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Abstract
We propose a novel framework for analyzing the
dynamics of distribution shift in real-world sys-
tems that captures the feedback loop between
learning algorithms and the distributions on which
they are deployed. Prior work largely models
feedback-induced distribution shift as adversar-
ial or via an overly simplistic distribution-shift
structure. In contrast, we propose a coupled
partial differential equation model that captures
fine-grained changes in the distribution over time
by accounting for complex dynamics that arise
due to strategic responses to algorithmic decision-
making, non-local endogenous population inter-
actions, and other exogenous sources of distribu-
tion shift. We consider two common settings in
machine learning: cooperative settings with in-
formation asymmetries, and competitive settings
where a learner faces strategic users. For both of
these settings, when the algorithm retrains via gra-
dient descent, we prove asymptotic convergence
of the retraining procedure to a steady-state, both
in finite and in infinite dimensions, obtaining ex-
plicit rates in terms of the model parameters. To
do so we derive new results on the convergence
of coupled PDEs that extends what is known on
multi-species systems. Empirically, we show that
our approach captures well-documented forms of
distribution shifts like polarization and disparate
impacts that simpler models cannot capture.

1. Introduction
In many machine learning tasks, there are commonly
sources of exogenous and endogenous distribution shift,
necessitating that the algorithm be retrained repeatedly
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over time. Some of these shifts occur without the in-
fluence of an algorithm; for example, individuals influ-
ence each other to become more or less similar in their
attributes, or benign forms of distributional shift occur
(Quinonero-Candela et al.). Other shifts, however, are in
response to algorithmic decision-making. Indeed, the very
use of a decision-making algorithm can incentivize individ-
uals to change or mis-report their data to achieve desired
outcomes— a phenomenon known in economics as Good-
hart’s law. Such phenomena have been empirically observed,
a well-known example being in (Camacho & Conover),
where researchers observed a population in Columbia strate-
gically mis-reporting data to game a poverty index score
used for distributing government assistance. Works such as
(Miller et al.; Wiles et al.), which investigate the effects of
distribution shift over time on a machine learning algorithm,
point toward the need for evaluating the robustness of al-
gorithms to distribution shifts. Many existing approaches
for modeling distribution shift focus on simple metrics like
optimizing over moments or covariates (Delage & Ye; Lei
et al.; Bickel et al.). Other methods consider worst-case sce-
narios, as in distributionally robust optimization (Agarwal &
Zhang; Lin et al.; Duchi & Namkoong; Kuhn et al.). How-
ever, when humans respond to algorithms, these techniques
may not be sufficient to holistically capture the impact an
algorithm has on a population. For example, an algorithm
that takes into account shifts in a distribution’s mean might
inadvertently drive polarization, rendering a portion of the
population disadvantaged.

Motivated by the need for a more descriptive model, we
present an alternative perspective which allows us to fully
capture complex dynamics that might drive distribution
shifts in real-world systems. Our approach is general enough
to capture various sources of exogenous and endogenous
distribution shift including the feedback loop between algo-
rithms and data distributions studied in the literature on per-
formative prediction (Perdomo et al.; Izzo et al.; Ray et al.,
2022; Narang et al., 2022; Miller et al., 2021), the strategic
interactions studied in strategic classification (Hardt et al.;
Dong et al., 2018), and also endogenous factors like intra-
population dynamics and distributional shifts. Indeed, while
previous works have studied these phenomena in isolation,
our method allows us to capture all of them as well as their
interactions. For example, in (Zrnic et al.), the authors in-
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vestigate the effects of dynamics in strategic classification
problems— but the model they analyze does not capture
individual interactions in the population. In (Izzo et al.),
the authors model the interaction between a population
that repeatedly responds to algorithmic decision-making
by shifting its mean. Additionally, (Ray et al., 2022) study
settings in which the population has both exogenous and
endogenous distribution shifts due to feedback, but much
like the other cited work, the focus remains on average per-
formance. Each of these works fails to account for diffusion
or intra-population interactions that can result in important
qualitative changes to the distribution.

Contributions. Our approach to this problem relies on a
detailed non-local PDE model of the data distribution which
captures each of these factors. One term driving the evolu-
tion of the distribution over time captures the response of
the population to the deployed algorithm, another draws on
models used in the PDE literature for describing non-local
effects and consensus in biological systems to model intra-
population dynamics, and the last captures a background
source of distribution shift. This is coupled with an ODE,
lifted to a PDE, which describes the training of a machine
learning algorithm results in a coupled PDE system which
we analyze to better understand the behaviors that can arise
among these interactions.

In one subcase, our model exhibits a joint gradient flow
structure, where both PDEs can be written as gradients
flows with respect to the same joint energy, but considering
infinite dimensional gradients with respect to the different
arguments. This mathematical structure provides power-
ful tools for analysis and has been an emerging area of
study with a relatively small body of prior work, none of
which related to distribution shifts in societal systems, and
a general theory for multi-species gradient flows is still
lacking. We give a brief overview of the models that are
known to exhibit this joint gradient flow structure: in (De-
biec & Schmidtchen) the authors consider a two-species
tumor model with coupling through Brinkman’s Law. A
number of works consider coupling via convolution kernels
(Francesco & Fagioli; Giunta et al.; Jungel et al.; Carrillo
et al., e; Duong & Tugaut; Doumic et al.) and cross-diffusion
(Li & Yao; Alsenafi & Barbaro; Mackey et al.), with appli-
cations in chemotaxis among other areas. In the models we
consider here, the way the interaction between the two pop-
ulations manifests is neither via cross-diffusion, nor via the
non-local self-interaction term. A related type of coupling
has recently appeared in (Heinze et al., a;b), however in the
setting of graphs. Recent work (Domingo-Enrich et al.) pro-
vides particle-based methods to approximately compute the
solution to a minimax problem where the optimization space
is over measures; following that work, (Wang & Chizat) pro-
vides another particle-based method using mirror descent-
ascent to solve a similar problem. Other recent work (Lu)

proves that a mean-field gradient ascent-descent scheme
with an entropy annealing schedule converges to the solu-
tion of a minimax optimization problem with a timescale
separation parameter that is also time-varying; in contrast,
our work considers fixed timescale separation setting. (Gar-
cia Trillos & Garcia Trillos) show that the mean-field de-
scription of a particle method for solving minimax problems
has proveable convergence guarantees in the Wasserstein-
Fisher-Rao metric. Each of these references considers an
energy functional that is linear in the distribution of each
species respectively; our energy includes nonlinearities in
the distributions via a self-interaction term as well as diffu-
sion for the population. Moreover, the above works intro-
duce a gradient flow dynamic as a tool for obtaining and
characterizing the corresponding steady states, whereas in
our setting we seek to capture the time-varying behavior that
models distributions shifts. In the other subcase, we prove
exponential convergence in two competitive, timescale sep-
arated settings where the algorithm and strategic population
have conflicting objectives.

We show numerically that retraining in a competitive set-
ting leads to polarization in the population, illustrating the
importance of fine-grained modeling.

2. Problem Formulation
Machine learning algorithms that are deployed into the real
world for decision-making often become part of complex
feedback loops with the data distributions and data sources
with which they interact. In an effort to model these interac-
tions, consider a machine learning algorithm that has loss
given by L(z, x) where x ∈ Rd are the algorithm parame-
ters and z ∈ Rd are the population attributes, and the goal
is to solve

argmin
x∈X

E
z∼ρ

L(z, x),

where X is the class of model parameters and ρ(z) is the
population distribution. Individuals have an objective given
by J(z, x) in response to a model parameterized by x, and
they seek to solve

argmin
z∈Rd

J(z, x).

When individuals in the population and the algorithm have
access to gradients, we model the optimization process as
a gradient-descent-type process. Realistically, individuals
in the population will have nonlocal information and influ-
ences, as well as external perturbations, the effects of which
we seek to capture in addition to just minimization. To ad-
dress this, we propose a partial differential equation (PDE)
model for the population, that is able to capture nonlocal
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interactions between individuals on the level of a collective
population. To analyse how the population evolves over
time, a notion of derivative in infinite dimensions is needed.
A natural, and in this context physically meaningful, way of
measuring the dissipation mechanism for probability distri-
butions is the Wasserstein-2 metric (see Definition A.3). The
following expression appears when computing the gradient
of an energy functional with respect to the Wasserstein-2
topology.

Definition 2.1. [First Variation] For a map G : P(Rd) 7→
R and fixed probability distribution ρ ∈ P(Rd), the first
variation ofG at the point ρ is denoted by δρG[ρ] : Rd → R,
and is defined via the relation∫

δρG[ρ](z)ψ(z)dz = lim
ϵ→0

1

ϵ
(G(ρ+ ϵψ)−G(ρ))

for all ψ ∈ C∞
c (Rd) such that

∫
dψ = 0, assuming that G

is regular enough for all quantities to exist.

Here, P(Rd) denotes the space of probability measures on
the Borel sigma algebra. Using the first variation, we can
express the gradient in Wasserstein-2 space, see for example
(Villani, 2003, Exercise 8.8).

Lemma 2.2. The gradient of an energy G : P2(Rd) → R
in the Wasserstein-2 space is given by

∇W2G(ρ) = −div (ρ∇δρG[ρ]) .

Here, P2(Rd) denotes the set of probability measures with
bounded second moments, also see Appendix A.2. As a
consequence, the infinite dimensional steepest descent in
Wasserstein-2 space can be expressed as the PDE

∂tρ = −∇W2G(ρ) = div (ρ∇δρG[ρ]) . (1)

All the coupled gradient flows considered in this work have
this Wasserstein-2 structure. In particular, when considering
that individuals minimize their own loss, we can capture
these dynamics via a gradient flow in the Wasserstein-2
metric on the level of the distribution of the population.
Then for given algorithm parameters x ∈ Rd, the evolution
for this strategic population is given by

∂tρ = div

(
ρ∇δρ

[
E

z∼ρ
J(z, x) + E(ρ)

])
, (2)

where E(ρ) is a functional including terms for internal influ-
ences and external perturbations. In real-world deployment
of algorithms, decision makers update their algorithm over
time, leading to an interaction between the two processes.
We also consider the algorithm dynamics over time, which
we model as

ẋ = −∇x

[
E

z∼ρ
L(z, x)

]
. (3)

In this work, we analyze the behavior of the dynamics under
the following model. The algorithm suffers a cost f1(z, x)
for a data point z under model parameters x in the strategic
population, and a cost f2(z, x) for a data point in a fixed,
non-strategic population. The strategic population is de-
noted by ρ ∈ P , and the non-strategic population by ρ̄ ∈ P .
The algorithm aims to minimize

E
z∼ρ

L(z, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z)

+
β

2
∥x− x0∥2 ,

where the norm is the vector inner product ∥x∥2 = ⟨x, x⟩
and β > 0 weights the cost of updating the model parame-
ters from its initial condition.

We consider two settings: (i) aligned objectives, and (ii)
competing objectives. Case (i) captures the setting in which
the strategic population minimization improves the perfor-
mance of the algorithm, subject to a cost for deviating from
a reference distribution ρ̃ ∈ P . This cost stems from effort
required to manipulate features, such as a loan applicant
adding or closing credit cards. On the other hand, Case (ii)
captures the setting in which the strategic population mini-
mization worsens the performance of the algorithm, again
incurring cost from distributional changes.

2.1. Case (i): Aligned Objectives

In this setting, we consider the case where the strategic
population and the algorithm have aligned objectives. This
occurs in examples such as recommendation systems, where
users and algorithm designers both seek to develop accurate
recommendations for the users. This corresponds to the
population cost

E
z∼ρ,x∼µ

J(z, x) =

∫∫
f1(z, x)dρ(z)dµ(x) + αKL(ρ | ρ̃),

where KL(· | ·) denotes the Kullback-Leibler divergence.
Note that the KL divergence introduces diffusion to the dy-
namics for ρ. The weight α > 0 parameterizes the cost of
distribution shift to the population. To account for nonlocal
information and influence among members of the popula-
tion, we include a kernel termE(ρ) = 1

2

∫
ρW ∗ρdz, where

(W ∗ ρ)(z) =
∫
W (z − z̄)dρ(z̄) is a convolution integral

and W is a suitable interaction potential.

2.2. Case (ii): Competing Objectives

In settings such as online internet forums, where algorithms
and users have used manipulative strategies for marketing
(Dellarocas), the strategic population may be incentivized
to modify or mis-report their attributes. The algorithm has
a competitive objective, in that it aims to maintain perfor-
mance against a population whose dynamics cause the algo-
rithm performance to suffer. When the strategic population
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seeks an outcome contrary to the algorithm, we model strate-
gic population cost as

E
z∼ρ,x∼µ

J(z, x) = −
∫∫

f1(z, x)dρ(z)dµ(x)

+ αKL(ρ | ρ̃).

A significant factor in the dynamics for the strategic popula-
tion is the timescale separation between the two ”species”—
i.e., the population and the algorithm. In our analysis, we
will consider two cases: one, where the population responds
much faster than the algorithm, and two, where the algo-
rithm responds much faster than the population. We illus-
trate the intermediate case in a simulation example.

3. Results
We are interested in characterizing the long-time asymp-
totic behavior of the population distribution, as it depends
on the decision-makers action over time. The structure of
the population distribution gives us insights about how the
decision-makers actions influences the entire population of
users. For instance, as noted in the preceding sections, dif-
ferent behaviors such as bimodal distributions or large tails
or variance might emerge, and such effects are not captured
in simply looking at average performance. To understand
this intricate interplay, one would like to characterize the
behavior of both the population and the algorithm over large
times. Our main contribution towards this goal is a novel
analytical framework as well as analysis of the long-time
asymptotics.

A key observation is that the dynamics in (2) and (3) can be
re-formulated as a gradient flow; we lift x to a probability
distribution µ by representing it as a Dirac delta µ sitting at
the point x. As a result, the evolution of µ will be governed
by a PDE, and combined with the PDE for the population,
we obtain a system of coupled PDEs,

∂tρ = div

(
ρ∇zδρ

[
E

z∼ρ,x∼µ
J(z, x) + E(ρ)

])
∂tµ = div

(
µ∇xδµ

[
E

z∼ρ,x∼µ
L(z, x)

])
,

where δρ and δµ are first variations with respect to ρ and
µ according to Definition 2.1. The natural candidates for
the asymptotic profiles of this coupled system are its steady
states, which - thanks to the gradient flow structure - can be
characterized as ground states of the corresponding energy
functionals. In this work, we show existence and unique-
ness of minimizers (maximizers) for the functionals under
suitable conditions on the dynamics. We also provide cri-
teria for convergence and explicit convergence rates. We
begin with the case where the interests of the population and
algorithm are aligned, and follow with analogous results in

the competitive setting. We show convergence in energy,
which in turn ensures convergence in a product Wasserstein
metric. For convergence in energy, we use the notion of
relative energy and prove that the relative energy converges
to zero as time increases.

Definition 3.1 (Relative Energy). The relative energy of
a functional G is given by G(γ|γ∞) = G(γ) − G(γ∞),
where G(γ∞) is the energy at the steady state.

Since we consider the joint evolution of two probability
distributions, we define a distance metric W on the product
space of probability measures with bounded second mo-
ment.

Definition 3.2 (Joint Wasserstein Metric). The metric over
P2(Rd)× P2(Rd) is called W and is given by

W ((ρ, µ), (ρ̃, µ̃))2 =W2(ρ, ρ̃)
2 +W2(µ, µ̃)

2

for all pairs (ρ, µ), (ρ̃, µ̃) ∈ P2(Rd)× P2(Rd), and where
W2 denotes the Wasserstein-2 metric (see Definition A.3).
We denote by W(Rd) := (P2(Rd)× P2(Rd),W ) the cor-
responding metric space.

3.1. Gradient Flow Structure

In the case where the objectives of the algorithm and popu-
lation are aligned, we can write the dynamics as a gradient
flow by using the same energy functional for both species.
Let Ga(ρ, µ) : P(Rd) × P(Rd) 7→ [0,∞] be the energy
functional given by

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x)

+

∫∫
f2(z, x)dρ̄(z)dµ(x) + αKL(ρ|ρ̃)

+
1

2

∫
ρW ∗ ρ+ β

2

∫
∥x− x0∥2 dµ(x).

This expression is well-defined as the relative entropy
KL(ρ | ρ̃) can be extended to the full set P(Rd) by set-
ting Ga(ρ, µ) = +∞ in case ρ is not absolutely continuous
with respect to ρ̃.

In the competitive case we defineGc(ρ, x) : P(Rd)×Rd 7→
[−∞,∞] by

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(x, z

′)dρ̄(z′)

− αKL(ρ|ρ̃)− 1

2

∫
ρW ∗ ρ+ β

2
∥x− x0∥2 .

In settings like recommender systems, the population and
algorithm have aligned objectives; they seek to minimize the
same cost but are subject to different dynamic constraints
and influences, modeled by the regularizer and convolution
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terms. In the case where the objectives are aligned, the
dynamics are given by

∂tρ = div (ρ∇zδρGa[ρ, µ])

∂tµ = div (µ∇xδµGa[ρ, µ]) .
(4)

Note that (4) is a joint gradient flow, because the dynamics
can be written in the form

∂tγ = div (γ∇δγGa(γ)) ,

where γ = (ρ, µ) and where the gradient and divergence are
taken in both variables (z, x). We discuss the structure of the
dynamics (4) as well as the meaning of the different terms
appearing in the energy functional Ga in Appendix A.1.

In other settings, such as credit score reporting, the objec-
tives of the population are competitive with respect to the
algorithm. Here we consider two scenarios; one, where the
algorithm responds quickly relative to the population, and
two, where the population responds quickly relative to the
algorithm. In the case where the algorithm can immedi-
ately adjust optimally (best-respond) to the distribution, the
dynamics are given by

∂tρ = −div
(
ρ (∇zδρGc[ρ, x]) |x=b(ρ)

)
,

b(ρ) := argmin
x̄

Gc(ρ, x̄) .
(5)

Next we can consider the population immediately respond-
ing to the algorithm, which has dynamics

d

dt
x = −∇xGc(ρ, x)|ρ=r(x) ,

r(x) := argmin
ρ̂∈P

−Gc(ρ̂, x) .
(6)

In this time-scale separated setting, model (5) represents a
dyamic maximization ofGc with respect to ρ in Wasserstein-
2 space, and an instantaneous minimization of Gc with re-
spect to the algorithm parameters x. Model (6) represents
an instantaneous maximization of Gc with respect to ρ and
a dynamic minimization of Gc with respect to the algorithm
parameters x. The key results on existence and unique-
ness of a ground state as well as the convergence behavior
of solutions depend on convexity (concavity) of Ga and
Gc. The notion of convexity that we will employ for en-
ergy functionals in the Wasserstein-2 geometry is (uniform)
displacement convexity, which is analogous to (strong) con-
vexity in Euclidean spaces. One can think of displacement
convexity for an energy functional defined on P2 as con-
vexity along the shortest path in the Wasserstein-2 metric
(linear interpolation in the Wasserstein-2 space) between
any two given probability distributions. For a detailed defi-
nition of (uniform) displacement convexity and concavity,
see Section A.2. In fact, suitable convexity properties of
the input functions f1, f2,W and ρ̃ will ensure (uniform)

displacement convexity of the resulting energy functionals
appearing in the gradient flow structure, see for instance
(Villani, 2003, Chapter 5.2).

We make the following assumptions in both the competitive
case and aligned interest cases. Here, Id denotes the d ×
d identity matrix, Hess (f) denotes the Hessian of f in
all variables, while ∇2

xf denotes the Hessian of f in the
variable x only.

Assumption 3.3 (Convexity of f1 and f2). The functions
f1, f2 ∈ C2(Rd ×Rd; [0,∞)) satisfy for all (z, x) ∈ Rd ×
Rd the following:

• There exists constants λ1, λ2 ≥ 0 such that
Hess (f1) ⪰ λ1 I2d and ∇2

xf2 ⪰ λ2 Id;

• There exist constants ai > 0 such that x·∇xfi(z, x) ≥
−ai for i = 1, 2;

Assumption 3.4 (Reference Distribution Shape). The ref-
erence distribution ρ̃ ∈ P(Rd) ∩ L1(Rd) satisfies log ρ̃ ∈
C2(Rd) and ∇2

z log ρ̃(z) ⪯ −λ̃ Id for some λ̃ > 0.

Assumption 3.5 (Convex Interaction Kernel). The inter-
action kernel W ∈ C2(Rd; [0,∞)) is convex, symmetric
W (−z) =W (z), and for some D > 0 satisfies

z · ∇zW (z) ≥ −D, |∇zW (z)| ≤ D(1 + |z|) ∀ z ∈ Rd .

We make the following observations regarding the assump-
tions above:

• The convexity in Assumption 3.5 can be relaxed and
without affecting the results outlined below by follow-
ing a more detailed analysis analogous to the approach
in (Carrillo et al., g).

• If f1 and f2 are strongly convex, the proveable con-
vergence rate increases, but without strict or strong
convexity of f1 and f2, the regularizers KL(ρ|ρ̃) and∫
∥x− x0∥22 dx provide the convexity guarantees nec-

essary for convergence.

For concreteness, one can consider the following classical
choices of input functions to the evolution:

• Using the log-loss function for f1 and f2 satisfies As-
sumption 3.3.

• Taking the reference measure ρ̃ to be the normal dis-
tribution satisfies Assumption 3.4, which ensures the
distribution is not too flat.

• Taking quadratic interactions W (z) = 1
2 |z|

2 satisfies
Assumption 3.5.
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Remark 3.6 (Cauchy-Problem). To complete the arguments
on convergence to equilibrium, we require sufficient regu-
larity of solutions to the PDEs under consideration. In fact,
it is sufficient if we can show that equations (4), (5), and (6)
can be approximated by equations with smooth solutions.
Albeit tedious, these are standard techniques in the regular-
ity theory for partial differential equations, see for example
(Carrillo et al., g, Proposition 2.1 and Appendix A), (Otto
& Villani), (Villani, 2003, Chapter 9), and the references
therein. Similar arguments as in (Desvillettes & Villani) are
expected to apply to the coupled gradient flows considered
here, guaranteeing existence of smooth solutions with fast
enough decay at infinity, and we leave a detailed proof for
future work.

3.2. Analysis of Case (i): Aligned Objectives

The primary technical contribution of this setting consists
of lifting the algorithm dynamics from an ODE to a PDE,
which allows us to model the system as a joint gradient
flow on the product space of probability measures. The
coupling occurs in the potential function, rather than as
cross-diffusion or non-local interaction as more commonly
seen in the literature for multi-species systems.
Theorem 3.7. Suppose that Assumptions 3.3-3.5 are satis-
fied and let λa := λ1 + min(λ2 + β, αλ̃) > 0. Consider
solutions γt := (ρt, µt) to the dynamics (4) with initial con-
ditions satisfying γ0 ∈ P2(Rd)×P2(Rd) andGa(γ0) <∞.
Then the following hold:

(a) There exists a unique minimizer γ∞ = (ρ∞, µ∞) of
Ga, which is also a steady state for equation (4). More-
over, ρ∞ ∈ L1(Rd), has the same support as ρ̃, and
its density is continuous.

(b) The solution γt converges exponentially fast in
Ga(· | γ∞) and W ,

Ga(γt | γ∞) ≤ e−2λatGa(γ0 | γ∞) and

W (γt, γ∞) ≤ ce−λat for all t ≥ 0 ,

where c > 0 is a constant only depending on γ0, γ∞
and the parameter λa.

Proof. (Sketch) For existence and uniqueness, we leverage
classical techniques in the calculus of variations. To obtain
convergence to equilibrium in energy, our key result is a
new HWI-type inequality, providing as a consequence gen-
eralizations of the log-Sobolev inequality and the Talagrand
inequality. Together, these inequalities relate the energy
(classically denoted by H in the case of the Boltzmann en-
tropy), the metric (classically denoted by W in the case of
the Wasserstein-2 metric) and the energy dissipation (classi-
cally denoted by I in the case of the Fisher information)1.

1Hence the name HWI inequalities.

Combining these inequalities with Gronwall’s inequality
allows us to deduce convergence both in energy and in the
metric W .

3.3. Analysis of Case (ii): Competing Objectives

In this setting, we consider the case where the algorithm
and the strategic population have goals in opposition to
each other; specifically, the population benefits from being
classified incorrectly. First, we will show that when the
algorithm instantly best-responds to the population, then
the distribution of the population converges exponentially
in energy and in W2. Then we will show a similar result for
the case where the population instantly best-responds to the
algorithm.

In both cases, we begin by proving two Danskin-type re-
sults (see (Danskin; Bertsekas)) which will be used for the
main convergence theorem, including convexity (concavity)
results. To this end, we make the following assumption
ensuring that the regularizing component in the evolution of
ρ is able to control the concavity introduced by f1 and f2.

Assumption 3.8 (Upper bounds for f1 and f2). There exists
a constant Λ1 > 0 such that

∇2
zf1(z, x) ⪯ Λ1Id for all (z, x) ∈ Rd × Rd ,

and for any R > 0 there exists a constant c2 = c2(R) ∈ R
such that

sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) < c2 .

Equipped with Assumption 3.8, we state the result for a
best-responding algorithm.

Theorem 3.9. Suppose Assumptions 3.3-3.8 are satisfied
with αλ̃ > Λ1. Let λb := αλ̃ − Λ1. Define Gb(ρ) :=
Gc(ρ, b(ρ)). Consider a solution ρt to the dynamics (5)
with initial condition ρ0 ∈ P2(Rd) such that Gb(ρ0) <∞.
Then the following hold:

(a) There exists a unique maximizer ρ∞ of Gb(ρ), which is
also a steady state for equation (5). Moreover, ρ∞ ∈
L1(Rd), has the same support as ρ̃, and its density is
continuous.

(b) The solution ρt converges exponentially fast to ρ∞ with
rate λb in Gb(· | ρ∞) and W2,

Gb(ρt | ρ∞) ≤ e−2λbtGa(ρ0 | ρ∞) and

W2(ρt, ρ∞) ≤ ce−λbt for all t ≥ 0 ,

where c > 0 is a constant only depending on ρ0, ρ∞
and the parameter λb.
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Proof. (Sketch) The key addition in this setting as com-
pared with Theorem 3.7 is proving that Gb(ρ) is bounded
below, uniformly displacement concave and guaranteeing
its smoothness via Berge’s Maximum Theorem. This is
non-trivial as it uses the properties of the best response
b(ρ). A central observation for our arguments to work is
that δρGb[ρ] = (δρGc[ρ, x]) |x=b(ρ). We can then conclude
using the direct method in the calculus of variations and the
HWI method.

Here, the condition that αλ̃ must be large enough corre-
sponds to the statement that the system must be subjected
to a strong enough regularizing effect.

In the opposite case, where ρ instantly best-responds to
the algorithm, we show Danskin-like results for derivatives
through the best response function and convexity of the
resulting energy in x which allows to deduce convergence.

Theorem 3.10. Suppose Assumptions 3.3-3.8 are satisfied
with αλ̃ > Λ1. Define Gd(x) := Gc(r(x), x). Then it
holds:

(a) There exists a unique minimizer x∞ of Gd(x) which is
also a steady state for (6).

(b) The vector x(t) solving the dynamics (6) with initial
condition x(0) ∈ Rd converges exponentially fast to
x∞ with rate λd := λ1 + λ2 + β > 0 in Gd and in the
Euclidean norm:

∥x(t)− x∞∥ ≤ e−λdt∥x(0)− x∞∥ ,
Gd(x(t))−Gd(x∞) ≤ e−2λdt (Gd(x(0))−Gd(x∞))

for all t ≥ 0.

Remark 3.11. In the proof, we use that the best response
of ρ given a particular x is differentiable with respect to x.
This can be ensured by the condition outlined in Lemma D.3.
In Lemma D.4, we provide examples of additional assump-
tions guaranteeing that this condition holds, making sure
the best response function is in fact differentiable. Another
approach is to show suitable bounds on the second deriva-
tive of Gd(x) following arguments in (Liu et al.). A more
detailed analysis of this condition is an interesting direction
for future research.

These two theorems illustrate that, under sufficient convexity
conditions on the cost functions, we expect the distribution ρ
and the algorithm x to converge to a steady state. In practice,
when the distributions are close enough to the steady state
there is no need to retrain the algorithm.

While we have proven results for the extreme timescale
cases, we anticipate convergence to the same equilibrium
in the intermediate cases. Indeed, it is well known (Borkar,
2009) (especially for systems in Euclidean space) that for

two-timescale stochastic approximations of dynamical sys-
tems, with appropriate stepsize choices, converge asymptot-
ically, and finite-time high probability concentration bounds
can also be obtained. These results have been leveraged in
strategic classification (Zrnic et al.) and Stackelberg games
(Fiez et al., 2020; Fiez & Ratliff, 2021; Fiez et al., 2021).
We leave this intricate analysis to future work.

In the following section we show numerical results in the
case of a best-responding x, best-responding ρ, and in be-
tween where x and ρ evolve on a similar timescale. Note
that in these settings, the dynamics do not have a gradient
flow structure due to a sign difference in the energies, requir-
ing conditions to ensure that one species does not dominate
the other.

4. Numerical Examples
We illustrate numerical results for the case of a classifier,
which are used in scenarios such as loan or government
aid applications (Camacho & Conover), school admissions
(Pathak & Sönmez), residency match (Rees-Jones), and
recommendation algorithms (Lang et al.), all of which have
some population which is incentivized to submit data that
will result in a desirable classification. For all examples,
we select classifiers of the form x ∈ R, so that a data point
z ∈ R is assigned a label of 1 with probability q(z, x) =
(1 + exp (−b⊤z + x))−1 where b > 0. Let f1 and f2 be
given by

f1(z, x) = − log(1− q(z, x)) , f2(z, x) = − log q(z, x).

Note that Hess (f1) ⪰ 0 and ∇2
xf2 ⪰ 0, so λ1 = λ2 = 0.

Here, the strictness of the convexity of the functional is
coming from the regularizers, not the cost functions, with
ρ̃ a scaled normal distribution. We show numerical results
for two scenarios with additional settings in the appendix.
First we illustrate competitive interests under three different
timescale settings. Then we simulate the classifier taking an
even more naı̈ve strategy than gradient descent and discuss
the results. The PDEs were implemented based on the finite
volume method from (Carrillo et al., b).

4.1. Competitive Objectives

In the setting with competitive objectives, we utilize
Gc(ρ, x) with W = 0, f1 and f2 as defined above with
b = 3 fixed as it only changes the steepness of the classifier
for d = 1, and α = 0.1 and β = 0.05. In Figure 1, we sim-
ulate two extremes of the timescale setting; first when ρ is
nearly best-responding and then when x is best-responding.
The simulations have the same initial conditions and end
with the same distribution shape; however, the behavior of
the strategic population differs in the intermediate stages.
When ρ is nearly best-responding, we see that the distribu-
tion quickly shifts mass over the classifier threshold. Then
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Figure 1. When x versus ρ best-responds, we observe the same
final state but different intermediate states. Modes appear in the
strategic population which simpler models cannot capture.

the classifier shifts right, correcting for the shift in ρ, which
then incentivizes ρ to shift more mass back to the original
mode. In contrast, when x best-responds, the right-hand
mode slowly increases in size until the system converges.

Figure 2 shows simulation results from the setting where
ρ and x evolve on the same timescale. We observe that
the distribution shift in ρ appears to fall between the two
extreme timescale cases, which we expect. We highlight
two important observations for the competitive case. One,
a single-mode distribution becomes bimodel, which would
not be captured using simplistic metrics such as the mean
and variance. This split can be seen as polarization in the
population, a phenomenon that a mean-based strategic clas-
sification model would not capture. Two, the timescale
on which the classifier updates significantly impacts the
intermediate behavior of the distribution. In our example,
when x updated slowly relative to the strategic population,
the shifts in the population were greater than in the other
two cases. This suggests that understanding the effects of

Figure 2. In this experiment the population and classifier have
similar rates of change, and the distribution change for ρ exhibits
behaviors from both the fast ρ and fast x simulations; the right-
hand mode does not peak as high as the fast ρ case but does exceed
its final height and return to the equilibrium.

timescale separation are important for minimizing volatility
of the coupled dynamics.

4.2. Naı̈ve Behavior

In this example, we explore the results of the classifier
adopting a non-gradient-flow strategy, where the classifier
chooses an initially-suboptimal value for x and does not
move, allowing the strategic population to respond. All
functions and parameters are the same as in the previous
example. When comparing with the gradient descent strat-
egy, we observe that while the initial loss for the classifier
is worse for the naive strategy, the final cost is better. While
this results is not surprising, because one can view this as
a general-sum game where the best response to a fixed de-
cision may be better than the equilibrium, it illustrates how
our method provides a framework for evaluating how dif-
ferent training strategies perform in the long run against a
strategic population.

5. Future Directions and Limitations
Our work presents a method for evaluating the robustness
of an algorithm to a strategic population, and investigating a
variety of robustness using our techniques opens a range of
future research directions. Our application suggests many
questions relevant to the PDE literature, such as: (1) Does
convergence still hold with the gradient replaced by an esti-
mated gradient? (2) Can we prove convergence in between
the two timescale extremes? (3) How do multiple dynamic
populations respond to an algorithm, or multiple algorithms?
In the realm of learning algorithms, our framework can be
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Figure 3. Both species minimize their respective losses; when the
classifier uses a naı̈ve strategy, the final performance is better for
the classifier and uniformly worse for the population.

Figure 4. The classifier selects a suboptimal initial condition x =
2.2, instead of x = 1.5 which minimizes the initial loss, and then
does not move in response to the population.

extended to other learning update strategies and presents a
way to model how we can design these update strategies to
induce desired behaviors in the population.

A challenge in our method is that numerically solving high-
dimensional PDEs is computationally expensive and pos-
sibly unfeasible. Here we note that in many applications,
agents in the population do not alter more than a few fea-
tures due to the cost of manipulation. We are encouraged
by the recent progress using deep learning to solve PDEs,
which could be used in our application.
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A. General structure and preliminaries
In this section, we give more details on the models discussed in the main article, and introduce definitions and notation that
are needed for the subsequent proofs.

A.1. Structure of the dynamics

For the case of aligned objectives, the full coupled system of PDEs (4) can be written as

∂tρ = α∆ρ+ div

(
ρ∇z

(∫
f1dµ− α log ρ̃+W ∗ ρ

))
, (7a)

∂tµ = div

(
µ∇x

(∫
f1dρ+

∫
f2dρ̄+

β

2
∥x− x0∥2

))
. (7b)

In other words, the population ρ in (7a) is subject to an isotropic diffusive force with diffusion coefficient α > 0, a drift
force due to the time-varying confining potential

∫
f1dµ(t)−α log ρ̃, and a self-interaction force via the interaction potential

W . If we consider the measure µ to be given and fixed in time, this corresponds exactly to the type of parabolic equation
studied in (Carrillo et al., g). Here however the dynamics are more complex due to the coupling of the confining potential
with the dynamics (7b) for µ(t) via the coupling potential f1. Before presenting the analysis of this model, let us give a bit
more intuition on the meaning and the structure of these dynamics.

In the setting where µ represents a binary classifier, we can think of the distribution ρ̄ as modelling all those individuals
carrying the true label 1, say, and the distribution ρ(t) as modelling all those individuals carrying a true label 0, say,
where 0 and 1 denote the labels of two classes of interest. The term

∫
f1(z, x)µ(t,dx) represents a penalty for incorrectly

classifying an individual at z with true label 0 when using the classifier µ(t, x). In other words,
∫
f1(z, x)µ(t, dx) ∈ [0,∞)

is increasingly large the more z digresses from the correct classification 0. Similarly,
∫
f1(z, x)ρ(t,dz) ∈ [0,∞) is

increasingly large if the population ρ shifts mass to locations in z where the classification is incorrect. The terminology
aligned objectives refers to the fact that in (7) both the population and the classifier are trying to evolve in a way as to
maximize correct classification. Analogously, the term

∫
f2(z, x)ρ̄(dz) is large if x would incorrectly classify the population

ρ̄ that carries the label 1. A natural extension of the model (7) would be a setting where also the population carrying labels 1
evolves over time, which is simulated in Section E.2. Most elements of the framework presented here would likely carry
over the setting of three coupled PDEs: one for the evolution of ρ(t), one for the evolution of ρ̄(t) and one for the classifier
µ(t).

The term
α∆ρ− αdiv (ρ∇ log ρ̃) = αdiv (ρ∇δρKL(ρ | ρ̃))

forces the evolution of ρ(t) to approach ρ̃. In other words, it penalizes (in energy) deviations from a given reference measure
ρ̃. In the context of the application at hand, we take ρ̃ to be the initial distribution ρ(t = 0). The solution ρ(t) then evolves
away from ρ̃ over time due to the other forces that are present. Therefore, the term KL(ρ | ρ̃) in the energy both provides
smoothing of the flow and a penalization for deviations away from the reference measure ρ̃.

The self-interaction term W ∗ ρ introduces non-locality into the dynamics, as the decision for any given individual to
move in a certain direction is influenced by the behavior of all other individuals in the population. The choice of W is
application dependent. Very often, the interaction between two individuals only depends on the distance between them.
This suggests a choice of W as a radial function, i.e. W (z) = ω(|z|). A choice of ω : R → R such that ω′(r) > 0
corresponds to an attractive force between individuals, whereas ω′(r) < 0 corresponds to a repulsive force. The statement
|z|ω′(|z|) = z · ∇zW (z) ≥ −D in Assumption 3.5 therefore corresponds to a requirement that the self-interaction force is
not too repulsive. Neglecting all other forces in (7a), we obtain the non-local interaction equation

∂tρ = div (ρ∇W ∗ ρ)

which appears in many instances in mathematical biology, mathematical physics, and material science, and it is an equation
that has been extensively studied over the past few decades, see for example (Carrillo et al., d; Balagu’e et al.; Carrillo et al.,
c; Bertozzi et al., a;b; Carrillo et al., f;a) and references therein. Using the results from these works, our assumptions on the
interaction potential W can be relaxed in many ways, for example by allowing discontinuous derivatives at zero for W , or
by allowing W to be negative.
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The dynamics (7b) for the algorithm µ is a non-autonomous transport equation,

∂tµ = div (µv) ,

where the time-dependence in the velocity field

v(t, x) := ∇x

(∫
f1(z, x)dρ(t, z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
,

comes through the evolving population ρ(t). This structure allows to obtain an explicit solution for µ(t) in terms of the
initial condition µ0 and the solution ρ(t) to (7a) using the method of characteristics.

Proposition A.1. Assume that there exists a constant c > 0 such that∥∥∥∥∫ ∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z)

∥∥∥∥ ≤ c(1 + ∥x∥) ∀ρ ∈ P2(Rd) and ∀x ∈ Rd . (8)

Then the unique distributional solution µ(t) to (7b) is given by

µ(t) = Φ(t, 0, ·)#µ0 , (9)

where Φ(t, s, x) solves the characteristic equation

∂sΦ(s, t, x) + v(s,Φ(s, t, x)) = 0 , Φ(t, t, x) = x . (10)

Proof. Thanks to Assumption 3.3, we have that v ∈ C1(R× Rd;Rd), and by (8), we have

∥v(t, x)∥ ≤ c(1 + ∥x∥) for all t ≥ 0, x ∈ Rd .

By classical Cauchy-Lipschitz theory for ODEs, this guarantees the existence of a unique global solution Φ(t, s, x) solving
(10). Then it can be checked directly that µ(t) as defined in (9) is a distributional solution to (7b).

In the characteristic equation (10), Φ(s, t, x) is a parametrization of all trajectories: if a particle was at location x at time
t, then it is at location Φ(s, t, x) at time s. Our assumptions on f1, f2 and ρ̄ also ensure that Φ(s, t, ·) : Rd → Rd is a
C1-diffeomorphism for all s, t ∈ R. For more details on transport equations, see for example (Perthame, Chapter 8.4).
Remark A.2. Consider the special case where µ0 = δx0

for some initial position x0 ∈ Rd. Then by Proposition A.1, the
solution to (7b) is given by µ(t) = δx(t), where x(t) := Φ(t, 0, x0) solves the ODE

ẋ(t) = −v(t, x(t)) , x(0) = x0 ,

which is precisely of type (3).

For the case of competing objectives, the two models we consider can be written as

∂tρ = −div (ρ [∇(f1(z, b(ρ))− α log(ρ/ρ̃)−W ∗ ρ]) ,

b(ρ) := argmin
x̄

∫
f1(z, x̄)dρ(z) +

∫
f2(x̄, z

′)dρ̄(z′) +
β

2
∥x̄− x0∥2

for (5), and

d

dt
x = −∇x

(∫
f1(z, x) r(x)(dz) +

∫
f2(x, z

′)dρ̄(z′) +
β

2
∥x− x0∥2

)
,

r(x) := argmax
ρ̂∈P

∫
f1(z, x)dρ̂(z)− αKL(ρ̂|ρ̃)− 1

2

∫
ρ̂W ∗ ρ̂ .

for (6).
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A.2. Definitions and notation

Here, and in what follows, Id denotes the d× d identity matrix, and id denotes the identity map. The energy functionals we
are considering are usually defined on the set of probability measures on Rd, denoted by P(Rd). If we consider the subset
P2(Rd) of probability measures with bounded second moment,

P2(Rd) := {ρ ∈ P(Rd) :

∫
Rd

∥z∥2dρ(z) <∞} ,

then we can endow this space with the Wasserstein-2 metric.

Definition A.3 (Wasserstein-2 Metric). The Wasserstein-2 metric between two probability measures µ, ν ∈ P2(Rd) is given
by

W2(µ, ν)
2 = inf

γ∈Γ(µ,ν)

∫
∥z − z′∥22 dγ(z, z

′)

where Γ is the set of all joint probability distributions with marginals µ and ν, i.e. µ(dz) =
∫
γ(dz, z′)dz′ and ν(dz′) =∫

γ(z,dz′)dz.

The restriction to P2(Rd) ensures that W2 is always finite. Then the space (P2(Rd),W2) is indeed a metric space. We will
make use of the fact that W2 metrizes narrow convergence of probability measures. To make this statement precise, let
us introduce two common notions of convergence for probability measures, which are a subset of the finite signed Radon
measures M(Rd).

Definition A.4. Consider a sequence (µn) ∈ M(Rd) and a limit µ ∈ M(Rd).

• (Narrow topology) The sequence (µn) converges narrowly to µ, denoted by µn ⇀ µ, if for all continuous bounded
functions f : Rd → R, ∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

• (Weak-∗ topology) The sequence (µn) converges weakly-∗ to µ, denoted by µn
∗
⇀ µ, if for all continuous functions

vanishing at infinity (i.e. f : Rd → R such that for all ϵ > 0 there exists a compact set Kϵ ⊂ Rd such that |f(z)| < ϵ
on Rd \Kϵ), we have ∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

Let us denote the set of continuous functions on Rd vanishing at infinity by C0(Rd), and the set of continuous bounded
functions by Cb(Rd). Note that narrow convergence immediately implies that µn(Rd) → µ(Rd) as the constant function is
in Cb(Rd). This is not necessarily true for weak-∗ convergence. We will later make use of the Banach-Alaoglu theorem
(Alaoglu), which gives weak-∗ compactness of the unit ball in a dual space. Note that M(Rd) is indeed the dual of C0(Rd)
endowed with the sup-norm, and P(Rd) is the unit ball in M(Rd) using the dual norm. Moreover, if we can ensure that
mass does not escape to infinity, the two notions of convergence in Definition A.4 are in fact equivalent.

Lemma A.5. Consider a sequence (µn) ∈ M(Rd) and a measure µ ∈ M(Rd). Then µn ⇀ µ if and only if µn
∗
⇀ µ and

µn(Rd) → µ(Rd).

This follows directly from Definition A.4. Here, the condition µn(Rd) → µ(Rd) is equivalent to tightness of (µn), and
follows from Markov’s inequality (Ghosh, 2002) if we can establish uniform bounds on the second moments, i.e. we want to
show that there exists a constant C > 0 independent of n such that∫

∥z∥2dµn(z) < C ∀n ∈ N . (11)

Definition A.6 (Tightness of probability measures). A collection of measures (µn) ∈ M(Rd) is tight if for all ϵ > 0 there
exists a compact set Kϵ ⊂ Rd such that |µn|(Rd \Kϵ) < ϵ for all n ∈ N, where |µ| denotes the total variation of µ.

Another classical result is that the Wasserstein-2 metric metrizes narrow convergence and weak-∗ convergence of probability
measures, see for example (Santambrogio, 2015, Theorem 5.11) or (Villani, 2003, Theorem 7.12).
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Lemma A.7. Let µn, µ ∈ P2(Rd). Then W2(µn, µ) → 0 if and only if

µn ⇀ µ and
∫
Rd

∥z∥2dµn(z) →
∫
Rd

∥z∥2dµ(z) .

Remark A.8. Note that µn ⇀ µ can be replaced by µn
∗
⇀ µ in the above statement thanks to the fact that the limit µ is a

probability measure with mass 1, see Lemma A.5.

Next, we consider two measures µ, ν ∈ P(Rd) that are atomless, i.e µ({z}) = 0 for all z ∈ Rd. By Brenier’s theorem
(Benamou & Brenier) (also see (Villani, 2003, Theorem 2.32)) there exists a unique measurable map T : Rd → Rd such
that T#µ = ν, and T = ∇ψ for some convex function ψ : Rd → R. Here, the push-forward operator ∇ψ# is defined as∫

Rd

f(z)d∇ψ#ρ0(z) =

∫
Rd

f(∇ψ(z))dρ0(z)

for all Borel-measurable functions f : Rd 7→ R+. If ρ1 = ∇ψ#ρ0, we denote by ρs = [(1 − s) id+s∇ψ]#ρ0 the
discplacement interpolant between ρ0 and ρ1. We are now ready to introduce the notion of displacement convexity, which is
the same as geodesic convexity in the geodesic space (P2(Rd),W2). We will state the definition here for atomless measures,
but it can be relaxed to any pair of measures in P2 using optimal transport plans instead of transport maps. In what follows,
we will use s to denote the interpolation parameter for geodesics, and t to denote time related to solutions of (4), (5) and (6).
Definition A.9 (Displacement Convexity). A functional G : P 7→ R is displacement convex if for all ρ0, ρ1 that are atomless
we have

G(ρs) ≤ (1− s)G(ρ0) + sG(ρ1) ,

where ρs = [(1− s) id+s∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1. Further, G : P 7→ R is uniformly
displacement convex with constant η > 0 if

G(ρs) ≤ (1− s)G(ρ0) + sG(ρ1)− s(1− s)
η

2
W2(ρ0, ρ1)

2 ,

where ρs = [(1− s) id+s∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1.
Remark A.10. In other words, G is displacement convex (concave) if the function G(ρs) is convex (concave) with
ρs = [(1− s id+s∇ψ]#ρ0 being the displacement interpolant between ρ0 and ρ1. Contrast this with the classical notion of
convexity (concavity) for G, where we require that the function G((1− s)ρ0 + sρ1) is convex (concave).

In fact, if the energy G is twice differentiable along geodesics, then the condition d2

ds2G(γs) ≥ 0 along any geodesic
(ρs)s∈[0,1] between ρ0 and ρ1 is sufficient to obtain displacement convexity. Similarly, when d2

ds2G(ρs) ≥ ηW2(ρ0, ρ1)
2,

then G is uniformly displacement convex with constant η > 0. For more details, see (McCann) and (Villani, 2003, Chapter
5.2).

A.3. Steady states

The main goal in our theoretical analysis is to characterize the asymptotic behavior for the models (4), (5) and (6) as time
goes to infinity. The steady states of these equations are the natural candidates to be asymptotic profiles for the corresponding
equations. Thanks to the gradient flow structure, we expect to be able to make a connection between ground states of the
energy functionals, and the steady states of the corresponding gradient flow dynamics. More precisely, any minimizer
or maximizer is in particular a critical point of the energy, and therefore satisfies that the first variation is constant on
disconnected components of its support. If this ground state also has enough regularity (weak differentiability) to be a
solution to the equation, it immediately follows that it is in fact a steady state.

To make this connection precise, we first introduce what exactly we mean by a steady state.
Definition A.11 (Steady states for (4)). Given ρ∞ ∈ L1

+(Rd) ∩ L∞
loc(Rd) with ∥ρ∞∥1 = 1 and µ∞ ∈ P2(Rd), then

(ρ∞, µ∞) is a steady state for the system (4) if ρ∞ ∈W 1,2
loc (Rd), ∇W ∗ ρ∞ ∈ L1

loc(Rd), ρ∞ is absolutely continuous with
respect to ρ̃, and (ρ∞, µ∞) satisfy

∇z

(∫
f1(z, x)dµ∞(x) + α log

(
ρ∞(z)

ρ̃(z)

)
+W ∗ ρ∞(z)

)
= 0 ∀z ∈ supp (ρ∞) , (12a)

∇x

(∫
f1(z, x)dρ∞(z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
= 0 ∀x ∈ supp (µ∞) (12b)
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in the sense of distributions.

Here, L1
+(Rd) := {ρ ∈ L1(Rd) : ρ ≥ 0}.

Definition A.12 (Steady states for (5)). Let ρ∞ ∈ L1
+(Rd) ∩ L∞

loc(Rd) with ∥ρ∞∥1 = 1. Then ρ∞ is a steady state for the
system (5) if ρ∞ ∈W 1,2

loc (Rd), ∇W ∗ ρ∞ ∈ L1
loc(Rd), ρ∞ is absolutely continuous with respect to ρ̃, and ρ∞ satisfies

∇z

(
f1(z, b(ρ∞))− α log

(
ρ∞(z)

ρ̃(z)

)
−W ∗ ρ∞(z)

)
= 0 ∀z ∈ Rd , (13)

in the sense of distributions, where b(ρ∞) := argminxGc(ρ∞, x).

Definition A.13 (Steady states for (6)). The vector x∞ ∈ Rd is a steady state for the system (6) if it satisfies

∇xGd(x∞) = 0 .

In fact, with the above notions of steady state, we can obtain improved regularity for ρ∞.

Lemma A.14. Let Assumptions 3.3-3.5 hold. Then the steady states ρ∞ for (4) and (5) are continuous.

Proof. We present here the argument for equation (5) only. The result for (4) follows in exactly the same way by replacing
f1(z, b(ρ∞)) with −

∫
f1(z, x)dµ∞(x).

Thanks to our assumptions, we have f1(·, b(ρ∞))+α log ρ̃(·) ∈ C1, which implies that ∇(f1(·, b(ρ∞))+α log ρ̃(·)) ∈ L∞
loc.

By the definition of a steady state, ρ∞ ∈ L1 ∩ L∞
loc and thanks to Assumption 3.5 we have W ∈ C2, which implies that

∇W ∗ ρ∞ ∈ L∞
loc. Let

h(z) := ρ∞(z)∇ [f1(z, b(ρ∞)) + α log ρ̃(z)− (W ∗ ρ∞)(z)] .

Then by the aforementioned regularity, we obtain h ∈ L1
loc ∩ L∞

loc. By interpolation, it follows that h ∈ Lp
loc for all

1 < p <∞. This implies that div (h) ∈W−1,p
loc . Since ρ∞ is a weak W 1,2

loc -solution of (38), we have

∆ρ∞ = div (h) ,

and so by classic elliptic regularity theory we conclude ρ∞ ∈ W 1,p
loc . Finally, applying Morrey’s inequality, we have

ρ∞ ∈ C0,k where k = p−d
p for any d < p <∞. Therefore ρ∞ ∈ C(Rd) (after possibly being redefined on a set of measure

zero).

B. Proof of Theorem 3.7
For ease of notation, we write Ga : P(Rd)× P(Rd) 7→ [0,∞] as

Ga((ρ, µ)) = αKL(ρ|ρ̃) + V(ρ, µ) +W(ρ) ,

where we define

V(ρ, µ) =
∫∫

f1(z, x)dρ(z)dµ(x) +

∫
V (x)dµ(x) ,

W(ρ) =
1

2

∫∫
W (z1 − z2)dρ(z1)dρ(z2) ,

with potential given by V (x) :=
∫
f2(z, x)dρ̄(z) +

β
2 ∥x− x0∥2.

In order to prove the existence of a unique ground state for Ga, a natural approach is to consider the corresponding
Euler-Lagrange equations

α log
ρ(z)

ρ̃(z)
+

∫
f1(z, x)dµ(x) + (W ∗ ρ)(z) = c1[ρ, µ] for all z ∈ supp (ρ) , (14a)∫

f1(z, x)dρ(z) + V (x) = c2[ρ, µ] for all x ∈ supp (µ) , (14b)
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where c1, c2 are constants that may differ on different connected components of supp (ρ) and supp (µ). These equations are
not easy to solve explicitly, and we are therefore using general non-constructive techniques from calculus of variations. We
first show continuity and convexity properties for the functional Ga (Lemma B.1 and Proposition B.2), essential properties
that will allow us to deduce existence and uniqueness of ground states using the direct method in the calculus of variations
(Proposition B.4). Using the Euler-Lagrange equation 14, we then prove properties on the support of the ground state
(Corollary B.6). To obtain convergence results, we apply the HWI method: we first show a general ’interpolation’ inequality
between the energy, the energy dissipation and the metric (Proposition B.8); this fundamental inequality will then imply a
generalized logarithmic Sobolev inequality (Corollary B.10) relating the energy to the energy dissipation, and a generalized
Talagrand inequality (Corollary B.11) that allows to translate convergence in energy into convergence in metric. Putting all
these ingrediends together will then allow us to conclude for the statements in Theorem 3.7.

Lemma B.1 (Lower semi-continuity). Let Assumptions 3.3-3.5 hold. Then the functional Ga : P × P → R is lower
semi-continuous with respect to the weak-∗ topology.

Proof. We split the energy Ga into three parts: (i) KL(ρ|ρ̃), (ii) the interaction energy W , and (iii) the potential energy
V . For (i), lower semi-continuity has been shown in (Posner). For (ii), we can directly apply (Santambrogio, 2015,
Proposition 7.2) using Assumption 3.5. For (iii), note that V and f1 are lower semi-continuous and bounded below thanks to
Assumption 3.3, and so the result follows from (Santambrogio, 2015, Proposition 7.1).

Proposition B.2 (Uniform displacement convexity). Let α, β > 0. Fix γ0, γ1 ∈ P2 × P2 and let Assumptions 3.3-3.5 hold.
Along any geodesic (γs)s∈[0,1] ∈ P2 × P2 connecting γ0 to γ1, we have for all s ∈ [0, 1]

d2

ds2
Ga(γs) ≥ λaW (γ0, γ1)

2 , λa := λ1 +min(λ2 + β, αλ̃) . (15)

As a result, the functional Ga : P × P → R is uniformly displacement convex with constant λa > 0.

Proof. Let γ0 and γ1 be two probability measures with bounded second moments. Denote by ϕ, ψ : Rd → R the optimal
Kantorovich potentials pushing ρ0 onto ρ1, and µ0 onto µ1, respectively:

ρ1 = ∇ϕ#ρ0 such that W2(ρ0, ρ1)
2 =

∫
Rd

∥z −∇ϕ(z)∥2dρ0(z) ,

µ1 = ∇ψ#µ0 such that W2(µ0, µ1)
2 =

∫
Rd

∥x−∇ψ(x)∥2dµ0(x) .

The now classical results in (Benamou & Brenier) guarantee that there always exists convex functions ϕ, ψ that satisfy the
conditions above. Then the path (γs)s∈[0,1] = (ρs, µs)s∈[0,1] defined by

ρs = [(1− s) id+s∇zϕ]#ρ0 ,

µs = [(1− s) id+s∇xψ]#µ0

is a W -geodesic from γ0 to γ1.

The first derivative of V along geodesics in the Wasserstein metric is given by

d

ds
V(γs) =

d

ds

[∫∫
f1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) dρ0(z)dµ0(x)

+

∫
V ((1− s)x+ s∇ψ(x)) dµ0(x)

]
=

∫∫
∇xf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)∫∫
∇zf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ϕ(z)− z) dρ0(z)dµ0(x)

+

∫
∇xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dµ0(x) ,
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and taking another derivative we have

d2

ds2
V(γs) =−

∫∫ [
(∇ψ(x)− x)
(∇ϕ(z)− z)

]T
·Ds(z, x) ·

[
(∇ψ(x)− x)
(∇ϕ(z)− z)

]
dρ0(z)dµ0(x)

+

∫∫
(∇ψ(x)− x)T · ∇2

xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)

≥ λ1W (γ0, γ1)
2 + (λ2 + β)W2(µ0, µ1)

2 ,

where we denoted Ds(z, x) := Hess(f1)((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)), and the last inequality follows from
Assumption 3.3 and the optimality of the potentials ϕ and ψ.

Following (Carrillo et al., g; Villani, 2003) and using Assumption 3.4, the second derivatives of the diffusion term and the
interaction term along geodesics are given by

d2

ds2
KL(ρs|ρ̃) ≥ αλ̃W2(ρ0, ρ1)

2 ,
d2

ds2
W(ρs) ≥ 0. (16)

Putting the above estimates together, we obtain (15).

Remark B.3. Alternatively, one could assume strong convexity of W , which would improve the lower-bound on the second
derivative along geodesics.

Proposition B.4. (Ground state) Let Assumptions 3.3-3.5 hold for α, β > 0. Then the functional Ga : P(Rd)×P(Rd) →
[0,∞] admits a unique minimizer γ∗ = (ρ∗, µ∗), and it satisfies ρ∗ ∈ P2(Rd)∩L1(Rd), µ∗ ∈ P2(Rd), and ρ∗ is absolutely
continuous with respect to ρ̃.

Proof. We show existence of a minimizer of Ga using the direct method in the calculus of variations. Denote by γ =
(ρ, µ) ∈ P ×P ⊂ M×M a pair of probability measures as a point in the product space of Radon measures. Since Ga ≥ 0
on P × P (see Assumption 3.3) and not identically +∞ everywhere, there exists a minimizing sequence (γn) ∈ P × P .
Note that (γn) is in the closed unit ball of the dual space of continuous functions vanishing at infinity (C0(Rd)× C0(Rd))∗

endowed with the dual norm ∥γn∥∗ = sup
|
∫
fdρn+

∫
gdµn|

∥(f,g)∥∞
over f, g ∈ C0(Rd) with ∥(f, g)∥∞ := ∥f∥∞ + ∥g∥∞ ̸= 0.

By the Banach-Alaoglu theorem (Rudin, Thm 3.15) there exists a limit γ∗ = (ρ∗, µ∗) ∈ M×M = (C0 × C0)
∗ and a

convergent subsequence (not relabelled) such that γn
∗
⇀ γ∗. In fact, since KL(ρ∗ | ρ̃) <∞ it follows that ρ∗ is absolutely

continuous with respect to ρ̃, implying ρ∗ ∈ L1(Rd) thanks to Assumption 3.4. Further, µ∗ has bounded second moment,
else we would have infγ∈P×P Ga(γ) = ∞ which yields a contradiction. It remains to show that

∫
dρ∗ =

∫
dµ∗ = 1 to

conclude that γ∗ ∈ P × P . To this aim, it is sufficient to show tightness of (ρn) and (µn), preventing the escape of mass to
infinity as we have

∫
dρn =

∫
dµn = 1 for all n ≥ 1. Tightness follows from Markov’s inequality (Ghosh, 2002) if we can

establish uniform bounds on the second moments, i.e. we want to show that there exists a constant C > 0 independent of n
such that ∫

∥z∥2dρn(z) +
∫

∥x∥2dµn(x) < C ∀n ∈ N . (17)

To establish (17), observe that thanks to Assumption 3.4, there exists a constant c0 ∈ R (possibly negative) such that
− log ρ̃(z) ≥ c0 +

λ̃
4 ∥z∥

2 for all z ∈ Rd. Then

αλ̃

4

∫
∥z∥2dρn ≤ −αc0 − α

∫
log ρ̃(z)dρn

Therefore, using
∫
dρn =

∫
dµn = 1 and writing ζ := min{αλ̃

4 ,
β
2 } > 0, we obtain the desired uniform upper bound on

the second moments of the minimizing sequence,

ζ

∫∫ (
∥z∥2 + ∥x∥2

)
dρndµn ≤ −αc0 − α

∫
log ρ̃(z)dρn + β

∫
∥x− x0∥2dµn + β∥x0∥2

≤ −αc0 + β∥x0∥2 +Ga(γn)

≤ −αc0 + β∥x0∥2 +Ga(γ1) <∞ .
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This concludes the proof that the limit γ∗ satisfies indeed γ∗ ∈ P × P , and indeed ρ∗ ∈ P2(Rd) as well. Finally, γ∗ is
indeed a minimizer of Ga thanks to weak-* lower-semicontinuity of Ga following Lemma B.1.

Next we show uniqueness using a contradiction argument. Suppose γ∗ = (ρ∗, µ∗) and γ′∗ = (ρ′∗, µ
′
∗) are minimizers of Ga.

For s ∈ [0, 1], define γs := ((1− s) id+sT, (1− s) id+sS)#γ∗, where T, S : Rd 7→ Rd are the optimal transport maps
such that ρ′∗ = T#ρ∗ and µ′

∗ = S#µ∗. By Proposition B.2 the energy Ga is uniformly displacement convex, and so we have

Ga(γs) ≤ (1− s)Ga(γ∗) + sGa(γ
′
∗) = Ga(γ∗).

If γ∗ ̸= γ′∗ and s ∈ (0, 1), then strict inequality holds by applying similar arguments as in (McCann, Proposition 1.2).
However, the strict inequality Ga(γs) < Ga(γ∗) for γ∗ ̸= γ′∗ is a contradiction to the minimality of γ∗. Hence, the
minimizer is unique.

Remark B.5. If λ1 > 0, then the strict convexity of f1 can be used to deduce uniqueness, and the assumptions on − log ρ̃
can be weakened from strict convexity to convexity.

Corollary B.6. Let Assumptions 3.3-3.5 hold. Any minimizer γ∗ = (ρ∗, µ∗) of Ga is a steady state for equation (4)
according to Definition A.11 and satisfies supp (ρ∗) = supp (ρ̃).

Proof. By Proposition B.4, we have ρ∗, µ∗ ∈ P2, as well as ρ∗ ∈ L1
+, ∥ρ∗∥1 = 1, and that ρ∗ is absolutely continuous with

respect to ρ̃. Since W ∈ C2(Rd), it follows that ∇W ∗ ρ∗ ∈ L1
loc. In order to show that γ∗ is a steady state for equation (4),

it remains to prove that ρ∗ ∈ W 1,2
loc ∩ L∞

loc. As γ∗ is a minimizer, it is in particular a critical point, and therefore satisfies
equations (14). Rearranging, we obtain (for a possible different constant c1[ρ∗, µ∗] ̸= 0) from (14a) that

ρ∗(z) = c1[ρ∗, µ∗]ρ̃(z) exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
on supp (ρ∗) . (18)

Then for any compact set K ⊂ Rd,

sup
z∈K

ρ∗(z) ≤ c1[ρ∗, µ∗] sup
z∈K

ρ̃(z) sup
z∈K

exp

(
− 1

α

(∫
f1(z, x)µ∗(x)

))
sup
z∈K

exp

(
− 1

α
W ∗ ρ∗

)
.

As f1 ≥ 0 by Assumption 3.3 and W ≥ 0 by Assumption 3.5, the last two terms are finite. The first supremum is finite
thanks to continuity of ρ̃. Therefore ρ∗ ∈ L∞

loc. To show that ρ∗ ∈W 1,2
loc , note that for any compact set K ⊂ Rd, we have∫

K
|ρ∗(z)|2dz <∞ as a consequence of ρ∗ ∈ L∞

loc. Moreover, defining T [γ](z) := − 1
α

(∫
f1(z, x)µ(x) +W ∗ ρ(z)

)
≤ 0,

we have ∫
K

|∇ρ∗|2dz = c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃+ ρ̃∇T [γ∗]|2 exp(2T [γ∗])dz

≤ 2c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃|2 exp(2T [γ∗])dz + 2c1[ρ∗, µ∗]
2

∫
K

|∇T [γ∗]|2ρ̃2 exp(2T [γ∗])dz ,

which is bounded noting that exp(2T [γ∗]) ≤ 1 and that T [γ∗](·), ∇T [γ∗](·) and ∇ρ̃ are in L∞
loc, where we used that

f1, (·, x),W (·), ρ̃(·) ∈ C1(Rd) by Assumptions 3.3-3.5. We conclude that ρ∗ ∈W 1,2
loc , and indeed (ρ∗, µ∗) solves (12) in

the sense of distributions as a consequence of (14).

Next, we show that supp (ρ∗) = supp (ρ̃) using again the relation (18). Firstly, note that supp (ρ∗) ⊂ supp (ρ̃) since ρ∗ is
absolutely continuous with respect to ρ̃. Secondly, we claim that exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
> 0 for all

z ∈ Rd. In other words, we claim that
∫
f1(z, x)µ∗(x) < ∞ and W ∗ ρ∗(z) < ∞ for all z ∈ Rd. Indeed, for the first

term, fix any z ∈ Rd and choose R > 0 large enough such that z ∈ BR(0). Then, thanks to continuity of f1 according to
Assumption 3.3, we have ∫

f1(z, x)µ∗(x) ≤ sup
z∈BR(0)

∫
f1(z, x)µ∗(x) <∞ .
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For the second term, note that by Assumption 3.5, we have for any z ∈ Rd and ϵ > 0,

W (z) ≤W (0) +∇W (z) · z ≤W (0) +
1

2ϵ
∥∇W (z)∥2 + ϵ

2
∥z∥2

≤W (0) +
D2

2ϵ
(1 + ∥z∥)2 + ϵ

2
∥z∥2 ≤W (0) +

D2

ϵ
+

(
D2

ϵ
+
ϵ

2

)
∥z∥2

=W (0) +
D√
2
+
√
2D∥z∥2 ,

where the last equality follows by choosing the optimal ϵ =
√
2D. We conclude that

W ∗ ρ∗(z) ≤W (0) +
D√
2
+

√
2D

∫
∥z − z̃∥2 ρ∗(z̃)

≤W (0) +
D√
2
+ 2

√
2D∥z∥2 + 2

√
2D

∫
∥z̃∥2 ρ∗(z̃) , (19)

which is finite for any fixed z ∈ Rd thanks to the fact that ρ∗ ∈ P2(Rd). Hence, supp (ρ∗) = supp (ρ̃).

Remark B.7. If we have in addition that ρ̃ ∈ L∞(Rd), then the minimizer ρ∗ of Ga is in L∞(Rd) as well. This follows
directly by bounding the right-hand side of (18).

The following inequality is referred to as HWI inequality and represents the key result to obtain convergence to equilibrium.
Proposition B.8 (HWI inequality). Define the dissipation functional

Da(γ) :=

∫∫
|δγGa(z, x)|2dγ(z, x) .

Assume α, β > 0 and let λa as defined in (15). Let γ0, γ1 ∈ P2 × P2 such that Ga(γ0), Ga(γ1), Da(γ0) <∞. Then

Ga(γ0)−Ga(γ1) ≤W (γ0, γ1)
√
Da(γ0)−

λa
2
W (γ0, γ1)

2 (20)

Proof. For simplicity, consider γ0, γ1 that have smooth Lebesgue densities of compact support. The general case can
be recovered using approximation arguments. Let (γs)s∈[0,1] denote a W -geodesic between γ0, γ1. Following similar
arguments as in (Carrillo et al., g) and (Otto & Villani, Section 5) and making use of the calculations in the proof of
Proposition B.2, we have

d

ds
Ga(γs)

∣∣∣∣
s=0

≥
∫∫ [

ξ1(z)
ξ2(x)

]
·
[
(∇ϕ(z)− z)
(∇ψ(x)− x)

]
dγ0(z, x) ,

where

ξ1[γ0](z) := α∇z log

(
ρ0(z)

ρ̃(z)

)
+

∫
∇zf1(z, x)dµ0(x) +

∫
∇zW (z − z′)dρ0(z

′) ,

ξ2[γ0](x) :=

∫
∇xf1(z, x)dρ0(z) +∇xV (x) .

Note that the dissipation functional can then be written as

Da(γ0) =

∫∫ (
|ξ1(z)|2 + |ξ2(x)|2

)
dγ0(z, x) .

Using the double integral Cauchy-Schwarz inequality (Steele), we obtain

d

ds
Ga(γs)

∣∣∣∣
s=0

≥ −

√∫∫ ∥∥∥∥[ξ1ξ2
]∥∥∥∥2

2

dγ0

√∫∫ ∥∥∥∥[∇ϕ(z)− z
∇ψ(x)− x

]∥∥∥∥2
2

dγ0


= −

√
Da(γ0)

√∫
∥∇ϕ(z)− z∥2dρ0 +

∫
∥∇ψ(x)− x∥2dµ0

= −
√
Da(γ0)W (γ0, γ1) .
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Next, we compute a Taylor expansion of Ga(γs) when considered as a function in s and use the bound on d2

ds2Ga from (15):

Ga(γ1) = Ga(γ0) +
d

ds
Ga(γs)

∣∣∣∣
s=0

+

∫ 1

0

(1− t)

(
d2

ds2
Ga(γs)

)∣∣∣∣
s=t

dt

≥ Ga(γ0)−
√
Da(γ0)W (γ0, γ1) +

λa
2
W (γ0, γ1)

2 .

Remark B.9. The HWI inequality in Proposition B.8 immediately implies uniqueness of minimizers for Ga in the set
{γ ∈ P × P : Da(γ) < +∞}. Indeed, if γ0 is such that Da(γ0) = 0, then for any other γ1 in the above set we have
Ga(γ0) ≤ Ga(γ1) with equality if and only if W (γ0, γ1) = 0.

Corollary B.10 (Generalized Log-Sobolev inequality). Denote by γ∗ the unique minimizer of Ga. With λa as defined in
(15), any product measure γ ∈ P2 × P2 such that G(γ), Da(γ) <∞ satisfies

Da(γ) ≥ 2λaGa(γ|γ∗) . (21)

Proof. This statement follows immediately from Proposition B.8. Indeed, let γ1 = γ∗ and γ0 = γ in (20). Then

Ga(γ | γ∗) ≤W (γ, γ∗)
√
Da(γ)−

λa
2
W (γ, γ∗)

2

≤ max
t≥0

(√
Da(γ)t−

λa
2
t2
)

=
Da(γ)

2λa
.

Corollary B.11 (Talagrand inequality). Denote by γ∗ the unique minimizer of Ga. With λa as defined in (15), it holds

W (γ, γ∗)
2 ≤ 2

λa
Ga(γ | γ∗)

for any γ ∈ P2 × P2 such that Ga(γ) <∞.

Proof. This is also a direct consequence of Proposition B.8 by setting γ0 = γ∗ and γ1 = γ. Then Ga(γ∗) < ∞ and
Da(γ∗) = 0, and the result follows.

Proof of Theorem 3.7. The entropy term
∫
ρ log ρ produces diffusion in ρ for the corresponding PDE in (4). As a conse-

quence, solutions ρt to (4) and minimizers ρ∗ for Ga have to be L1 functions. As there is no diffusion for the evolution of
µt, solutions may have a singular part. In fact, for initial condition µ0 = δx0

, the corresponding solution will be of the form
µt = δx(t), where x(t) solves the ODE (3) with initial condition x0. This follows from the fact that the evolution for µt

is a transport equation (also see Section A.1 for more details). Results (a) and (b) are the statements in Proposition B.4,
Corollary B.6 and Corollary B.11. To obtain (c), we differentiate the energy Ga along solutions γt to the equation (4):

d

dt
Ga(γt) =

∫
δρGa[γt](z)∂tρtdz +

∫
δµGa[γt](x)∂tµtdx

= −
∫

∥∇zδρGa[γt](z)∥2 dρt(z)−
∫

∥∇xδµGa[γt](x)∥2 dµt(x)

= −Da(γt) ≤ −2λaGa(γt | γ∗) ,

where the last bound follows from Corollary B.10. Applying Gronwall’s inequality, we immediately obtain decay in energy,

Ga(γt | γ∗) ≤ e−2λatGa(γ0 | γ∗) .

Finally, applying Talagrand’s inequality (Corollary B.11), the decay in energy implies decay in the product Wasserstein
metric,

W (γt, γ∗) ≤ ce−λat

where c > 0 is a constant only depending on γ0, γ∗ and the parameter λa.
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C. Proof of Theorem 3.9
In the case of competing objectives, we rewrite the energy Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] as follows:

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 − P (ρ) ,

where

P (ρ) := αKL(ρ|ρ̃) + 1

2

∫
ρW ∗ ρ .

Note that for any fixed ρ ∈ P , the energy Gc(ρ, ·) is strictly convex in x, and therefore has a unique minimizer. Define the
best response by

b(ρ) := argmin
x̄

Gc(ρ, x̄)

and denote Gb(ρ) := Gc(ρ, b(ρ)). We begin with auxiliary results computing the first variations of the best response b and
then the different terms in Gb(ρ) using Definition 2.1.

Lemma C.1 (First variation of the best response). The first variation of the best response of the classifier at ρ (if it exists) is

δρb[ρ](z) = −Q(ρ)−1∇xf1(z, b(ρ)) for almost every z ∈ Rd ,

where Q(ρ) ⪰ (β + λ1 + λ2) Id is a symmetric matrix, constant in z and x, defined as

Q(ρ) := β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z) .

In particular, we then have for any ψ ∈ C∞
c (Rd) with

∫
ψ dz = 0 that

lim
ϵ→0

1

ϵ

∥∥∥∥b[ρ+ ϵψ]− b[ρ]− ϵ

∫
δρb[ρ](z)ψ(z)dz

∥∥∥∥ = 0 .

Proof. Let ψ ∈ C∞
c (Rd) with

∫
ψ dz = 0 and fix ϵ > 0. Any minimizer of Gc(ρ+ ϵψ, x) for fixed ρ must satisfy

∇xGc(ρ+ ϵψ, b(ρ+ ϵψ)) = 0 .

Differentiating in ϵ, we obtain∫
δρ∇xGc[ρ+ ϵψ, b(ρ+ ϵψ)]ψ(z) dz +∇2

xGc(ρ+ ϵψ, b(ρ+ ϵψ))

∫
δρb[ρ+ ϵψ](z)ψ(z) dz = 0 . (22)

Next, we explicitly compute all terms involved in (22). Computing the derivatives yields

∇xGc(ρ, x) =

∫
∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

δρ∇xGc[ρ, x](z) = ∇xf1(z, x)

∇2
xGc(ρ, x) =

∫
∇2

xf1(z, x)dρ(z) +

∫
∇2

xf2(z, x)dρ̄(z) + β Id .

Note that ∇2
xGc is invertible by Assumption 3.3, which states that f1 and f2 have positive-definite Hessians. Inverting this

term and substituting these expressions into (22) for ϵ = 0 gives∫
δρb[ρ](z)ψ(z) dz = −

[
β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z)

]−1 ∫
∇xf1(z, b(ρ))ψ(z) dz

= −
∫
Q(ρ)−1∇xf1(z, b(ρ))ψ(z) dz .

Finally, the lower bound on Q(ρ) follows thanks to Assumption 3.3.
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Remark C.2. If we include the additional assumption that fi ∈ C3(Rd × Rd; [0,∞)) for i = 1, 2, then the Hessian of b[ρ]
is well-defined. More precisely, the Hessian is given by

d2

dϵ2
b[ρ+ ϵψ]|ϵ=0 = Q(ρ)−1

(
d

dϵ
Q(ρ+ ϵψ)|ϵ=0 +

∫
∇2

xf1(z, b[ρ])ψ(z)dz

)
Q(ρ)−1u[ρ, ψ]

where u[ρ, ψ] =
∫
∇xf1(z, b[ρ])ψ(z)dz and

d

dϵ
Qij(ρ+ ϵψ)|ϵ=0 =

∫
∂xi

∂xj
f1(z, b[ρ])ψ(z)dz −

∫
∂xi

∂xj
∇xf1(z, b[ρ])ψ(z)ρ(z)dz Q(ρ)−1u[ρ, ψ]

−
∫
∂xi

∂xj
∇xf2(z, b[ρ])ψ(z)ρ̄(z)dz Q(ρ)−1u[ρ, ψ].

Therefore, we can Taylor expand b[ρ] up to second order and control the remainder term of order ϵ2.

Lemma C.3 (First variation of Gb). The first variation of Gb is given by

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z) ,

where

h1(z) :=
δ

δρ

(∫
f1(z̃, b(ρ))dρ(z̃)

)
(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) ,

h2(z) :=
δ

δρ

(∫
f2(z̃, b(ρ))dρ̄(z̃)

)
(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
,

h3(z) :=
1

2

δ

δρ
∥b(ρ)− x0∥2 =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
,

and

δρP [ρ](z) = α log(ρ(z)/ρ̃(z)) + (W ∗ ρ)(z) .

Proof. We begin with general expressions for Taylor expansions of b : P(Rd) → Rd and fi(z, b(·)) : P(Rd) → R for
i = 1, 2 around ρ. Let ψ ∈ T with T = {ψ :

∫
ψ(z)dz = 0}. Then

b(ρ+ ϵψ) = b(ρ) + ϵ

∫
δb

δρ
[ρ](z′)ψ(z′)dz′ +O(ϵ2) (23)

and

fi(z, b(ρ+ ϵψ)) = fi(z, b(ρ)) + ϵ

〈
∇xfi(z, b(ρ)),

∫
δb

δρ
[ρ](z′)ψ(z′)dz′

〉
+O(ϵ2) . (24)

We compute explicitly each of the first variations:

(i) Using (24), we have∫
ψ(z)h1(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f1(z, b(ρ+ ϵψ))(ρ(z) + ϵψ(z))dz −

∫
f1(z, b(ρ))ρ(z)dz

]
=

〈∫
∇xf1(z, b(ρ))dρ(z),

∫
δb(ρ)

δρ
[ρ](z′)ψ(z′)dz′

〉
+

∫
f1(z, b(ρ))ψ(z)dz

=

∫ 〈∫
∇xf1(z, b(ρ))dρ(z),

δb(ρ)

δρ
[ρ](z′)

〉
ψ(z′)dz′ +

∫
f1(z, b(ρ))ψ(z)dz

⇒ h1(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) .
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(ii) Similarly, using again (24),∫
ψ(z)h2(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f2(z, b(ρ+ ϵψ))dρ̄(z)−

∫
f2(z, b(ρ))ρ̄(z)dz

]
=

∫ 〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h2(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
.

(iii) Finally, from (23) it follows that∫
ψ(z)h3(z)dz = lim

ϵ→0

1

2ϵ

[
⟨b(ρ+ ϵψ)− x0, b(ρ+ ϵψ)− x0⟩ − ⟨b(ρ)− x0, b(ρ)− x0⟩

]
=

∫ 〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h3(z) =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
.

Finally, the expression for δρP [ρ] follows by direct computation

Lemma C.4. Denote Gb(ρ) := Gc(ρ, b(ρ)) with b(ρ) given by (5). Then δρGb[ρ] = δρGc[ρ]|x=b(ρ).

Proof. We start by computing δρGc(·, x)[ρ](z) for any z, x ∈ Rd:

δρGc(·, x)[ρ](z) = f1(z, x)− δρP [ρ](z). (25)

Next, we compute δρGb. Using Lemma C.3, the first variation of Gb is given by

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z)

= −
〈[∫

∇xf1(z̃, b(ρ))dρ(z̃) +

∫
∇xf2(z̃, b(ρ))dρ̄(z̃) + β(b(ρ)− x0)

]
, δρb[ρ](z)

〉
+ f1(z, b(ρ))− δρP [ρ](z) .

Note that

∇xGc(ρ, x) =

∫
∇xf1(z̃, x)dρ(z̃) +

∫
∇xf2(z̃, x)dρ̄(z̃) + β(x− x0) , (26)

and by the definition of the best response b(ρ), we have ∇xGx(ρ, x)|x=b(ρ) = 0. Substituting into the expression for δρGb

and using (25), we obtain

δρGb[ρ](z) = f1(z, b(ρ))− δρP [ρ](z) = δρGc(·, x)[ρ](z)
∣∣∣∣
x=b(ρ)

.

This concludes the proof.

Lemma C.5 (Uniform boundedness of the best response). Let Assumption 3.3 hold. Then for any ρ ∈ P(Rd), we have

∥b(ρ)∥2 ≤ ∥x0∥2 +
2(a1 + a2)

β
.

Proof. By definition of the best response b(ρ), we have∫
∇xf1(z, b(ρ))dρt +

∫
∇xf2(z, b(ρ))dρ̄(z) + β(b(ρ)− x0) = 0 .
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To show that that b(ρ) is uniformly bounded, we take the inner product of the above expression with b(ρ) itself

β∥b(ρ)∥2 = βx0 · b(ρ)−
∫

∇xf1(z, b(ρ)) · b(ρ)dρ(z)−
∫

∇xf2(z, b(ρ)) · b(ρ)dρ̄(z) .

Using Assumption 3.3 to bound the two integrals, together with using Young’s inequality to bound the first term on the
right-hand side, we obtain

β∥b(ρ)∥2 ≤ β

2
∥x0∥2 +

β

2
∥b(ρ)∥+ a1 + a2 ,

which concludes the proof after rearranging terms.

Lemma C.6 (Upper semi-continuity). Let Assumptions 3.3-3.5 hold. The functional Gc : P(Rd)× Rd → [−∞,+∞] is
upper semi-continuous when P(Rd)× Rd is endowed with the product topology of the weak-∗ topology and the Euclidean
topology. Moreover, the functional Gb : P(Rd) → [−∞,+∞] is upper semi-continuous with respect to the weak-∗ topology.

Proof. The functional Gc : P(Rd) × Rd → [−∞,+∞] is continuous in the second variable thanks to Assumption 3.3.
Similarly,

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) is continuous in ρ thanks to (Santambrogio, 2015, Proposition 7.1) using the

continuity of f1 and f2. Further, −P is upper semi-continuous using (Posner) and (Santambrogio, 2015, Proposition 7.2)
thanks to Assumptions 3.4 and 3.5. This concludes the continuity properties for Gc.

The upper semi-continuity of Gb then follows from a direct application of a version of Berge’s maximum theorem (ali,
Lemma 16.30). Let R := ∥x0∥2 + 2(a1+a2)

β > 0. We define φ : (P(Rd),W2) ↠ Rd as the correspondence that maps

any ρ ∈ P(Rd) to the closed ball BR(0) ⊂ Rd. Then the graph of φ is Grφ = P(Rd) × {BR(0)}. With this definition
of φ, the range of φ is compact and φ is continuous with respect to weak-∗ convergence, and so it is in particular upper
hemicontinuous. Thanks to Lemma C.5, the best response function b(ρ) is always contained in BR(0) for any choice of
ρ ∈ P(Rd). As a result, maximizing −Gc(ρ, x) in x over Rd for a fixed ρ ∈ P(Rd) reduces to maximizing it over BR(0).
Using the notation introduced above, we can restrict Gc to Gc : Grφ→ R and write

Gb(ρ) := max
x̂∈φ(ρ)

−Gc(ρ, x̂).

Because Gc(ρ, x) is upper semi-continuous when P(R2)×Rd is endowed with the product topology of the weak-∗ topology
and the Euclidean topology, (ali, Lemma 16.30) guarantees that Gb(·) is upper semi-continuous in the weak-∗ topology.

Proposition C.7. Let α, β > 0 and assume Assumptions 3.3-3.8 hold with the parameters satisfying αλ̃ > Λ1. Fix
ρ0, ρ1 ∈ P(Rd). Along any geodesic (ρs)s∈[0,1] ∈ P2(Rd) connecting ρ0 to ρ1, we have for all s ∈ [0, 1]

d2

ds2
Gb(ρs) ≤ −λbW1(ρ0, ρ1)

2 , λb := αλ̃− Λ1, . (27)

As a result, the functional Gb : P2(Rd) → [−∞,+∞] is uniformly displacement concave with constant λb > 0.

Proof. Consider any ρ0, ρ1 ∈ P2(Rd). Then any W2-geodesic (ρs)s∈[0,1] connecting ρ0 with ρ1 solves the following
system of geodesic equations: {

∂sρs + div (ρsvs) = 0 ,

∂s(ρsvs) + div (ρsvs ⊗ vs) = 0 ,
(28)

where ρs : Rd → R and vs : Rd 7→ Rd . The first derivative of Gb along geodesics can be computed explicitly as

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs)

+

〈[∫
∇xf1(z, x)dρs(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

]∣∣∣∣
x=b(ρs)

,
d

ds
b(ρs)

〉
.
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The left-hand side of the inner product is zero by definition of the best response b(ρs) to ρs, see (26). Therefore

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs) .

Differentiating a second time, using (28) and integration by parts, we obtain

d2

ds2
Gb(ρs) = L1(ρs) + L2(ρs)−

d2

ds2
P (ρs) ,

where

L1(ρs) :=

∫
∇2

zf1(z, b(ρs)) · (vs ⊗ vs) ρsdz =

∫ 〈
vs, ∇2

zf1(z, b(ρs)) · vs
〉
ρsdz ,

L2(ρs) :=

∫
d

ds
b(ρs) · ∇x∇zf1(z, b(ρs)) · vs(z) ρs(z)dz .

From (16), we have that
d2

ds2
P̃ (ρs) ≥ αλ̃W2(ρ0, ρ1)

2 ,

and thanks to Assumption 3.8 it follows that

L1(s) ≤ Λ1W2(ρ0, ρ1)
2.

This leaves L2 to bound; we first consider the term d
dsb(ρs):

d

ds
b(ρs) =

∫
δρb[ρs](z̃)∂sρs(dz̃) = −

∫
δρb[ρs](z̃)div (ρsvs) dz̃

=

∫
∇zδρb[ρs](z̃) · vs(z̃)dρs(z̃).

Defining u(ρs) ∈ Rd by

u(ρs) :=

∫
∇x∇zf1(z, b(ρs)) · vs(z)dρs(z) ,

using the results from Lemma C.1 for ∇zδρb[ρs], Assumption 3.3 and the fact that Q(ρ) is constant in z and x, we have

L2(ρs) = −
∫∫ [

Q(ρs)
−1∇x∇zf1(z̃, b(ρs)) · vs(z̃)

]
· ∇x∇zf1(z, b(ρs)) · vs(z) dρs(z)dρs(z̃)

= −
〈
u(ρs), Q(ρs)

−1u(ρs)
〉
≤ 0

Combining all terms together, we obtain

d2

ds2
Gb(ρs) ≤ −

(
αλ̃− Λ1

)
W2(ρ0, ρ1)

2 .

Remark C.8. Under some additional assumptions on the functions f1 and f2, we can obtain an improved convergence rate.
In particular, assume that for all z, x ∈ Rd,

• there exists a constant Λ2 ≥ λ2 ≥ 0 such that ∇2
xf2(z, x) ⪯ Λ2 Id;

• there exists a constant σ ≥ 0 such that ∥∇x∇zf1(z, x)∥ ≥ σ.
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Then we have −Q(ρs)
−1 ⪯ −1/(β + Λ1 + Λ2) Id. Using Lemma C.1, we then obtain a stronger bound on L2 as follows:

L2(ρs) ≤ − 1

β + Λ1 + Λ2
∥u(ρs)∥2 ≤ − 1

β + Λ1 + Λ2

∫
∥∇x∇zf1(z, b(ρs))∥2 dρs(z)

∫
∥vs(z)∥2 dρs(z)

≤ − σ2

β + Λ1 + Λ2
W2(ρ0, ρ1)

2.

This means we can improve the convergence rate in (27) to λb := αλ̃+ σ2

β+Λ1+Λ2
− Λ1.

Proposition C.9 (Ground state). Let Assumptions 3.3-3.8 hold for αλ̃ > Λ1 ≥ 0 and β > 0. Then there exists a unique
maximizer ρ∗ for the functional Gb over P(Rd), and it satisfies ρ∗ ∈ P2(Rd) ∩ L1(Rd) and ρ∗ is absolutely continuous
with respect to ρ̃.

Proof. Uniqueness of the maximizer (if it exists) is guaranteed by the uniform concavity provided by Lemma C.7. To show
existence of a maximizer, we use the direct method in the calculus of variations, requiring the following key properties for
Gb: (1) boundedness from above, (2) upper semi-continuity, and (3) tightness of any minimizing sequence. To show (1),
note that ∇2

z(f1(z, x) + α log ρ̃(z)) ⪯ −(αλ̃− Λ1) Id for all z, x ∈ Rd × Rd by Assumptions 3.4 and 3.8, and so

f1(z, x) + α log ρ̃(z) ≤ c0(x)−
(αλ̃− Λ1)

4
|z|2 ∀(z, x) ∈ Rd × Rd (29)

with c0(x) := f1(0, x) + α log ρ̃(0) + 1
αλ̃−Λ1

∥∇z [f1(0, x) + α log ρ̃(0)] ∥2. Therefore,

Gb(ρ) =

∫
[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2

− α

∫
ρ log ρ−

∫
ρW ∗ ρ

≤ c0(b(ρ)) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2 .

To estimate each of the remaining terms on the right-hand side, denote R := ∥x0∥2 + 2(a1+a2)
β and recall that ∥b(ρ)∥ ≤ R

for any ρ ∈ P(Rd) thanks to Lemma C.5. By continuity of f1 and log ρ̃, there exists a constant c1 ∈ R such that

sup
x∈BR(0)

c0(x) = sup
x∈BR(0)

[
f1(0, x) + α log ρ̃(0) +

1

αλ̃− Λ1

∥∇z (f1(0, x) + α log ρ̃(0))∥2
]
≤ c1 . (30)

The second term is controlled by c2 thanks to Assumption 3.8. And the third term can be bounded directly to obtain

Gb(ρ) ≤ c1 + c2 + β(R2 + ∥x0∥2) .

This concludes the proof of (1). Statement (2) was shown in Lemma C.6. Then we obtain a minimizing sequence
(ρn) ∈ P(Rd) which is in the closed unit ball of C0(Rd)∗ and so the Banach-Anaoglu theorem (Rudin, Theorem 3.15)
there exists a limit ρ∗ in the Radon measures and a subsequence (not relabeled) such that ρn

∗
⇀ ρ∗. In fact, ρ∗ is absolutely

continuous with respect to ρ̃ as otherwise Gb(ρ∗) = −∞, which contradicts that Gb(·) > −∞ somewhere. We conclude
that ρ∗ ∈ L1(Rd) since ρ̃ ∈ L1(Rd) by Assumption 3.4. To ensure ρ∗ ∈ P(Rd), we require (3) tightness of the minimizing
sequence (ρn). By Markov’s inequality (Ghosh, 2002) it is sufficient to establish a uniform bound on the second moments:∫

∥z∥2dρn(z) < C ∀n ∈ N . (31)

To see this we proceed in a similar way as in the proof of Proposition B.2. Defining

K(ρ) := −
∫

[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) + α

∫
ρ log ρ dz +

1

2

∫
ρW ∗ ρdz ,



Coupled Gradient Flows for Strategic Non-Local Distribution Shift

we have K(ρ) = −Gb(ρ) +
∫
f2(z, b(ρ))dρ̄(z) +

β
2 ∥b(ρ)− x0∥2. Then using again the bound on b(ρ) from Lemma C.5,

K(ρ) ≤ −Gb(ρ) + sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) + β

(
R2 + ∥x0∥2

)
≤ −Gb(ρ) + c2 + β

(
R2 + ∥x0∥2

)
,

where the last inequality is thanks to Assumption 3.8. Hence, using the estimates (29) and (30) from above, and noting that
the sequence (ρn) is minimizing (−Gb), we have

(αλ̃− Λ1)

4

∫
∥z∥2 dρn(z) ≤ c0(b(ρn))−

∫
[f1(z, b(ρn)) + α log ρ̃(z)] dρn(z)

≤ c1 +K(ρn) ≤ c1 −Gb(ρn) + c2 + β
(
R2 + ∥x0∥2

)
≤ c1 −Gb(ρ1) + c2 + β

(
R2 + ∥x0∥2

)
<∞ .

which uniformly bounds the second moments of (ρn). This concludes the proof for the estimate (31) and also ensures that
ρ∗ ∈ P2(Rd).

Corollary C.10. Any maximizer ρ∗ of Gb is a steady state for equation (5) according to Definition A.12, and satisfies
supp (ρ∗) = supp (ρ̃).

Proof. To show that ρ∗ is a steady state we can follow exactly the same argument as in the proof of Corollary B.6,
just replacing − 1

α

∫
f1(z, x)µ∗(x) with + 1

α

∫
f1(z, b(ρ∗). It remains to show that supp (ρ∗) = supp (ρ̃). As ρ∗ is a

maximizer, it is in particular a critical point, and therefore satisfies that δρGb[ρ∗](z) is constant on all connected components
of supp (ρ∗). Thanks to Lemma C.4, this means there exists a constant c[ρ∗] (which may be different on different components
of supp (ρ∗)) such that

f1(z, b(ρ∗))− α log

(
ρ∗(z)

ρ̃(z)

)
−W ∗ ρ∗(z) = c[ρ∗] on supp (ρ∗) .

Rearranging, we obtain (for a possible different constant c[ρ∗] ̸= 0)

ρ∗(z) = c[ρ∗]ρ̃(z) exp

[
1

α
(f1(z, b(ρ∗))−W ∗ ρ∗(z))

]
on supp (ρ∗) . (32)

Firstly, note that supp (ρ∗) ⊂ supp (ρ̃) since ρ∗ is absolutely continuous with respect to ρ̃. Secondly, note that
exp 1

αf1(z, b(ρ∗)) ≥ 1 for all z ∈ Rd since f1 ≥ 0. Finally, we claim that exp
(
− 1

αW ∗ ρ∗(z)
)
> 0 for all z ∈ Rd. In

other words, we claim that W ∗ ρ∗(z) <∞ for all z ∈ Rd. This follows by exactly the same argument as in Corollary B.6,
see equation (19). We conclude that supp (ρ∗) = supp (ρ̃).

Remark C.11. If we have in addition that ρ̃ ∈ L∞(Rd) and f1(·, x) ∈ L∞(Rd) for all x ∈ Rd, then the maximizer ρ∗ of
Gb is in L∞(Rd) as well. This follows directly by bounding the right-hand side of (32).

With the above preliminary results, we can now show the HWI inequality, which implies again a Talagrand-type inequality
and a generalized logarithmic Sobolev inequality.

Proposition C.12 (HWI inequalities). Define the dissipation functional

Db(γ) :=

∫∫
|δρGb[ρ](z)|2dρ(z) .

Assume α, β > 0 such that αλ̃ > Λ1 + σ2, and let λb as defined in (27). Denote by ρ∗ the unique maximizer of Gb.

(HWI) Let ρ0, ρ1 ∈ P2(Rd) such that Gb(ρ0), Gb(ρ1), Db(ρ0) <∞. Then

Gb(ρ0)−Gb(ρ1) ≤W (ρ0, ρ1)
√
Db(ρ0)−

λb
2
W2(ρ0, ρ1)

2 (33)
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(logSobolev) Any ρ ∈ P2(Rd) such that G(ρ), Db(ρ) <∞ satisfies

Db(ρ) ≥ 2λbGa(ρ|ρ∗) . (34)

(Talagrand) For any ρ ∈ P2(Rd) such that Gb(ρ) <∞, we have

W2(ρ, ρ∗)
2 ≤ 2

λb
Gb(ρ | ρ∗) . (35)

Proof. The proof for this result follows analogously to the arguments presented in the proofs of Proposition B.8, Corol-
lary B.10 and Corollary B.11, using the preliminary results established in Proposition C.7 and Proposition C.9.

Proof of Theorem 3.9. Following the same approach as in the proof of Theorem 3.7, the results in Theorem 3.9 immediately
follow by combining Proposition C.9, Corollary C.10 and Proposition C.12 applied to solutions of the PDE (5).

D. Proof of Theorem 3.10
The proof for this theorem uses similar strategies as that of Theorem 3.9, but considers the evolution of an ODE rather than
a PDE. Recall that for any x ∈ Rd the best response r(x)(·) ∈ P(Rd) in (6) is defined as

r(x) := argmax
ρ̂∈P

Gc(ρ̂, x) ,

where the energy Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] is given by

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 − αKL(ρ|ρ̃)− 1

2

∫
ρW ∗ ρ .

Lemma D.1. Let Assumptions 3.4- 3.8 hold and assume αλ̃ > Λ1. Then for each x ∈ Rd there exists a unique maximizer
ρ∗ := r(x) solving argmaxρ̂∈P2

Gc(ρ̂, x). Further, r(x) ∈ L1(Rd), supp (r(x)) = supp (ρ̃), and there exists a function
c : Rd 7→ R such that the best response ρ∗(z) = r(x)(z) solves the Euler-Lagrange equation

δρGc[ρ∗, x](z) := α log ρ∗(z)− (f1(z, x) + α log ρ̃(z)) + (W ∗ ρ∗)(z) = c(x) for all (z, x) ∈ supp (ρ̃)× Rd . (36)

Proof. Equivalently, consider the minimization problem for F (ρ) = −
∫
f1(z, x) dρ(z) + αKL(ρ | ρ̃) + 1

2

∫
ρW ∗ ρ with

some fixed x. Note that we can rewrite F (ρ) as

F (ρ) = α

∫
ρ log ρdz +

∫
V (z, x)dρ(z) +

1

2

∫
ρW ∗ ρ

where V (z, x) := −(f1(z, x) + α log ρ̃(z)) is strictly convex in z for fixed x by Assumptions 3.4 and 3.8. Together with
Assumption 3.5, we can directly apply the uniqueness and existence result from (Carrillo et al., g, Theorem 2.1 (i)).

The result on the support of r(x) and the expression for the Euler-Lagrange equation follows by exactly the same arguments
as in Corollary B.6 and Corollary C.10.

Lemma D.2. The density of the best response r(x) is continuous on Rd for any fixed x ∈ Rd.

Proof. Instead of solving the Euler-Lagrange equation (36), we can also obtain the best response r(x) as the long-time
asymptotics for the following gradient flow:

∂tρ = div (ρ∇δρF [ρ]) . (37)

Following Definitions A.11 and A.12, we can charaterize the steady states ρ∞ of the PDE (37) by requiring that ρ∞ ∈
L1
+(Rd)∩L∞

loc(Rd) with ∥ρ∞∥1 = 1 such that ρ∞ ∈W 1,2
loc (Rd), ∇W ∗ ρ∞ ∈ L1

loc(Rd), ρ∞ is absolutely continuous with
respect to ρ̃, and ρ∞ satisfies

∇z

(
−f1(z, x) + α log

(
ρ∞(z)

ρ̃(z)

)
+W ∗ ρ∞(z)

)
= 0 ∀z ∈ Rd , (38)
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in the sense of distributions. Noting that because the energy functional F (ρ) differs from Ga(ρ, µ) only in the sign of
f1(z, x) if viewing Ga(ρ, µ) as a function of ρ only. Note that F (ρ) is still uniformly displacement convex in ρ due to
Assumption 3.8. Then the argument to obtain that ρ∞ ∈ C(Rd) follows exactly as that of Lemma A.14.

Lemma D.3. Let i ∈ {1, ..., d}. If the energy Hi : P(Rd) → Rd given by

Hi(ρ, x) :=
α

2

∫
ρ(z)2

r(x)(z)
dz +

1

2

∫
ρW ∗ ρ−

∫
∂xi

f1(z, x)dρ(z) , (39)

admits a critical point at x ∈ Rd, then the best response r(x) ∈ P(Rd) is differentiable in the ith coordinate direction at
x ∈ Rd. Further, the critical point of Hi is in the subdifferential ∂xir(x).

Proof. First, note that DF [r(x)](x)(u) = 0 for all directions u ∈ C∞
c (Rd) and for all x ∈ Rd thanks to optimality

of r(x). Here, DF denotes the Fréchet derivative of F , associating to every ρ ∈ P(Rd) the bounded linear operator
DF [ρ] : C∞

c → R

DF [ρ](u) :=

∫
δρF [ρ](z)u(z)dz ,

and we note that F (ρ) depends on x through the potential V . Fixing an index i ∈ {1, ..., d}, and differentiating the
optimality condition with respect to xi we obtain

∂xiDF [r(x)](x)(u) +D2F [r(x)](x)(u, ∂xir(x)) = 0 ∀u ∈ C∞
c (Rd) . (40)

Both terms can be made more explicit using the expressions for the Fréchet derivative of F :

∂xiDF [r(x)](x)(u) = −
∫
∂xif1(z, x)u(z)dz ,

and for the second term note that the second Fréchet derivative of F at ρ ∈ P(Rd) along directions u, v ∈ C∞
c (Rd) is given

by

D2F [ρ](x)(u, v) = α

∫
supp (ρ)

u(z)v(z)

ρ(z)
dz +

∫∫
supp (ρ)×supp (ρ)

W (z − z̃)u(z)v(z̃) dzdz̃ .

In other words, assuming supp (r(x)) = supp (ρ̃) = Rd, relation (40) can be written as

α

∫
∂xi

r(x)

r(x)(z)
u(z) dz +

∫
(W ∗ ∂xir(x)) (z)u(z)v dz −

∫
∂xif1(z, x)u(z)dz = 0 ,

For ease of notation, given r(x) ∈ P(Rd), we define the function g : P(Rd) → L1
loc(Rd) by

g[ρ](z) := α
ρ(z)

r(x)(z)
+W ∗ ρ− ∂xif1(z, x) .

The question whether the partial derivative ∂xi
r(x) exists then reduces to the question whether there exists some ρ∗ ∈ P(Rd)

such that ρ = ρ∗ solves the equation

g[ρ](z) = c for almost every z ∈ Rd .

and for some constant c > 0. This is precisely the Euler-Lagrange condition for the functional Hi defined in (39), which has
a solution thanks to the assumption of Lemma D.3.

We observe that the first term in Hi is precisely (up to a constant) the χ2-divergence with respect to r(x),∫ (
ρ

r(x)
− 1

)2

r(x) dz =

∫
ρ2

r(x)
dz − 1 .
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Depending on the shape of the best response r(x), the χ2-divergence may not be displacement convex. Similarly, the last
term −

∫
∂xif1(z, x)dρ(z) in the energy Hi is in fact displacement concave due to the convexity properties of f1 in z. The

interaction term is displacement convex thanks to Assumption 3.5. As a result, the overall convexity properties of Hi are
not known in general. Proving the existence of a critical for Hi under our assumptions on f1, f2, ρ̃ and W would be an
interesting result in its own right, providing a new functional inequality that expands on the literature of related functional
inequalities such as the related Hardy-Littlewood-Sobolev inequality (Lieb).

It remains to show that Hi indeed admits a critical point. Next, we provide examples of additional assumptions that would
guarantee for Lemma D.3 to apply.
Lemma D.4. If either C := supz∈Rd |W (z)| <∞, or

C := sup
z∈Rd

|α log(r(x)(z)/ρ̃(z)) + f1(z, x) + c| <∞ ,

then for each x ∈ Rd and for large enough α > 0, the best response r(x) is differentiable with the gradient coordinate
∂xir(x) given by the unique coordinate-wise solutions of the Euler-Lagrange condition for Hi.

Proof. We will show this result using the Banach Fixed Point Theorem for the mapping Ti : L1(Rd) → L1(Rd) for each
fixed i ∈ {1, ..., d} given by

Ti(ρ) = −r(x)(z)
α

[(W ∗ ρ)(z)− ∂xi
f1(z, x) + c] ,

noting that ρ∗ = Ti(ρ∗) is the Euler-Lagrange condition for a critical point of Hi. It remains to show that Ti is a contractive
mapping. For the first assumption, note that

∥Ti(ρ)− Ti(ρ
′)∥1 =

1

α

∫
r(x)|W ∗ (ρ− ρ′)|dz

≤ 1

α

∫∫
r(x)(z)W (z − ẑ)|ρ(ẑ)− ρ′(ẑ)|dẑdz

≤ ∥W∥∞
α

(∫
r(x)(z)dz

)(∫
|ρ(ẑ)− ρ′(ẑ)|dẑ

)
≤ C

α
∥ρ− ρ′∥1 .

Similarly, for the second assumption we estimate

∥Ti(ρ)− Ti(ρ
′)∥1 =

1

α

∫
r(x)|W ∗ (ρ− ρ′)|dz

≤ 1

α

∫∫
r(x)(z)W (z − ẑ)|ρ(ẑ)− ρ′(ẑ)|dẑdz

=
1

α

∫
(W ∗ r(x))(z)|ρ(z)− ρ′(z)|dz

≤ 1

α
∥W ∗ r(x)∥∞ ∥ρ− ρ′∥1

which requires a bound on ∥W ∗ r(x)∥∞. Using

∥W ∗ r(x)∥∞ = sup
z∈Rd

|α log(r(x)/ρ̃) + f1(z, x) + c| = C <∞ ,

we conclude that Ti is a contraction map for large enough α. In both cases, we can then apply the Banach Fixed-Point
Theorem to conclude that ∇xr(x) exists and is unique.

Lemma D.5. Let r(x) as defined in (6). If r(x) is differentiable in x, then we have ∇xGd(x) = (∇xGc(ρ, x))|ρ=r(x).

Proof. We start by computing ∇xGd(x). We have

∇xGd(x) = ∇x (Gc(r(x), x)) =

∫
δρ[Gc(ρ, x)]|ρ=r(x)(z)∇xr(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x)

= c(x)∇x

∫
r(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x) = (∇xGc(ρ, x))|ρ=r(x) ,
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where we used that r(x) solves the Euler-Lagrange equation (36) and that r(x) ∈ P(Rd) for any x ∈ Rd so that
∫
r(x)(z)dz

is independent of x.

Lemma D.6. Let Assumption 3.3 hold. ThenGd : Rd → R∪{+∞} is strongly convex with constant λd := λ1+λ2+β > 0.

Proof. The energy Gc(ρ, x) is strongly convex in x due to our assumptions on f1, f2, and the regularizing term ∥x− x0∥22.
This means that for any ρ ∈ P ,

Gc(ρ, x) ≥ Gc(ρ, x
′) +∇xGc(ρ, x

′)⊤(x− x′) +
λd
2

∥x− x′∥22 .

Selecting ρ = r(x′), we have

Gc(r(x
′), x) ≥ Gc(r(x

′), x′) +∇xGc(r(x
′), x′)⊤(x− x′) +

λd
2

∥x− x′∥22 .

Since Gc(r(x
′), x) ≤ Gc(r(x), x) by definition of r(x), we obtain the required convexity condition:

Gd(x) = Gc(r(x), x) ≥ Gc(r(x
′), x′) +∇xGc(r(x

′), x′)⊤(x− x′) +
λd
2

∥x− x′∥22 .

Proof of Theorem 3.10. For any reference measure ρ0 ∈ P , we have

Gd(x) ≥ Gc(ρ0, x) ≥ −αKL(ρ0 | ρ̃)−
1

2

∫
ρ0W ∗ ρ0 +

β

2
∥x− x0∥2

and therefore, Gd is coercive. Together with the strong convexity provided by Lemma D.6, we obtain the existence of a
unique minimizer x∞ ∈ Rd. Convergence in norm now immediately follows also using Lemma D.6: for solutions x(t) to
(6), we have

1

2

d

dt
∥x(t)− x∞∥2 = − (Gd(x(t))−Gd(x∞)) · (x(t)− x∞) ≤ −λd∥x(t)− x∞∥2 .

A similar result holds for convergence in entropy using the Polyák-Łojasiewicz convexity inequality

1

2
∥∇Gd(x)∥22 ≥ λd(Gd(x)−Gd(x∞)) ,

which is itself a direct consequence of strong convexity provided in Lemma D.6. Then

d

dt
(Gd(x(t))−Gd(x∞)) = ∇xGd(x(t)) · ẋ(t) = −∥∇xGd(x(t))∥2 ≤ −2λd (Gd(x(t))−Gd(x∞)) ,

and so the result in Theorem 3.10 follows.

E. Additional Simulation Results
We simulate a number of additional scenarios to illustrate extensions beyond the setting with provable guarantees and in
the settings for which we have results but no numerical implementations in the main paper. First, we simulate the aligned
objectives setting in one dimension, corresponding to (4). Then we consider two settings which are not covered in our
theory: (1) the previously-fixed distribution ρ̄ is also time varying, and (2) the algorithm does not have access to the full
distributions of ρ and ρ̄ and instead samples from them to update. Lastly, we illustrate a classifier with the population
attributes in two dimensions, which requires a different finite-volume implementation (Carrillo et al., b, Section 2.2) than the
one dimension version of the PDE due to flux in two dimensions.
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E.1. Aligned Objectives

Here we show numerical simulation results for the aligned objectives case, where the population and distribution have the
same cost function. In this setting, the dynamics are of the form

∂tρ = div (ρ∇zδρGa[ρ, µ])

= div

(
ρ∇z

(∫
f1(z, x)dµ(x) + α log(ρ/ρ̃) +W ∗ ρ

))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)
where f1 and f2 are as defined in section 4.1, and W = 1

20 (1 + z)−1, a consensus kernel. Note that W does not satisfy
Assumption 3.5, but we still observe convergence in the simulation. This is expected; in other works such as (Carrillo
et al., g), the assumptions on W are relaxed and convergence results proven given sufficient convexity of other terms. The
regularizer ρ̃ is set to ρ0, which models a penalty for the effort required of individuals to alter their attributes. The coefficient
weights are α = 0.1 and β = 1, with discretization parameters dz = 0.1, dt = 0.01.

Figure 5. The dynamics include a consensus kernel, which draws neighbors in z-space closer together. We see that the population moves
to make the classifier performer better, as the two distributions become more easily separable by the linear classifier.

In Figure 5, we observe the strategic distribution separating itself from the stationary distribution, improving the performance
of the classifier and also improving the performance of the population itself. The strategic distribution and classifier appear
to be stationary by time t = 40.

E.2. Multiple Dynamical Populations

We also want to understand the dynamics when both populations are strategic and respond to the classifier. In this example,
we numerically simulate this and in future work we hope to prove additional results regarding convergence. This corresponds
to modeling the previously-fixed distribution ρ̄ as time-dependent; let this distribution be τ ∈ P2. We consider the case
where ρ is competitive with x and τ is aligned with x, with dynamics given by

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)−W ∗ ρ))
∂tτ = div (τ∇z (f2(z, x) + α log(τ/τ̃) +W ∗ τ))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dτ(z) +

β

2
∥x− x0∥2

)
.

We use W = 0 and f1, f2 as in section 4.1 and the same discretization parameters as in Section E.1. In Figure 6, we
observe that the τ population moves to the right, assisting the classifier in maintaining accurate scoring. In contrast, ρ also
moves to the right, rendering the right tail to be classified incorrectly, which is desirable for individuals in the ρ population
but not desirable for the classifier. While we leave analyzing the long-term behavior mathematically for future work, the
distributions and classifier appear to converge by time t = 20.
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Figure 6. The population ρ aims to be classified with the τ population, while the classifier moves to delineate between the two. We
observe that τ adjusts to improve the performance of the classifier while ρ competes against it. The distributions are plotted at time t = 0,
corresponding to ρ̃ and τ̃ , and time t = 20, corresponding to ρ and τ .

E.3. Sampled Gradients

In real-world applications of classifiers, the algorithm may not know the exact distribution of the population, relying on
sampling to estimate it. In this section we explore the effects of the classifier updating based on an approximated gradient,
which is computed by sampling the true underlying distributions ρ and ρ̄. We use the same parameters for the population
dynamics as in section 4.1, and for the classifier we use the approximate gradient

∇xL(z, xt) ≈
1

n

n∑
i=1

(∇xf1(zi, xt) +∇xf2(z̄i, xt)) + β(xt − x0), zi ∼ ρt, z̄i ∼ ρ̄t .

First, we simulate the dynamics with the classifier and the strategic population updating at the same rate, using α = 0.05,
β = 1, and the same consensus kernel as used previously, with the same discretization parameters as in E.1. In Figure 7, we

Figure 7. When the classifier is updating at the same rate as the population, we do not see a significant change in the evolution of both
species, suggesting that as long as the gradient estimate for the classifier is correct on average, the estimate itself does not need to be
particularly accurate.

observe only a small difference between the two results with n = 4 versus n = 40 samples, which suggests that not many
samples are needed to estimate the gradient.

Next, we consider the setting where the classifier is best-responding to the strategic population.

Unlike the first setting, we observe in Figure 8 a noticeable difference between the evolution of ρt with n = 4 versus n = 40
samples. This is not surprising because optimizing with a very poor estimate of the cost function at each time step would
cause xt to vary wildly, and this method fails to take advantage of correct ”average” behavior that gradient descent provides.
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Figure 8. When the classifier is best-responding to the population, we observe that using n = 4 samples leads to different behavior for
both the classifier and the population, compared with a more accurate estimate using n = 40 samples.

E.4. Two-dimensional Distributions

In practice, individuals may alter more that one of their attributes in response to an algorithm, for example, both cancelling a
credit card and also reporting a different income in an effort to change a credit score. We model this case with z ∈ R2 and
x ∈ R2, and simulate the results for the setting where the classifier and the population are evolving at the same rate. While
this setting is not covered in our theory, it interpolates between the two timescale extremes.

We consider the following classifier:

f1(z, x) =
1

2

(
1− 1

1 + expx⊤z

)
f2(z, x) =

1

2

(
1

1 + expx⊤z

) (41)

with W = 0. Again, the reference distribution ρ̃ corresponds to the initial shape of the distribution, instituting a penalty for
deviating from the initial distribution. We use α = 0.5 and β = 1 for the penalty weights, run for t = 4 with dt = 0.005 and
dx = dy = 0.2 for the discretization. In this case, the strategic population is competing with the classifier, with dynamics
given by

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)))

d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)

In Figure 9, we observe the strategic population increasing mass toward the region of higher probability of being labeled ”1”
while the true underlying label is zero, with the probability plotted at time t = 4. This illustrates similar behavior to the
one-dimensional case, including the distribution splitting into two modes, which is another example of polarization induced
by the classifier. Note that while in this example, x ∈ R2 and we use a linear classifier; we could have x ∈ Rd with d > 2
and different functions for f1 and f2 which yield a nonlinear classifier; our theory in the timescale-separated case holds as
long as the convexity and smoothness assumptions on f1 and f2 are satisfied.
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Figure 9. We use (41) for the classifier functions, using a Gaussian initial condition and regularizer for ρ. We see the distribution moving
toward the region with higher probability of misclassification.


