

000 001 002 003 004 005 006 007 008 009 010 011 D-LEAF: LOCALIZING AND CORRECTING HALLU- 012 CINATIONS IN MULTIMODAL LLMS VIA LAYER-TO- 013 HEAD ATTENTION DIAGNOSTICS 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028

029 **Anonymous authors**
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

030 ABSTRACT 031 032

033 Multimodal Large Language Models (MLLMs) achieve strong performance on
034 tasks like image captioning and visual question answering, but remain prone to
035 hallucinations, where generated text conflicts with the visual input. Prior work
036 links this partly to insufficient visual attention, but existing attention-based detec-
037 tors and mitigation typically apply uniform adjustments across layers and heads,
038 obscuring where errors originate. In this paper, we first show these methods fail
039 to accurately localize problematic layers. Then, we introduce two diagnostics:
040 Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image
041 Attention Focus (IAF) which scores attention heads within those layers. Analysis
042 shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant
043 correction. Guided by these signals, we propose Dynamic Layer-wise Entropy
044 and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that
045 dynamically localizes and corrects errors during inference with negligible over-
046 head. Results show our D-LEAF delivers a 53% relative improvement on stan-
047 dard captioning benchmarks, and on VQA both accuracy and F1-score improve
048 by approximately 4%, substantially suppressing hallucinations while preserving
049 efficiency.

050 1 INTRODUCTION 051 052

053 Multimodal Large Language Models (MLLMs) have gained increasing attention for their ability to
054 process and integrate visual and textual information. This design allows them to achieve strong per-
055 formance on a variety of vision-language tasks, such as image captioning, visual question answer-
056 ing, and text-to-image generation (Chen et al., 2023; Zhu et al., 2023; Liu et al., 2024a). However,
057 MLLMs often produce content that contradicts the image or the instructions, which is known as
058 hallucination. These inconsistencies often lead to reliability issues in practical applications, partic-
059 ularly in domains where accuracy and factual consistency are critical (He et al., 2023; Guo et al.,
060 Zhou et al., 2025).

061 Traditional strategies to mitigate hallucinations in vision-language models involve instruction fine-
062 tuning or reinforcement learning on carefully curated datasets (Gunjal et al., 2024; Jiang et al.,
063 2024). Although effective, these approaches are typically resource-intensive and difficult to scale.
064 To overcome these challenges, recent research has shifted to inference-time methods, mitigating
065 hallucinations by enhancing semantic stability (Chen et al., 2025; Wang et al., 2025a; Tang et al.,
066 2025) or applying contrastive decoding techniques (Wang et al., 2024; Liang et al., 2025; Jiang
067 et al., 2025a) to adjust the distribution of the final output logits. Although these methods are more
068 effective than training-based algorithms, they still cannot sufficiently eliminate hallucinations and
069 incur a higher inference latency relative to the baseline.

070 In addition, a deeper limitation is mechanistic: prior methods rarely identify *where* hallucinations
071 arise in the attention stack. Several studies implicate over-reliance on the language stream (e.g.,
072 “anchor patterns” (Huang et al., 2024) or “textual inertia” (Liu et al., 2024b)) and respond with
073 global adjustments that increase visual weighting (Sarkar et al., 2025; Jiang et al., 2025b). However,
074 in practice, we find that these interventions frequently apply undifferentiated suppression across all

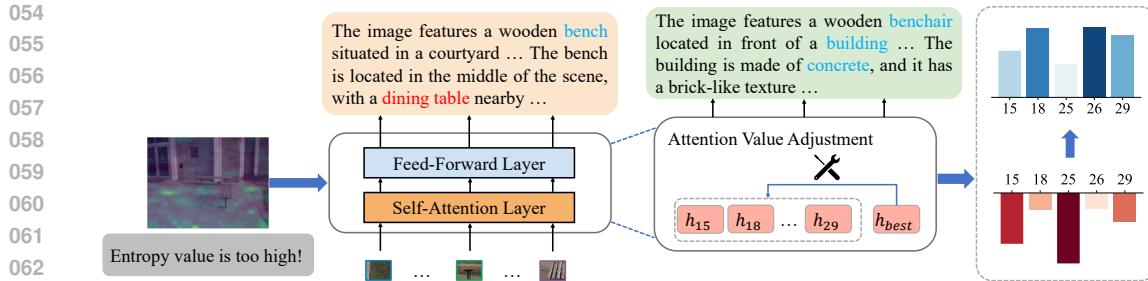


Figure 1: The workflow of D-LEAF. During inference, when a layer’s attention-module entropy exceeds a dynamic threshold, D-LEAF then corrects the attention heads exhibiting insufficient visual focus, suppressing hallucinations (e.g., the phrase “dining table”).

selected attention modules. This can disrupt correctly functioning heads and thus limit hallucination reduction (see in Figure 2).

To address these issues, we adopt a *localize before correct* strategy. We first introduce two complementary diagnostics that operate during the forward pass: (1) Layer Image-Attention Entropy (LIAE), which flags unreliable layers; and (2) Image-Attention Focus (IAF), which identifies the specific attention heads within those anomalous layers that require correction. Guided by LIAE and IAF, we propose D-LEAF (Dynamic Layer-wise Entropy and Attention Fusion), a lightweight and plug-and-play method that dynamically identifies unreliable attention components and applies selective, fused corrections to only the flagged heads, avoiding blanket suppression. As illustrated in Figure 1, when the attention entropy of a layer exceeds a dynamic threshold, D-LEAF pinpoints low focus heads and injects fused corrective signals, which suppress hallucinated content (e.g., removing the spurious phrase ‘dining table’) while preserving faithful details.

In experiments, we evaluate D-LEAF on three representative MLLM architectures across three standard multimodal hallucination benchmarks, comparing against six state-of-the-art correction methods. Results show D-LEAF consistently delivers the strongest suppression, reducing hallucinations by up to 53% versus the baseline and improving VQA accuracy and F1 by approximately 4%, with only 8% throughput drop relative to greedy decoding. These results demonstrate that D-LEAF strikes an optimal balance between factual reliability, descriptive detail, and high inference speed. Our contributions are summarized as follows:

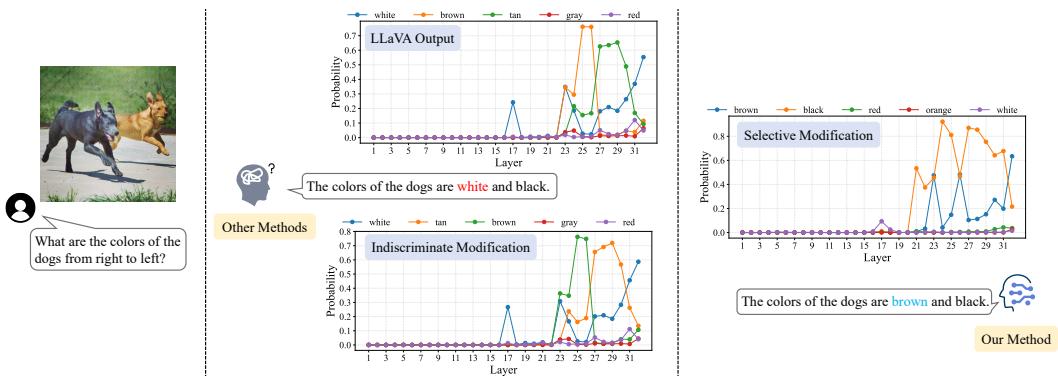
- First, we analyze prior attention-head-based suppression methods and show that (i) some attention heads can focus on the correct image information and (ii) blindly suppressing all heads across layers can harm correct ones, leading to ineffective hallucination mitigation. To address this, we propose two inference-time diagnostics LIAE and IAF to dynamically and precisely localize anomalous layers and specific heads requiring correction.
- Second, we propose a novel method, called D-LEAF. D-LEAF is a lightweight plug-and-play method that suppresses hallucinations through layer-by-layer corrections during inference: LIAE flags problematic layers, and IAF selects heads to receive fused corrective signals.
- Third, we validate the effectiveness of D-LEAF through extensive experiments on three leading MLLMs in three multimodal hallucination benchmarks, achieving up to a 53% reduction in hallucinations with only 8% throughput overhead relative to greedy decoding, without relying on additional tools.

2 RELATED WORK

Hallucination and Mitigation in MLLMs. In natural language processing, hallucinations originally denote generated content that is inconsistent with the context or facts (Huang et al., 2025). In MLLMs, this manifests as factual errors, incorrect image descriptions, or misidentified object attributes/relationships (Liu et al., 2024a). Previous research on hallucination mitigation can be divided mainly into two categories: training-based algorithms and training-free algorithms. Training-based methods apply visual instruction tuning (Gunjal et al., 2024), external expert guidance (Chen et al., 2024), or reinforcement learning from human feedback (RLHF) (Sun et al., 2023), but they

108 typically require substantial compute and are difficult to deploy in resource-constrained settings.
 109 Thus, lightweight training-free methods have attracted growing interest. A prominent line is con-
 110 trastive decoding, which mitigates spurious output by comparing model predictions under varying
 111 conditions. For example, VCD (Leng et al., 2024) contrasts the output distributions conditioned on
 112 original and distorted visual inputs to identify and suppress hallucinated content; MoLE (Liang et al.,
 113 2025) employs a Mixture of Experts for inter-layer contrast decoding; DAMRO (Gong et al., 2024)
 114 reduces the impact of background outlier tokens; OPERA (Huang et al., 2024) performs multiple
 115 rollbacks combined with token aggregation to suppress hallucinations; DoLA (Chuang et al., 2023)
 116 leverages layer-wise contrasts to enhance factuality; and HALC (Chen et al., 2024) contrasts output
 117 distributions across different visual contexts and uses visual matching scores to guide beam-search
 118 candidate selection. Despite their effectiveness, these approaches still introduce additional decod-
 119 ing overhead, e.g., HALC incurs a $2.4\times$ increase in inference time compared to standard greedy
 120 decoding. Thus, this motivates us to design a lightweight, plug-and-play method without relying on
 121 additional tools.

122 **Interpretability-driven Mitigation in MLLMs Hallucination.** Numerous studies have exam-
 123 ined the underlying causes of hallucinations to guide the development of more fine-grained
 124 architecture-level suppression methods. Reported factors include excessive prior knowledge of
 125 LLM (Liu et al., 2024b), insufficient attention to images (Jiang et al., 2025b; Sarkar et al., 2025;
 126 You et al., 2025), and excessive attention to summary words (Huang et al., 2024). Among these
 127 mitigation strategies, attention-head-based hallucination suppression methods show promise. For
 128 example, ASCD (Wang et al., 2025b) employs positive and negative steering as two complementary
 129 mechanisms to adapt the internal attention distributions of the model. AD-HH (Yang et al., 2025)
 130 first identifies the heads prone to hallucination offline and then detects and suppresses these heads in
 131 real time during the model’s forward pass. In contrast, SPIN (Sarkar et al., 2025) and SVAR (Jiang
 132 et al., 2025b) indiscriminately mute a subset of heads in specific layers to force the model to focus
 133 more on visual input. However, because these approaches apply uniform corrections across all lay-
 134 ers, they lack flexibility and can still fail to eliminate hallucinations in certain cases, as illustrated in
 135 Figure 2. To address these issues, we conducted a systematic analysis of attention-module behavior
 136 during the forward pass of the model and introduced LIAE for layer-wise detection of problem-
 137 atic heads within each decoder module. By applying targeted per-layer corrections to these specific
 138 attention heads, our method more precisely suppresses hallucinations.



151 Figure 2: A motivating example of using selective attention correction in a visually ambiguous
 152 scenario.

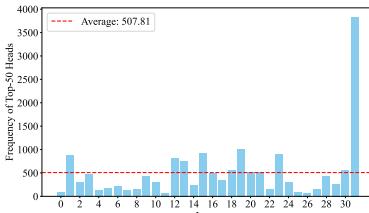
153 3 UNDERSTANDING MLLM HALLUCINATION

156 In this section, we present empirical analyses to investigate the internal mechanisms behind hallu-
 157 cination in MLLMs from the perspective of attention. Although prior attention-based halluci-
 158 nation mitigation methods have achieved promising results, we observe that they still fail to produce correct
 159 answers in semantically ambiguous scenarios, as illustrated in Figure 2. We therefore re-examine
 160 these approaches in detail. We hypothesize that *indiscriminately suppression of attention heads*
 161 *across all layers reduces hallucinations but biases the model toward generating shorter outputs*.
 We aim to answer these three research questions: (i) Are poorly performing heads uniformly dis-

162 tributed across layers?; (ii) How does head suppression reduce hallucinations?; (iii) What costs does
 163 suppression of poorly performing heads incur?
 164

166 3.1 INDISCRIMINATE CORRECTION LEADS TO ERRORS

168 **Are poorly performing heads uniformly distributed across layers?** Prior attention-correction
 169 strategies such as SPIN (Sarkar et al., 2025) and SVAR (Liu et al., 2024b) suppress the lowest-
 170 scoring heads at the intra-layer level. We argue that ignoring inter-layer head performance can
 171 inadvertently suppress functionally correct heads, and thus fail to eliminate hallucinations. As illus-
 172 trated in the middle of Figure 2, applying SPIN to LLaVA in a visually ambiguous scenario does
 173 not prevent the model’s hallucinated outputs. We hypothesize that this phenomenon arises because
 174 poorly performing attention heads are not uniformly distributed across all layers, but instead cluster
 175 within specific layers.



183 Figure 3: Distribution of abnormal
 184 attention heads across layers.
 185

186 To further verify this hypothesis, we randomly sampled 500
 187 images from the COCO2014 validation set and extracted the
 188 hallucinated tokens generated by the model. We rank every
 189 attention head across all layers by their SPIN scores, select
 190 the 50 lowest performing heads, and visualize their distri-
 191 bution to reveal how these underperformers cluster across layers.
 192 As illustrated in Figure 3, this distribution markedly devi-
 193 ates from uniformity, with the majority of layers falling below
 194 the mean. This suggests that indiscriminately modifying the
 195 lowest-scoring anomalous attention heads across all layers is
 196 not a principled or effective strategy.

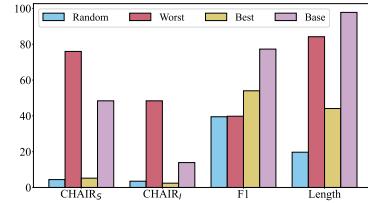
197 Based on the above assumptions, in the context of Figure 2, we rank all attention heads globally
 198 by their SPIN scores, select the k worst performing heads (using the same k as SPIN) and suppress
 199 them. As shown on the right side of Figure 2, this global suppression successfully prevents the model
 200 from hallucination. These results motivate us to design a metric to dynamically localize anomalous
 201 attention heads during the model’s forward pass.

202 3.2 MUTING LOW-FOCUS HEADS REDUCES HALLUCINATIONS AT THE COST OF ACCURACY

203 In this part, we answer the questions ‘How does head sup-
 204 pression reduce hallucinations?’ and ‘What costs does sup-
 205 pression of poorly performing heads incur?’. Inspired by (Li et al.,
 206 2023a), we investigate whether there exist attention heads that
 207 can correctly capture image content. Following (Rohrbach
 208 et al., 2018), we adopt the CHAIR metrics, namely CHAIR_S
 209 and CHAIR_I , as defined in equation 6, and conduct experi-
 210 ments on LLaVA-7B. The detailed definitions of these metrics
 211 are provided in the Appendix B.1.

212 We first partition the attention heads by ranking them within
 213 each layer according to their cumulative attention over the image tokens. Based on this ranking, we
 214 suppress 15% of the heads per layer, yielding four experimental settings: (i) no intervention, (ii)
 215 suppressing the heads with the highest attention scores, (iii) suppressing the heads with the lowest
 216 attention scores, and (iv) randomly suppressing heads. We then evaluate each setting using four
 217 metrics: CHAIR_S , CHAIR_I , F1, and output length (Length), as illustrated in Figure 4.

218 Our results demonstrate that attention heads with high focus on image tokens indeed contribute to
 219 visual understanding, as suppressing them leads to a substantial increase in hallucination rates, ap-
 220 proximately twice that of the baseline. Conversely, suppressing heads with low image attention can
 221 significantly reduce hallucination rates, but this comes at the cost of shorter outputs and a decrease in
 222 F1 scores. We attribute this drawback to the indiscriminate suppression of heads across all layers, as
 223 discussed above. Moreover, our experiments reveal that modifying only a small subset of attention
 224 heads can substantially alter the model’s output, which is consistent with the findings in Kang et al.
 225 (2025a;b).



226 Figure 4: The impact of different
 227 suppression methods in LLaVA.

Building on these observations, we hypothesize that increasing the visual focus of underperforming attention heads can reduce hallucinations, and that self-correction can be achieved by directly leveraging higher-scoring heads within the abnormal layers.

4 D-LEAF

We investigate in depth the internal mechanisms behind hallucinations in the last section. In this section, we introduce the Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF) framework to mitigate hallucinations. Our method dynamically detects anomalous behaviors in the MHA modules of MLLMs during the forward pass and applies real-time corrections to the identified problematic components, thereby improving the reliability of the model’s outputs, as shown in Figure 23. We begin by introducing a novel metric Layer Image Attention Entropy (LIAE) for detecting anomalous behavior within each decoder module and describe how, once a module is flagged, we use a additional indicator Image Attention Focus (IAF) to pinpoint the exact attention heads that need to be corrected. We also present significance tests and correlation analyses for these metrics (see Appendix C for introductions to these tools). Finally, we detail the complete algorithmic workflow. We have verified the validity and effectiveness of these indicators in Appendix D.2 and replicated all analyses presented in this section on Shikra to validate the generalizability of our proposed metrics; details are provided in Appendix D.3.

4.1 DYNAMIC LAYER SELECTION

As discussed before, prior methods typically rank attention heads within each layer and directly suppress those with the lowest scores. However, this intra-layer ranking ignores cross-layer context: if a given layer already exhibits higher overall attention scores than other layers, its comparatively weaker heads may still be performing adequately. As a result, suppressing them indiscriminately can fail to reduce and may even exacerbate hallucinations.

Although several layer selection methods have been proposed, particularly in contrastive decoding, for instance, DeCo (Wang et al., 2024), which mixes the maximum-probability logits from a selected layer with those of the final layer, and MoLE (Liang et al., 2025), which adopts a hybrid selection strategy by comparing intermediate logits against the final layer, these approaches rely on a baseline, typically the output of the last layer. However, such a baseline is infeasible for attention-head-based corrections, since modifications to attention occur during the forward pass and each layer’s perturbation directly propagates to subsequent computations. This motivates the need for a new dynamic metric to detect abnormal layers.

Prior work has shown that, during inference in MLLMs, only a subset of attention heads are functionally engaged, and that elevated attention-head entropy is associated with a higher likelihood of hallucination (Kang et al., 2025b; Jiang et al., 2025b). Therefore, to capture the overall state of all attention heads in the current layer, we first introduce the Maximum Attention Matrix (MAM). For the i -th token of an MLLM output t_i , we define the MAM of the l -th layer:

$$\text{MAM}_n^{(l)} = \max_{h=1,\dots,H} A_{h,n}^{(l)}, \quad n = 1, \dots, N. \quad (1)$$

where $A_{h,n}^{(l)}$ represents the attention of the h -th attention head in the l -th layer to the image token n . Each entry of the MAM at layer l represents, for a given image token n , the highest attention score that any of that layer’s attention heads assigns to n .

With MAM, we introduce a metric called Layer Image Attention Entropy (LIAE), which quantifies whether a given layer contains attention heads exhibiting overly diffuse focus and therefore require correction.

$$\text{LIAE}^{(l)} = - \sum_{n=1}^N \text{P}(\text{MAM}_n^{(l)}) \log \text{P}(\text{MAM}_n^{(l)}) \quad (2)$$

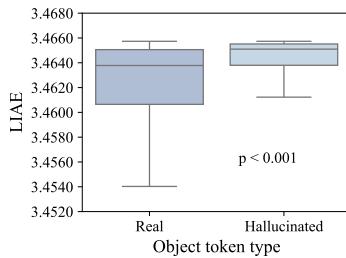


Figure 5: LIAE Distribution across object token types in MiniGPT-4.

270 To validate the effectiveness of the metrics we proposed, we first randomly selected a subset of 500
 271 images from the COCO 2014 validation set (Lin et al., 2014). We chose MiniGPT-4 for subsequent
 272 analysis. To show whether LIAE can significantly distinguish the differences between layers when
 273 the model generates real words and hallucinated words, we use greedy search in the decoding pro-
 274 cess of the above model to generate captions for the selected images, prompted by “Please help me
 275 describe the image in detail.” We use the ground truth annotation to identify the real and halluci-
 276 nated words. We then calculated and plotted the distribution of LIAE when the model generated
 277 hallucinated words and real words.

278 To evaluate the significance of these metrics, which independent and non-normally distributed across
 279 real and hallucinated tokens, we apply the Wilcoxon signed-rank test (Wilcoxon, 1992). With $p <$
 280 0.001, in Figure 5, we confidently observe in these two models that hallucinated tokens exhibit
 281 significantly higher LIAE compared to real tokens.

282 Accordingly, based on the above experiments, we use LIAE to localize layers that contain anomalous
 283 attention heads. For completeness, we report in Appendix D.2 additional experiments that use Layer
 284 Image Attention Focus (LIAF) and a hybrid of the two (LIAS) as alternative criteria for abnormal-
 285 layer detection, together with ablations. We find that LIAE is more sensitive and achieves the best
 286 performance; therefore, we adopt LIAE as the sole metric for abnormal-layer localization.

287

288 4.2 ATTENTION HEAD LOCALIZATION

289

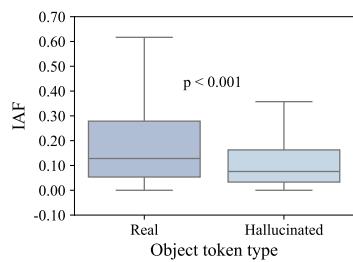
290 After pinpointing abnormal layers, we must identify the specific attention heads within them that
 291 require modification. Motivated by the “text inertia” phenomenon (Liu et al., 2024b), we introduce
 292 Image Attention Focus (IAF), a metric that quantifies the extent to which each attention head attends
 293 to image tokens (i.e., visual regions).

294

295
$$\text{IAF}_h^{(l)} = \sum_{n=1}^N A_{h,n}^{(l)}$$
 (3)

296

297



308 Figure 6: IAF Distribution across
 309 object token types in MiniGPT-4.

310

311 We also verified the reliability of our metrics on other model
 312 architectures, with specific results provided in Appendix D.3.

313

314 4.3 MIXED ATTENTION MATRIX CORRECTION

315

316 Building on the aforementioned layer selection and head localization, we could detect anomalous
 317 heads during the model’s forward pass. Our prior experiments indicate that disrupting attention
 318 heads with stronger focus on visual tokens causes disproportionately greater degradation and, in
 319 particular, increases the model’s propensity to produce hallucinated outputs. Moreover, directly
 320 suppressing attention heads with insufficient attention leads to a decline in the quality of the model’s
 321 output content. Therefore, we hypothesize that hallucinations stem in part from certain heads al-
 322 locating insufficient attention to visual regions. To remedy this, we introduce a mixed correction
 323 approach that leverages well-performing heads to refine the under-performing heads.

324

$$A_{h,v}^l = \gamma A_{best,v}^l + (1 - \gamma) A_{h,v}^l \quad (4)$$

324 where $A_{h,v}^l$ and $A_{best,v}^l$ denote, respectively, the visual-token submatrices of the attention matrices
 325 for the heads requiring correction and the highest-scoring heads at layer l .
 326

327 **4.4 DYNAMIC LAYER-WISE ENTROPY AND ATTENTION FUSION**
 328

329 Based on these findings, we propose a two-stage detection and correction algorithm to effectively
 330 suppress model hallucinations. Unlike traditional attention-head-based hallucination suppression
 331 methods, we introduce a dynamic detection baseline Best Attention Score (BAS) that monitors the
 332 model’s forward pass and pinpoints the specific layer where anomalies arise.
 333

334
$$\text{BAS} = \min(\text{BAS}, \text{LIAE}^{(l)}), \quad l = 1, 2, \dots, L. \quad (5)$$

 335

336 BAS denotes the best score of the layer encountered so far in the forward pass, and it is updated
 337 incrementally. During inference, if the current layer’s LIAE is lower than BAS, we set BAS equal
 338 to LIAE; if LIAE exceeds BAS, we deem the attention heads in this layer to be underperforming
 339 and therefore in need of correction. We then rank all heads in the current layer by their IAF values,
 340 select the n worst-performing heads, and update their attention matrices according to equation 4.

341 Our dynamic localization-and-correction algorithm not only suppresses hallucinations at a finer
 342 granularity within the model’s architectural layers but also leverages inter-layer relationships to pin-
 343 point anomalies with greater accuracy. The detailed workflow of the algorithm and its pseudo-code
 344 is provided in the Appendix D.5.

345

346 **5 EXPERIMENT**
 347

348 **5.1 EXPERIMENTAL SETTINGS**
 349

350 **Datasets.** We conducted a detailed evaluation of our proposed algorithm using three established
 351 benchmarks: CHAIR Rohrbach et al. (2018), POPE Li et al. (2023b), and MMHal-Bench Sun et al.
 352 (2023). These benchmarks were used to assess the effectiveness of our method in suppressing model
 353 hallucinations. Detailed descriptions of the benchmarks are provided in Appendix B.1.

354

355 **Models and Baselines.** We evaluate our method D-LEAF on 5 models: LLaVA-1.5 (7B) (Liu
 356 et al., 2024a), MiniGPT-4 (Zhu et al., 2023), Shikra (Chen et al., 2023), InstructBLIP (Dai et al.,
 357 2023) and Qwen-VL Bai et al. (2023). And we compare it with several existing SOTA training-free
 358 hallucination suppression algorithms, including Greedy Search and Nuclear Sampling, SPIN (Sarkar
 359 et al., 2025), PAI (Liu et al., 2024b), VCD (Leng et al., 2024), and DAMRO (Gong et al., 2024).
 360 More details are provided in Appendix B.2.

361

362 **Evaluation Metric.** CHAIR provided two indicators: C_I , which indicates the hallucination rate
 363 at the instance-level, and C_S , which the hallucination rate at the sentence-level. They are calculated
 364 with the following equation:

365
$$\text{CHAIR}_I = \frac{|\{\text{hallucinated objects}\}|}{\text{all mentioned objects}}, \quad \text{CHAIR}_S = \frac{|\{\text{captions with hallucinated objects}\}|}{\text{all captions}}. \quad (6)$$

 366

367

368 **Implementation Details.** All experiments are run in Pytorch using vGPU-48GB. We used a batch
 369 size of 1 and set the model’s maximum output length to 512 tokens. For each configuration, we
 370 report the average and standard deviation over 3 runs with different random seeds {42, 927, 111}
 371 in POPE and 5 runs with different random seeds {42, 3, 11, 927, 111} in CHAIR. For the image
 372 captioning and VQA tasks, we set the number of attention heads that need to be modified on each
 373 layer between 3 and 5, γ is set within the range of 0.7 to 0.9.

374

375 **5.2 MAIN RESULTS**

376

377 **Long Sequence Hallucination Evaluation.** We evaluate the CHAIR result of five models, as
 378 presented in Table 1. Our D-LEAF method significantly outperforms previous state-of-the-art ap-
 379 proaches across all metrics on hallucination and models. Specifically, on MiniGPT-4 our model

378 Table 1: CHAIR hallucination evaluation results. The best result is highlighted in bold, and the
 379 second-best is underlined. The values reported are the mean performance.
 380

381 Method	382 LLaVA		383 MiniGPT-4		384 Shikra		385 InstructBLIP		386 Qwen-VL	
	387 C_S	388 C_I	389 C_S	390 C_I	391 C_S	392 C_I	393 C_S	394 C_I	395 C_S	396 C_I
Greedy	47.08 ± 1.54	13.00 ± 0.59	34.00 ± 1.98	10.82 ± 0.59	54.64 ± 2.84	14.96 ± 1.37	48.12 ± 2.98	14.18 ± 1.12	46.88 ± 1.56	12.72 ± 0.36
Sampling	53.44 ± 2.21	16.30 ± 1.26	33.80 ± 1.17	11.78 ± 0.62	57.10 ± 1.80	16.14 ± 0.88	47.04 ± 1.47	13.24 ± 0.77	47.04 ± 1.47	13.24 ± 0.77
VCD	55.38 ± 1.17	15.20 ± 1.21	—	—	55.16 ± 2.25	14.96 ± 1.26	—	—	51.40 ± 2.21	13.62 ± 0.75
PAI	35.28 ± 1.69	9.46 ± 0.67	27.92 ± 1.47	10.06 ± 0.89	54.64 ± 2.51	14.02 ± 1.49	59.24 ± 2.00	16.10 ± 0.67	47.64 ± 2.26	12.92 ± 0.68
DAMRO	46.44 ± 1.66	12.78 ± 0.60	—	—	—	—	—	—	—	—
SPIN	29.04 ± 2.46	8.70 ± 0.55	24.56 ± 1.62	9.40 ± 1.74	38.56 ± 2.35	10.88 ± 0.56	48.80 ± 2.65	14.04 ± 1.23	33.72 ± 2.54	9.42 ± 0.48
D-LEAF	23.44 ± 2.63	6.72 ± 0.49	<u>11.56</u> ± 1.69	<u>4.72</u> ± 0.95	<u>26.35</u> ± 1.32	<u>10.62</u> ± 0.87	<u>22.44</u> ± 2.75	<u>8.48</u> ± 5.93	<u>25.24</u> ± 1.55	<u>7.96</u> ± 1.65

387
 388 Table 2: Quantitative comparison on Muti-turn POPE. The best result is highlighted in bold, and the
 389 second-best is underlined. The values reported are the mean performance.
 390

391 Model	392 Method	393 Random		394 Popular		395 Adversarial	
		396 Accuracy	397 F1	398 Accuracy	399 F1	400 Accuracy	401 F1
393 LLaVA	Greedy	86.63 ± 0.78	85.32 ± 0.92	79.22 ± 0.23	78.23 ± 0.66	76.98 ± 0.16	76.71 ± 0.41
	Sampling	83.94 ± 0.59	83.30 ± 0.44	76.30 ± 0.15	75.05 ± 0.35	72.70 ± 1.61	73.44 ± 2.85
	PAI	77.02 ± 4.62	72.96 ± 6.94	75.68 ± 0.12	72.65 ± 0.25	75.07 ± 0.55	72.41 ± 0.75
	DAMRO	86.67 ± 0.87	85.53 ± 1.09	79.23 ± 0.28	78.28 ± 0.71	77.01 ± 0.17	76.74 ± 0.42
	SPIN	86.29 ± 0.16	84.80 ± 0.38	81.81 ± 2.85	80.47 ± 2.60	80.31 ± 4.33	79.47 ± 4.01
	D-LEAF	87.76 ± 0.47	86.65 ± 0.72	<u>84.75</u> ± 3.21	<u>83.67</u> ± 3.00	<u>84.94</u> ± 3.35	<u>82.09</u> ± 2.87
399 MiniGPT-4	Greedy	70.17 ± 3.68	68.33 ± 3.82	64.01 ± 4.39	63.16 ± 5.57	63.06 ± 2.48	62.52 ± 1.17
	Sampling	70.34 ± 5.48	60.96 ± 9.00	62.92 ± 5.22	54.41 ± 8.31	60.30 ± 4.70	55.52 ± 7.78
	PAI	68.45 ± 9.67	64.12 ± 7.14	59.66 ± 8.49	57.31 ± 6.45	60.93 ± 6.52	56.38 ± 5.42
	SPIN	72.89 ± 2.44	69.04 ± 2.19	66.10 ± 2.36	64.33 ± 4.18	64.88 ± 3.05	67.34 ± 2.66
	D-LEAF	74.95 ± 0.62	<u>72.17</u> ± 0.77	<u>67.51</u> ± 0.09	<u>66.02</u> ± 0.15	<u>67.62</u> ± 0.41	<u>65.17</u> ± 0.46
	Greedy	80.75 ± 0.56	80.35 ± 0.54	74.95 ± 1.88	75.66 ± 1.22	73.37 ± 1.97	75.89 ± 1.03
403 Shikra	Sampling	<u>81.67</u> ± 0.65	<u>81.55</u> ± 0.69	<u>77.58</u> ± 0.36	<u>78.67</u> ± 0.51	<u>72.94</u> ± 1.45	<u>75.37</u> ± 0.68
	PAI	71.00 ± 0.25	74.03 ± 0.22	70.10 ± 0.39	73.38 ± 0.60	64.97 ± 0.62	70.65 ± 0.09
	SPIN	64.68 ± 0.03	61.66 ± 0.78	59.73 ± 0.16	60.06 ± 0.61	58.17 ± 0.11	61.09 ± 0.71
	D-LEAF	82.36 ± 1.12	<u>83.32</u> ± 1.14	<u>79.12</u> ± 0.61	<u>79.89</u> ± 0.73	<u>75.15</u> ± 2.10	<u>76.37</u> ± 1.45
	Greedy	86.16 ± 0.65	84.54 ± 0.86	84.48 ± 1.10	83.03 ± 1.28	81.95 ± 0.25	80.75 ± 0.46
409 InstructBLIP	Sampling	79.36 ± 0.20	78.36 ± 0.31	76.55 ± 0.32	76.17 ± 0.18	74.74 ± 0.20	74.93 ± 0.05
	PAI	86.34 ± 0.44	84.66 ± 0.63	84.80 ± 0.94	83.22 ± 1.08	82.69 ± 0.03	81.32 ± 0.12
	SPIN	<u>86.51</u> ± 0.55	<u>85.06</u> ± 0.76	<u>85.21</u> ± 1.07	<u>83.91</u> ± 1.24	81.97 ± 0.19	80.96 ± 0.42
	D-LEAF	86.67 ± 0.57	<u>85.23</u> ± 0.74	<u>85.32</u> ± 0.96	<u>84.06</u> ± 1.05	82.10 ± 0.24	81.09 ± 0.42
	Greedy	89.56 ± 0.24	89.20 ± 0.28	86.93 ± 0.05	86.76 ± 0.02	82.81 ± 0.11	83.25 ± 0.02
443 Qwen-VL	Sampling	85.41 ± 0.32	84.82 ± 0.38	81.49 ± 0.25	81.42 ± 0.14	77.82 ± 1.23	72.24 ± 0.62
	PAI	89.34 ± 0.11	88.89 ± 0.11	86.94 ± 0.30	86.80 ± 0.22	82.88 ± 0.57	83.32 ± 0.40
	SPIN	88.49 ± 0.03	88.22 ± 0.06	84.66 ± 1.13	84.86 ± 0.99	80.49 ± 0.80	81.48 ± 0.62
	D-LEAF	89.59 ± 0.27	<u>89.21</u> ± 0.22	<u>87.42</u> ± 0.13	<u>87.18</u> ± 0.11	<u>83.19</u> ± 0.30	<u>83.50</u> ± 0.19

416 achieves a 53% reduction in C_S and a 57% reduction in C_I compared to SPIN, highlighting the
 417 effectiveness of D-LEAF in mitigating object hallucinations in long text generation tasks.
 418

419 **Multi-turn Hallucination Evaluation.** We use a multi-turn POPE evaluation to increase the difficulty
 420 of this task, the result is shown in Table 2. D-LEAF consistently performs best across each part
 421 of the POPE across the five models. Notably, on LLaVA, MiniGPT-4 and Shikra, our model outperforms
 422 the baseline by approximately 5%, and on the other two models, D-LEAF also surpasses the current
 423 state-of-the-art by 1%. The results indicated that our D-LEAF could achieve good results in
 424 long context VQA tasks.
 425

426 **GPT-4 Assisted Hallucination Evaluation in Comprehensive General Scenarios.** We use
 427 MMHal-Bench and GPT-4 assist to evaluate the performance of D-LEAF in more complex scenarios.
 428 From Figure 7, the experimental results indicate that our method could achieve better results
 429 in all three models, especially in LLaVA 7B. While for more image-based question types, like attributes
 430 and adversarial objects, our method did not achieve a noticeable improvement in MiniGPT-4
 431

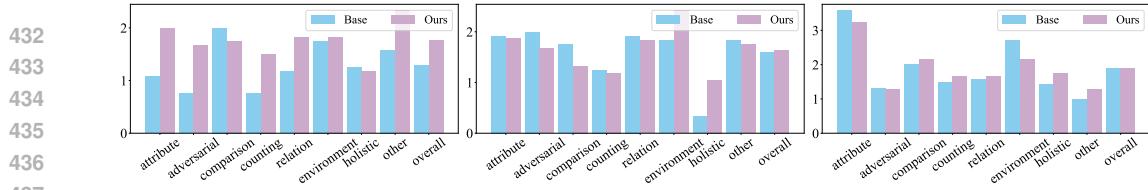
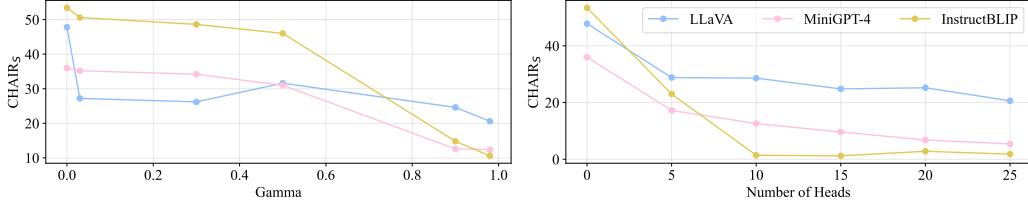


Figure 7: MMHal-Bench Evaluation on LLaVA, MiniGPT-4 and Shikra.

Figure 9: Ablation Study results for hyperparameter γ and n .

and Shikra. In the average performance across the eight evaluation dimensions, there is a certain degree of improvement compared to the baseline after incorporating D-LEAF.

Throughput Estimation. To evaluate whether our algorithm maintains real-time efficiency without incurring significant throughput loss, we measured the token-per-second generation rate of LLaVA under different algorithms, as shown in Figure 8. Our method showed the least reduction in throughput compared to the baseline. It outperformed other state-of-the-art techniques, including attention-head correction methods such as SPIN and PAI. We repeated this experiment on MiniGPT-4 and Shikra and observed consistent results, as detailed in Appendix B.3.

In Appendix E, we provide visualizations across diverse MLLMs to further present instances of hallucination corrections by our method.

5.3 ABLATION STUDY

D-LEAF incorporates two primary hyperparameters: γ and the number of heads n . We present the effect of varying two parameters on CHAIR_S in the main text, as illustrated in Figure 9. The results demonstrate the strong robustness of our method: across a wide range of γ (0.03 to 0.98) and n values (5 to 25), our algorithm consistently outperforms the baseline. In the Appendix B.4, we further provide the impact of hyperparameter variations on CHAIR_I and F1, along with a more detailed analysis of the results. Moreover, to ensure the completeness of our study, we also examine whether restricting the D-LEAF algorithm to specific layers yields additional gains. The results in Appendix B.4 and D.4 demonstrate that, unlike PAI Liu et al. (2024b) and Deco Wang et al. (2024), D-LEAF consistently achieves significant suppression of hallucinations regardless of whether the layer prior is applied.

6 CONCLUSION

We proposed D-LEAF to suppress the hallucinations generated by MLLMs. We propose a two-stage localization and correction algorithm: first, we use the Layer Image Attention Entropy to identify anomalous modules during the forward pass; then, we apply the Image Attention Focus to rank that layer’s heads and selectively correct the lowest-performing ones. Our experiments demonstrated that D-LEAF outperforms existing methods in reducing hallucinations across various MLLMs. This work highlights the potential of attention modules to enhance the output reliability of MLLMs and provides mechanistic insights into their operation.

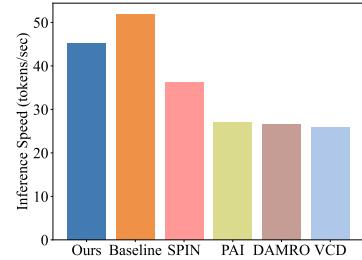


Figure 8: Throughput comparison with existing methods in LLaVA.

486 REFERENCES
487

488 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
489 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
490 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

491 Jiahe Chen, Jiaying He, Qian Shao, Qiyuan Chen, Jiahe Ying, Hongxia Xu, Jintai Chen, Jianwei
492 Zheng, and Jian Wu. Mitigating hallucination of large vision-language models via dynamic logits
493 calibration. *arXiv preprint arXiv:2506.21509*, 2025.

494 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
495 multimodal lilm’s referential dialogue magic. *arXiv preprint arXiv:2306.15195*, 2023.

496 Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object
497 hallucination reduction via adaptive focal-contrast decoding. *arXiv preprint arXiv:2403.00425*,
498 2024.

499 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
500 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint
501 arXiv:2309.03883*, 2023.

502 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
503 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
504 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
505 2023.

506 Xuan Gong, Tianshi Ming, Xinpeng Wang, and Zhihua Wei. Damro: Dive into the attention mech-
507 anism of lilm to reduce object hallucination. *arXiv preprint arXiv:2410.04514*, 2024.

508 Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vi-
509 sion language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume
510 38(16), pp. 18135–18143, 2024.

511 Wei Guo, Hao Wang, Luankang Zhang, Jin Yao Chin, Zhongzhou Liu, Kai Cheng, Qiushi Pan,
512 Yi Quan Lee, Wanqi Xue, Tingjia Shen, et al. Scaling new frontiers: Insights into large recom-
513 mendation models. *arXiv preprint arXiv:2412.00714*, 2024.

514 Yuting He, Guanyu Yang, Rongjun Ge, Yang Chen, Jean-Louis Coatrieux, Boyu Wang, and Shuo Li.
515 Geometric visual similarity learning in 3d medical image self-supervised pre-training. In *Proceed-
516 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9538–9547,
517 2023.

518 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
519 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
520 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
521 Systems*, 43(2):1–55, 2025.

522 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
523 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
524 via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference
525 on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024.

526 Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,
527 Fei Huang, and Shikun Zhang. Hallucination augmented contrastive learning for multimodal large
528 language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
529 Recognition*, pp. 27036–27046, 2024.

530 Xinyan Jiang, Hang Ye, Yongxin Zhu, Xiaoying Zheng, Zikang Chen, and Jun Gong. Hicd:
531 Hallucination-inducing via attention dispersion for contrastive decoding to mitigate halluci-
532 nations in large language models. *arXiv preprint arXiv:2503.12908*, 2025a.

533 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle
534 layers of large vision-language models: Interpreting, detecting and mitigating object halluci-
535 nations via attention lens. In *Proceedings of the Computer Vision and Pattern Recognition Confer-
536 ence*, pp. 25004–25014, 2025b.

540 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 541 attention sink in large multimodal models. *arXiv preprint arXiv:2503.03321*, 2025a.
 542

543 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. Your large vision-language model
 544 only needs a few attention heads for visual grounding. In *Proceedings of the Computer Vision*
 545 and *Pattern Recognition Conference*, pp. 9339–9350, 2025b.

546 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 547 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 548 coding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 549 nition*, pp. 13872–13882, 2024.

550 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 551 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 552 Processing Systems*, 36:41451–41530, 2023a.

553 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 554 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

555 Tian Liang, Yuetian Du, Jing Huang, Ming Kong, Luyuan Chen, Yadong Li, Siye Chen, and Qiang
 556 Zhu. Mole: Decoding by mixture of layer experts alleviates hallucination in large vision-language
 557 models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39(18), pp.
 558 18684–18692, 2025.

559 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 560 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 561 conference on computer vision*, pp. 740–755. Springer, 2014.

562 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 563 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 564 nition*, pp. 26296–26306, 2024a.

565 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 566 for alleviating hallucination in lmlms, 2024. URL <https://arxiv.org/abs/2407.21771>, 2024b.

567 nostalgebraist. interpreting gpt: the logit lens. [https://www.nasa.gov/nh/
 568 pluto-the-other-red-planet](https://www.nasa.gov/nh/pluto-the-other-red-planet), 2020.

569 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 570 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.

571 Sreetama Sarkar, Yue Che, Alex Gavin, Peter A Beerel, and Souvik Kundu. Mitigating hallu-
 572 cinations in vision-language models through image-guided head suppression. *arXiv preprint
 573 arXiv:2505.16411*, 2025.

574 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 575 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 576 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

577 Kai Tang, Jinhao You, Xiuqi Ge, Hanze Li, Yichen Guo, and Xiande Huang. Mitigating halluci-
 578 nations via inter-layer consistency aggregation in large vision-language models. *arXiv preprint
 579 arXiv:2505.12343*, 2025.

580 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 581 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 582 tion processing systems*, 30, 2017.

583 Chao Wang, Weiwei Fu, and Yang Zhou. Tpc: Cross-temporal prediction connection for vision-
 584 language model hallucination reduction. *arXiv preprint arXiv:2503.04457*, 2025a.

585 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
 586 Chen. Milm can see? dynamic correction decoding for hallucination mitigation. *arXiv preprint
 587 arXiv:2410.11779*, 2024.

594 Yujun Wang, Jinhe Bi, Yunpu Ma, and Soeren Pirk. Ascd: Attention-steerable contrastive decoding
595 for reducing hallucination in mllm. *arXiv preprint arXiv:2506.14766*, 2025b.
596

597 Frank Wilcoxon. Individual comparisons by ranking methods. In *Breakthroughs in statistics: Methodology and distribution*, pp. 196–202. Springer, 1992.
598

599 Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Understanding and mitigating hallucination in
600 large vision-language models via modular attribution and intervention. In *The Thirteenth International Conference on Learning Representations*, 2025.
601

602 Liangliang You, Junchi Yao, Shu Yang, Guimin Hu, Lijie Hu, and Di Wang. Mitigating behavioral
603 hallucination in multimodal large language models for sequential images. *arXiv preprint arXiv:2506.07184*, 2025.
604

605 Wenrui Zhou, Shu Yang, Qingsong Yang, Zikun Guo, Lijie Hu, and Di Wang. Flattery in motion:
606 Benchmarking and analyzing sycophancy in video-llms. *arXiv preprint arXiv:2506.07180*, 2025.
607

608 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
609 vision-language understanding with advanced large language models. *arXiv preprint arXiv:2304.10592*, 2023.
610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

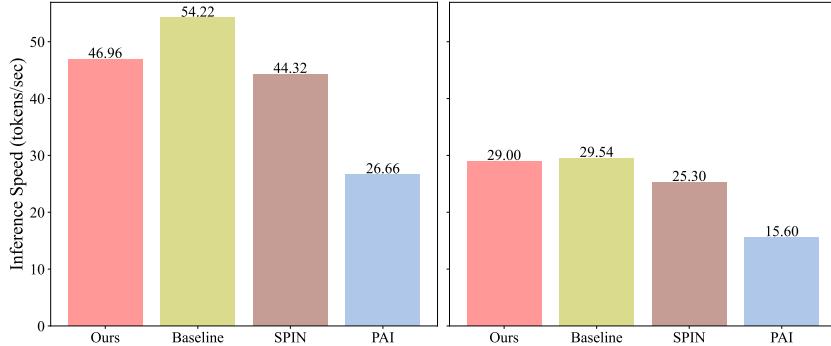
648 **A STRUCTURE OF THE APPENDIX**
649650 The appendix is structured as follows:
651652 Appendix B details the datasets used in our validation experiments as well as the baseline methods
653 for comparison. It also provides additional experiments that complement the main text, including
654 throughput estimates across different models, ablation studies, and related analyses.655 Appendix C details the statistical tools employed in this work, along with additional experimental
656 instruments such as the Logit Lens.657 Appendix D presents the overall framework of D-LEAF, demonstrating both the soundness and
658 motivation of our proposed metrics, and further verifying their generalizability across model archi-
659 tectures. It also includes supplementary analyses on the role of layer priors in the algorithm and
660 introduces the concept of visual processing layers.661 Appendix E provides qualitative case studies showcasing high-quality answers generated by models
662 after applying our algorithm.
663664 Appendix F describes the usage of Large Language Models in the paper.
665666 **B IMPLEMENTATION DETAILS**
667668 **B.1 DATASET**
669670 **CHAIR.** The Caption Hallucination Assessment with Image Relevance (CHAIR) metric provides
671 per-image ground-truth object annotations for image captioning, flagging any model-generated ob-
672 ject not in the reference set as a hallucination.673 **POPE.** The Polling-based Object Probing Evaluation (POPE) evaluates hallucinations in visual
674 question answering by querying “Is there a <object> in the image?” using three object-sampling
675 strategies:676

- Random: uniformly drawn from the full dataset.
- Popular: selected from the most frequent objects.
- Adversarial: chosen for strong semantic relevance to the image.

677 **MMHal-Benchmark.** MMHal-Bench comprises 96 image-question pairs spanning 12
678 COCO-derived object meta-categories and eight question types (attributes, adversarial, com-
679 parison, counting, spatial relations, environment, holistic descriptions, and others), providing a
680 rigorous testbed for evaluating model hallucination in challenging examples.681 In addition, to evaluate the effectiveness of our method, we tested the number of tokens output per
682 second by the model in each of the three models.683 **B.2 BASELINES**
684685 **Greedy Search and Nuclear Sampling.** Traditional decoding strategies that are widely used in
686 sequence generation tasks.687 **SPIN and PAI.** SPIN (Sarkar et al., 2025) and PAI (Liu et al., 2024b): The latest SOTA approach
688 leverages attention-head mechanisms to effectively suppress hallucinations.689 **VCD.** VCD (Leng et al., 2024): A technique that introduces noise into images to create amateur
690 models for contrastive decoding.691 **DAMRO.** DAMRO (Gong et al., 2024): This method leverages the ViT’s CLS token to selectively
692 filter out high-attention background outliers and eliminate their influence during decoding.693 We used the parameters provided in the open source version of these methods.
694

702
703 B.3 THROUGHPUT ESTIMATION

704 In the main text, we demonstrated that on LLaVA our algorithm achieves throughput closest to
 705 greedy search among all methods. To further validate its effectiveness, we measured throughput on
 706 MiniGPT-4 and Shikra. As shown in Figure 10, our approach still incurs the smallest throughput
 707 degradation while maintaining high hallucination suppression rates and preserving output detail.



721 Figure 10: Throughput comparison with existing methods given by the number of tokens generated
 722 per second in MiniGPT-4 (left) and Shikra (right).

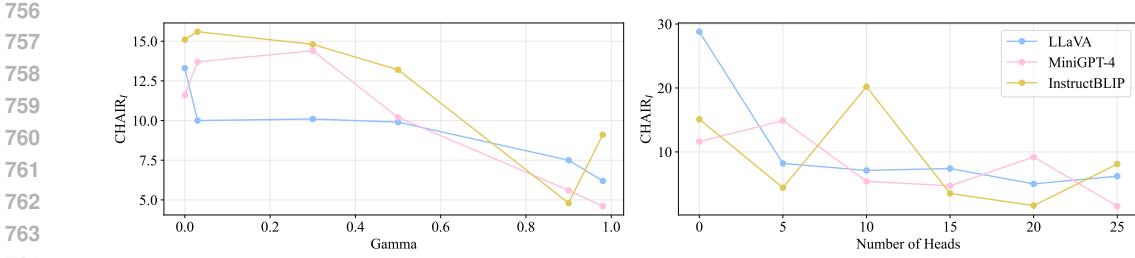
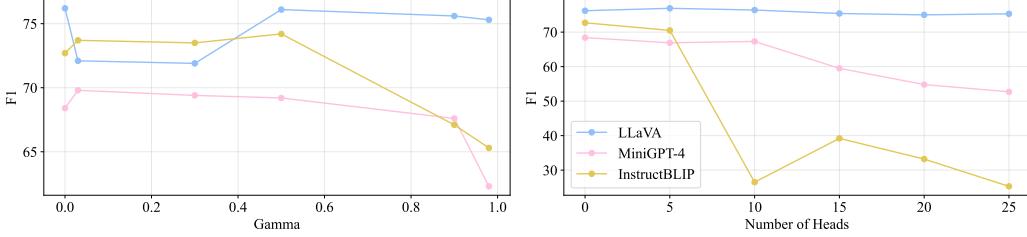
723
724 B.4 ABLATION STUDY

725 D-LEAF is a two-stage localization–correction algorithm for hallucination suppression. In the first
 726 stage, localization is performed by comparing the Layer Image Attention Entropy (LIAE) with the
 727 current Best Attention Score (BAS) to identify abnormal layers. This process does not require any
 728 additional hyperparameters, though layer priors, L , can be applied during this phase, which restricts
 729 localization to specific layers and improve detection accuracy. In the second stage, correction is
 730 carried out by ranking the attention heads within the identified abnormal layers using the Image At-
 731 tention Focus (IAF). The lowest-performing n heads are then selected and refined through a mixing
 732 adjustment with a correction coefficient γ .

733 Table 3 shows that incorporating Layer Priors, L , into our algorithm yields a 10% improvement
 734 in hallucination reduction compared to the variant without layer priors. Regardless of whether
 735 layer priors are applied, our method consistently achieves the best performance among hallucina-
 736 tion suppression algorithms. However, we observe that while hallucinations decrease, the model’s
 737 F1 score also drops—an issue similarly reported in other attention-head-based suppression methods
 738 (Liu et al., 2024b; Sarkar et al., 2025). In Appendix D.4, we further evaluate this phenomenon and
 739 find that introducing layer priors can mitigate this decline, enabling hallucination reduction while
 740 maintaining or even improving F1. Nonetheless, a fundamental trade-off remains between the two.

741 Table 3: Ablation Study of Layer Prior. The best result is highlighted in bold, and the second-best
 742 is underlined.
 743

744 Model	L	C_S	C_I	F1
745 LLaVA	baseline	47.08 ± 1.54	13.00 ± 0.59	77.22 ± 0.66
	with L	23.44 ± 2.63	6.72 ± 0.49	74.88 ± 1.51
	without L	26.20 ± 2.63	8.30 ± 1.32	74.28 ± 0.81
750 MiniGPT-4	baseline	34.00 ± 1.98	10.82 ± 0.59	69.60 ± 0.99
	with L	11.56 ± 1.69	4.72 ± 0.95	66.06 ± 0.99
	without L	14.60 ± 1.51	6.76 ± 1.13	66.52 ± 0.61
755 Instrutblip	baseline	48.12 ± 2.98	14.18 ± 1.12	73.92 ± 0.82
	with L	22.28 ± 1.32	7.82 ± 2.88	70.06 ± 0.80
	without L	22.44 ± 2.75	8.48 ± 5.93	70.74 ± 1.13

Figure 11: Ablation Study results with CHAIR_I for hyperparameter γ and n .Figure 12: Ablation Study results with F1 for hyperparameter γ and n .

In addition to the analysis in the main text on the impact of the mixing coefficient γ and the number of suppressed attention heads n on CHAIR_S , we further report here the influence of these hyperparameters on CHAIR_I and F1, as shown in Figure 11 and 12. The results demonstrate the strong robustness of our method: across a wide range of γ values (0.03 to 0.98), our algorithm consistently outperforms the baseline. We further observe that increasing γ leads to a significant improvement in hallucination suppression across all three models. However, overly large γ values result in a drop in F1 score, whereas appropriately chosen γ achieves a favorable balance—reducing hallucinations while maintaining high F1 performance.

As for the impact of the number of corrected attention heads, n , on hallucination reduction, we find that in models such as InstructBLIP, which leverage a learnable querying transformer to establish vision–language connections with only 32 image tokens as MLLM input, correcting even a small subset of attention heads achieves strong suppression performance. However, as the number of corrected heads increases, the model’s output capability deteriorates significantly: the F1 score drops sharply and the generated responses become markedly shorter. We attribute this to excessive correction disrupting the model’s normal output dynamics, causing it to prefer shorter responses as a way of avoiding hallucinated tokens. Interestingly, contrary to this trend, in LLaVA, which employs an MLP to map the vision branch output into 576 image embeddings, the number of corrected attention heads does not substantially affect model performance.

C PRELIMINARY

In this section, we provide a detailed overview of the analysis tools employed, such as LogitLens and the Wilcoxon signed-rank test, and the forward process of MLLMs.

C.1 MODEL FORWARD PROCESS

The language decoder module here consists of multiple transformer components (Vaswani et al., 2017). Each transformer block comprises two sublayers: a multi-head attention (MHA) mechanism and a feed-forward network (FFN). MHA begins by taking the combined text and image embedding vectors $X \in R^{N \times d}$ as input, projecting them into the query (Q), key (K), and value (V) spaces, and then computing the output of the MHA module. The output of MHA is fed into the FFN module, and the final output of the current encoder block is obtained through residual flow, as shown in equation 7 and equation 8.

810
 811
 812
$$x_n^{mid,l} = \sum_{h=1}^H \text{Attn}^{(l,h)}(X_{\leq n}^{l-1})W_U \quad (7)$$

 813
 814
 815
$$f(x) = \sum_{l=1}^L x_n^{mid,l} + \sum_{l=1}^L \text{FFN}^l(x_n^{mid,l})W_U + x_nW_U \quad (8)$$

 816
 817

818 Therefore, we are able to suppress hallucinations by making corrections in the MHA module during
 819 the forward process without modifying the model architecture or adding additional training.

820
 821 **C.2 LOGITLENS**

822 LogitLens (nostalgebraist, 2020) is an interpretability technique that directly maps each hidden state
 823 x^l to the model’s vocabulary distribution by first applying the LayerNorm transformation and then
 824 projecting through the unembedding matrix W_U , as shown in equation 9.

825
 826
$$\text{LogitLens}(x^l) = \text{LayerNorm}(x^l)W_U \quad (9)$$

 827

828 We used LogitLens to analyze the probability curves of the model’s target logit under both selective
 829 and indiscriminate correction, which enabled us to recognize that indiscriminate correction did not
 830 genuinely take effect in certain scenarios.

831
 832 **C.3 WILCOXON SIGNED-RANK TEST**

833 The Wilcoxon signed-rank test is a non-parametric method for assessing whether the median differ-
 834 ence between paired samples is zero. Given paired observations (x_i, y_i) , we compute the differences

835
 836
$$d_i = x_i - y_i,$$

 837

838 exclude any zero differences, and rank the remaining absolute values $|d_i|$ to obtain ranks R_i . The
 839 test statistic is then defined as

840
$$W = \sum_{i=1}^n \text{sign}(d_i) R_i. \quad (10)$$

 841

842 Under the null hypothesis that the distributions of x_i and y_i are identical, W has a known sampling
 843 distribution, from which we derive a two-sided p -value to determine significance.

844
 845 **C.4 ISOTONIC REGRESSION**

846 Isotonic regression is a non-parametric technique for fitting a monotonic (non-decreasing) function
 847 to a set of paired observations (x_i, y_i) . It estimates values f_i by solving

848
 849
$$\min_{f_1 \leq f_2 \leq \dots \leq f_n} \sum_{i=1}^n w_i (y_i - f_i)^2, \quad (11)$$

 850

851 subject to the ordering constraints $f_i \leq f_{i+1}$, where w_i are optional non-negative weights. This
 852 problem is efficiently solved using the Pool Adjacent Violators Algorithm (PAVA), which produces
 853 a piecewise-constant fit that enforces the desired monotonic relationship.

854
 855 **C.5 SPEARMAN CORRELATION COEFFICIENT**

856 The Spearman correlation coefficient ρ is a non-parametric measure of rank correlation that eval-
 857 uates the strength and direction of a monotonic relationship between two variables. Given paired
 858 observations (x_i, y_i) for $i = 1, \dots, n$, we first convert them to ranks $R(x_i)$ and $R(y_i)$, and then
 859 compute

860
$$\rho = \frac{\sum_{i=1}^n (R(x_i) - \bar{R}_x)(R(y_i) - \bar{R}_y)}{\sqrt{\sum_{i=1}^n (R(x_i) - \bar{R}_x)^2} \sqrt{\sum_{i=1}^n (R(y_i) - \bar{R}_y)^2}}, \quad (12)$$

 861

864 where $\overline{R_x} = \frac{1}{n} \sum_{i=1}^n R(x_i)$ and $\overline{R_y} = \frac{1}{n} \sum_{i=1}^n R(y_i)$. Alternatively, when there are no tied ranks,
 865 it can be expressed as

$$866 \quad \rho = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}, \quad d_i = R(x_i) - R(y_i).$$

868 The coefficient ranges from -1 (perfect negative correlation) to $+1$ (perfect positive correlation),
 869 with $\rho = 0$ indicating no monotonic association.
 870

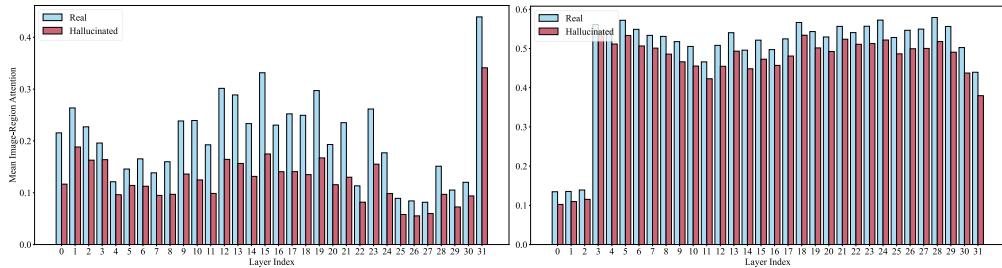
871 D DETAILS OF D-LEAF FRAMEWORK

874 In this section, we first provide an empirical analysis on the metrics in D-LEAF, followed by
 875 verification of the generalisability of various metrics in D-LEAF under other model architectures
 876 (Shikra) and the overall process of the D-LEAF algorithm.

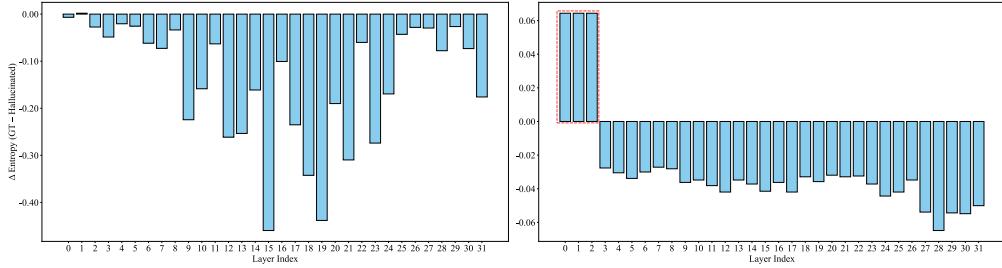
877 D.1 EMPIRICAL ANALYSIS ON ENTROPY AND FOCUS

879 Previous studies have suggested that insufficient and overly dispersed visual-stream attention is one
 880 of the primary causes of hallucination in MLLMs. To validate this claim, we examine Shikra and
 881 MiniGPT-4, comparing the degree of attention to image regions and the entropy of attention distri-
 882 butions across different layers when the models generate hallucinated versus factual tokens.
 883

884 We randomly sampled 500 images from the COCO2014 validation set and, for each image, ex-
 885 tracted the model’s attention matrices when generating hallucinated versus ground-truth tokens, re-
 886 spectively. We then computed the attention scores over the image region for both cases. The results
 887 are shown in Figure 13. We observe that, in both models, across all layers, image-region attention
 888 for ground-truth tokens is higher than hallucinated tokens.



890 Figure 13: Comparison of attention scores for real words and hallucinated words in the image region
 891 in MiniGPT-4 (left) and Shikra (right).



912 Figure 14: Layer-Wise Entropy Difference: Ground-Truth minus Hallucinated in MiniGPT-4 (left)
 913 and Shikra (right).

915 Similarly, after applying softmax normalization to the attention matrices for ground-truth and hal-
 916 lucinated tokens, we computed the mean image-region entropy across all attention heads at each
 917 layer and plotted their per-layer difference as a bar chart in Figure 14. Because the raw entropy
 918 values are very close, we scaled the y-axis by a factor of 10³. We could observe that, across all

918 layers, image-region entropy for real tokens is lower than hallucinated tokens. However, in some
 919 architectures, like shikra, we observe that in certain layers the average entropy is actually higher for
 920 real words than for hallucinated terms. This further confirms that the indiscriminate modification of
 921 attention heads, as previously discussed, is suboptimal.
 922

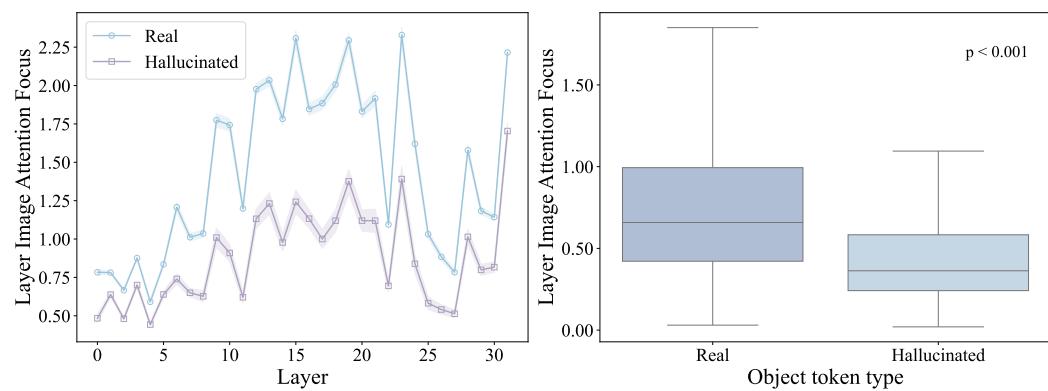
923 D.2 METRIC VALIDATION AND COMPARISON

925 In D-LEAF, we employ the Layer Image Attention Entropy (LIAE) to detect abnormal layers. Once
 926 abnormal layers are identified, we rank attention heads using the Image Attention Focus (IAF) to
 927 select those requiring correction. In this section, we present four sets of experiments demonstrating
 928 that for abnormal layer detection, using LIAE alone outperforms either IAF or a combined metric,
 929 whereas for head localization, using IAF alone yields better performance than either IAE or the
 930 combined approach.

931 Inspired by the previous section, we propose layer image attention as a comparison metric for
 932 anomaly layer detection.

$$933 \text{LIAF}^{(l)} = \sum_{n=1}^N \text{MAM}_n^{(l)} \quad (13)$$

936 To evaluate the significance of the metric, which independent and non-normally distributed across
 937 real and hallucinated tokens, we apply the Wilcoxon signed-rank test (Wilcoxon, 1992) as in main
 938 text. With $p < 0.001$, in Figure 15 we confidently observe in MiniGPT-4 that hallucinated tokens
 939 exhibit significantly lower LIAF compared to real tokens.
 940



941 Figure 15: LIAF change curves (left) and distributions , together with the Wilcoxon signed-rank test
 942 results (right) for hallucinated versus real words generated by MiniGPT-4.
 943

944 While we have already confirmed the individual effectiveness of LIAE and LIAF, combining them
 945 necessitates conducting a correlation analysis between the two metrics. Since these two metrics do
 946 not conform to a normal distribution, we computed the Spearman correlation coefficient between
 947 LIAE and LIAF, obtaining $\rho = -0.85$ with $p < 0.001$, which indicates that there is a high negative
 948 correlation between LIAE and LIAF. To further characterize their relationship, we fitted an isotonic
 949 regression—shown as the solid blue curve in Figure 16 left closely follows, yet remains slightly
 950 above, the idealized gray dashed line denoting perfect negative correlation. We obtained the same
 951 fitting results for attention head localization metrics: Image Attention Entropy (IAE) and Image
 952 Attention Focus (IAF) as illustrated in Figure 16 right.
 953

954 Based on the above experiments, we can conclude that there is a strong negative correlation between
 955 LIAE and LIAF. Therefore, we propose Layer Image Attention Score (LIAS) as a comprehensive
 956 indicator for hallucination detection:
 957

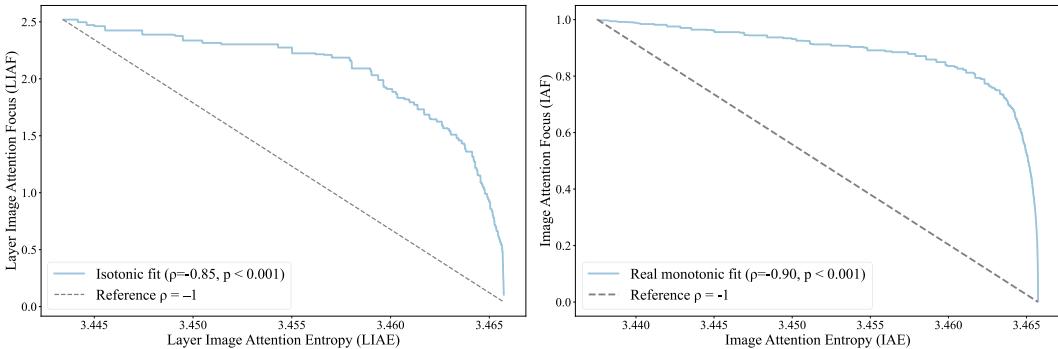
$$958 \text{LIAS}^{(l)} = \alpha \text{LIAE}^{(l)} - (1 - \alpha) \text{LIAF}^{(l)} \quad (14)$$

959 To comprehensively evaluate the capability of the three proposed metrics in detecting abnormal layers,
 960 we conducted experiments on the CHAIR dataset using LLaVA, MiniGPT-4, and Shikra, as
 961

972 shown in the table 4. The results demonstrate that selecting LIAE alone as the primary indicator
 973 yields the strongest hallucination suppression. However, as LIAF is incorporated, the suppression
 974 effect gradually diminishes: once α exceeds 0.5, all three models produce identical detection re-
 975 sults. We attribute this to the substantial numerical disparity between LIAE and LIAF, which causes
 976 LIAF to increasingly dominate in the mixed metric, whereas LIAE is inherently more sensitive to
 977 abnormalities. Therefore, we use LIAE exclusively during detection.

978
 979 Table 4: Ablation study of detection coefficient α . The best result is highlighted in bold, and the
 980 second-best is underlined.

α	LLaVA			MiniGPT-4			Shikra		
	C_S	C_I	F1	C_S	C_I	F1	C_S	C_I	F1
0.0	20.6	6.2	75.3	12.6	5.4	67.3	25.2	10.2	62.5
0.3	33.0	12.7	76.9	<u>35.4</u>	<u>10.7</u>	69.0	35.2	<u>12.7</u>	67.3
0.5	<u>32.0</u>	<u>10.3</u>	75.0	<u>35.4</u>	<u>10.7</u>	69.5	35.4	13.4	<u>66.9</u>
0.7	<u>32.0</u>	<u>10.3</u>	75.0	<u>35.4</u>	<u>10.7</u>	69.5	<u>35.0</u>	13.2	67.3
1.0	<u>32.0</u>	<u>10.3</u>	75.0	<u>35.4</u>	<u>10.7</u>	69.5	<u>35.0</u>	13.2	67.3



1002 Figure 16: Isotonic Regression fit of LIAE against LIAF (left) and IAE against IAF (right) in
 1003 MiniGPT-4.

1004 In the correction stage, we additionally introduce two comparative metrics, namely the Image At-
 1005 tention Entropy (IAE) and the Image Attention Score (IAS).
 1006

$$1007 \quad 1008 \quad 1009 \quad \text{IAE}_h^{(l)} = - \sum_{n=1}^N P(A_{h,n}^{(l)}) \log P(A_{h,n}^{(l)}) \quad (15)$$

$$1010 \quad 1011 \quad \text{IAS}_h^{(l)} = \beta \text{IAF}_h^{(l)} + (1 - \beta) \text{IAE}_h^{(l)} \quad (16)$$

1012 We visualize the distributional differences of IAE when the model generates hallucinated versus
 1013 factual tokens, as shown in Figure 17. The results reveal that the discrepancies across attention
 1014 heads are extremely subtle, appearing only beyond the fifth decimal place. We further repeat the
 1015 CHAIR experiment and find that once IAE is incorporated, the correction process leads the model
 1016 to malfunction, as it mistakenly identifies and modifies the wrong attention heads. For these reasons,
 1017 we use IAF exclusively during correction.

1018 D.3 EVALUATION OF METRIC GENERALIZABILITY

1021 To further verify the validity and effectiveness of our proposed metrics across different model ar-
 1022 chitectures, we conducted supplementary experiments on other model architecture and analyzed the
 1023 results. We first plot the distributions of LIAE and IAF in Shikra like the main context in Figure 18.

1024 Additionally, we plotted the LIAF curve and distributions in Figure 19 and performed Wilcoxon
 1025 signed-rank tests on both metrics for hallucinated versus ground-truth tokens. At $p < 0.001$, hallu-
 1026 cinated tokens exhibit significantly lower LIAF than ground-truth tokens.

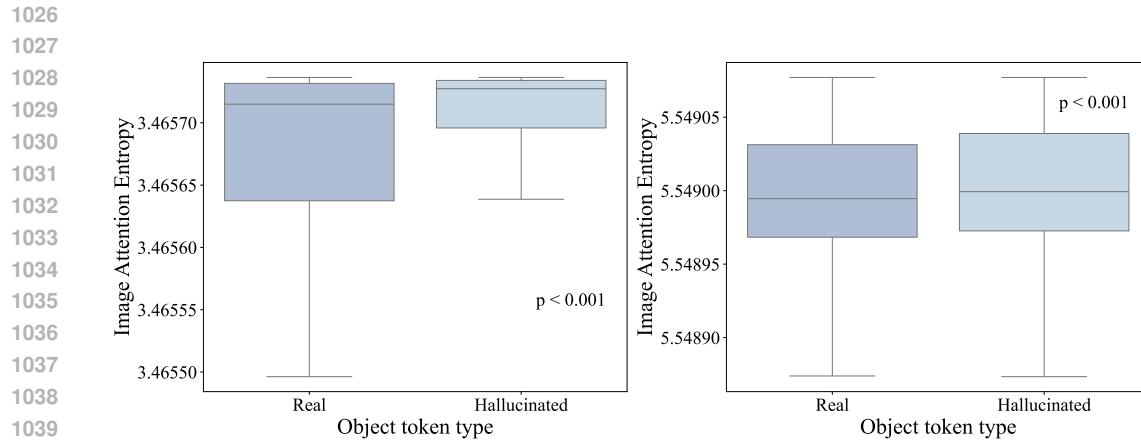


Figure 17: IAE distributions , together with the Wilcoxon signed-rank test results for hallucinated versus real words generated by MiniGPT-4 (left) and Shikra (right).

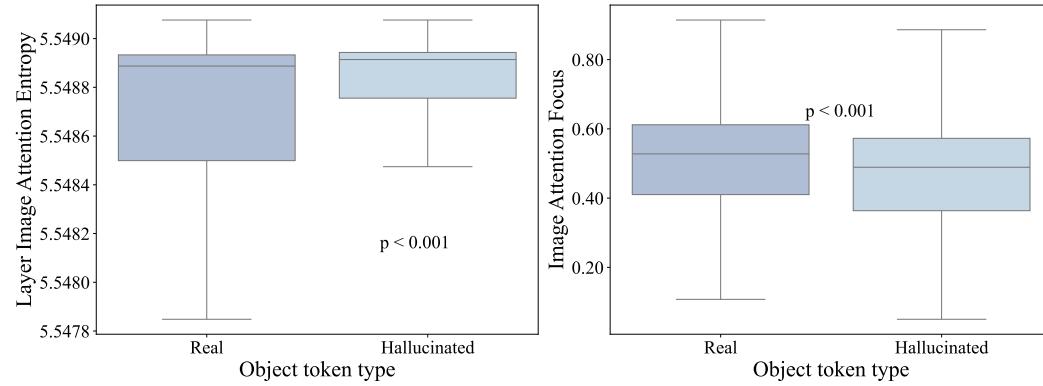


Figure 18: The distributions of LIAE (left) and IAF (right) for hallucinated versus real words, together with the Wilcoxon signed-rank test results in Shikra.

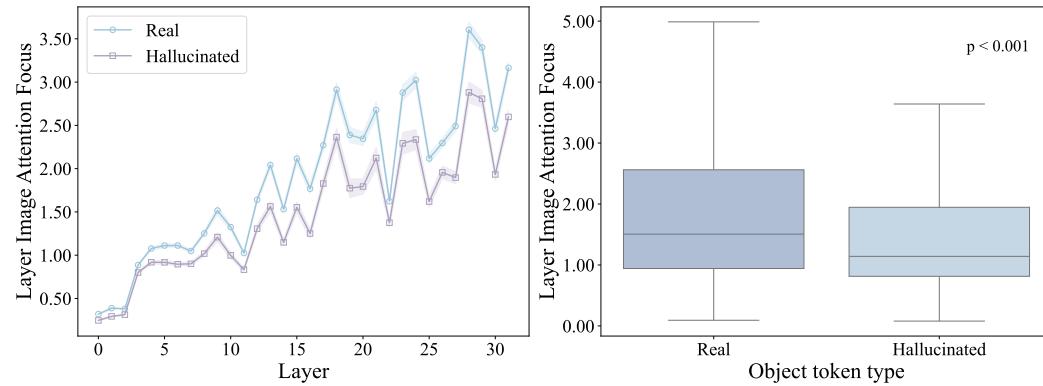
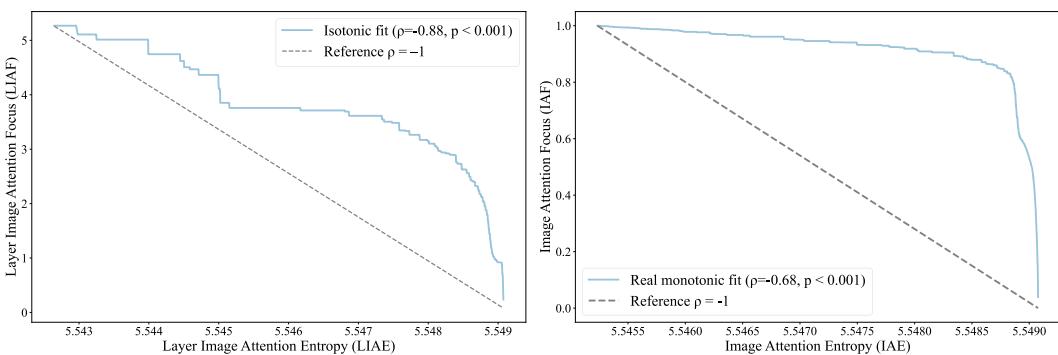


Figure 19: LIAF change curves (left) and distributions , together with the Wilcoxon signed-rank test results (right) for hallucinated versus real words generated by Shikra.

1080 Furthermore, we evaluated the correlation between LIAE and LIAF and fitted it with isotonic regression, as shown in Figure 20 left. The gray dashed line denotes a perfect negative correlation, and the blue curve represents the fitted regression; we observe a correlation of -0.88 at $p < 0.001$.
1081
1082
1083

1084 After confirming that LIAE and LIAF generalize well for identifying anomalous layers, we further
1085 evaluated the generalizability of Image Attention Entropy (IAE) and Image Attention Focus (IAF) for pinpointing anomalous attention heads. The distribution and significance test of IAE is presented
1086 in Figure 17: for each attention head, Image Attention Entropy (IAE) in ground-truth tokens is
1087 significantly lower than in hallucinated tokens ($p < 0.001$).
1088

1089 Similarly, we applied isotonic regression fitting; as shown in Figure 20 right, although our curve
1090 does not perfectly align with the gray dashed line denoting a perfect negative correlation, it still
1091 exhibits a clear negative trend, with a correlation coefficient of -0.68 ($p < 0.001$).
1092



1104 Figure 20: Isotonic Regression fit of LIAE against LIAF (left) and IAE against IAF (right) in
1105 Shikra.
1106

1107 In summary, on Shikra we observe the consistent patterns as in MiniGPT-4: ground-truth tokens
1108 exhibit significantly lower LIAE and IAE and significantly higher LIAF and IAF compared to hal-
1109 lucinated tokens. Furthermore, both the LIAE–LIAF and IAE–IAF pairs show strong negative cor-
1110 relations, supporting their joint use as detection metrics for anomalous layers and heads.
1111

1112 D.4 VISUAL PROCESSING LAYER

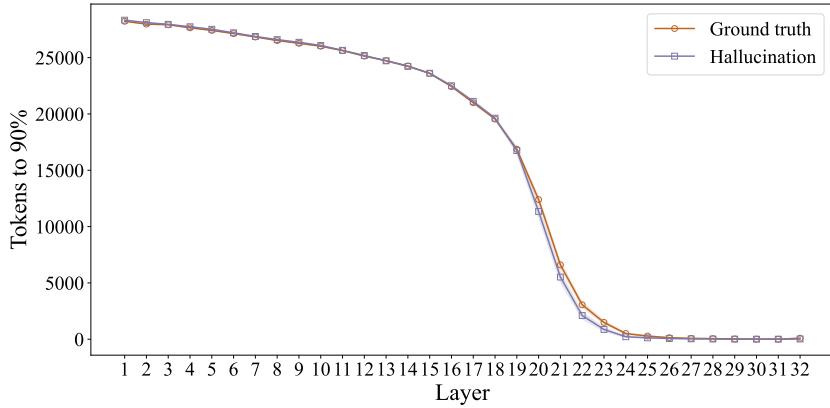
1113 In the Appendix B.4, we conducted an ablation study on the Layer Prior and found that even without
1114 incorporating it, our algorithm already achieves state-of-the-art performance. However, introducing
1115 the layer prior further reduces hallucination rates. In this section, we provide a more fine-grained
1116 analysis of the Layer Prior and introduce the concept of visual processing layers.
1117

1118 We first evaluated the effect of varying the number of corrected layers on three models: LLaVA,
1119 MiniGPT-4, and Shikra, measuring changes in hallucination rate and F1 score, as shown in Table 5.
1120 The results demonstrate that regardless of the partitioning strategy, our method consistently achieves
1121 a substantial reduction in hallucination rates. Moreover, by tuning the number of corrected layers,
1122 our approach is able to maintain high F1 scores while suppressing hallucinations, further confirming
1123 both the robustness and strong transferability of our algorithm.
1124

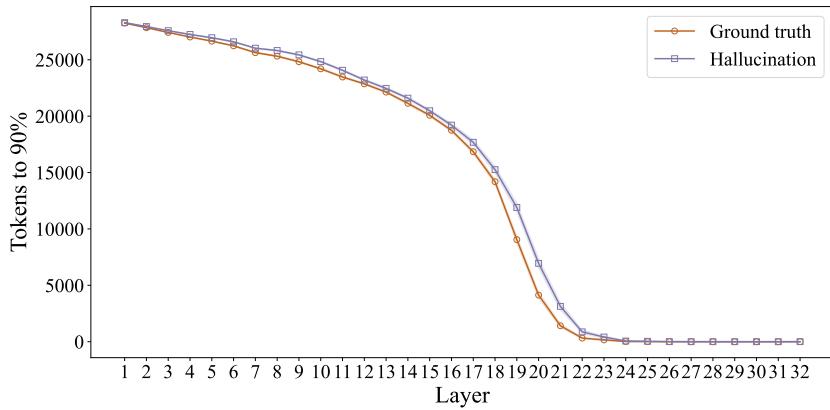
1125 In addition, our experiments reveal that applying corrections within layers 0–25 often yields the most
1126 substantial reduction in hallucinations, albeit at the cost of some F1 degradation. We hypothesize
1127 that this effect arises because the algorithm is restricted to the visual processing stages: while the
1128 model becomes highly effective at distinguishing objects during visual processing, in the subsequent
1129 language generation phase it tends to produce shorter outputs to avoid hallucinated tokens, thereby
1130 leading to a decline in F1 score. To confirm this, we ran a simple experiment to confirm that all three
1131 architectures integrate visual features primarily in layers 0–25.
1132

1133 We tracked the trajectories of the top 90% percentile logits across all layers of MiniGPT-4 and Shikra
1134 (Figure 21 and 22). The curves plateau around layer 26, suggesting that content integration and
1135 reasoning are effectively completed by the end of the first 25 layers. Accordingly, our hallucination

1134
 1135 detection and correction mechanisms are concentrated on these initial layers, which confirm the
 1136 prior hypothesis.
 1137



1151
 1152 Figure 21: The trajectories of the top 90% percentile logits across all layers of MiniGPT-4.
 1153
 1154
 1155



1169
 1170 Figure 22: The trajectories of the top 90% percentile logits across all layers of Shikra.
 1171
 1172

1173 Table 5: Ablation study of correction layers across different models. The best result is highlighted
 1174 in bold, and the second-best is underlined.
 1175

Layer	LLaVA			MiniGPT-4			Shikra		
	C_S	C_I	F1	C_S	C_I	F1	C_S	C_I	F1
0–10	24.0	<u>7.0</u>	75.1	18.8	5.6	67.6	47.2	15.2	70.3
5–25	37.0	11.2	77.7	12.6	5.6	67.3	53.2	14.8	74.8
0–25	20.6	6.2	<u>75.3</u>	21.8	<u>6.0</u>	68.1	25.2	10.9	62.5
26–31	37.0	11.2	74.7	33.0	10.6	71.7	58.0	16.3	<u>73.4</u>
0–31	<u>22.2</u>	7.8	72.5	<u>16.6</u>	6.9	65.6	<u>28.2</u>	<u>11.0</u>	64.1

1183

1184

1185

1186 D.5 FULL PROCEDURE OF D-LEAF

1187

Algorithm 1 and Figure 23 shows the full procedure of D-LEAF.

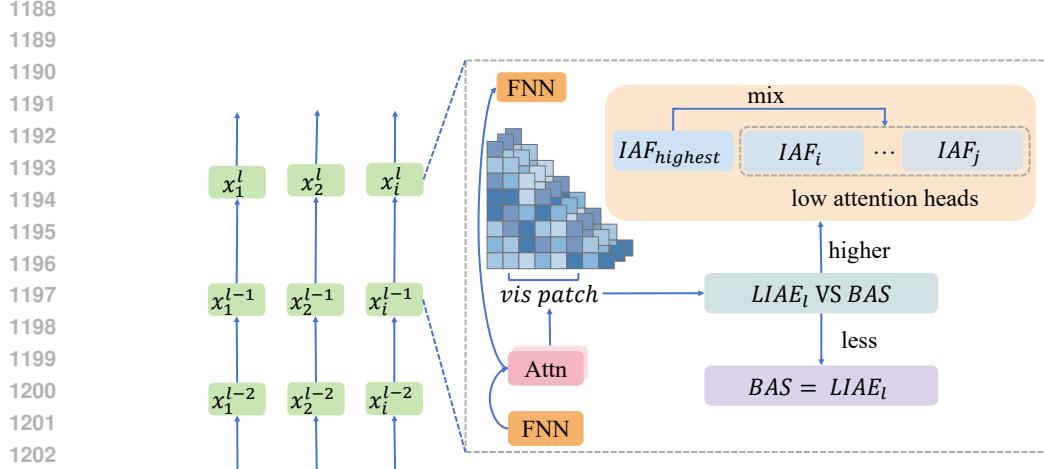


Figure 23: Architecture of our D-LEAF.

Algorithm 1 Dynamic Layer-wise Entropy and Attention Fusion

Input: N input tokens, consisting of both text and vision tokens, each of embedding dimension d , $X \in \mathbb{R}^{(N \times d)}$

Parameter: Optional list of parameters

Output: The probability distribution of the next token.

```

1: Let  $l = 0$ ,  $BAS_{best} = \text{Inf}$ ,  $A_{tot} = \text{None}$ .
2: while  $l < L$  do
3:    $Q, K, V = W_Q X, W_K X, W_V X$ 
4:   for  $h \in H$  do
5:      $A_h = \frac{Q^h (K^h)^T}{\sqrt{d_k / H}}$ 
6:     if  $A_{tot} = \text{None}$  then
7:        $A_{tot} = A_h$ 
8:     else
9:        $A_{tot} = \text{concat}(A_{tot}, A_h)$ 
10:    end if
11:   end for
12:   if  $l \in (l_s, l_e)$  then
13:      $BAS_l = \text{LIAE}^l$ 
14:     if  $BAS_{best} < BAS_l$  then
15:        $BAS_{best} = BAS_l$ 
16:     else
17:        $A_{set} = \text{sort}(A_{tot}, \text{key} = \text{IAF}, \text{asc} = \text{True})$ 
18:       for  $A_h \in A_{set}[0 : n]$  do
19:          $A_{h,v} = A_h[I_{start} : I_{end}]$ 
20:          $A_{best,v} = A_{set}[-1][I_{start} : I_{end}]$ 
21:          $A_{h,v} = \gamma A_{best,v} + (1 - \gamma) A_{h,v}$ 
22:       end for
23:     end if
24:   end if
25:    $X = \text{FFN}(A_{tot} V)$ 
26:    $l = l + 1$ 
27: end while
28: return  $X$ 

```

1242 **E CASE STUDY**
12431244 Additional case studies across diverse MLLMs are provided to demonstrate the effectiveness of D-
1245 LEAF. Specifically, Figures 24, 25 and 26 respectively present further instances of hallucination
1246 corrections by our method for LLaVA-1.5, MiniGPT-4 and Shikra.
12471250 **Instruction:** Please describe the image in detail.
12511252 **LLaVA-1.5 (Greedy):**
12531254 The image features a yellow and red train parked at a train station. The train is positioned on
1255 the tracks, occupying a significant portion of the scene. **The train station appears to be a busy**
1256 **place, with several people scattered around the area. Some of them are standing close to the**
1257 **train, while others are further away.** In addition to the train and people, there are a few objects
1258 in the scene. A bench can be seen near the right side of the image, and a handbag is placed on
1259 the ground close to the center. A clock is also visible in the background, providing information
1260 about the time for the passengers.
12611262 **Input Image**1263 **LLaVA-1.5 (D-LEAF):**
12641265 The image shows a yellow-fronted passenger train arriving at a station platform. The train has
1266 a blue and red stripe along its side and is positioned on curved tracks next to the platform. The
1267 surrounding area includes station buildings and a covered section where the train is emerging
1268 from. The platform appears mostly empty, with no visible passengers nearby.
12691270 **Instruction:** Please describe the image in detail.
12711272 **LLaVA-1.5 (Greedy):**
12731274 The image features a man and a woman standing together, both holding wine glasses in their
1275 hands. They are posing for a picture, likely celebrating a special occasion or simply enjoying
1276 each other's company. **The man is wearing glasses, and the woman is wearing a scarf. In the**
1277 **background, there are two dining tables, one on the left side and another on the right side of**
1278 **the scene. A clock can be seen hanging on the wall, and a chair is placed near the left side of**
1279 **the room. Additionally, there are two bottles in the scene, one located near the center and the**
1280 **other on the right side.**
1281

1284

1285 **LLaVA-1.5 (D-LEAF):**
12861287 The image features a man and a woman standing next to each other, both holding wine glasses
1288 filled with champagne. They are posing for a picture, and the woman is wearing a black shirt.
1289 The man is wearing a black shirt and a scarf around his neck. The couple appears to be
1290 enjoying a celebration or a special occasion.
12911294 **Instruction:** Please describe the image in detail.
12951296 **LLaVA-1.5 (Greedy):**
12971298 The image features a man and a woman standing in a living room, both holding Wii game
1299 controllers and playing a video game together. They are standing close to each other, with the
1300 woman on the left and the man on the right. The living room is furnished with a couch in the
1301 background **and a dining table nearby.** There are several books scattered around the room,
1302 **with some placed on the dining table and others on the floor. A clock is also visible on the wall,**
1303 **adding to the cozy atmosphere of the living space.**
13041305 **LLaVA-1.5 (D-LEAF):**
13061307 The image shows two people in a living room playing a video game. They are holding motion
1308 controllers and appear to be enjoying the activity, with smiles on their faces. The room has a
1309 bookshelf, a standing lamp, and a framed painting on the wall, creating a casual and relaxed
1310 atmosphere.
13111312 **Figure 24: D-LEAF’s performance on reducing hallucinations of LLaVA-1.5.**
13131314 **F LLM USAGE**
13151316 We used large language models (LLMs) as a general-purpose tool only for minor editing and lan-
1317 guage polishing. LLMs were not involved in research ideation, data analysis, or the generation of
1318 scientific insights. All intellectual contributions, including the conception, design, and interpretation
1319 of the work, are solely those of the authors.
1320

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

Input Image

Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a small child sitting on the floor in a kitchen, wearing a pair of blue socks and a white and blue striped shirt. **The child is holding a toothbrush in one hand and brushing their teeth with the other. The child's parents are standing behind them, watching and helping them brush their teeth. The floor is tiled and there is a sink and faucet in the background.**

MinGPT-4 (D-LEAF):

The image shows a young child sitting on a tiled floor, wearing patterned pajamas with colorful designs and blue socks. The child appears to be holding and examining a small object, while part of an adult's legs can be seen in the background.

Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a large, white and blue airplane flying in the sky against a clear blue background. The plane has a yellow tail and **two white engines on the back**. The plane is flying at a high altitude and appears to be in the process of taking off. The sky is clear and there are no clouds in the sky. The plane is flying in a straight line and appears to be heading towards the horizon.

Input Image

MiniGPT-4 (D-LEAF):

The image shows a commercial airplane in flight against a clear sky. The plane is painted in white, blue, and yellow colors, with the landing gear extended as if preparing to land. The airline's name is visible on the side of the aircraft.

Instruction: Please describe the image in detail.

MiniGPT-4 (Greedy):

The image shows a large giraffe made out of lego blocks standing in front of a tall building. The giraffe has a long neck and legs, and its body is covered in brown and yellow lego blocks. There is a woman standing next to the giraffe, looking at it with a smile on her face. **The woman is wearing a red shirt and black pants, and has short brown hair.** The building behind the giraffe has large windows and a modern design. There are several people walking on the sidewalk in front of the building, and a few cars parked on the street.

MiniGPT-4 (D-LEAF):

The image shows a large giraffe sculpture built from yellow and orange blocks, standing in an outdoor urban area. The sculpture is positioned near a modern glass building, and several people are walking or standing nearby. A woman is standing close to the sculpture, looking toward the camera, while the surroundings suggest a busy public space.

Figure 25: D-LEAF's performance on reducing hallucinations of MiniGPT4.

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
1351
1352
1353
1354
1355
1356
1357

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a long blue and yellow train traveling down the train tracks. The train is followed by several cars, including some that appear to be blue and yellow as well, giving the scene a colorful and lively atmosphere. There are multiple people near the train tracks, possibly observing or waiting for the train to pass. Some of them are standing closer to the front of the train, while others are positioned further back. The overall scene conveys a busy and active transportation hub.

Shikra (D-LEAF):

The image features a train traveling down the railroad tracks. The train is quite long, occupying a significant portion of the view. There are multiple train tracks visible in the scene, indicating a busy transportation hub.

Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a small blue and gray storefront of a convenience store located on a street corner. The store has a fire hydrant in front of it, adding a touch of safety to the scene. There is a man standing outside the store, possibly a customer or an employee. In the vicinity of the store, several cars are parked on the street, with one car on the left side of the image, another closer to the center, and two more cars on the right side. Additionally, there is a truck parked further back on the right side of the scene.

Shikra (D-LEAF):

The image features a man standing in front of a small, blue brick store, which appears to be a convenience store. The store is located on a street corner and has a fire hydrant nearby. There are two ATMs in front of the store, which are likely for customers to withdraw money. In the vicinity, there are multiple vehicles parked on the street. The scene captures the everyday life of a busy urban area with various elements of street life and businesses coexisting.

Instruction: Please describe the image in detail.

Shikra (Greedy):

The image features a little girl standing in a kitchen, holding a tray with several doughnuts on it. She appears to be enjoying her time, possibly preparing something fun for breakfast or dessert. The doughnuts are in various stages of preparation, with some being rolled and others placed on the tray. There are two refrigerators visible in the background, one situated on the left side and the other on the right side of the room. A bottle can be seen on the countertop near the refrigerators, along with an oven placed in the lower left corner of the kitchen.

Shikra (D-LEAF):

The image shows a young girl standing in a kitchen, holding a baking tray with unbaked pastries. She is smiling widely and appears very excited. An oven with the door open is in front of her, and various kitchen items can be seen in the background.

Figure 26: D-LEAF’s performance on reducing hallucinations of Shikra.