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ABSTRACT

We introduce Diffusion Policy Policy Optimization, DPPO, an algorithmic frame-
work including best practices for fine-tuning diffusion-based policies (e.g. Diffu-
sion Policy (Chi et al., 2024b)) in continuous control and robot learning tasks us-
ing the policy gradient (PG) method from reinforcement learning (RL). PG meth-
ods are ubiquitous in training RL policies with other policy parameterizations;
nevertheless, they had been conjectured to be less efficient for diffusion-based
policies. Surprisingly, we show that DPPO achieves the strongest overall perfor-
mance and efficiency for fine-tuning in common benchmarks compared to other
RL methods for diffusion-based policies and also compared to PG fine-tuning of
other policy parameterizations. Through experimental investigation, we find that
DPPO takes advantage of unique synergies between RL fine-tuning and the dif-
fusion parameterization, leading to structured and on-manifold exploration, stable
training, and strong policy robustness. We further demonstrate the strengths of
DPPO in a range of realistic settings, including simulated robotic tasks with pixel
observations, and via zero-shot deployment of simulation-trained policies on robot
hardware in a long-horizon, multi-stage manipulation task. Website with videos:
diffusionppoanon.github.io. Code: anonymous.dppo.

1 INTRODUCTION

Large-scale pre-training with additional fine-tuning has become a ubiquitous pipeline in the de-
velopment of language and image foundation models (Brown et al., 2020; Radford et al., 2021;
Ouyang et al., 2022; Ruiz et al., 2023). Though behavior cloning with expert data (Pomerleau,
1988) is rapidly emerging as dominant paradigm for pre-training robot policies (Florence et al.,
2019; 2022; Zhao et al., 2023; Lee et al., 2024; Fu et al., 2024), their performance can be subopti-
mal (Osa et al., 2018) due to expert data being suboptimal or expert data exhibiting limited coverage
of possible environment conditions. As robot policies entail interaction with their environment, rein-
forcement learning (RL) (Sutton and Barto, 2018) is a natural candidate for further optimizing their
performance beyond the limits of demonstration data. However, RL fine-tuning can be nuanced for
pre-trained policies parameterized as diffusion models (Ho et al., 2020), which have emerged as
a leading parameterization for action policies (Chi et al., 2024b; Reuss et al., 2023; Pearce et al.,
2023), due in large part to their high training stability and ability to represent complex distributions
(Rombach et al., 2022; Poole et al., 2022; Kong et al., 2020; Ho et al., 2022).

Contribution 1 (DPPO). We introduce Diffusion Policy Policy Optimization (DPPO), a generic
framework as well as a set of carefully chosen design decisions for fine-tuning a diffusion-based
robot learning policy via popular policy gradient methods (Sutton et al., 1999; Schulman et al.,
2017) in reinforcement learning.
The literature has already studied improving/fine-tuning diffusion-based policies (Diffusion Policy)
using RL (Psenka et al., 2023; Wang et al., 2022; Hansen-Estruch et al., 2023), and has applied
policy gradient (PG) to fine-tuning non-interactive applications of diffusion models such as text-to-
image generation (Black et al., 2023; Clark et al., 2023; Fan et al., 2024). Yet PG methods have
been believed to be inefficient in training Diffusion Policy for continuous control tasks (Psenka
et al., 2023; Yang et al., 2023). On the contrary, we show that for a Diffusion Policy pre-trained
from expert demonstrations, our methodology for fine-tuning via PG updates yields robust, high-
performing policies with favorable training behavior.
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Figure 1: We introduce DPPO, Diffusion Policy Policy Optimization, that fine-tunes pre-trained
Diffusion Policy using policy gradient. Extensive experiments in simulation and hardware show
DPPO affords structured exploration and training stability during policy fine-tuning, and the final
policy exhibits strong robustness and generalization. DPPO improves policy performance across
benchmarks, including ones with pixel observations and with long-horizon rollouts that have been
very challenging to solve using previous RL methods.

Contribution 2 (Demonstration of DPPO’s Performance). We show that for fine-tuning a pre-
trained Diffusion Policy, DPPO shows strong training stability across tasks and marked improve-
ments in final performance in challenging robotic tasks in comparison to a range of alternatives,
including those based on off-policy Q-learning (Wang et al., 2022; Hansen-Estruch et al., 2023;
Yang et al., 2023; Psenka et al., 2023) and weighted regression (Peng et al., 2019; Peters and Schaal,
2007; Kang et al., 2024), other demo-augmented RL methods (Ball et al., 2023; Nakamoto et al.,
2024; Hu et al., 2023), as well as common policy parameterizations such as Gaussian and Gaussian
Mixture models.
The above finding might be surprising because PG methods do not appear to take advantage of the
unique capabilities of diffusion sampling (e.g., guidance (Janner et al., 2022; Ajay et al., 2023)).
Through careful investigative experimentation, however, we find a unique synergy between RL
fine-tuning and diffusion-based policies.

Contribution 3 (Understanding the mechanism of DPPO’s success). We complement our results
with numerous investigative experiments that provide insight into the mechanisms behind DPPO’s
strong performance. Compared to other common policy parameterizations, we provide evidence that
DPPO engages in structured exploration that takes better advantage of the “manifold” of training
data, and finds policies that exhibit greater robustness to perturbation.
Through ablations, we further show that our design decisions overcome the speculated limitation of
PG methods for fine-tuning Diffusion Policy. Finally, to justify the broad utility of DPPO, we verify
its efficacy across both simulated and real environments, and in situations when either ground-truth
states or pixels are given to the policy as input.

Contribution 4 (Tackling challenging robotic tasks and settings). We show DPPO is effective in
challenging robotic and control settings, including pixel observations and long-horizon manipulation
tasks with sparse reward. We deploy a policy trained in simulation via DPPO on real hardware in
zero-shot, which exhibits smoother behavior than the baseline and transfers better to the real-world.

2 RELATED WORK

Policy optimization and its application to robotics. Policy optimization methods update an ex-
plicit representation of an RL policy — typically parameterized by a neural network — by taking
gradients through action likelihoods. Following the seminal policy gradient (PG) method (Williams,
1992; Sutton et al., 1999), there have been a range of algorithms that further improve training stabil-
ity and sample efficiency such as DDPG (Lillicrap et al., 2015) and PPO (Schulman et al., 2015). PG
methods have been broadly effective in training robot policies (Andrychowicz et al., 2020; Hwangbo
et al., 2019; Kaufmann et al., 2023; Chen et al., 2022b), largely due to their training stability with
high-dimensional continuous action spaces, as well as their favorable scaling with parallelized simu-
lated environments. Given the challenges of from-scratch exploration in long-horizon tasks, PG has
seen great success in fine-tuning a baseline policy trained from demonstrations (Rajeswaran et al.,
2017; Torne et al., 2024; Peng et al., 2021). Our experiments find DPPO performing on-policy PG
often achieves stronger final performance in manipulation tasks, especially ones with long horizon

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

and high-dimensional action space, than off-policy Q-learning methods (Ball et al., 2023; Nakamoto
et al., 2024; Hu et al., 2023).

Learning and improving diffusion-based policies. Diffusion-based policies (Chi et al., 2024b;
Reuss et al., 2023; Ankile et al., 2024a; Ze et al.; Wang et al., 2024a; Sridhar et al., 2023; Pearce
et al., 2023) have shown recent success in robotics and decision making applications. Most typically,
these policies are trained from human demonstrations through a supervised objective, and enjoy
both high training stability and strong performance in modeling complex and multi-modal trajectory
distributions. As demonstration data are often limited and/or suboptimal, there have been many
approaches proposed to improve the performance of diffusion-based policies. One popular approach
has been to guide the diffusion denoising process using objectives such as reward signal or goal
conditioning (Janner et al., 2022; Ajay et al., 2023; Venkatraman et al., 2023; Chen et al., 2024).
More recent work has explored techniques including Q-learning and weighted regression, either
from purely offline estimation (Chen et al., 2022a; Wang et al., 2022; Ding and Jin, 2023), and/or
with online interaction (Hansen-Estruch et al., 2023; Psenka et al., 2023; Yang et al., 2023).

Policy gradient through diffusion models. RL techniques have been used to fine-tune diffusion
models such as ones for text-to-image generation (Fan and Lee, 2023; Fan et al., 2024; Black et al.,
2023; Wallace et al., 2023). Black et al. (2023) treat the denoising process as an MDP and apply
PPO updates. We build upon these earlier findings by embedding the denoising MDP into the
environmental MDP of the dynamics in control tasks, forming a two-layer “Diffusion Policy MDP”.
Though Psenka et al. (2023) have already shown how PG can be taken through Diffusion Policy by
propagating PG through both MDPs, they conjecture that it is likely to be ineffective due to large
action variance caused by the increased effective horizon induced from the denoising steps. Our
results contravene this supposition for diffusion-based policies in the fine-tuning setting.

3 PRELIMINARIES

Markov Decision Process. We consider a Markov Decision Process (MDP) MENV :=
(S,A, P0, P,R) with states s ∈ S, actions a ∈ A, initial state distribution P0, transition proba-
bilities P , and reward R. At each timestep t, the agent (e.g., robot) observes the state st ∈ S, takes
an action at ∼ π(at | st) ∈ A, transitions to the next state st+1 according to st+1 ∼ P (st+1 | st, at)
while receiving the reward R(st, at)

1. Fixing the MDPMENV, we let Eπ (resp. Pπ) denote the ex-
pectation (resp. probability distribution) over trajectories (s0, a0, ..., sT , aT ) with length T +1, with
initial state distribution s0 ∼ P0 and transition operator P . We aim to train a policy to optimize the
cumulative reward, discounted by a function γ(·): J (πθ) = Eπθ,P0 [

∑
t≥0 γ(t)R(st, at)]

Policy optimization. The policy gradient method (e.g., REINFORCE (Williams, 1992)) al-
lows for improving policy performance by approximating the gradient of this objective w.r.t.
the policy parameters: ∇θJ (πθ) = Eπθ,P0 [

∑
t≥0∇θ log πθ(at|st)rt(st, at)], rt(st, at) :=∑

τ≥t γ(τ)R(sτ , aτ ) where rt is the discounted cumulative future reward from time t , γ is the
discount factor that depends on the time-step, and ∇θ log πθ(at|st) denotes the gradient of the
logarithm of the likelihood of at | st. To reduce the variance of the gradient estimation, a state-
value function V̂ πθ (st) can be learned to approximate E[rt]. The estimated advantage function
Âπθ (st, at) := rt(st, at)− V̂ πθ (st) substitutes rt(st, at).

Diffusion models. A denoising diffusion probabilistic model (DDPM) (Nichol and Dhariwal, 2021;
Ho et al., 2020; Sohl-Dickstein et al., 2015) represents a continuous-valued data distribution p(·) =
p(x0) as the reverse denoising process of a forward noising process q(xk|xk−1) that iteratively adds
Gaussian noise to the data. The reverse process is parameterized by a neural network εθ(xk, k),
predicting the added noise ε that converts x0 to xk (Ho et al., 2020). Sampling starts with a random
sample xK ∼ N (0, I) and iteratively generates the denoised sample:

xk−1 ∼ pθ(x
k−1|xk) := N (xk−1;µk(x

k, εθ(x
k, k)), σ2

kI). (3.1)

Above, µk(·) is a fixed function, independent of θ, that maps xk and predicted εθ to the next mean,
and σ2

k is a variance term that abides by a fixed schedule from k = 1, . . . ,K. We refer the reader to
Chan (2024) for an in-depth survey.

1For simplicity, we overload R(·, ·) to denote both the random variable reward and its distribution.
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Diffusion models as policies. Diffusion Policy (DP; see Chi et al. (2024b)) is a policy πθ parame-
terized by a DDPM which takes in s as a conditioning argument, and parameterizes pθ(ak−1 | ak, s)
as in (3.1). DPs can be trained via behavior cloning by fitting the conditional noise prediction
εθ(a

k, s, k) to predict the added noise. Notice that unlike more standard policy parameterizations
such as unimodal Gaussian policies, DPs do not maintain an explicit likelihood of pθ(a0 | s). In this
work, we adopt the common practice of training DPs to predict an action chunk — a sequence of
actions a few time steps (denoted Tp) into the future — to promote temporal consistency. For fair
comparison, our diffusion and non-diffusion baselines use the same chunk size.

4 DPPO: DIFFUSION POLICY POLICY OPTIMIZATION

Directly applying policy gradient does not work. As the first glance, applying policy gradient
to a new policy parameterization should be straightforward — the update simply uses the likelihood
of the sampled action under the policy, πθ(at|st). However, diffusion as a multi-step denoising pro-
cess introduces challenges: while the intermediate denoised action likelihood πθ(a

k
t |st, ak+1

t ) can
be readily evaluated, the likelihood of the final denoised action πθ(a

k=0
t |st) can only be approxi-

mated (Song et al., 2020b). In Appendix D.6 we show that differentiating through the approximated
likelihood leads to training instability and fails to optimize the pre-trained policies. Next we take
the perspective of “denoising process as MDP” to address the issue.

s^0 s^1

\pia^0

s^t s^{t+1}

a^t

R^0 R^t

\pi_diffusion

s^t

s^t, 
a_K
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a_{K-1}

s^t, 
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a_0
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Figure 2: We treat the denoising process in Diffusion Policy as an MDP, and the whole environment
episode can be considered as a chain of such MDPs. Now the entire chain (“Diffusion Policy MDP”,
MDP) involves a Gaussian likelihood at each (denoising) step and thus can be optimized with policy
gradient. Blue circle denotes the state and red circle denotes the action inMDP.

Two-Layer “Diffusion Policy MDP”. As observed in Black et al. (2023) and Psenka et al. (2023),
a denoising process can be represented as a multi-step MDP in which policy likelihood of each
denoising step can be obtained directly. We extend this formalism by embedding the Diffusion MDP
into the environmental MDP, obtaining a larger “Diffusion Policy MDP” denotedMDP, visualized
in Fig. 2. Below, we use the notation δ to denote a Dirac distribution and ⊗ to denote a product
distribution. Recall the environment MDPMENV := (S,A, P0, P,R) in Section 3. The Diffusion
MDPMDP uses indices t̄(t, k) = tK+(K−k−1) corresponding to (t, k), which increases in t but
(to keep the indexing conventions of diffusion) decreases lexicographically with K − 1 ≥ k ≥ 0.
The states, actions and rewards are

s̄t̄(t,k) = (st, a
k+1
t ), āt̄(t,k) = akt , R̄t̄(t,k)(s̄t̄(t,k), āt̄(t,k)) =

{
0 k > 0

R(st, a
0
t ) k = 0

,

where the bar-action at t̄(t, k) is the action akt after one denoising step. Reward is only given at
times corresponding to when a0t is taken. The initial state distribution is P̄ 0 = P0 ⊗ N (0, I),
corresponding to s0 ∼ P0 is the initial distribution from the environmental MDP and aK0 ∼ N (0, I)
independently. Finally, the transitions are

P̄ (s̄t̄+1 | s̄t̄, āt̄) =

{
(st, a

k
t ) ∼ δ(st,akt ) t̄ = t̄(t, k), k > 0

(st+1, a
K
t+1) ∼ P (st+1 | st, a0t )⊗N (0, I) t̄ = t̄(t, k), k = 0

.

That is, the transition moves the denoised action akt at step t̄(t, k) into the next state when k > 0, or
otherwise progresses the environment MDP dynamics with k = 0. The pure noise aKt is considered
part of the environment when transitioning at k = 0. In light of (3.1), the policy inMDP is

π̄θ(āt̄(t,k) | s̄t̄(t,k)) = πθ(a
k
t | ak+1

t , st) = N (akt ;µ(a
k+1
t , εθ(a

k+1
t , k + 1, st)), σ

2
k+1I). (4.1)
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Fortunately, (4.1) is a Gaussian likelihood, which can be evaluated analytically and is amenable to
the policy gradient updates2:

∇θJ̄ (π̄θ) = Eπ̄θ,P̄ ,P̄
0

[
∑
t̄≥0

∇θ log π̄θ(āt̄ | s̄t̄)r̄(s̄t̄, āt̄)], r̄(s̄t̄, āt̄) :=
∑
τ≥t̄

γ(τ)R̄(s̄τ , āτ ). (4.2)

Evaluating the above involves sampling through the denoising process, which is the usual “forward
pass” that samples actions in Diffusion Policy; as noted above, the inital state can be sampled from
the enviroment via P̄ 0 = P0 ⊗N (0, I), where P0 is from the environment MDP.

4.1 INSTANTIATING DPPO WITH PROXIMAL POLICY OPTIMIZATION

We apply Proximal Policy Optimization (PPO) (Schulman et al., 2017; Engstrom et al., 2019; Huang
et al., 2022; Achiam, 2018), a popular improvement of the vanilla policy gradient update.

Definition 4.1 (Generalized PPO, clipping variant). Consider a general MDP. Given an advantage
estimator Â(s, a), the PPO update (Schulman et al., 2017) is the sample approximation to

∇θ E(st,at)∼πθold min
(
Âπθold (st, at)

πθ(at | st)
πθold(at | st)

, Âπθold (st, at) clip
( πθ(at | st)
πθold(at | st)

, 1− ε, 1 + ε
))

,

where ε, the clipping ratio, controls the maximum magnitude of the policy updated.

We instantiate PPO in our diffusion MDP with (s, a, t) ← (s̄, ā, t̄). Our advantage estimator
respects the two-level nature of the MDP: let γENV ∈ (0, 1) be the environment discount and
γDENOISE ∈ (0, 1) be the denoising discount. Consider the environment-discounted return:

r̄(s̄t̄, āt̄) :=
∑
t′≥t

γt
′−t

ENV r̄(s̄t̄(t′,0), āt̄(t′,0)), t̄ = t̄(t, k),

since R̄(t̄) = 0 at k > 0. This fact also obviates the need of estimating the value at k > 1 and allows
us to use the following denoising-discounted advantage estimator3:

Âπθold (s̄t̄, āt̄) := γkDENOISE

(
r̄(s̄t̄, āt̄)− V̂ π̄θold (s̄t̄(t,0))

)
The denoising-discounting has the effect of downweighting the contribution of noisier steps (larger
k) to the policy gradient (see study in Appendix D.2). Lastly, we choose the value estimator to only
depend on the “s” component of s̄: V̂ π̄θold (s̄t̄(t,0)) := Ṽ π̄θold (st), which we find leads to more
efficient and stable training compared to also estimating the value of applying the denoised action
ak=1
t (part of s̄t̄(t,0)) as shown in Appendix D.2.

Best Practices for DPPO. We summarize a number of best practices for DPPO; precise details are
given in Appendix B. (1) We achieve substantial efficiency gains by fine-tuning the last few steps
of the DDPM, whilst in many cases obtaining performance comparable to fine-tuning all steps. (2)
For additional efficiency gains, one may fine-tune the Denoising Diffusion Implicit Model (DDIM)
(Song et al., 2020a) instead. (3) We propose clipping the diffusion noise schedule at a larger-than-
standard noise level to encourage exploration and training stability.

5 PERFORMANCE EVALUATION OF DPPO

We study the performance of DPPO in popular RL and robotics benchmarking environments. For
comparisons, we consider (1) alternative RL methods for fine-tuning diffusion policies (Section 5.1),
(2) alternative RL methods that leverage expert data (Section 5.2), (3) policy optimization using
alternative policy parameterizations (Gaussian/GMM) (Section 5.3) additionally in multi-stage ma-
nipulation tasks including hardware evaluation (Section 5.4).

2(Psenka et al., 2023) proposes a similar derivation but does not consider the denoising process as a MDP.
See further clarification in Appendix A.

3In practice, we use Generalized Advantage Estimation (GAE, Schulman et al. (2015)) that better balances
variance and bias in estimating the advantage. We present the simpler form here.
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These comparisons highlight the effectiveness of (1) policy gradient as a RL method for diffusion,
(2) DPPO as a general framework for pre-training plus fine-tuning, (3) diffusion as a RL parameter-
ization (4) especially in challenging tasks, respectively.

Environments: OpenAI Gym. We first consider three population OpenAI GYM locomotion bench-
marks (Brockman et al., 2016) : {Hopper-v2, Walker2D-v2, HalfCheetah-v2}. All poli-
cies are pre-trained with the full medium-level datasets from D4RL (Fu et al., 2020) with state input
and action chunk size Ta = 4. We use the original dense reward setup in fine-tuning.

Environments: Robomimic. Next we consider four simulated robot manipulation tasks from the
ROBOMIMIC benchmark (Mandlekar et al., 2021), {Lift, Can, Square, Transport}, ordered
in increasing difficulty. These are more representative of real-world robotic tasks, and Square and
Transport (Fig. 3) are considered very challenging for RL training. Both state and pixel pol-
icy input are considered. State-based and pixel-based policies are pre-trained with demonstrations
provided by ROBOMIMIC. We consider Ta = 4 for Can, Lift, and Square, and Ta = 8 for
Transport. They are then fine-tuned with sparse reward upon task completion.

Environments: Furniture-Bench & real furniture assembly. Finally, we demonstrate solving
longer-horizon, multi-stage robot manipulation tasks from the FURNITURE-BENCH (Heo et al.,
2023) benchmark. We consider three simulated furniture assembly tasks, {One-leg, Lamp,
Round-table}. We consider two levels of randomness over initial state distribution, Low and
Med, defined by the benchmark. All policies are pre-trained with 50 human demonstrations col-
lected in simulation and Ta = 8. They are then fine-tuned with sparse (indicator of task stage
completion) reward. We also evaluate the zero-shot sim-to-real performance with One-leg.

Transport One-leg Round-tableLamp

Figure 3: Long-horizon robot manipulations tasks including (left) the bimanual Transport
from ROBOMIMIC and (right) FURNITURE-BENCH tasks (full rollouts visualized in Fig. 23).

5.1 COMPARISON TO DIFFUSION-BASED RL ALGORITHMS

We compare DPPO to an extensive list of RL methods for fine-tuning diffusion-based policies.
DRWR and DAWR are our own, novel baselines based on reward-weighted regression (Peters and
Schaal, 2007) and advantage-weighted regression (Peng et al., 2019). The remaining methods,
DIPO (Yang et al., 2023), IDQL (Hansen-Estruch et al., 2023), DQL (Wang et al., 2022), and
QSM (Psenka et al., 2023), are existing in the literature. We evaluate on the three OpenAI GYM
tasks and the four ROBOMIMIC tasks with state input; see Appendix F.3 for further details.

Overall, DPPO performs consistently, exhibits great training stability, and enjoys strong fine-tuning
performance across tasks. In the GYM tasks (Figure 4, top row), IDQL and DIPO exhibit com-
petitive performance, while the other methods often perform worse and train less stably. DPPO is
the strongest performer in the ROBOMIMIC tasks (Figure 4, bottom row), especially in the chal-
lenging Transport tasks. Surprisingly, DRWR, are strong baselines in {Lift, Can, Square}
but underperforms in Transport, while all other baselines fare worse still. We postulate that the
other baselines, using off-policy updates and propagating biased gradients from the Q function to
the actor, suffers from even greater training instability in sparse-reward ROBOMIMIC tasks given
continuous action space plus large action chunk sizes (see furtuer studies in Appendix D.2).

5.2 COMPARISON TO OTHER DEMO-AUGMENTED RL ALGORITHMS

We compare DPPO with recently proposed RL methods for training robot policies (not necessarily
diffusion-based) leveraging offline data, including RLPD (Ball et al., 2023), Cal-QL (Nakamoto
et al., 2024), and IBRL (Hu et al., 2023). These methods add expert data in the replay buffer
and performs off-policy updates (IBRL and Cal-QL also do pre-training), which significantly
improves efficiency v.s. DPPO in HalfCheetah-v2. However, in sparse-reward manipulation
tasks including Can and Square, DPPO achieves much better final performance than all three
methods; RLPD and Cal-QL fail to learn at all and IBRL saturates at lower success levels. See
Appendix D.1, containing Fig. 11, for further discussion.
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Figure 4: Comparing to other diffusion-based RL algorithms. Top row: GYM tasks (Brockman
et al., 2016) averaged over five seeds. Bottow row: ROBOMIMIC tasks (Mandlekar et al., 2021), av-
eraged over three seeds with state observation. DPPO curves are slightly thicker for better visibility.

5.3 COMPARISON TO OTHER POLICY PARAMETERIZATIONS

We compare DPPO with popular RL policy parameterizations: unimodal Gaussian with diago-
nal covariance (Sutton et al., 1999) and Gaussian Mixture Model (GMM (Bishop and Nasrabadi,
2006)), using either MLPs or Transformers (Vaswani et al., 2017), and also fine-tuned with the PPO
objective. We compare these to DPPO-MLP and DPPO-UNet, which use either MLP or UNet as
the network backbone. We evaluate on the four tasks from ROBOMIMIC (Lift, Can, Square,
Transport) with both state and pixel input. With state input, DPPO pre-trains with 20 denoising
steps and then fine-tunes the last 10. With pixel input, DPPO pre-trains with 100 denoising steps
and then fine-tunes 5 DDIM steps.

Figure 5: Comparing to other policy parameterizations in the more challenging Square and
Transport tasks from ROBOMIMIC, with state (left) or pixel (right) observation. Results are
averaged over three seeds.

Fig. 5 display results for the more challenging Square and Transport — we defer the results
in Lift and Can to Fig. 20. With state input, DPPO outperforms Gaussian and GMM policies,
with faster convergence to ∼100% success rate in Lift and Can, and greater final performance
on Square and the challenging Transport, where it reaches > 90%. UNet and MLP variants
perform similarly, with the latter training somewhat more rapidly. With pixel inputs, we use a
Vision-Transformer-based (ViT) image encoder introduced in Hu et al. (2023) and an MLP head
and compare the resulting variants DPPO-ViT-MLP and Gaussian-ViT-MLP (we omit GMM due
to poor performance in state-based training). While the two are comparable on Lift and Can,
DPPO trains more quickly and to higher accuracy on Square, and drastically outperforms on
Transport, whereas Gaussian does not improve from its 0% pre-trained success rate. To our
knowledge, DPPO is the first RL algorithm to solve Transport from either state or pixel
input to high (>50%) success rates.
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5.4 EVALUATION ON FURNITURE-BENCH, AND SIM-TO-REAL TRANSFER

Figure 6: (Top) DPPO vs. Gaussian-MLP baseline in simulated FURNITURE-BENCH tasks. Re-
sults are averaged over three seeds. (Bottom) Sim-to-real transfer results in One-leg.

Here we evaluate DPPO on the long-horizon manipulation tasks from FURNITURE-BENCH (Heo
et al., 2023). We compare DPPO to Gaussian-MLP, the overall most effective baseline from Sec-
tion 5.3. Fig. 6 (top row) shows the evaluation success rate over fine-tuning iterations. DPPO
exhibits strong training stability and improves policy performance in all six settings. Gaussian-MLP
collapses to zero success rate in all three tasks with Med randomness (except for one seed in Lamp)
and Round-table with Low randomness. Note that we are only using 50 human demonstrations
for pre-training; we expect DPPO can leverage additional human data (better state space coverage)
to further improve in Med, which is corroborated by ablation studies in Appendix D.3.

Sim-to-real transfer. We evaluate DPPO and Gaussian policies trained in the simulated One-leg
task on physical hardware zero-shot (i.e., no real data fine-tuning / co-training) over 20 trials.
Please see additional simulation training and hardware details in Appendix F.8. Fig. 6 (bottom
row) shows simulated and hardware success rates after pre-training and fine-tuning. Notably, DPPO
improves the real-world performance to 80% (16 out of 20 trials). Though the Gaussian policy
achieves a high success rate in simulation after fine-tuning (88%), it fails entirely on hardware (0%).
Supplemental video suggests it exhibits volatile and jittery behavior. For stronger comparison, we
also fine-tune the Gaussian policy with an auxiliary behavior-cloning loss (Torne et al., 2024) such
that the fine-tuned policy is encouraged to stay close to the base policy. However, this limits fine-
tuning and only leads to 53% success rate in simulation and 50% in reality. Qualitatively, we find
fine-tuned policies to be more robust and exhibit more corrective behaviors than pre-trained-only
policies, especially during the insertion stage of the task; such behaviors are visualized in Fig. 24
with representative hardware rollouts.

5.5 SUMMARY OF ABLATION FINDINGS

Our ablation studies (c.f. Appendix D.2) find that: (1) for challenging tasks, using a value estimator
which depends on environment state but is independent of denoised action is crucial for perfor-
mance; we conjecture that this is related to the high stochasticity of Diffusion Policy; (2) there is a
sweet spot for clipping the denoising noise level for DPPO exploration, trading off between too little
exploration and too much action noise; (3) DPPO is resilient to fine-tuning fewer-than-K denoising
steps, yielding improved runtime and comparable performance; (4) DPPO yields improvements over
Gaussian-MLP baselines for varying levels of expert demonstration data, and achieves comparable
final performance and sample efficiency when training from scratch in GYM environments.

6 UNDERSTANDING THE PERFORMANCE OF DPPO

The improvement of DPPO over popular Gaussian and GMM methods in Section 5.3 comes as a
surprise initially as DPPO solves a much longer Diffusion Policy MDP (Section 4) than the origi-
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nal environment MDP that other methods solve. This leads us to study the factors contributing to
DPPO’s strong performance through a series of investigate experiments below.

We use the Avoid environment from D3IL benchmark (Jia et al., 2024), where a robot arm needs
to reach the other side of the table while avoiding an array of obstacles (Fig. 7, top-left). The action
space is the 2D target location of the end-effector. D3IL provides a set of expert demonstrations that
covers different possible paths to the goal line — we consider three subsets of the demonstrations,
M1, M2, and M3 in Fig. 7, each with two distinct modes. We pre-train MLP-based Diffusion,
Gaussian, and GMM policies (Ta = 4 unless noted) with the demonstrations. For fine-tuning, we
assign (sparse) reward when the robot reaches the goal line from the topmost mode. Gaussian and
GMM policies are also fine-tuned with the PPO objective.

Figure 7: (Left) We use the Avoid environment from Jia et al. (2024) to visualize the DPPO’s
exploration tendencies. The task is to reach the green goal line from the topmost mode. (Right)
Structured exploration. We show sampled trajectories at the first iteration of fine-tuning for DPPO,
Gaussian, and GMM after pre-training on three sets of expert demonstrations, M1, M2, and M3.

Benefit 1: Structured, on-manifold exploration. Fig. 7 (right) shows the sampled trajectories
(with exploration noise) from DPPO, Gaussian, and GMM during the first iteration of fine-tuning.
DPPO explores in wide coverage around the expert data manifold, whereas Gaussian generates
less structured exploration noise (especially in M2) and GMM exhibits narrower coverage. Unlike
Gaussian policy that adds noise only to the final sampled action, diffusion adds multiple rounds
of noise through denoising. Each denoising step expands the coverage with new noise while also
pushing the newly denoised action towards the expert data manifold (Permenter and Yuan, 2023).
Moreover, the combination of diffusion parameterization with the denoising of action chunks means
that policy stochasticity in DPPO is structured in both action dimension and time horizon.

Benefit 2: Training stability from multi-step denoising process. In Fig. 8 (left), we run fine-
tuning after pre-training with M2 and attempt to de-stabilize fine-tuning by gradually adding noise
to the action during the fine-tuning process (see Appendix F.9 for details). We find that Gaussian
and GMM’s performance both collapse, while with DPPO, the performance is robust to the noise if
at least four denoising steps are used. This property also allows DPPO to apply significant noise to
the sampled actions, simulating an imperfect low-level controller to facilitate sim-to-real transfer in
Section 5.4. In Fig. 8 (right), we also find DPPO enjoys greater training stability when fine-tuning
long action chunks, e.g., up to Ta = 16, while Gaussian and GMM can fail to improve at all.

Fig. 9 visualizes how DPPO affects the multi-step denoising process. Over fine-tuning iterations,
the action distribution gradually converges through the denoising steps — the iterative refinement
is largely preserved, as opposed to, e.g., “collapsing” to the optimal actions at the first fine-tuned
denoising step or the final one. We postulate this contributes to the training stability of DPPO.

Benefit 3: Robust and generalizable fine-tuned policy. DPPO also generates final policies
robust to perturbations in dynamics and the initial state distribution. In Fig. 10, we again add noise
to the actions sampled from the fine-tuned policy (no noise applied during training) and find that
DPPO policy exhibits strong robustness to the noise compared to the Gaussian policy. DPPO policy
also converges to the (near-)optimal path from a larger distribution of initial states. This finding
echoes theoretical guarantees that Diffusion Policy, capable of representing complex multi-modal

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

 

Scenario A

Initial

Goal“A is safer than B 
because…”

Plan the shortest path from 
initial to goal

Forward planning

Plan the shortest path from 
goal to initial

Backward planning

[0, 3, 1, 4]

[4, 1, 3, 0]reverse

[3, 1, 4, 0]shift_left 

... swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Blocksworld
Initial:

Orange on blue, 
yellow on red 

Datasets {(x, y)} VLM - 500M

VLM - 3B
VLM - 7B

<Reasoning trace>
Risk: 0.4, EU: 0.6 > threshold

Risk: 0.6, EU: 0.2 < threshold Stop inference

Training

<Reasoning trace>
Risk: 0.6, EU: 0.2 < threshold

{(x, p(y|x)}

Distillation

Inference

VLM - 3B

<Reasoning trace>
Risk: 0.6, EU: 0.2 < threshold

VLM - 500M
0.2s 0.7s

p(It is very safe | x) = 0.5 

Scenario B

Images, perception, 
plan …

Images, perception, 
plan …

VLMScenario A

Scenario B VLM

… It is safe.

… It is not safe.

Scenario A

Scenario B VLM A is safer 
because…

VLMScenario A

Scenario B VLM

Compared to planB, 
it is safe.

Compared to planA, 
It is not safe.

s^0 s^1

Noise level

Figure 8: Training stability. Fine-tuning performance (averaged over five seeds, standard deviation
not shown) after pre-training with M2. (Left) Noise is injected into the applied actions after a few
training iterations. (Right) The action chunk size Ta is varied.
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Figure 9: Preserving the iterative refinement. The 2D actions from 50 trajectories at the branching
point through fine-tuning iterations after pre-training with M2. For DPPO, we also visualize the
action distribution through the final denoising steps at each fine-tuning iteration.

data distribution, can effectively deconvolve noise from noisy states (Block et al., 2024), a property
used in Chen et al. (2024) to stabilize long-horizon video generation.
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Figure 10: Policy robustness after fine-tuning. Green dot / box indicates the initial state region.

7 CONCLUSION AND FUTURE WORK

We believe DPPOwill become an important component in the pre-training-plus-fine-tuning pipeline
for training general-purpose real-world robotic policies. To this end, we hope in future work to
further showcase the promise of DPPO for simulation-to-real transfer (Chen et al., 2023b; Liang
et al., 2020; Ren et al., 2023; Chi et al., 2024a) in which we fine-tune a vision-based policy that
has been pre-trained on a variety of diverse tasks. We expect this pre-training to provide a large
and diverse expert data manifold, of which, as we have shown in Section 6, DPPO is well-suited
to take advantage for better exploration during fine-tuning. We are also excited to understand how
DPPO can fit together with other decision-making tools such as model-based planning (Janner et al.,
2022; Ding et al., 2024) and decision-making aided by video prediction (Chen et al., 2024); these
tools may help address the main limitation of DPPO — its lower sample efficiency than off-policy
methods — and unlocking performing practical RL in physical hardware.
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A EXTENDED RELATED WORK

A.1 RL TRAINING OF ROBOT POLICIES WITH OFFLINE DATA

Here, we discuss related work in training robot policies using RL augmented with offline data to
help RL better explore online in sparse reward settings.

One simple form is to use offline data to pre-train the policy, typically using behavior cloning, and
then fine-tune the policy online. This is the approach that DPPO takes. Often, a regularization
loss is applied to constrain the fine-tuned policy to stay close to the base policy, leading to natural
fine-tuned behavior and often better learning (Rajeswaran et al., 2017; Zhu et al., 2019; Torne et al.,
2024). DPPO does not apply regularization at fine-tuning as we find the on-manifold exploration
helps DPPO maintain natural behavior after fine-tuning Section 5.4. Another popular approach is
to learn a residual policy with RL on top of the frozen base policy (Alakuijala et al., 2021; Haldar
et al., 2023). A closer work to ours is Ankile et al. (2024b), which trains a one-step residual non-
diffusion policy with on-policy RL on top of a pre-trained chunked diffusion policy. This approach
has the benefit of being fully closed-loop but lacks the structured on-manifold exploration of DPPO.
Another hybrid approach is from Hu et al. (2023), which uses pre-trained and fine-tuned policies to
sample online experiences.

Another popular line of work, instead of training a base policy using offline data, directly adds
the data in the replay buffer for online, off-policy learning in a single stage (Hester et al., 2018;
Vecerik et al., 2017; Nair et al., 2020). One recent approach from Ball et al. (2023), RLPD, further
improves sample efficiency from previous off-policy methods incorporating, e.g., critic ensembling.
Luo et al. (2024) demonstrates RLPD solving real-world manipulation tasks (although generally
less challenging than ones solved by DPPO).

Other approaches, including Cal-QL, build on offline RL to learn from offline data and then switch
to online RL while still sampling from offline data (Nakamoto et al., 2024; Hansen-Estruch et al.,
2023; Yang et al., 2024). Often the distributional mismatch between offline data and online policy
needs to be addressed: Cal-QL proposes calibrated conservative Q-learning that learns a offline Q
function that lower bounds the true value of the learned policy; Lei et al. (2023) proposes ensemble
behavior cloning during pre-training to promote policy diversity (similarly in Wang et al. (2024b));
Lee et al. (2022) proposes prioritizing online samples and then near-on-policy samples from the
offline dataset during fine-tuning; Zhang et al. (2023) proposes a similar method akin to Hu et al.
(2023) that uses both pre-trained and online policies for collecting new samples.

A.2 DIFFUSION-BASED RL METHODS

This section discusses related methods that directly train or improve diffusion-based policies with
RL methods. The baselines to which we compare in Section 5.1 are discussed below as well, and
are highlighted in their corresponding colors. We also refer the readers to Zhu et al. (2023) for an
extensive survey on diffusion models for RL.

Most previous works have focused on the offline setting with a static dataset. One line of work fo-
cuses on state trajectory planning and guiding the denoising sampling process such that the sampled
actions satisfy some desired objectives. Janner et al. (2022) applies classifier guidance that generates
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trajectories with higher predicted rewards. Ajay et al. (2023) introduces classifier-free guidance that
avoids learning the value of noisy states. There is another line of work that uses diffusion models
as an action policy (instead of state planner) and generally applies Q-learning. DQL (Wang et al.,
2022) introduces Diffusion Q-Learning that learns a state-action critic for the final denoised actions
and backpropagates the gradient from the critic through the entire Diffusion Policy (actor) denois-
ing chain, akin to the usual Q-learning. IDQL (Hansen-Estruch et al., 2023), or Implicit Diffusion
Q-learning, proposes learning the critic to select the actions at inference time for either training or
evaluation while fitting the actor to all sampled actions. Kang et al. (2024) instead proposes using
the critic to re-weight the sampled actions for updating the actor itself, similar to weighted regression
baselines DAWR and DRWR introduced in our work. Goo and Niekum (2022) similarly extracts the
policy in the spirit of AWR (Peng et al., 2019). Chen et al. (2022a) trains the critic using value itera-
tion instead based on samples from the actor. Finally, Jackson et al. (2024) explores using diffusion
guidance to move offline data towards the target trajectory distribution.

We note that methods like DQL and IDQL can also be applied in the online setting. A small
amount of work also focuses entirely on the online setting. DIPO (Yang et al., 2023) differs from
DQL and related work in that it uses the critic to update the sampled actions (“action gradient”)
instead of the actor — the actor is then fitted with updated actions from the replay buffer. QSM, or
Q-Score Matching (Psenka et al., 2023), suggests that optimizing the likelihood of the entire chain
of denoised actions can be inefficient (contrary to our findings in the fine-tuning setting) and instead
proposes learning the optimal policy by iteratively aligning the gradient of the actor (i.e., score) with
the action gradient of the critic. Rigter et al. (2023) proposes learning a diffusion dynamic model to
generate synthetic trajectories for online training of a non-diffusion RL policy.

We note that almost all prior work in diffusion-based RL (offline or online) have relied on approxi-
mating the state-action Q function and using it to update the diffusion actor in some form — policy
gradient update has been deemed challenging due to the multi-step denoising process (Psenka et al.,
2023; Yang et al., 2023). Inaccurate Q values may lead to biased updates to the actor, which can
lead to training collapse as it starts with decent pre-training performance but quickly drops to zero
success rate as seen in Fig. 4, also failing to recover since then due to the sparse-reward setup. While
Q-learning methods generally achieve better sample efficiency when they can solve the task of in-
terest, our focus has been largely on challenging long-horizon robot manipulation tasks where the
training stability is much desired.

Lastly, we point out that the role of stochasticity of diffusion/consistency policy for exploration is
also explored by Chen et al. (2023a), who find such stochasticity suffices for exploration without
additional strategies needed. Our work discovers the similar effect, but also performs extensive
investigative experiments in Section 6 and ablation studies in Appendix D.7 to provide affirmative
evidence for the distinct exploration strategies induced by diffusion.

Distinction from the policy gradient formulation in Psenka et al. (2023). There have been a
different formulation introduced in Psenka et al. (2023) Sec. 3 that derives the policy gradient up-
date for diffusion policy. The derivation is based on converting the gradient of the log likelihood
of the final denoised action to the sum over log likelihood of individual denoising actions. This
formulation, unlike DPPO, does not treat the multi-step denoising process as a MDP. In the policy
gradient update, Psenka et al. (2023) sums over denoising steps and then takes expectation over
environment steps, while DPPO’s update (4.2) takes expectation over both denoising and environ-
ment steps, potentially leading to better sample efficiency. Moreover, Psenka et al. (2023) does not
propose leveraging PPO updates or other modifications to diffusion, and finds such vanilla form of
policy gradient update to be ineffective. We formulate DPPO independent of their work and find
DPPO highly effective in fine-tuning settings while also being competitive in training from scratch
(Appendix D.3).

Potential impact beyond robotics. DPPO is a generic framework that can be potentially applied
to fine-tuning diffusion-based models in sequential interactive settings beyond robotics. These in-
clude: extending diffusion-based text-to-image generation (Black et al., 2023; Clark et al., 2023) to
a multi-turn interactive setting with human feedback; drug design/discovery applications (Luo et al.,
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2022; Huang et al., 2024) with policy search on the molecular level in feedback with simulators
(in the spirit of prior non-diffusion-based drug discovery with RL (Popova et al., 2018)); and the
adaptation of diffusion-based language modeling (Sahoo et al., 2024; Lou et al., 2024) to interactive
(e.g. with human feedback (Ouyang et al., 2022)), problem-solving and planning tasks.

B BEST PRACTICES FOR DPPO

Fine-tune only the last few denoising steps. Diffusion Policy often uses up to K = 100 denoising
steps with DDPM to better capture the complex data distribution of expert demonstrations. With
DPPO, we can choose to fine-tune only a subset of the denoising steps instead, e.g., the last K ′

steps. In Section 4.1 and Section 6 we find this speeds up DPPO training and reduces GPU memory
usage without sacrificing the asymptotic performance. Instead of fine-tuning the pre-trained model
weights θ, we make a copy θFT — θ is frozen and used for the early denoising steps, while θFT is
used for the last K ′ steps and updated with DPPO. Although maintaining the frozen θ takes extra
GPU memory (e.g., about 60MB in HalfCheetah-v2), we find that storing the extra intermediate
denoised actions and their likelihoods due to higher K ′ can taking significantly more GPU memory
(e.g., 1.1GB extra if K ′ = 20 instead 10 in HalfCheetah-v2).

Fine-tune DDIM. Instead of fine-tuning all K or the last few steps of the DDPM, one can also
apply Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020a) during fine-tuning, which
greatly reduces the number of sampling steps KDDIM ≪ K, e.g., as few as 5 steps, and thus poten-
tially improves DPPO efficiency as fewer steps are fine-tuned.

xk−1 ∼ pDDIM
θ (xk−1|xk) := N (xk−1;µDDIM(xk, εθ(x

k, k)), ησ2
kI), k = KDDIM, ..., 0. (B.1)

Although DDIM is typically used as a deterministic sampler by setting η = 0 in (B.1), we can use
η > 0 for fine-tuning that provides exploration noise and avoids calculating Gaussian likelihood
with a Dirac distribution. In practice, we set η = 1 for training (equivalent to applying DDPM
Song et al. (2020a)) and then η = 0 for evaluation. We reserve DDIM sampling for our pixel-based
experiments and long-horizon furniture assembly tasks, where the efficiency improvements are much
desired.

Diffusion noise scheduling. We use the cosine schedule for σk introduced in Nichol and Dhariwal
(2021), which was originally annealed to a small value on the order of 1E−4 at k = 0. In DPPO, the
value of σk also translates to the exploration noise that is crucial to training efficiency. Empirically,
we find that clipping σk to a higher minimum value (denoted σexp

min, e.g., 0.01− 0.1) when sampling
actions helps exploration (see sensitivity analysis in Appendix D.2). Additionally we clip σk to be
at least 0.1 (denoted σprob

min ) when evaluating the Gaussian likelihood log π̄θ(āt̄|s̄t̄), which improves
training stability by avoiding large magnitude.

Network architecture. We study both Multi-layer Perceptron (MLP) and UNet (Ronneberger
et al., 2015) as the policy heads in Diffusion Policy. An MLP offers simpler setup and we find
it generally fine-tunes more stably with DPPO. Moreover, since the UNet applies convolution to
the denoised action, we can pre-train and fine-tune with different action chunk size Ta (the number
of environment timesteps that the policy predicts future actions with), e.g., 16 and 8. We find that
DPPO benefits from pre-training with larger Ta (better prediction) and fine-tuning with smaller Ta
(more amenable to policy gradient)4.

C ADDITIONAL DETAILS OF DPPO IMPLEMENTATION

4With fully-connected layers in MLP, empirically we find that using different chunk sizes for pre-training
and fine-tuning with MLP leads to training instability.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Pseudocode. The pseudocode for DPPO is presented in Algorithm 1. DPPO takes as input a
diffusion policy πθ trained using behavior cloning loss LBC. The policy is then fine-tuned using a
PPO-style loss (Schulman et al., 2017) with careful treatment of the denoising process (Section 4).

Pre-training. The diffusion policy πθ is pre-trained using a behavior cloning loss (Ho et al., 2020):

LBC(θ) = E(st,a
0
t )∼Doff

[
∥εt − εθ(a

0
t , st, k)∥2

]
, (C.1)

where Doff is the offline dataset and εθ is the policy network predicting the sampled noise added to
a0t based on the noisy action. We use the cosine noise schedule from Nichol and Dhariwal (2021).

Algorithm 1 DPPO
1: Pre-train diffusion policy πθ with offline dataset Doff using BC loss LBC(θ) Eq. (C.1).
2: Initialize value function Vϕ.
3: for iteration = 1, 2, . . . do
4: Initialize rollout buffer Ditr.
5: πθold = πθ.
6: for environment = 1, 2, . . . , N in parallel do
7: Initialize state s̄t̄(0,K) = (s0, a

K
0 ) inMDP.

8: for environment step t = 1, . . . , T , denoising step k = K − 1, . . . , 0 do
9: Sample the next denoised action āt̄(t,k) = akt ∼ πθold .

10: if k = 0 then
11: Run a0t in the environment and observe R̄t̄(t,0) and s̄t̄(t+1,K).
12: else
13: Set R̄t̄(t,k) = 0 and s̄t̄(t,k−1) = (st, a

k
t ).

14: Add (k, s̄t̄(t,k), āt̄(t,k), R̄t̄(t,k)) to Ditr.
15: Compute advantage estimates Aπθold (st̄(t,k=0), at̄(t,k=0)) for Ditr using GAE Eq. (C.2).
16: for update = 1, 2, . . . , num_update do ▷ Based on replay ratio Nθ

17: for minibatch = 1, 2, . . . , B do
18: Sample (k, s̄t̄(t,k), āt̄(t,k), R̄t̄(t,k)) and Aπθold (st̄(t,k), at̄(t,k)) from Ditr.
19: Compute denoising-discounted advantage Ât̄(t,k) = γkDENOISEA

πθold (st̄(t,0), at̄(t,0)).
20: Optimize πθ using policy gradient loss Lθ Eq. (C.3).
21: Optimize Vϕ using value loss Lϕ Eq. (C.4).
22: return converged policy πθ.

Environment-step advantage estimation. We use Generalized Advantage Estimation (GAE)
(Schulman et al., 2015) with parameter λ for advantage estimation in Algorithm 1. GAE-λ ap-
proximates the advantage function using the series

Âλt̄(t,k=0) =

∞∑
l=0

(γλ)lδ̄t̄(t+l,k=0), where δ̄t̄(t,k) = R̄t̄(t,k) + γENVVϕ(s̄t̄(t+1,k))− Vϕ(s̄t̄(t,k)).

(C.2)
Notably, GAE-λ interpolates between a one-step temporal difference (Âλ=0

t̄(t,k) = R̄t̄(t,k) +

γENVVϕ(s̄t̄(t+1,k)) − Vϕ(s̄t̄(t,k))) and the Monte Carlo return of the episode relative to the baseline
(Âλ=1

t̄(t,k) =
∑T−t
l=0 γlENVR̄t̄(t+l,k) − Vϕ(s̄t̄(t,k))). We refer the reader to Table 8 for additional details

on GAE parameter selection and Section D.2 for ablations on the choice of advantage estimator.

Note that in Eq. (C.2) we are only concerned with k = 0, i.e., the final denoising step. In DPPO
formulation, we only need to calculate the advantage for k = 0 (i.e., environment steps), but not
for intermediate denoising steps. We only need to apply denoising discounting to the calculated
advantages so they can be applied to each denoising step k.
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Fine-tuning. During RL fine-tuning, we update the policy πθ using the clipped objective:

Lθ = EDitr min
(
Âπ̄θold (s̄t̄, āt̄)

π̄θ(s̄t̄, āt̄)

π̄θold(s̄t̄, āt̄)
, Âπθold (s̄t̄, āt̄) clip

( π̄θ(s̄t̄, āt̄)

π̄θold(s̄t̄, āt̄)
, 1− ε, 1 + ε

))
. (C.3)

If we choose to fine-tune only the last K ′ denoising steps, then we sample only those from Ditr.

Finally, we train the value function to predict the future discounted sum of rewards (i.e., discounted
returns):

Lϕ = EDitr
[
∥
T−t∑
l=0

γlENVR̄t̄(t+l,k) − Vϕ(st)∥2
]
. (C.4)

Similar to all baselines in Appendix F.3, we denote Nθ and Nϕ the replay ratio for the actor (diffusion
policy) and the value critic in DPPO; in practice we always set Nθ = Nϕ. Similar to usual PPO
implementations (Huang et al., 2022), the batch updates in an iteration terminate when the KL
divergence between πθ and πθold reaches 1.

Large batch size. Since the gradient update in DPPO involves expectation over both environment
steps and denoising steps, we use a larger batch size compared to, e.g., PPO training with Gaussian
policy parameterization. Roughly we use the batch size from Gaussian training times the number
of the fine-tuned denoising steps; in some cases like ROBOMIMIC we also observe that a much
smaller batch size (close to that of Gaussian training) can be used and significantly improves sample
efficiency.

Gradient clipping ratio. We also find the PPO clipping ratio, ε, can affect the training stability
significantly in DPPO (as well as in Gaussian and GMM policies) especially in sparse-reward ma-
nipulation tasks. In practice we find that, a good indicator of the amount of clipping leading to opti-
mal training efficiency, is to aim for a clipping fraction (fraction of individual samples being clipped
in a batch) of 10% to 20%. For each method in different tasks, we vary ε in {.1, .01, .001} and
choose the highest value that satisfies the clipping fraction target. Empirically we also find that, us-
ing a higher ε for earlier denoising steps in DPPO further improves training stability in manipulation
tasks. Denote εk the clipping value at denoising step k, and in practice we set εk=(K−1) = 0.1εk=0,
and it follows an exponential schedule among intermediate k.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 COMPARING TO OTHER DEMO-AUGMENTED RL METHODS

We compare DPPO with recently proposed RL methods for training robot policies (not necessarily
diffusion-based) leveraging offline data, including RLPD (Ball et al., 2023), Cal-QL (Nakamoto
et al., 2024), and IBRL (Hu et al., 2023). These methods add expert data in the replay buffer
and performs off-policy updates (IBRL and Cal-QL also pretrain with behavior cloning and of-
fline RL objectives, respectively), which significantly improves sample efficiency vs. DPPO in
HalfCheetah-v2 (Fig. 11, top left).

Among the FRANKA-KITCHEN settings (Fig. 11, top right), we find RLPD and IBRL
fail to learn well especially with noisier demonstrations from Kitchen-Partial-v0 and
Kitchen-Mixed-v0. Cal-QL achieves competitive performance but DPPO still achieves over-
all the best performance especially with Kitchen-Complete-v0. We note that DPPO, not us-
ing any expert data during fine-tuning, can be sensitive to the pre-training performance; we find the
incomplete demonstrations in Kitchen-Partial-v0 and Kitchen-Mixed-v0 cause chal-
lenge in fully modeling the multi-modality of the data even with diffusion parameterization and
prevent DPPO from achieving (near-)perfect fine-tuning performance.

Nonetheless, we believe the expert demonstrations from ROBOMIMIC are most reflective of pre-
training plus fine-tuning in robotics as all demonstrations complete the task despite the varying
quality. Fig. 11 bottom row shows the performance of DPPO and baselines using either cleaner
PH or noisier MH data in Can and Square; DPPO exhibits strong final performance. RLPD and
Cal-QL fail to learn at all. Although IBRLmatches the success rates with DPPO in Square, we
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find that it saturates at lower success levels while DPPO continues to reach ∼100% success rates
(not shown). DPPO also runs significantly faster in wall-clock time than the baselines as it leverages
sampling from highly parallelized environments5; thus we cap the number of samples at 1e6 for the
baselines in ROBOMIMIC, also since their performance saturates.

Figure 11: Comparing to other demo-augmented RL methods. Results are aver-
aged over five seeds in HalfCheetah-v2 and three seeds in Kitchen-Complete-v0,
Kitchen-Partial-v0, Kitchen-Partial-v0, Can, and Square.

We have also experimented with using diffusion policies for RLPD, Cal-QL, and IBRL, and
the results are shown in Fig. 12. We use either action chunk size Ta = 1 or Ta = 4. We see
similar results as in Fig. 11 using Gaussian policies that RLPD and Cal-QL fails to solve the
task at all. We believe that the worse performance of Cal-QL is due to the offline RL objective
(based on learning the state-action Q function) making learning precise continuous actions needed in
ROBOMIMIC tasks very difficult, regardless of the policy parameterization, which corroborates our
original finding in Section 5.1 when comparing DPPO to Q-learning-based diffusion RL methods.
Compared to RLPD that trains with the SAC objective and expert data in the replay buffer, IBRL,
using BC pre-training, is able to learn a base policy more effectively and uses it for online data
collection. DPPO benefits from directly fine-tuning the pre-trained policy (instead of training a new
one using experiences from the pre-trained policy), and achieves similar or better sample efficiency
before 1e6 steps compared to IBRL, and converges to ∼100% success rates unlike IBRL saturates
at lower levels (not shown).

Figure 12: Using diffusion policy for other demo-augmented RL methods. Results are averaged
over three seeds.

5Off-policy methods (baselines) usually cannot fully leverage parallelized sampling as the policy is updated
less often (e.g., 50 updates per 50 samples instead of 1 update per 1 sample) and the performance can be
affected.
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D.2 ABLATION STUDIES ON DESIGN DECISIONS IN DPPO

1. Choice of advantage estimator. In Section 4.1 we demonstrate how to efficiently estimate the
advantage used in PPO updates by learning Ṽ (st) that only depends on the environment state; the
advantage used in DPPO is formally

Â = γkDENOISE(r̄(s̄t̄, āt̄)− Ṽ (st)).

We now compare this choice with learning the value of the full state s̄t̄(t,0) that includes environ-
ment state st and denoised action ak=1

t . We additionally compare with the state-action Q-function
estimator used in Psenka et al. (2023)6, Q̃(st, a

k=0
t ), that does not directly use the rollout reward r̄

in the advantage.

Fig. 13 shows the fine-tuning results in Hopper-v2 and HalfCheetah-v2 from GYM, and Can
and Square from ROBOMIMIC. On the simpler Hopper-v2, we observe that the two baselines,
both estimating the value of some action, achieves higher reward during fine-tuning than DPPO’s
choice. However, in the more challenging tasks, the environment-state-only advantage used in
DPPO consistently leads to the most improved performance. We believe estimating the accurate
value of applying a continuous and high-dimensional action can be challenging, and this is exac-
erbated by the high stochasticity of diffusion-based policies and the action chunk size. The results
here corroborate the findings in Section 5.1 that off-policy Q-learning methods can perform well in
Hopper-v2 and Walker2D-v2, but often exhibit training instability in manipulation tasks from
ROBOMIMIC.

Figure 13: Choice of advantage estimator. Results are averaged over five seeds in Hopper-v2
and HalfCheetah-v2 and three seeds in Can and Square.

Denoising discount factor. We further examine how γDENOISE in the DPPO advantage estimator
affects fine-tuning. Using a smaller value (i.e., more discount) has the effect of downweighting
the contribution of earlier denoising steps in the policy gradient. Fig. 14 shows the fine-tuning
results in the same four tasks with varying γDENOISE ∈ [0.5, 0.8, 0.9, 1]. We find in Hopper-v2 and
HalfCheetah-v2 γDENOISE = 0.8 leads to better efficiency while smaller γDENOISE = 0.5 slows
training. The value does not affect training noticeably in Can. In Square the smaller γDENOISE =
0.5 works slightly better. Overall in manipulation tasks, DPPO training seems relatively robust to
this choice.

Figure 14: Choice of denoising discount factor. Results are averaged over five seeds in
Hopper-v2 and HalfCheetah-v2 and three seeds in Can and Square.

6Psenka et al. (2023) applies off-policy training with double Q-learning (according to its open-source im-
plementation) and policy gradient over the denoising steps. Note that this is a baseline in Psenka et al. (2023)
that is conjectured to be inefficient. We follow the same except for applying on-policy PPO updates.
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2. Choice of diffusion noise schedule. As introduced in Section 4.1, we find it helpful to clip the
diffusion noise σk to a higher minimum value σexp

min to ensure sufficient exploration. In Figure 15, we
perform analysis on varying σexp

min ∈ {.001, .01, .1, .2} (keeping σprob
min = .1 to evaluate likelihoods).

Although in Can the choice of σexp
min does not affect the fine-tuning performance, in Square a

higher σexp
min = 0.1 is required to prevent the policy from collapsing. We conjecture that this is due to

limited exploration causing policy over-optimizing the collected samples that exhibit limited state-
action coverage. We also visualize the trajectories at the beginning of fine-tuning in Avoid task
from D3IL. With higher σexp

min, the trajectories still remain near the two modes of the pre-training
data but exhibit a higher coverage in the state space — we believe this additional coverage leads to
better exploration. Anecdotally, we find terminating the denoising process early can also provide
exploration noise and lead to comparable results, but it requires a more involved implementation
around the denoising MDP.
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Figure 15: Choice of minimum diffusion noise. Results are averaged over three seeds. Note in
Left, with higher minimum noise level, the sampled trajectories exhibit wider coverage at the two
modes but still maintain the overall structure.
3. Choice of the number of fine-tuned denoising steps. We examine how the number of fine-
tuned denoising steps in DPPO, K ′, affects the fine-tune performance and wall-clock time in Fig. 16.
We show the curves of individual runs (three for each K ′) instead of the average as their wall-clock
times (X-axis) are not perfectly aligned. Generally, fine-tuning too few denoising steps (e.g., 3) can
lead to subpar asymptotic performance and slower convergence especially in Can. Fine-tuning 10
steps leads to the overall best efficiency. Similar results are also shown in Fig. 19 with Avoid task.
Lastly, we note that the GPU memory usage scales linearly with K ′.

We note that the findings here mostly correlate with those from varying the denoising discount
factor, γDENOISE. Discounting the earlier denoising steps in the policy gradient can be considered as
a soft version of hard limiting the number of fine-tuned denoising steps. Depending on the amount
of fine-tuning needed from the pre-trained action distribution, one can flexibly adjust γDENOISE and
K ′ to achieve the best efficiency.

Figure 16: Choice of number of fine-tuned denoising steps, K ′. Individual runs are shown. The
curves are smoothed using a Savitzky–Golay filter.

D.3 EFFECT OF EXPERT DATA

We investigate the effect of the amount of pre-training expert data on fine-tuning performance. In
Fig. 17 we compare DPPO and Gaussian in Hopper-v2, Square, and One-leg task from FUR-
NITURE-BENCH, using varying numbers of expert data (episodes) denoted in the figure. Overall,
we find DPPO can better leverage the pre-training data and fine-tune to high success rates. Notably,
DPPO obtains non-trivial performance (60% success rate) on One-leg from only 10 episode of
demonstrations.
Training from scratch. In Fig. 18 we compare DPPO (10 denoising steps) and Gaussian trained
from scratch (no pre-training on expert data) in the three OpenAI GYM tasks. As using larger action

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

 

Scenario A

Initial

Goal“A is safer than B 
because…”

Plan the shortest path from 
initial to goal

Forward planning

Plan the shortest path from 
goal to initial

Backward planning

[0, 3, 1, 4]

[4, 1, 3, 0]reverse

[3, 1, 4, 0]shift_left 

...

[1, 3, 0, 4]shift_left 

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Blocksworld
Initial:

Orange on blue, 
yellow on red 

Datasets {(x, y)} VLM - 500M

VLM - 3B
VLM - 7B

<Reasoning trace>
Risk: 0.4, EU: 0.6 > threshold

Risk: 0.6, EU: 0.2 < threshold Stop inference

Training

<Reasoning trace>
Risk: 0.6, EU: 0.2 < threshold

{(x, p(y|x)}

Distillation

Inference

VLM - 3B

<Reasoning trace>
Risk: 0.6, EU: 0.2 < threshold

VLM - 500M
0.2s 0.7s

p(It is very safe | x) = 0.5 

Scenario B

Images, perception, 
plan …

Images, perception, 
plan …

VLMScenario A

Scenario B VLM

… It is safe.

… It is not safe.

Scenario A

Scenario B VLM A is safer 
because…

VLMScenario A

Scenario B VLM

Compared to planB, 
it is safe.

Compared to planA, 
It is not safe.

s^0 s^1 Figure 17: Varying the number of expert demonstrations. The numbers in the legends indicates
the number of episodes used in pre-training.

chunk sizes Ta leads to poor from-scratch training shown in Fig. 17, we focus on single-action
chunks Ta = 1 (and Tp = 1) as is typical in RL benchmarking. Though we find Gaussian trains
faster than DPPO (expected since DPPO solves an MDP with longer effective horizon), DPPO
still attains reasonable final performance. However, due to the multi-step (10) denoising sampling,
DPPO takes about 6×wall-clock time compared to Gaussian. We hope that future work will explore
how to design the training curriculum of denoising steps for the best balance of training performance
and wall-clock efficiency.

Figure 18: No expert data / pre-training with GYM tasks. Results are averaged over five seeds.

D.4 COMPARING TO OTHER POLICY PARAMETERIZATIONS IN AVOID

Figure 19 depicts the performance of various parameterizations of DPPO (with differing numbers
of fine-tuned denoising steps, K ′) to Gaussian and GMM baselines. We study the Avoid task from
D3IL, after pre-training with the data from M1, M2, M3 as described in Section 6. We find that,
for K ′ ∈ {15, 20}, DPPO attains the highest performance of all methods and trains the quickest in
terms of environment steps; on M1, M2, it appears to attain the greatest terminal performance as
well. K ′ = 10 appears slightly better than, but roughly comparable to, the Gaussian baseline, with
GMM and K ′ < 10 performing less strongly.

Figure 19: Fine-tuning performance (averaged over five seeds, standard deviation not shown) after
pre-training with M1, M2, and M3 in Avoid task from D3IL. DPPO (K = 20), Gaussian, and
GMM policies are compared. We also sweep the number of fine-tuned denoising steps K ′ in DPPO.
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D.5 COMPARING TO OTHER POLICY PARAMETERIZATIONS IN THE EASIER TASKS FROM
ROBOMIMIC

Figure 20 compares the performance of DPPO to Gaussian and GMM baslines, across a variety of
architectures, and with state and pixel inputs, in Lift and Can environments in the ROBOMIMIC
suite. Compared to the Square and Transport (results shown in Section 5), these environments
are considered to be “easier”, and this is reflected in the greater performance of DPPO and Gaussian
baselines (GMM still exhibits subpar performance). Nonetheless, DPPO still achieves similar or
even better sample efficiency compared to Gaussian baseline.

Figure 20: Comparing to other policy parameterizations in the easier Lift and Can tasks from
ROBOMIMIC, with state (left) or pixel (right) observation. Results are averaged over three seeds.

D.6 COMPARING TO POLICY GRADIENT USING EXACT LIKELIHOOD OF DIFFUSION POLICY

Here we experiment another novel method (which, to our knowledge, has not been explicitly studied
in any previous work) for performing policy gradient with diffusion-based policies. Although diffu-
sion model does not directly model the action likelihood, pθ(a0|s), there have been ways to estimate
the value, e.g., by solving the probability flow ODE that implements DDPM (Song et al., 2020b).
We refer the readers to Appendix. D in Song et al. (2020b) for a comprehensive exposition. We
follow the official open-source code from Song et al.7, and implement policy gradient (single-level
MDP) that uses the exact action likelihood πθ(at|st).
Fig. 21 shows the comparison between DPPO and diffusion policy gradient using exact likelihood
estimate. Exact policy gradient improves the base policy in Hopper-v2 but does not outperform
DPPO. It also requires more runtime and GPU memory as it backpropagates through the ODE.
In the more challenging Can its success rate drops to zero. Moreover, policy gradient with exact
likelihood does not offer the flexibility of fine-tuning fewer-than-K denoising steps or discounting
the early denoising steps that DPPO offers, which have shown in Appendix D.2 to often improve
fine-tuning efficiency.
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Figure 21: Comparing to diffusion policy gradient with exact action likelihood. Results are
averaged over five seeds in Hopper-v2 and HalfCheetah-v2, and three seeds in Can.

D.7 ABLATING STRUCTURED EXPLORATION IN DPPO

Here we provide additional evidence on how structured exploration of DPPO (Section 6) aids RL
fine-tuning. While Fig. 19 compares DPPO with Gaussian and GMM policies and shows DPPO

7https://github.com/yang-song/score_sde_pytorch
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trajectories achieve wide coverage and stay near the expert data manifold, in Fig. 22 we ablate
such structured exploration within DPPO. We use DDIM (Song et al., 2020a) such that actions can
be sampled deterministically — this allows us to sample trajectories without adding any noise to
intermediate denoising steps but only to the final denoised action (k = 0), and compare that to
DPPO with noise added to all denoising steps. In both cases, we consider the minimum noise level
σexp

min of 0.05 and 0.1. We see in Fig. 22 that with higher noise level, DPPO trajectories cover the
expert data modes well without exploring aggressively into new modes, while in the case of only
adding noise to the final step, the trajectories become less structured especially in M3.

Then we run both exploration schemes in Can and Square from ROBOMIMIC, and Fig. 14 right
shows the original DPPO setup achieves faster convergence than when noise is only added to the
final step. This result, on top of results from Section 5.3 showing DPPO achiving better sample
efficiency than Gaussian and GMM policies, showcases the benefit of structured exploration in fine-
tuning.

Figure 22: Ablating Structured Exploration in DPPO. (Left) Sampled trajectories with noise
added to all denoising steps vs. only to the last step k = 0 in Avoid. (Right) Results are averaged
over three seeds in Can and Square.

E REPORTING OF WALL-CLOCK TIMES

Comparing to other diffusion-based RL algorithms Section 5.1. Table 1 and Table 2 shows the
the wall-clock time used in each OpenAI GYM task and ROBOMIMIC task. In GYM tasks, on average
DPPO trains 41%, 37%, and 12% faster than DAWR, DIPO, and DQL, respectively, which all
require a significant amount of gradient updates per sample to train stably. QSM, DRWR, and IDQL
trains 43%, 33%, and 7% faster than DPPO, respectively. ROBOMIMIC tasks are more expensive
to simulate, especially with Transport task, and thus the wall-clock difference is smaller among
the different methods. All methods use comparable time except for DIPO that uses slightly more
on average.

Method
Task

Hopper-v2 Walker2D-v2 HalfCheetah-v2

DRWR 11.3 12.7 10.4
DAWR 30.4 30.7 27.1
DIPO 27.8 27.9 26.0
IDQL 16.3 16.1 15.5
DQL 20.5 20.5 17.6
QSM 9.6 9.9 9.7
DPPO 16.6 18.3 16.8

Table 1: Wall-clock time in seconds for a single training iteration in OpenAI GYM tasks when
comparing diffusion-based RL algorithms. Each iteration involves 500 environment timesteps in
each of the 40 parallelized environments running on 40 CPU threads and a NVIDIA RTX 2080
GPU (20000 steps total).
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Method
Task

Lift Can Square Transport

DRWR 32.5 39.5 59.8 346.1
DAWR 38.6 46.0 70.5 354.3
DIPO 43.9 51.6 73.3 359.7
IDQL 33.8 41.7 63.7 349.9
DQL 36.9 44.4 68.5 353.5
QSM 31.8 44.5 68.7 322.5
DPPO 35.2 42.0 65.6 350.3

Table 2: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
state input when comparing diffusion-based RL algorithms. Each iteration involves 4 episodes
(1200 environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport)
from each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).

Comparing to other policy parameterizations and architecture Section 5.3 and Section 5.4.
Table 3 and Table 4 shows the wall-clock time used in fine-tuning in each ROBOMIMIC task with
state or pixel input, respectively. Gaussian and GMM use similar times and Transformer is slightly
more expensive than MLP. On average with state input, DPPO-MLP trains 24%, 21%, 24%, and
22% slower than baselines due to the more expensive diffusion sampling. DPPO-UNet requires
more time with the extensive use of convolutional and normalization layers and trains on average
49% slower than DPPO-MLP. On average with pixel input, DPPO-ViT-MLP trains 14% slower
than Gaussian-ViT-MLP — the difference is smaller than the state input case as the rendering in
simulation can be expensive. Table 5 shows the wall-clock time used in FURNITURE-BENCH tasks.
DPPO-UNet trains 20% slower than Gaussian-MLP on average.

Method
Task

Lift Can Square Transport

Gaussian-MLP 27.7 35.7 56.2 255.6
Gaussian-Transformer 29.8 37.1 57.8 266.1

GMM-MLP 28.0 36.2 55.2 254.5
GMM-Transformer 29.5 37.4 58.1 260.2

DPPO-MLP 35.6 43.3 65.0 350.5
DPPO-UNet 83.6 92.7 130.4 431.1

Table 3: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
state input when comparing policy parameterizations. Each iteration involves 4 episodes (1200
environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport) from
each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).

Method
Task

Lift Can Square Transport

Gaussian-ViT-MLP 153.6 173.1 277.0 770.0
DPPO-ViT-MLP 194.9 202.5 328.5 871.3

Table 4: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
pixel input when comparing policy parameterizations. Each iteration involves 4 episodes (1200
environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport) from
each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).
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Method
Task

One-leg Lamp Round-table

Gaussian-MLP 101.8 202.8 168.7
DPPO-UNet 148.4 258.2 188.6

Table 5: Wall-clock time in seconds for a single training iteration in FURNITURE-BENCH tasks
when comparing policy parameterizations. Each iteration involves 1 episodes (700 environment
timesteps for One-leg, and 1000 for Lamp and Round-table) from each of the 1000 paral-
lelized environments running on a NVIDIA L40 GPU (700000, 1000000, 1000000 steps).

F ADDITIONAL EXPERIMENTAL DETAILS

Task / Dataset Obs dim - State Obs dim - Pixel Act dim T Sparse reward ?

GYM

Hopper-v2 11 - 3 1000 No
Walker2D-v2 17 - 6 1000 No

HalfCheetah-v2 17 - 6 1000 No

FRANKA-KITCHEN

Kitchen-Complete-v0 60 - 9 280 Yes
Kitchen-Partial-v0 60 - 9 280 Yes
Kitchen-Mixed-v0 60 - 9 280 Yes

ROBOMIMIC, state input

Lift 19 - 7 300 Yes
Can 23 - 7 300 Yes

Square 23 - 7 400 Yes
Transport 59 - 14 800 Yes

ROBOMIMIC, pixel input

Lift 9 96×96 7 300 Yes
Can 9 96×96 7 300 Yes

Square 9 96×96 7 400 Yes
Transport 18 2×96×96 14 800 Yes

FURNITURE-BENCH

One-leg 58 - 10 700 Yes
Lamp 44 - 10 1000 Yes

Round-table 44 - 10 1000 Yes

D3IL
M1 4 - 2 100 Yes
M2 4 - 2 100 Yes
M3 4 - 2 100 Yes

Table 6: Comparison of the different tasks considered. “Obs dim - State”: dimension of the state
observation input. “Obs dim - State”: dimension of the pixel observation input. “Act dim - State”:
dimension of the action space. T : maximum number of steps in an episode. “Sparse reward ?”:
whether sparse reward is used in training instead of dense reward.

F.1 DETAILS OF POLICY ARCHITECTURES USED IN ALL EXPERIMENTS

MLP. For most of the experiments, we use a Multi-layer Perceptron (MLP) with two-layer residual
connection as the policy head. For diffusion-based policies, we also use a small MLP encoder for the
state input and another small MLP with sinusoidal positional encoding for the denoising timestep
input. Their output features are then concatenated before being fed into the MLP head. Diffusion
Policy, proposed by Chi et al. (2024b), does not use MLP as the diffusion architecture, but we find
it delivers comparable (or even better) pre-training performance compared to UNet.

Transformer. For comparing to other policy parameterizations in Section 5.3, we also consider
Transformer as the policy architecture for the Gaussian and GMM baselines. We consider decoder
only. No dropout is used. A learned positional embedding for the action chunk is the sequence into
the decoder.

UNet. For comparing to other policy parameterizations in Section 5.3, we also consider UNet
(Ronneberger et al., 2015) as a possible architecture for DP. We follow the implementation from
Chi et al. (2024b) that uses sinusoidal positional encoding for the denoising timestep input, except
for using a larger MLP encoder for the observation input in each convolutional block. We find this
modification helpful in more challenging tasks.
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ViT. For pixel-based experiments in Section 5.3 we use Vision-Transformer(ViT)-based image
encoder introduced by Hu et al. (2023) before an MLP head. Proprioception input is appended
to each channel of the image patches. We also follow (Hu et al., 2023) and use a learned spatial
embedding for the ViT output to greatly reduce the number of features, which are then fed into the
downstream MLP head.

F.2 ADDITIONAL DETAILS OF GYM TASKS AND TRAINING IN SECTION 5.1

Pre-training. The observations and actions are normalized to [0, 1] using min/max statistics from
the pre-training dataset. For all three tasks the policy is trained for 3000 epochs with batch size 128,
learning rate of 1e-3 decayed to 1e-4 with a cosine schedule, and weight decay of 1e-6. Exponential
Moving Average (EMA) is applied with a decay rate of 0.995. Future work can also explore the
v-D4RL benchmark from Lu et al. (2022) that contains pixel-based version of the original D4RL
tasks with visual distractions.

Fine-tuning. All methods from Section 5.1 use the same pre-trained policy. Fine-tuning is done
using online experiences sampled from 40 parallelized MuJoCo environments (Todorov et al., 2012).
Reward curves shown in Fig. 4 are evaluated by running fine-tuned policies with σexp

min = 0.001 (i.e.,
without extra noise) for 40 episodes. Each episode terminates if the default conditions are met or
the episode reaches 1000 timesteps. Detailed hyperparameters are listed in Table 7.

F.3 DESCRIPTIONS OF DIFFUSION-BASED RL ALGORITHM BASELINES IN SECTION 5.1

DRWR: This is a customized reward-weighted regression (RWR) algorithm Peters and Schaal
(2007) that fine-tunes a pre-trained DP with a supervised objective with higher weights on actions
that lead to higher reward-to-go r.

The reward is scaled with β and the exponentiated weight is clipped at wmax. The policy is updated
with experiences collected with the current policy (no buffer for data from previous iteration) and a
replay ratio of Nθ. No critic is learned.

Lθ = Eπ̄θ,εt
[
min(eβrt , wmax)∥εt − εθ(a

0
t , st, k)∥2

]
.

DAWR: This is a customized advantage-weighted regression (AWR) algorithm Peng et al. (2019)
that builds on DRWR but uses TD-bootstrapped Sutton and Barto (2018) advantage estimation in-
stead of the higher-variance reward-to-go for better training stability and efficiency. DAWR (and
DRWR) can be seen as approximately optimizing (4.2) with a Kullback–Leibler (KL) divergence
constraint on the policy Peng et al. (2019); Black et al. (2023).

The advantage is scaled with β and the exponentiated weight is clipped at wmax. Unlike DRWR, we
follow (Peng et al., 2019) and trains the actor in an off-policy manner: recent experiences are saved
in a replay buffer D, and the actor is updated with a replay ratio of Nθ.

Lθ = ED,εt
[
min(eβÂϕ(st,a

0
t ), wmax)∥εt − εθ(a

0
t , st, k)∥2

]
.

The critic is updated less frequently (we find diffusion models need many gradient updates to fit the
actions) with a replay ratio of Nϕ.

Lϕ = ED[∥Âϕ(st, a0t )−A(st, a
0
t )∥2

]
,

where A is calculated using TD(λ), with λ as λDAWR and the discount factor γENV.

DIPO (Yang et al., 2023): This baseline applies “action gradient” that uses a learned state-action
Q function to update the actions saved in the replay buffer, and then has DP fitting on them without
weighting.

Similar to DAWR, recent experiences are saved in a replay buffer D. The actions (k = 0) in the
buffer are updated for MDIPO iterations with learning rate αDIPO.

am+1,k=0
t = am,k=0

t + αDIPO∇ϕQ̂ϕ(st, a
m,k=0
t ), m = 0, . . . ,MDIPO − 1.
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The actor is then updated with a replay ratio of Nθ.

Lθ = ED[∥εt − εθ(a
MDIPO,k=0
t , st, k)∥2

]
.

The critic is trained to minimize the Bellman residual with a replay ratio of Nϕ. Double Q-learning
is also applied.

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
k=0
t+1 |st+1))− Q̂ϕ(st, a

m=0,k=0
t )∥2

]
IDQL (Hansen-Estruch et al., 2023): This baseline learns a state-action Q function and state V
function to choose among the sampled actions from DP. DP fits on new samples without weighting.

Again recent experiences are saved in a replay bufferD. The state value function is updated to match
the expected Q value with an expectile loss, with a replay ratio of Nψ .

Lψ = ED[|τIDQL − 1(Q̂ϕ(st, a
0
t ) < V̂ 2

ψ (st))|
]
.

The value function is used to update the Q function with a replay ratio of Nϕ.

Lϕ = ED[∥(Rt + γENVV̂ψ(st+1)− Q̂ϕ(st, a
0
t )∥2

]
.

The actor fits all sampled experiences without weighting, with a replay ratio of Nθ.

Lθ = ED[∥εt − εθ(a
0
t , st, k)∥2

]
.

At inference time, MIDQL actions are sampled from the actor. For training, Boltzmann exploration
is applied based on the difference between Q value of the sampled actions and and the V value at
the current state. For evaluation, the greedy action under Q is chosen.

DQL (Wang et al., 2022): This baseline learns a state-action Q function and backpropagates the
gradient from the critic through the entire actor (with multiple denoising steps), akin to the usual
Q-learning.

Again recent experiences are saved in a replay buffer D. The actor is then updated using both a
supervised loss and the value loss with a replay ratio of Nθ.

Lθ = ED[∥εt − εθ(a
0
t , st, k)∥2 − αDQLQ̂ϕ(st, π̄θ(a

0
t |st))

]
,

where αDQL is a weighting coefficient. The critic is trained to minimize the Bellman residual with a
replay ratio of Nϕ. Double Q-learning is also applied.

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
0
t+1|st+1))− Q̂ϕ(st, a

0
t )∥2

]
QSM (Psenka et al., 2023): This baselines learns a state-action Q function, and then updates the
actor by aligning the score of the diffusion actor with the gradient of the Q function.

Again recent experiences are saved in a replay buffer D. The critic is trained to minimize the
Bellman residual with a replay ratio of Nϕ. Double Q-learning is also applied.

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
0
t+1|st+1))− Q̂ϕ(st, a

0
t )∥2

]
.

The actor is updated as follows with a replay ratio of Nθ.

Lθ = ED[∥αQSM∇aQ̂ϕ(st, at)− (−εθ(a0t , st, k))∥2
]
,

where αQSM scales the gradient. The negative sign before εθ is from taking the gradient of the mean
µ in the denoising process.

F.4 DESCRIPTIONS OF RL FINE-TUNING ALGORITHM BASELINES IN SECTION 5.2

In this subsection, we detail the baselines RLPD, Cal-QL, and IBRL. All policies πθ are param-
eterized as unimodal Gaussian.
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RLPD (Ball et al., 2023): This baseline is based on Soft Actor Critic (SAC, Haarnoja et al. (2018))
— it learns an entropy-regularized state-action Q function, and then updates the actor by maximizing
the Q function w.r.t. the action.

A replay buffer D is initialized with offline data, and online samples are added to D. Each gradient
update uses a batch of mixed 50/50 offline and online data. An ensemble of Ncritic critics is used,
and at each gradient step two critics are randomly chosen. The critics are trained to minimize the
Bellman residual with replay ratio Nϕ:

Lϕ = ED[∥(Rt + γENVQ̂ϕ′(st+1, πθ(at+1|st+1))− Q̂ϕ(st, at)∥2
]
.

The target critic parameter ϕ′ is updated with delay. The actor minimizes the following loss with a
replay ratio of 1:

Lθ = ED[− Q̂ϕ(st, at) + αent log πθ(at|st)
]
,

where αent is the entropy coefficient (automatically tuned as in SAC starting at 1).

Cal-QL (Nakamoto et al., 2024): This baseline trains the policy µ and the action-value function
Qµ in an offline phase and then an online phase. During the offline phase only offline data is sampled
for gradient update, while during the online phase mixed 50/50 offline and online data are sampled.
The critic is trained to minimize the following loss (Bellman residual and calibrated Q-learning):

Lϕ =ED[∥(Rt + γENVQ̂ϕ′(st+1, πθ(at+1|st+1)))− Q̂ϕ(st, at)∥2
]

+ βcql(ED[max(Qϕ(st, at), V (st))
]
− ED[Qϕ(st, at)

]
),

where βcql is a weighting coefficient between Bellman residual and calibration Q-learning and V (st)
is estimated using Monte-Carlo returns. The target critic parameter ϕ′ is updated with delay. The
actor minimizes the following loss:

Lθ = ED[− Q̂ϕ(st, at) + αent log πθ(at|st)
]
,

where αent is the entropy coefficient (automatically tuned as in SAC starting at 1).

IBRL (Hu et al., 2023): This baseline first pre-trains a policy µψ using behavior cloning, and for
fine-tuning it trains a RL policy πθ initialized as µψ . During fine-tuning recent experiences are saved
in a replay buffer D. An ensemble of Ncritic critics is used, and at each gradient step two critics are
randomly chosen. The critics are trained to minimize the Bellman residual with replay ratio Nϕ:

Lϕ = ED[∥(Rt + γENV max
a′∈{aIL,aRL}

Q̂ϕ′(st+1, a
′)− Q̂ϕ(st, at)∥2

]
where aIL = µψ(st+1) (no noise) and aRL ∼ πθ′(st+1), and πθ′ is the target actor. The target critic
parameter ϕ′ is updated with delay. The actor minimizes the following loss with a replay ratio of 1:

Lθ = −ED[Q̂ϕ(st, at)
]
.

The target actor parameter θ′ is also updated with delay.

F.5 ADDITIONAL DETAILS OF FRANKA-KITCHEN TASKS AND TRAINING IN SECTION 5.2

Tasks. We consider three settings from the D4RL benchmark (Fu et al., 2020): (1)
Kitchen-Complete-v0 containing demonstrations that complete the entire task (four subtasks),
(2) Kitchen-Partial-v0 containing some complete demonstrations and many ones complet-
ing only subtasks, and (3) Kitchen-Mixed-v0 containing incomplete demonstrations only.

Pre-training. The observations and actions are normalized to [0, 1] using min/max statistics from
the pre-training dataset. No history observation (proprioception or ground-truth object states) is
used. All policies are trained with batch size 128, learning rate 1e-4 decayed to 1e-5 with a cosine
schedule, and weight decay 1e-6. DPPO policies are trained with 8000 epochs. For IBRL and
Cal-QL we follow the hyperparameters from the original implementations — IBRL proposes
using (1) wider MLP layers and (2) dropout during pre-training, which we follow too. We use Ta =
4 for DPPO; we also tried to use the same action chunk size with IBRL, RLPD, and Cal-QL, but
we find for all of them Ta = 1 leads to better performance.
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Fine-tuning. With DPPO, policies are fine-tuned using online experiences sampled from 40 paral-
lelized MuJoCo environments (Todorov et al., 2012), while the baselines use only one environment
(matching their original implementations). Episodes terminates when they reach maximum episode
lengths (shown in Table 6) or all four subtasks are completed. Detailed hyperparameters are listed in
Table 8 — we follow the hyperparameter choices from the original implementations of the baselines.

Larger variance with DPPO in Fig. 11. In Fig. 11, it is shown that DPPO exhibits a larger vari-
ance in normalized score with Kitchen-Partial-v0 than Cal-QL. This is due to DPPO solv-
ing either 3/4 or 2/4 subtasks in one seed (low variance within the evaluation episodes in one seed)
but high variance over seeds, whereas Cal-QL has higher variance among evaluation episodes
in one seed but on average over seeds it shows lower variance. This also highlights a notable
property of DPPO: Kitchen-Partial-v0 and Kitchen-Mixed-v0 have trajectories only
completing subtasks, thus being highly multi-modal. Diffusion policy can sometimes struggle to
learn all the modes from pre-training, and since DPPO directly fine-tunes the pre-trained policy,
it can fail to converge to 100% success rate at fine-tuning. Cal-QL instead learns from all of-
fline data during fine-tuning in an off-policy manner, thus less sensitive to pre-training performance.
Nonetheless, with offline data completing tasks consistently despite varying quality (ROBOMIMIC
and Kitchen-Complete-v0, which, we believe, are more realistic in the current paradigm of
robot manipulation), DPPO demonstrates much better final performance than Cal-QL and other
baselines in Fig. 11.

F.6 ADDITIONAL DETAILS OF ROBOMIMIC TASKS AND TRAINING IN SECTION 5.3

Tasks. We consider four tasks from the ROBOMIMIC benchmark (Mandlekar et al., 2021): (1)
Lift: lifting a cube from the table, (2) Can: picking up a Coke can and placing it at a target
bin, (3) Square: picking up a square nut and place it on a rod, and (4) Transport: two robot
arms removing a bin cover, picking and placing a cube, and then transferring a hammer from one
container to another one.

Pre-training. ROBOMIMIC provides the Multi-Human (MH) dataset with noisy human demon-
strations for each task, which we use to pre-train the policies. The observations and actions are
normalized to [0, 1] using min/max statistics from the pre-training dataset. No history observation
(pixel, proprioception, or ground-truth object states) is used. All policies are trained with batch size
128, learning rate 1e-4 decayed to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-
based policies are trained with 8000 epochs, while Gaussian and GMM policies are trained with
5000 epochs — we find diffusion models require more gradient updates to fit the data well.

Fine-tuning. Diffusion-based, Gaussian, and GMM pre-trained policies are then fine-tuned using
online experiences sampled from 50 parallelized MuJoCo environments (Todorov et al., 2012). Suc-
cess rate curves shown in Fig. 4, Fig. 5, and Fig. 20 are evaluated by running fine-tuned policies with
σexp

min = 0.001 (i.e., without extra noise) for 50 episodes. Episodes terminates only when they reach
maximum episode lengths (shown in Table 6). Detailed hyperparameters are listed in Table 9.

Pixel training. We use the wrist camera view in Lift and Can, the third-person camera view in
Square, and the two robot shoulder camera views in Transport. Random-shift data augmenta-
tion is applied to the camera images during both pre-training and fine-tuning. Gradient accumulation
is used in fine-tuning so that the same batch size (as in state-input training) can fit on the GPU. De-
tailed hyperparameters are listed in Table 10.

F.7 DESCRIPTIONS OF POLICY PARAMETERIZATION BASELINES IN SECTION 5.3

Gaussian. We consider unimodal Gaussian with diagonal covariance, the most commonly used
policy parameterization in RL. The standard deviation for each action dimension, σGau, is fixed
during pre-training; we also tried to learn σGau from the dataset but we find the training very unstable.
During fine-tuning σGau is learned starting from the same fixed value and also clipped between 0.01
and 0.2. Additionally we clip the sampled action to be within 3 standard deviation from the mean.
As discusses in Appendix C, we choose the PPO clipping ratio ε based on the empirical clipping
fraction in each task. This setup is also used in the FURNITURE-BENCH experiments. We note that
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we spend significant amount of efforts tuning the Gaussian baseline, and our results with it are some
of the best known ones in RL training for long-horizon manipulation tasks (exceeding our initial
expectations), e.g., reaching ∼100% success rate in Lamp with Low randomness.

GMM. We also consider Gaussian Mixture Model as the policy parameterization. We denote
MGMM the number of mixtures. The standard deviation for each action dimension in each mixture,
σGMM, is also fixed during pre-training. Again during fine-tuning σGMM is learned starting from the
same fixed value and also clipped between 0.01 and 0.2.

F.8 ADDITIONAL DETAILS OF FURNITURE-BENCH TASKS AND TRAINING IN SECTION 5.4

Tasks. We consider three tasks from the FURNITURE-BENCH benchmark (Heo et al., 2023): (1)
One-leg: assemble one leg of a table by placing the tabletop in the fixture corner, grasping and
inserting the table leg, and screwing in the leg, (2) Lamp: place the lamp base in the fixture corner,
grasp, insert, and screw in the light bulb, and finally place the lamp shade, (3) Round-table:
place a round tabletop in the fixture corner, insert and screw in the table leg, and then insert and
screw in the table base. See Fig. 23 for the visualized rollouts in simulation.

Pre-training. The pre-training dataset is collected in the simulated environments using a Space-
Mouse8, a 6 DoF input device. The simulator runs at 10Hz. At every timestep, we read off the state
of the SpaceMouse as δa = [∆x,∆y,∆z,∆roll,∆pitch,∆yaw], which is converted to a quaternion
before passed to the environment step and stored as the action alongside the current observation in
the trajectory. If |∆ai| < ε ∀i for some small ε = 0.05 defining the threshold for a no-op, we do
not record any action nor pass it to the environment. Discarding no-ops is important for allowing
the policies to learn from demonstrations effectively. When the desired number of demonstrations
has been collected (typically 50), we process the actions to convert the delta actions stored from the
SpaceMouse into absolute pose actions by applying the delta action to the current EE pose at each
timestep.

The observations and actions are normalized to [−1, 1] using min/max statistics from the pre-training
dataset. No history observation (proprioception or ground-truth object states) is used, i.e., only the
current observation is passed to the policy. All policies are trained with batch size 256, learning rate
1e-4 decayed to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-based policies are
trained with 8000 epochs, while Gaussian policies are trained with 3000 epochs. Gaussian policies
can easily overfit the pre-trained dataset, while diffusion-based policies are more resilient. Gaussian
policies also require a very large MLP (∼10 million parameters) to fit the data well.

Fine-tuning. Diffusion-based and Gaussian pre-trained policies are then fine-tuned using online
experiences sampled from 1000 parallelized IsaacGym environments Makoviychuk et al. (2021).
Success rate curves shown in Fig. 6 are evaluated by running fine-tuned policies with σexp

min = 0.001
(i.e., without extra noise) for 1000 episodes. Episodes terminate only when they reach maximum
episode length (shown in Table 6). Detailed hyperparameters are listed in Table 11. We find a smaller
amount of exploration noise (we set σexp

min and σGau to be 0.04) is necessary for the pre-trained policy
achieving nonzero success rates at the beginning of fine-tuning.

Hardware setup - robot control. The physical robot used is a Franka Emika Panda arm. The
policies output a sequence of desired end-effector poses in the robot base frame to control the robot.
These poses are converted into joint position targets through differential inverse kinematics. We
calculate the desired end-effector velocity as the difference between the desired and current poses
divided by the delta time dt = 1/10. We then convert this to desired joint velocities using the
Jacobian and compute the desired joint positions with a first-order integration over the current joint
positions and desired velocity. The resulting joint position targets are passed to a low-level joint
impedance controller provided by Polymetis (Lin et al., 2021), running at 1kHz.

Hardware setup - state estimation. To deploy state-based policies on real hardware, we utilize
AprilTags (Wang and Olson, 2016) for part pose estimation. The FURNITURE-BENCH (Heo et al.,

8https://3dconnexion.com/us/product/spacemouse-wireless/
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Solving multi-stage dexterous manipulation tasks from Furniture-Bench

Robust sim-to-real transfer in zero-shot

Corrective 
behavior

Round-table

Lamp

One-leg

Figure 23: Representative rollouts from simulated FURNITURE-BENCH tasks.

2023) task suite provides AprilTags for each part and code for estimating part poses from tag detec-
tions. The process involves several steps: (1) detecting tags in the camera frame, (2) mapping tag
detections to the robot frame for policy compatibility, (3) utilizing known offsets between tags and
object centers in the simulator, and (4) calibrating the camera pose using an AprilTag at a known
position relative to the robot base. Despite general accuracy, detections can be noisy, especially
during movement or partial occlusion, which the One-leg task features. Since the task requires
high precision, we find the following to help make the estimation reliable enough:

• Camera coverage: We find detection quality sensitive to distance and angle between the camera
and tag. This issue is likely due to the RealSense D435 camera having mediocre image quality
and clarity and the relatively small tags. To remedy this, we opt to use 4 cameras roughly evenly
spread out around the scene to ensure that at least one camera has a solid view of a tag on all the
parts (i.e., as close as possible with a straight-on view). To find the best camera positions, we
start with having a camera in each of the cardinal directions around the scene. Then, we adjust
the pose of each to get it as close as possible to the objects while still covering the necessary
workspace and capturing the base tag for calibration. Moving the robot arm around the scene to
avoid the worst occlusion is also helpful.

• Lighting: Even with better camera coverage and placement, detection quality depends on having
crisp images. We find proper lighting helpful to improve image quality. In particular, the scene
should be well and evenly lit around the scene without causing reflections in either the tag or
table.

• Filtering: Bad detections can sometimes cause the resulting pose estimate to deviate signifi-
cantly from the true pose, i.e., jumping several centimeters from one frame to the next. This
usually only happens on isolated frames, and thus before “accepting” a given detection, we
check if the new position and orientation are within 5 cm and 20 degrees of the previously ac-
cepted pose. In addition, we apply low-pass filtering on the detection using a simple exponential
average (with α = 0.25) to smooth out the high-frequency noise.

• Averaging: The objects have multiple tags that can be detected from multiple cameras. After
performing the filtering step, we average all pose estimates for the same object across different
tags and cameras, which also helps smooth out noise. This alone, however, does not fully cancel
the case when a single detection has a large jump, as this can severely skew the average, still
necessitating a filtering step. Having multiple cameras benefits this step, too, as it provides more
detections to average over.

• Caching part pose in hand: A particularly difficult phase of the task to achieve good detections
is when the robot transports the table leg from the initial position to the tabletop for insertion.
The main problems are that the movement can blur the images, and the grasping can cause
occlusions. Therefore, we found it helpful to assume that once the part was grasped by the
robot, it would not move in the grasp until the gripper opened. With this, we can “cache” the
pose of the part relative to the end-effector once the object is fully grasped and use this instead
of relying on detections during the movement.

• Normalization pitfalls and clipping: We generally use min-max normalization of the state
observations to ensure observations are in [−1, 1]. The tabletop part moves very little in the
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z-direction demonstration data, meaning the resulting normalization limits (the minimum and
maximum value of the data) can be very close, xmax − xmin ≈ 0. With these tight limits, the
noise in the real-world detection can be amplified greatly as xnorm = x−xmin

xmax−xmin
. Therefore, ensure

that normalization ranges are reasonable. As an extra safeguard, clipping the data to [−1, 1] can
also help.

• Only estimate necessary states: Despite the One-leg task having 5 parts, only 2 are manipu-
lated. Only estimating the pose of those parts can eliminate a lot of noise. In particular, the pose
of the 3 legs that are not used and the obstacle (the U-shaped fixture) can be set to an arbitrary
value from the dataset.

• Visualization for debugging: We use the visualization tool MeshCat9 extensively for debugging
of state estimation. The tool allows for easy visualizations of poses of all relevant objects in the
scene, like the robot end-effector and parts, which makes sanity-checking the implementation
far easier than looking at raw numbers.

Hardware evaluation. We perform 20 trials for each method. We adopt a single-blind model
selection process: at the beginning of each trial, we first randomize the initial state. Then, we
randomly select a method and roll it out, but the experimenter does not observe which model is
used. We record the success and failure of each trial and then aggregate statistics for each model
after all trials are completed.

(C) Fine-tuned DPPO policy performs successful rollout

(B) Policy pushes peg down without proper alignment with the hole before releasing the peg, making it topple over

Initialization Grasp tabletop Place tabletop Grasp leg Insert leg Screw leg

(A) Pre-trained Diffusion policy performs successful rollout

(D) Initial peg alignment is off, the policy corrects placement until it is properly inserted in the hole before letting go

DP Pre-trained

DP Fine-tuned

Figure 24: Qualitative comparison of pre-trained vs. fine-tuned DPPO policies in real eval-
uation. (A) Successful rollout with the pre-trained policy. (B) Failed rollout with the pre-trained
policy due to imprecise insertion. (C) Successful rollout with the fine-tuned policy. (D) Successful
rollout with the fine-tuned policy that requires corrective behavior.

9https://github.com/meshcat-dev/meshcat
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Domain randomization for sim-to-real transfer. To facilitate the sim-to-real transfer, we apply
additional domain randomization to the simulation training. We record the range of observation
noises in hardware without any robot motion and then apply the same amount of noise to state
observations in simulation. We find the state estimation in hardware particularly sensitive to the
object heights. Also, we apply random noise (zero mean with 0.03 standard deviation) to the sampled
action from DPPO to simulate the imperfect low-level controller; we find adding such noise to the
Gaussian policy leads to zero task success rate while DPPO is robust to it (also see discussion in
Section 6).

BC regularization loss used for Gaussian baseline. Since the fine-tuned Gaussian policy exhibits
very jittery behavior and leads to zero success rate in real evaluation, we further experiment with
adding a behavior cloning (BC) regularization loss in fine-tuning with the Gaussian baseline. The
combined loss follows

Lθ,+BC = Lθ − αBCEπθold [

K−1∑
k=0

log πθpre-trained(a
k
t |ak+1

t , st)],

where πθpre-trained is the frozen BC-only policy. The extra term encourages the newly sampled actions
from the fine-tuned policy to remain high-likelihood under the BC-only policy. We set αBC = 0.1.
However, although this regularization reduces the sim-to-real gap, it also significantly limits fine-
tuning, leading to the fine-tuning policy saturating at 53% success rate shown in Fig. 6.

F.9 ADDITIONAL DETAILS OF AVOID TASK FROM D3IL AND TRAINING IN SECTION 6

Pre-training. We split the original dataset from D3IL based on the three settings, M1, M2, and
M3; in each setting, observations and actions are normalized to [0, 1] using min/max statistics. All
policies are trained with batch size 16 (due to the small dataset size), learning rate 1e-4 decayed
to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-based policies are trained with
about 15000 epochs, while Gaussian and GMM policies are trained with about 10000 epochs; we
manually examine the trajectories from different pre-trained checkpoints and pick ones that visually
match the expert data the best.

Fine-tuning. Diffusion-based, Gaussian, and GMM pre-trained policies are then fine-tuned us-
ing online experiences sampled from 50 parallelized MuJoCo environments (Todorov et al., 2012).
Reward curves shown in Fig. 8 and Fig. 19 are evaluated by running fine-tuned policies with the
same amount of exploration noise used in training for 50 episodes; we choose to use the training
(instead of evaluation) setup since Gaussian policies exhibit multi-modality only with training noise.
Episodes terminate only when they reach 100 steps.

Added action noise during fine-tuning. In Fig. 8 left, we demonstrate that DPPO exhibits
stronger training stability when noise is added to the sampled actions during fine-tuning. The noise
starts at the 5th iteration. It is sampled from a uniform distribution with the lower limit ramping up
to 0.1 and the upper limit ramping up to 0.2 linearly in 5 iterations. The limits are kept the same
from the 10th iteration to the end of fine-tuning.

F.10 LISTED TRAINING HYPERPARAMETERS
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Task(s)

Method Parameter GYM Lift, Can Square Transport

Common

γENV 0.99 0.999 0.999 0.999
σexp

min 0.1 0.1 0.1 0.08
σprob

min 0.1
Tp 4 4 4 8
Ta 4 4 4 8
K 20

Actor learning rate 1e-4 for DPPO and 1e-5 for others (tuned from 1e-4 to 1e-5)
Critic learning rate (if applies) 1e-3

Actor MLP dims [512, 512, 512] [512, 512, 512] [1024, 1024, 1024] [1024, 1024, 1024]
Critic MLP dims (if applies) [256, 256, 256]

DRWR

β 10
wmax 100
Nθ 16

Batch size 1000

DAWR

β 10
wmax 100
λDAWR 0.95
Nθ 64
Nϕ 16

Buffer size 200000 120000 120000 120000
Batch size 1000

DIPO

αDIPO 1e-4
MDIPO 10
Nθ 64

Buffer size 1000000
Batch size 1000

IDQL

MIDQL 20 10 10 10
Nθ 128
Nϕ 128

Buffer size 1000000 250000 250000 250000
Batch size 1000

DQL

αDQL 1
Nθ 16
Nϕ 16

Buffer eize 1000000
Batch size 1000

QSM

αQSM 10
Nθ 16
Nϕ 16

Buffer size 1000000 250000 250000 250000
Batch size 1000

DPPO

γDENOISE 0.99
GAE λ 0.95
Nθ 5 10 10 10
Nϕ 5 10 10 10
ε 0.01

Batch size 50000 7500 10000 10000
K′ 10

Table 7: Fine-tuning hyperparameters for OpenAI GYM and ROBOMIMIC tasks when compar-
ing diffusion-based RL methods. We list hyperparameters shared by all methods first, and then
method-specific ones.
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2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Task(s)

Method Parameter HalfCheetah-v2 Kitchen-Complete-v0 Kitchen-Partial-v0 Kitchen-Mixed-v0

Common γENV 0.99

RLPD
Tp 1
Ta 1
Nϕ 20 10 10 10
Ncritic 10 5 5 5

Batch size 256

Cal-QL Tp 1
Ta 1
βcql 5

Batch size 256

IBRL
Tp 1
Ta 1
Nϕ 5
Ncritic 5

Batch size 256

DPPO

Tp 1 4 4 4
Ta 1 4 4 4
σexp

min 0.1
σprob

min 0.1
γDENOISE 0.99
GAE λ 0.95
Nθ 5 10 10 10
Nϕ 5 10 10 10
ε 0.01

Batch size 10000 5600 5600 5600
K 20
K′ 10

Method Parameter Can, PH Square, PH Can, MH Square, MH

Common
γENV 0.999
Ta 1
Ta 1

RLPD
Nϕ 3
Ncritic 5

Batch size 256

Cal-QL βcql 5
Batch size 256

IBRL
Nϕ 3
Ncritic 5

Batch size 256

DPPO

σexp
min 0.1

σprob
min 0.1

γDENOISE 0.9 0.9 0.99 0.99
GAE λ 0.95
Nθ 10
Nϕ 10
ε 0.01

Batch size 6000 15000 8000 20000
K 20
K′ 10

Table 8: Fine-tuning hyperparameters for HalfCheetah-v2, FRANKA-KITCHEN, Can, and
Square (PH or MH datasets) when comparing demo-augmented RL methods. We list hyperpa-
rameters shared by all methods first, and then method-specific ones.
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2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Task

Method Parameter Lift, Can Square Transport

Common

γENV 0.999
Ta 4 4 8

Actor learning rate 1e-4 1e-5 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 10 10 8
Nϕ 10 10 8
ε 0.01 (annealed in DPPO)

Gaussian, Common
σGau 0.1 0.1 0.08

Batch size 7500 10000 10000
Gaussian-MLP Model size 552K 2.15M 1.93M

Gaussian-Transformer Model size 675K 1.86M 1.87M

GMM, Common
MGMM 5
σGMM 0.1 0.1 0.08

Batch size 7500 10000 10000
GMM-MLP Model size 1.15M 4.40M 4.90M

GMM-Transformer Model size 680K 1.87M 1.89M

DPPO, Common

γDENOISE 0.99
σexp

min 0.1 0.1 0.08
σprob

min 0.1 0.1 0.1
K 20
K′ 10

Batch size 75000 100000 100000
DPPO-MLP Model size 576K 2.31M 2.43M
DPPO-UNet Model size 652K 1.62M 1.68M

Table 9: Fine-tuning hyperparameters for ROBOMIMIC tasks with state input when comparing
policy parameterizations. We list hyperparameters shared by all methods first, and then method-
specific ones. Since the different policy parameterizations use different neural network architecture,
we list the total model size here instead of the details such as MLP dimensions.

Task

Method Parameter Lift, Can Square Transport

Common

γENV 0.999
Ta 4 4 8

Actor learning rate 1e-4 1e-5 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 10 10 8
Nϕ 10 10 8
ε 0.01 (annealed in DPPO)

Gaussian-ViT-MLP
Model size 1.03M 1.03M 1.93M
σGau 0.1 0.1 0.08

Batch size 7500 10000 10000

DPPO-ViT-MLP

Model size 1.06M 1.06M 2.05M
γDENOISE 0.9
σexp

min 0.1 0.1 0.08
σprob

min 0.10
K 100
K′ 5 (DDIM)

Batch size 37500 50000 50000

Table 10: Fine-tuning hyperparameters for ROBOMIMIC tasks with pixel input when comparing
policy parameterizations. We list hyperparameters shared by all methods first, and then method-
specific ones. Since the different policy parameterizations use different neural network architecture,
we list the total model size here instead of the details such as MLP dimensions.
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2219
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2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Task

Method Parameter One-leg Lamp Round-table

Common

γENV 0.999
Ta 8

Actor learning rate 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 5
Nϕ 5
ε 0.001

Gaussian-MLP
Model size 10.64M 10.62M 10.62M
σGau 0.04

Batch size 8800

DPPO-UNet

Model size 6.86M 6.81M 6.81M
γDENOISE 0.9
σexp

min 0.04
σprob

min 0.1
K 100
K′ 5 (DDIM)

Batch size 44000

Table 11: Fine-tuning hyperparameters for FURNITURE-BENCH tasks when comparing policy pa-
rameterizations. We list hyperparameters shared by all methods first, and then method-specific
ones.
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