76.37 ±1.45

InstructBLIP

Greedy 86.16 ±0.65 84.54 ±0.86 84.48 ±1.10 83.03 ±1.28 81.95 ±0.25 80.75 ±0.46

Sampling 79.36 ±0.20 78.36 ±0.31 76.55 ±0.32 76.17 ±0.18 74.74 ±0.20 74.93 ±0.05

PAI 86.34 ±0.44 84.66 ±0.63 84.80 ±0.94 83.22 ±1.08 82.69 ±0.03 81.32 ±0.12

SPIN 86.51 ±0.55 85.06 ±0.76 85.21 ±1.07 83.91 ±1.24 81.97 ±0.19 80.96 ±0.42

D-LEAF 86.67 ±0.57 85.23 ±0.74 85.32 ±0.96 84.06 ±1.05 82.10 ±0.24 81.09 ±0.42

Qwen-VL

Greedy 89.56 ±0.24 89.20 ±0.28 86.93 ±0.05 86.76 ±0.02 82.81 ±0.11 83.25 ±0.02

Sampling 85.41 ±0.32 84.82 ±0.38 81.49 ±0.25 81.42 ±0.14 77.82 ±1.23 72.24 ±0.62

PAI 89.34 ±0.11 88.89 ±0.11 86.94 ±0.30 86.80 ±0.22 82.88 ±0.57 83.32 ±0.40

SPIN 88.49 ±0.03 88.22 ±0.06 84.66 ±1.13 84.86 ±0.99 80.49 ±0.80 81.48 ±0.62

D-LEAF 89.59 ±0.27 89.21 ±0.22 87.42 ±0.13 87.18 ±0.11 83.19 ±0.30 83.50 ±0.19

achieves a 53% reduction in CS and a 57% reduction in CI compared to SPIN, highlighting the
effectiveness of D-LEAF in mitigating object hallucinations in long text generation tasks.

Multi-turn Hallucination Evaluation. We use a multi-turn POPE evaluation to increase the diffi-
culty of this task, the result is shown in Table 2. D-LEAF consistently performs best across each part
of the POPE across the five models. Notably, on LLaVA, MiniGPT-4 and Shikra, our model outper-
forms the baseline by approximately 5%, and on the other two models, D-LEAF also surpasses the
current state-of-the-art by 1%. The results indicated that our D-LEAF could achieve good results in
long context VQA tasks.

GPT-4 Assisted Hallucination Evaluation in Comprehensive General Scenarios. We use
MMHal-Bench and GPT-4 assist to evaluate the performance of D-LEAF in more complex sce-
narios. From Figure 7, the experimental results indicate that our method could achieve better results
in all three models, especially in LLaVA 7B. While for more image-based question types, like at-
tributes and adversarial objects, our method did not achieve a noticeable improvement in MiniGPT-4
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Figure 7: MMHal-Bench Evaluation on LLaVA, MiniGPT-4 and Shikra.

0.0 0.2 0.4 0.6 0.8 1.0
Gamma

10

20

30

40

50

C
H

A
IR

S

0 5 10 15 20 25
Number of Heads

0

20

40

C
H

A
IR

S

LLaVA MiniGPT-4 InstructBLIP

Figure 9: Ablation Study results for hyperparamter γ and n.

and Shikra. In the average performance across the eight evaluation dimensions, there is a certain de-
gree of improvement compared to the baseline after incorporating D-LEAF.
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Figure 8: Throughput comparison
with existing methods in LLaVA.

Throughput Estimation. To evaluate whether our algorithm
maintains real-time efficiency without incurring significant
throughput loss, we measured the token-per-second generation
rate of LLaVA under different algorithms, as shown in Figure
8. Our method showed the least reduction in throughput com-
pared to the baseline. It outperformed other state-of-the-art
techniques, including attention-head correction methods such
as SPIN and PAI. We repeated this experiment on MiniGPT-4
and Shikra and observed consistent results, as detailed in Ap-
pendix B.3.

In Appendix E, we provide visualizations across diverse
MLLMs to further present instances of hallucination correc-
tions by our method.

5.3 ABLATION STUDY

D-LEAF incorporates two primary hyperparameters: γ and the number of heads n. We present
the effect of varying two parameters on CHAIRS in the main text, as illustrated in Figure 9. The
results demonstrate the strong robustness of our method: across a wide range of γ (0.03 to 0.98)
and n values (5 to 25), our algorithm consistently outperforms the baseline. In the Appendix B.4,
we further provide the impact of hyperparameter variations on CHAIRI and F1, along with a more
detailed analysis of the results. Moreover, to ensure the completeness of our study, we also examine
whether restricting the D-LEAF algorithm to specific layers yields additional gains. The results in
Appendix B.4 and D.4 demonstrate that, unlike PAI Liu et al. (2024b) and Deco Wang et al. (2024),
D-LEAF consistently achieves significant suppression of hallucinations regardless of whether the
layer prior is applied.

6 CONCLUSION

We proposed D-LEAF to suppress the hallucinations generated by MLLMs. We propose a two-stage
localization and correction algorithm: first, we use the Layer Image Attention Entropy to identify
anomalous modules during the forward pass; then, we apply the Image Attention Focus to rank that
layer’s heads and selectively correct the lowest-performing ones. Our experiments demonstrated
that D-LEAF outperforms existing methods in reducing hallucinations across various MLLMs. This
work highlights the potential of attention modules to enhance the output reliability of MLLMs and
provides mechanistic insights into their operation.

9
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A STRUCTURE OF THE APPENDIX

The appendix is structured as follows:

Appendix B details the datasets used in our validation experiments as well as the baseline methods
for comparison. It also provides additional experiments that complement the main text, including
throughput estimates across different models, ablation studies, and related analyses.

Appendix C details the statistical tools employed in this work, along with additional experimental
instruments such as the Logit Lens.

Appendix D presents the overall framework of D-LEAF, demonstrating both the soundness and
motivation of our proposed metrics, and further verifying their generalizability across model archi-
tectures. It also includes supplementary analyses on the role of layer priors in the algorithm and
introduces the concept of visual processing layers.

Appendix E provides qualitative case studies showcasing high-quality answers generated by models
after applying our algorithm.

Appendix F describes the usage of Large Language Models in the paper.

B IMPLEMENTATION DETAILS

B.1 DATASET

CHAIR. The Caption Hallucination Assessment with Image Relevance (CHAIR) metric provides
per-image ground-truth object annotations for image captioning, flagging any model-generated ob-
ject not in the reference set as a hallucination.

POPE. The Polling-based Object Probing Evaluation (POPE) evaluates hallucinations in visual
question answering by querying “Is there a <object> in the image?” using three object-sampling
strategies:

• Random: uniformly drawn from the full dataset.
• Popular: selected from the most frequent objects.
• Adversarial: chosen for strong semantic relevance to the image.

MMHal-Benchmark. MMHal-Bench comprises 96 image–question pairs spanning 12
COCO-derived object meta-categories and eight question types (attributes, adversarial, com-
parison, counting, spatial relations, environment, holistic descriptions, and others), providing a
rigorous testbed for evaluating model hallucination in challenging examples.

In addition, to evaluate the effectiveness of our method, we tested the number of tokens output per
second by the model in each of the three models.

B.2 BASELINES

Greedy Search and Nuclear Sampling. Traditional decoding strategies that are widely used in
sequence generation tasks.

SPIN and PAI. SPIN (Sarkar et al., 2025) and PAI (Liu et al., 2024b): The latest SOTA approach
leverages attention-head mechanisms to effectively suppress hallucinations.

VCD. VCD (Leng et al., 2024): A technique that introduces noise into images to create amateur
models for contrastive decoding.

DAMRO. DAMRO (Gong et al., 2024): This method leverages the ViT’s CLS token to selectively
filter out high-attention background outliers and eliminate their influence during decoding.

We used the parameters provided in the open source version of these methods.
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B.3 THROUGHPUT ESTIMATION

In the main text, we demonstrated that on LLaVA our algorithm achieves throughput closest to
greedy search among all methods. To further validate its effectiveness, we measured throughput on
MiniGPT-4 and Shikra. As shown in Figure 10, our approach still incurs the smallest throughput
degradation while maintaining high hallucination suppression rates and preserving output detail.
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Figure 10: Throughput comparison with existing methods given by the number of tokens generated
per second in MiniGPT-4 (left) and Shikra (right).

B.4 ABLATION STUDY

D-LEAF is a two-stage localization–correction algorithm for hallucination suppression. In the first
stage, localization is performed by comparing the Layer Image Attention Entropy (LIAE) with the
current Best Attention Score (BAS) to identify abnormal layers. This process does not require any
additional hyperparameters, though layer priors, L, can be applied during this phase, which restricts
localization to specific layers and improve detection accuracy. In the second stage, correction is
carried out by ranking the attention heads within the identified abnormal layers using the Image At-
tention Focus (IAF). The lowest-performing n heads are then selected and refined through a mixing
adjustment with a correction coefficient γ.

Table 3 shows that incorporating Layer Priors, L, into our algorithm yields a 10% improvement
in hallucination reduction compared to the variant without layer priors. Regardless of whether
layer priors are applied, our method consistently achieves the best performance among hallucina-
tion suppression algorithms. However, we observe that while hallucinations decrease, the model’s
F1 score also drops—an issue similarly reported in other attention-head-based suppression methods
(Liu et al., 2024b; Sarkar et al., 2025). In Appendix D.4, we further evaluate this phenomenon and
find that introducing layer priors can mitigate this decline, enabling hallucination reduction while
maintaining or even improving F1. Nonetheless, a fundamental trade-off remains between the two.

Table 3: Ablation Study of Layer Prior. The best result is highlighted in bold, and the second-best
is underlined.

Model L CS CI F1

LLAVA
baseline 47.08 ±1.54 13.00 ±0.59 77.22 ±0.66
with L 23.44 ±2.63 6.72 ±0.49 74.88 ±1.51

without L 26.20 ±2.63 8.30 ±1.32 74.28 ±0.81

MiniGPT-4
baseline 34.00 ±1.98 10.82 ±0.59 69.60 ±0.99
with L 11.56 ±1.69 4.72 ±0.95 66.06 ±0.99

without L 14.60 ±1.51 6.76 ±1.13 66.52 ±0.61

Instrutblip
baseline 48.12 ±2.98 14.18 ±1.12 73.92 ±0.82
with L 22.28 ±1.32 7.82 ±2.88 70.06 ±0.80

without L 22.44 ±2.75 8.48 ±5.93 70.74 ±1.13
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Figure 11: Ablation Study results with CHAIRI for hyperparamter γ and n.
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Figure 12: Ablation Study results with F1 for hyperparamter γ and n.

In addition to the analysis in the main text on the impact of the mixing coefficient γ and the number
of suppressed attention heads n on CHAIRS , we further report here the influence of these hyper-
parameters on CHAIRI and F1, as shown in Figure 11 and 12. The results demonstrate the strong
robustness of our method: across a wide range of γ values (0.03 to 0.98), our algorithm consistently
outperforms the baseline. We further observe that increasing γ leads to a significant improvement
in hallucination suppression across all three models. However, overly large γ values result in a drop
in F1 score, whereas appropriately chosen γ achieves a favorable balance—reducing hallucinations
while maintaining high F1 performance.

As for the impact of the number of corrected attention heads, n, on hallucination reduction, we find
that in models such as InstructBLIP, which leverage a learnable querying transformer to establish
vision–language connections with only 32 image tokens as MLLM input, correcting even a small
subset of attention heads achieves strong suppression performance. However, as the number of cor-
rected heads increases, the model’s output capability deteriorates significantly: the F1 score drops
sharply and the generated responses become markedly shorter. We attribute this to excessive correc-
tion disrupting the model’s normal output dynamics, causing it to prefer shorter responses as a way
of avoiding hallucinated tokens. Interestingly, contrary to this trend, in LLaVA, which employs an
MLP to map the vision branch output into 576 image embeddings, the number of corrected attention
heads does not substantially affect model performance.

C PRELIMINARY

In this section, we provide a detailed overview of the analysis tools employed, such as LogitLens
and the Wilcoxon signed-rank test, and the forward process of MLLMs.

C.1 MODEL FORWARD PROCESS

The language decoder module here consists of multiple transformer components (Vaswani et al.,
2017). Each transformer block comprises two sublayers: a multi-head attention (MHA) mechanism
and a feed-forward network (FFN). MHA begins by taking the combined text and image embedding
vectors X ∈ RN×d as input, projecting them into the query (Q), key (K), and value (V ) spaces, and
then computing the output of the MHA module. The output of MHA is fed into the FFN module,
and the final output of the current encoder block is obtained through residual flow, as shown in
equation 7 and equation 8.
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xmid,l
n =

H∑
h=1

Attn(l,h)(X l−1
≤n )WU (7)

f(x) =

L∑
l=1

xmid,l
n +

L∑
l=1

FFNl(xmid,l
n )WU + xnWU (8)

Therefore, we are able to suppress hallucinations by making corrections in the MHA module during
the forward process without modifying the model architecture or adding additional training.

C.2 LOGITLENS

LogitLens (nostalgebraist, 2020) is an interpretability technique that directly maps each hidden state
xl to the model’s vocabulary distribution by first applying the LayerNorm transformation and then
projecting through the unembedding matrix WU , as shown in equation 9.

LogitLens(xl) = LayerNorm(xl)WU (9)

We used LogitLens to analyze the probability curves of the model’s target logit under both selective
and indiscriminate correction, which enabled us to recognize that indiscriminate correction did not
genuinely take effect in certain scenarios.

C.3 WILCOXON SIGNED-RANK TEST

The Wilcoxon signed-rank test is a non-parametric method for assessing whether the median differ-
ence between paired samples is zero. Given paired observations (xi, yi), we compute the differences

di = xi − yi,

exclude any zero differences, and rank the remaining absolute values |di| to obtain ranks Ri. The
test statistic is then defined as

W =

n∑
i=1

sign(di)Ri. (10)

Under the null hypothesis that the distributions of xi and yi are identical, W has a known sampling
distribution, from which we derive a two-sided p-value to determine significance.

C.4 ISOTONIC REGRESSION

Isotonic regression is a non-parametric technique for fitting a monotonic (non-decreasing) function
to a set of paired observations (xi, yi). It estimates values fi by solving

min
f1≤f2≤···≤fn

n∑
i=1

wi (yi − fi)
2, (11)

subject to the ordering constraints fi ≤ fi+1, where wi are optional non-negative weights. This
problem is efficiently solved using the Pool Adjacent Violators Algorithm (PAVA), which produces
a piecewise-constant fit that enforces the desired monotonic relationship.

C.5 SPEARMAN CORRELATION COEFFICIENT

The Spearman correlation coefficient ρ is a non-parametric measure of rank correlation that eval-
uates the strength and direction of a monotonic relationship between two variables. Given paired
observations (xi, yi) for i = 1, . . . , n, we first convert them to ranks R(xi) and R(yi), and then
compute

ρ =

∑n
i=1

(
R(xi)−Rx

) (
R(yi)−Ry

)√∑n
i=1

(
R(xi)−Rx

)2 √∑n
i=1

(
R(yi)−Ry

)2 , (12)
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where Rx = 1
n

∑n
i=1 R(xi) and Ry = 1

n

∑n
i=1 R(yi). Alternatively, when there are no tied ranks,

it can be expressed as

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, di = R(xi)−R(yi).

The coefficient ranges from −1 (perfect negative correlation) to +1 (perfect positive correlation),
with ρ = 0 indicating no monotonic association.

D DETAILS OF D-LEAF FRAMEWORK

In this section, we first provide an an empirical analysis on the metrics in D-LEAF, followed by
verification of the generalisability of various metrics in D-LEAF under other model architectures
(Shikra) and the overall process of the D-LEAF algorithm.

D.1 EMPIRICAL ANALYSIS ON ENTROPY AND FOCUS

Previous studies have suggested that insufficient and overly dispersed visual-stream attention is one
of the primary causes of hallucination in MLLMs. To validate this claim, we examine Shikra and
MiniGPT-4, comparing the degree of attention to image regions and the entropy of attention distri-
butions across different layers when the models generate hallucinated versus factual tokens.

We randomly sampled 500 images from the COCO2014 validation set and, for each image, ex-
tracted the model’s attention matrices when generating hallucinated versus ground-truth tokens, re-
spectively. We then computed the attention scores over the image region for both cases. The results
are shown in Figure 13. We observe that, in both models, across all layers, image-region attention
for ground-truth tokens is higher than hallucinated tokens.

Figure 13: Comparison of attention scores for real words and hallucinated words in the image region
in MiniGPT-4 (left) and Shikra (right).

Figure 14: Layer-Wise Entropy Difference: Ground-Truth minus Hallucinated in MiniGPT-4 (left)
and Shikra (right).

Similarly, after applying softmax normalization to the attention matrices for ground-truth and hal-
lucinated tokens, we computed the mean image-region entropy across all attention heads at each
layer and plotted their per-layer difference as a bar chart in Figure 14. Because the raw entropy
values are very close, we scaled the y-axis by a factor of 103. We could observe that, across all
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layers, image-region entropy for real tokens is lower than hallucinated tokens. However, in some
architectures, like shikra, we observe that in certain layers the average entropy is actually higher for
real words than for hallucinated terms. This further confirms that the indiscriminate modification of
attention heads, as previously discussed, is suboptimal.

D.2 METRIC VALIDATION AND COMPARISON

In D-LEAF, we employ the Layer Image Attention Entropy (LIAE) to detect abnormal layers. Once
abnormal layers are identified, we rank attention heads using the Image Attention Focus (IAF) to
select those requiring correction. In this section, we present four sets of experiments demonstrating
that for abnormal layer detection, using LIAE alone outperforms either IAF or a combined metric,
whereas for head localization, using IAF alone yields better performance than either IAE or the
combined approach.

Inspired by the previous section, we propose layer image attention as a comparison metric for
anomaly layer detection.

LIAF(l) =

N∑
n=1

MAM(l)
n (13)

To evaluate the significance of the metric, which independent and non-normally distributed across
real and hallucinated tokens, we apply the Wilcoxon signed-rank test (Wilcoxon, 1992) as in main
text. With p < 0.001, in Figure 15 we confidently observe in MiniGPT-4 that hallucinated tokens
exhibit significantly lower LIAF compared to real tokens.
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Figure 15: LIAF change curves (left) and distributions , together with the Wilcoxon signed-rank test
results (right) for hallucinated versus real words generated by MiniGPT-4.

While we have already confirmed the individual effectiveness of LIAE and LIAF, combining them
necessitates conducting a correlation analysis between the two metrics. Since these two metrics do
not conform to a normal distribution, we computed the Spearman correlation coefficient between
LIAE and LIAF, obtaining ρ = –0.85 with p < 0.001, which indicates that there is a high negative
correlation between LIAE and LIAF. To further characterize their relationship, we fitted an isotonic
regression—shown as the solid blue curve in Figure 16 left closely follows, yet remains slightly
above, the idealized gray dashed line denoting perfect negative correlation. We obtained the same
fitting results for attention head localization metrics: Image Attention Entropy (IAE) and Image
Attention Focus (IAF) as illustrated in Figure 16 right.

Based on the above experiments, we can conclude that there is a strong negative correlation between
LIAE and LIAF. Therefore, we propose Layer Image Attention Score (LIAS) as a comprehensive
indicator for hallucination detection:

LIAS(l) = α LIAE(l) − (1− α) LIAF(l) (14)

To comprehensively evaluate the capability of the three proposed metrics in detecting abnormal lay-
ers, we conducted experiments on the CHAIR dataset using LLaVA, MiniGPT-4, and Shikra, as
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shown in the table 4. The results demonstrate that selecting LIAE alone as the primary indicator
yields the strongest hallucination suppression. However, as LIAF is incorporated, the suppression
effect gradually diminishes: once α exceeds 0.5, all three models produce identical detection re-
sults. We attribute this to the substantial numerical disparity between LIAE and LIAF, which causes
LIAF to increasingly dominate in the mixed metric, whereas LIAE is inherently more sensitive to
abnormalities. Therefore, we use LIAE exclusively during detection.

Table 4: Ablation study of detection coefficient α. The best result is highlighted in bold, and the
second-best is underlined.

α
LLaVA MiniGPT-4 Shikra

CS CI F1 CS CI F1 CS CI F1

0.0 20.6 6.2 75.3 12.6 5.4 67.3 25.2 10.2 62.5
0.3 33.0 12.7 76.9 35.4 10.7 69.0 35.2 12.7 67.3
0.5 32.0 10.3 75.0 35.4 10.7 69.5 35.4 13.4 66.9
0.7 32.0 10.3 75.0 35.4 10.7 69.5 35.0 13.2 67.3
1.0 32.0 10.3 75.0 35.4 10.7 69.5 35.0 13.2 67.3

Figure 16: Isotonic Regression fit of LIAE against LIAF (left) and IAE againest IAF (right) in
MiniGPT-4.
In the correction stage, we additionally introduce two comparative metrics, namely the Image At-
tention Entropy (IAE) and the Image Attention Score (IAS).

IAE(l)
h = −

N∑
n=1

P(A(l)
h,n)logP(A(l)

h,n) (15)

IAS(l)
h = β IAF(l)

h + (1− β) IAE(l)
h (16)

We visualize the distributional differences of IAE when the model generates hallucinated versus
factual tokens, as shown in Figure 17. The results reveal that the discrepancies across attention
heads are extremely subtle, appearing only beyond the fifth decimal place. We further repeat the
CHAIR experiment and find that once IAE is incorporated, the correction process leads the model
to malfunction, as it mistakenly identifies and modifies the wrong attention heads. For these reasons,
we use IAF exclusively during correction.

D.3 EVALUATION OF METRIC GENERALIZABILITY

To further verify the validity and effectiveness of our proposed metrics across different model ar-
chitectures, we conducted supplementary experiments on other model architecture and analyzed the
results. We first plot the distributions of LIAE and IAF in Shikra like the main context in Figure 18.

Additionally, we plotted the LIAF curve and distributions in Figure 19 and performed Wilcoxon
signed-rank tests on both metrics for hallucinated versus ground-truth tokens. At p < 0.001, hallu-
cinated tokens exhibit significantly lower LIAF than ground-truth tokens.
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Figure 17: IAE distributions , together with the Wilcoxon signed-rank test results for hallucinated
versus real words generated by MiniGPT-4 (left) and Shikra (right).
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Figure 18: The distributions of LIAE (left) and IAF (right) for hallucinated versus real words, to-
gether with the Wilcoxon signed-rank test results in Shikra.
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Figure 19: LIAF change curves (left) and distributions , together with the Wilcoxon signed-rank test
results (right) for hallucinated versus real words generated by Shikra.
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Furthermore, we evaluated the correlation between LIAE and LIAF and fitted it with isotonic re-
gression, as shown in Figure 20 left. The gray dashed line denotes a perfect negative correlation,
and the blue curve represents the fitted regression; we observe a correlation of –0.88 at p<0.001.

After confirming that LIAE and LIAF generalize well for identifying anomalous layers, we further
evaluated the generalizability of Image Attention Entropy (IAE) and Image Attention Focus (IAF)
for pinpointing anomalous attention heads. The distribution and significance test of IAE is presented
in Figure 17: for each attention head, Image Attention Entropy (IAE) in ground-truth tokens is
significantly lower than in hallucinated tokens (p < 0.001).

Similarly, we applied isotonic regression fitting; as shown in Figure 20 right, although our curve
does not perfectly align with the gray dashed line denoting a perfect negative correlation, it still
exhibits a clear negative trend, with a correlation coefficient of –0.68 (p<0.001).

Figure 20: Isotonic Regression fit of LIAE against LIAF (left) and IAE againest IAF (right) in
Shikra.

In summary, on Shikra we observe the consistent patterns as in MiniGPT-4: ground-truth tokens
exhibit significantly lower LIAE and IAE and significantly higher LIAF and IAF compared to hal-
lucinated tokens. Furthermore, both the LIAE–LIAF and IAE–IAF pairs show strong negative cor-
relations, supporting their joint use as detection metrics for anomalous layers and heads.

D.4 VISUAL PROCESSING LAYER

In the Appendix B.4, we conducted an ablation study on the Layer Prior and found that even without
incorporating it, our algorithm already achieves state-of-the-art performance. However, introducing
the layer prior further reduces hallucination rates. In this section, we provide a more fine-grained
analysis of the Layer Prior and introduce the concept of visual processing layers.

We first evaluated the effect of varying the number of corrected layers on three models: LLaVA,
MiniGPT-4, and Shikra, measuring changes in hallucination rate and F1 score, as shown in Table 5.
The results demonstrate that regardless of the partitioning strategy, our method consistently achieves
a substantial reduction in hallucination rates. Moreover, by tuning the number of corrected layers,
our approach is able to maintain high F1 scores while suppressing hallucinations, further confirming
both the robustness and strong transferability of our algorithm.

In addition, our experiments reveal that applying corrections within layers 0–25 often yields the most
substantial reduction in hallucinations, albeit at the cost of some F1 degradation. We hypothesize
that this effect arises because the algorithm is restricted to the visual processing stages: while the
model becomes highly effective at distinguishing objects during visual processing, in the subsequent
language generation phase it tends to produce shorter outputs to avoid hallucinated tokens, thereby
leading to a decline in F1 score. To confirm this, we ran a simple experiment to confirm that all three
architectures integrate visual features primarily in layers 0–25.

We tracked the trajectories of the top 90% percentile logits across all layers of MiniGPT-4 and Shikra
(Figure 21 and 22). The curves plateau around layer 26, suggesting that content integration and
reasoning are effectively completed by the end of the first 25 layers. Accordingly, our hallucination
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detection and correction mechanisms are concentrated on these initial layers, which confirm the
prior hypothesis.
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Figure 21: The trajectories of the top 90% percentile logits across all layers of MiniGPT-4.
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Figure 22: The trajectories of the top 90% percentile logits across all layers of Shikra.

Table 5: Ablation study of correction layers across different models. The best result is highlighted
in bold, and the second-best is underlined.

Layer LLaVA MiniGPT-4 Shikra
CS CI F1 CS CI F1 CS CI F1

0–10 24.0 7.0 75.1 18.8 5.6 67.6 47.2 15.2 70.3
5–25 37.0 11.2 77.7 12.6 5.6 67.3 53.2 14.8 74.8
0–25 20.6 6.2 75.3 21.8 6.0 68.1 25.2 10.9 62.5
26–31 37.0 11.2 74.7 33.0 10.6 71.7 58.0 16.3 73.4
0–31 22.2 7.8 72.5 16.6 6.9 65.6 28.2 11.0 64.1

D.5 FULL PROCEDURE OF D-LEAF

Algorithm 1 and Figure 23 shows the full procedure of D-LEAF.
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Figure 23: Architecture of our D-LEAF.

Algorithm 1 Dynamic Layer-wise Entropy and Attention Fusion
Input: N input tokens, consisting of both text and vision tokens, each of embedding dimension d,
X ∈ R(N×d)

Parameter: Optional list of parameters
Output: The probability distribution of the next token.

1: Let l = 0, BASbest = Inf, Atot = None.
2: while l < L do
3: Q,K, V = WQX,WKX,WV X
4: for h ∈ H do
5: Ah = Qh(Kh)T√

dk/H

6: if Atot = None then
7: Atot = Ah

8: else
9: Atot = concat(Atot, Ah)

10: end if
11: end for
12: if l ∈ (ls, le) then
13: BASl = LIAEl

14: if BASbest < BASl then
15: BASbest = BASl

16: else
17: Aset = sort(Atot, key = IAF, asc = True)
18: for Ah ∈ Aset[0 : n] do
19: Ah,v = Ah[Istart : Iend]
20: Abest,v = Aset[−1][Istart : Iend]
21: Ah,v = γAbest,v + (1− γ)Ah,v

22: end for
23: end if
24: end if
25: X = FFN(AtotV )
26: l = l + 1
27: end while
28: return X

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E CASE STUDY

Additional case studies across diverse MLLMs are provided to demonstrate the effectiveness of D-
LEAF. Specifically, Figures 24, 25 and 26 respectively present further instances of hallucination
corrections by our method for LLaVA-1.5, MiniGPT-4 and Shikra.

Instruction: Please describe the image in detail.

LLaVA-1.5 (Greedy):

The image features a yellow and red train parked at a train station. The train is positioned on 

the tracks, occupying a significant portion of the scene. The train station appears to be a busy 

place, with several people scattered around the area. Some of them are standing close to the 

train, while others are further away. In addition to the train and people, there are a few objects 

in the scene. A bench can be seen near the right side of the image, and a handbag is placed on 

the ground close to the center. A clock is also visible in the background, providing information 

about the time for the passengers.

LLaVA-1.5 (D-LEAF):

The image shows a yellow-fronted passenger train arriving at a station platform. The train has 

a blue and red stripe along its side and is positioned on curved tracks next to the platform. The 

surrounding area includes station buildings and a covered section where the train is emerging 

from. The platform appears mostly empty, with no visible passengers nearby.

Input Image

Instruction: Please describe the image in detail.

LLaVA-1.5 (Greedy):

The image features a man and a woman standing together, both holding wine glasses in their 

hands. They are posing for a picture, likely celebrating a special occasion or simply enjoying 

each other's company. The man is wearing glasses, and the woman is wearing a scarf. In the 

background, there are two dining tables, one on the left side and another on the right side of 

the scene. A clock can be seen hanging on the wall, and a chair is placed near the left side of 

the room. Additionally, there are two bottles in the scene, one located near the center and the 

other on the right side.

LLaVA-1.5 (D-LEAF):

The image features a man and a woman standing next to each other, both holding wine glasses 

filled with champagne. They are posing for a picture, and the woman is wearing a black shirt. 

The man is wearing a black shirt and a scarf around his neck. The couple appears to be 

enjoying a celebration or a special occasion.

Instruction: Please describe the image in detail.

LLaVA-1.5 (Greedy):

The image features a man and a woman standing in a living room, both holding Wii game 

controllers and playing a video game together. They are standing close to each other, with the 

woman on the left and the man on the right. The living room is furnished with a couch in the 

background and a dining table nearby. There are several books scattered around the room, 

with some placed on the dining table and others on the floor. A clock is also visible on the wall, 

adding to the cozy atmosphere of the living space.

LLaVA-1.5 (D-LEAF):

The image shows two people in a living room playing a video game. They are holding motion 

controllers and appear to be enjoying the activity, with smiles on their faces. The room has a 

bookshelf, a standing lamp, and a framed painting on the wall, creating a casual and relaxed 

atmosphere.

Input Image

Input Image

Figure 24: D-LEAF’s performance on reducing hallucinations of LLaVA-1.5.

F LLM USAGE

We used large language models (LLMs) as a general-purpose tool only for minor editing and lan-
guage polishing. LLMs were not involved in research ideation, data analysis, or the generation of
scientific insights. All intellectual contributions, including the conception, design, and interpretation
of the work, are solely those of the authors.
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Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a small child sitting on the floor in a kitchen, wearing a pair of blue socks 

and a white and blue striped shirt. The child is holding a toothbrush in one hand and 

brushing their teeth with the other. The child's parents are standing behind them, watching 

and helping them brush their teeth. The floor is tiled and there is a sink and faucet in the 

background.

MinGPT-4 (D-LEAF):

The image shows a young child sitting on a tiled floor, wearing patterned pajamas with 

colorful designs and blue socks. The child appears to be holding and examining a small 

object, while part of an adult’s legs can be seen in the background.

Input Image

Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a large, white and blue airplane flying in the sky against a clear blue 

background. The plane has a yellow tail and two white engines on the back. The plane is 

flying at a high altitude and appears to be in the process of taking off. The sky is clear and 

there are no clouds in the sky. The plane is flying in a straight line and appears to be heading 

towards the horizon.

MiniGPT-4 (D-LEAF):

The image shows a commercial airplane in flight against a clear sky. The plane is painted in 

white, blue, and yellow colors, with the landing gear extended as if preparing to land. The 

airline’s name is visible on the side of the aircraft.

Input Image

Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a large giraffe made out of lego blocks standing in front of a tall building. 

The giraffe has a long neck and legs, and its body is covered in brown and yellow lego 

blocks. There is a woman standing next to the giraffe, looking at it with a smile on her face. 

The woman is wearing a red shirt and black pants, and has short brown hair. The building 

behind the giraffe has large windows and a modern design. There are several people 

walking on the sidewalk in front of the building, and a few cars parked on the street.

MiniGPT-4 (D-LEAF):

The image shows a large giraffe sculpture built from yellow and orange blocks, standing in 

an outdoor urban area. The sculpture is positioned near a modern glass building, and several 

people are walking or standing nearby. A woman is standing close to the sculpture, looking 

toward the camera, while the surroundings suggest a busy public space.

Figure 25: D-LEAF’s performance on reducing hallucinations of MiniGPT4.
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Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a long blue and yellow train traveling down the train tracks. The 

train is followed by several cars, including some that appear to be blue and yellow as 

well, giving the scene a colorful and lively atmosphere. There are multiple people near 

the train tracks, possibly observing or waiting for the train to pass. Some of them are 

standing closer to the front of the train, while others are positioned further back. The 

overall scene conveys a busy and active transportation hub.

Shikra (D-LEAF):

The image features a train traveling down the railroad tracks. The train is quite long, 

occupying a significant portion of the view. There are multiple train tracks visible in 

the scene, indicating a busy transportation hub.

Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a small blue and gray storefront of a convenience store located on 

a street corner. The store has a fire hydrant in front of it, adding a touch of safety to 

the scene. There is a man standing outside the store, possibly a customer or an 

employee. In the vicinity of the store, several cars are parked on the street, with one 

car on the left side of the image, another closer to the center, and two more cars on the 

right side. Additionally, there is a truck parked further back on the right side of the 

scene.

Shikra (D-LEAF):

The image features a man standing in front of a small, blue brick store, which appears 

to be a convenience store. The store is located on a street corner and has a fire hydrant 

nearby. There are two ATMs in front of the store, which are likely for customers to 

withdraw money. In the vicinity, there are multiple vehicles parked on the street. The 

scene captures the everyday life of a busy urban area with various elements of street 

life and businesses coexisting.

Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a little girl standing in a kitchen, holding a tray with several 

doughnuts on it. She appears to be enjoying her time, possibly preparing something 

fun for breakfast or dessert. The doughnuts are in various stages of preparation, with 

some being rolled and others placed on the tray. There are two refrigerators visible in 

the background, one situated on the left side and the other on the right side of the room. 

A bottle can be seen on the countertop near the refrigerators, along with an oven 

placed in the lower left corner of the kitchen.

Shikra (D-LEAF):

The image shows a young girl standing in a kitchen, holding a baking tray with 

unbaked pastries. She is smiling widely and appears very excited. An oven with the 

door open is in front of her, and various kitchen items can be seen in the background.

Figure 26: D-LEAF’s performance on reducing hallucinations of Shikra.
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