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Abstract

In this paper, we propose using consistency001
learning to improve constituency and depen-002
dency parsing performances on a multi-task set-003
ting. It utilizes a consistent constraint between004
the predictions. While multi-task learning im-005
plicitly learns shared representations for multi-006
ple sub-tasks, our method introduces an explicit007
consistency objective, which encourages shared008
representations that result in consistent predic-009
tions. Our intuition is that correct predictions010
are more likely consistent ones. To introduce011
consistent constraints, we propose a general012
method for introducing consistency objectives,013
as well as other prior knowledge, into exist-014
ing neural models. This method only requires015
a boolean function that tells whether or not016
the multiple predictions are consistent, which017
does not need to be differentiable. We demon-018
strate the efficacy of our method by showing019
that it out-performs a state-of-the-art joint de-020
pendency and constituency parser on CTB.021

1 Introduction022

Multi-task learning (Caruana, 1998) uses a shared023

representation to learn sub-tasks of different ob-024

jectives. While it has been shown to improve025

both learning efficiency and efficacy in applica-026

tions of various domains, there is no guarantee027

that the shared representation in multi-task learn-028

ing is more meaningful than those in separate tasks.029

In this paper, we propose consistency learning,030

which introduces a consistency objective for the031

shared representation that encourages consistent032

(non-conflicting) predictions. As an intuition, if the033

two predictions are consistent with each other, we034

can, to some extend, explain each prediction by us-035

ing the other prediction as its necessary condition.036

The only assumption in the proposed consistency037

learning method is a user-defined consistency func-038

tion, which returns a consistency label indicating039

whether the given predictions are consistent or not.040

This function can be as simple as a few lines of041

code, expressing a prior knowledge about the data, 042

and it is not required to be differentiable. Therefore, 043

our method can also be applied to many objectives 044

other than consistency. Specifically, in this paper, 045

we aim at improving the consistency between each 046

pair of constituency and dependency parses, and 047

our consistency function simply checks if there are 048

more than one dependency edge originated from 049

each constituency span. 050

We have two intuitions about why consis- 051

tency improves learning with multiple predictions. 052

Firstly, correct predictions are likely to be consis- 053

tent and incorrect ones are likely to be conflicting. 054

Consistency objectives therefore effectively panel- 055

ize the noisy training samples, which are pervasive 056

in practice (Marcus et al., 1993a)). Secondly, the 057

consistency label introduce a simple auxiliary task 058

that is related to the original main task with multi- 059

ple predictions. 060

To sum up, we make the following contributions 061

in this paper: 062

• We propose the consistency learning method 063

to improve the performance of multiple- 064

prediction tasks. 065

• We applied the proposed method on a joint 066

dependency and constituency parser and eval- 067

uate its efficacy over a state-of-the-art baseline 068

(Mrini et al., 2020) . 069

• We obtain 0.43 F1 improvement on con- 070

stituency parsing and a 0.36 UAS improve- 071

ment on dependency parsing over the state- 072

of-the-art joint parser on the CTB (Xue et al., 073

2005) dataset. 074

2 Consistency learning 075

In the section, we will first describe the proposed 076

learning method in a simple multi-prediction set- 077

ting that involves two predictions and one consis- 078

tency objective. Then, we will extrapolate the 079
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Figure 1: Illustration of adding consistency objective.
The modules introduced for the objective are surrounded
by the box in dotted line, and the assumed consistency
function is Ci. A discriminator D1 is first trained to
imitate C1 with loss L(1)

d , and then provides feedback
to rc via loss L(1)

c to penalized inconsistent shared rep-
resentation.

method to a more general setting with arbitrary080

number of inputs, outputs, and consistency objec-081

tives.082

2.1 Consistency learning with two predictions083

We base our consistency learning model on a multi-084

prediction task learning network as illustrated in085

Figure 1 and described in the following. Suppose086

we have two prediction tasks, and L(1)
t and L(2)

t087

are the training losses of the two sub-tasks, respec-088

tively. Inputs x1 and x2 of the two sub-tasks are089

encoded by their encoder neural networks, E1 and090

E2, which project their inputs, x1 and x2, into a091

shared representation, rc. Here, if the two sub-tasks092

have the same type of input, they can also share093

the same encoder, i.e. E1 = E2. With the shared094

representation rc, the two sub-tasks then use their095

own decoders heads, H1 and H2, to obtain their096

outputs, y1 and y2.097

Previous succeed in multi-task learning has098

proven that a shared representation, rc, that en-099

codes shared knowledge of different sub-tasks can100

improve both learning efficiency and efficacy. For101

better model generalization, it is desired that, for102

each rc from the same x1 or x2, the predictions103

from H1 and H2 should not contradict each other,104

since otherwise one of the predictions is incorrect.105

However, conventional multi-task learning does106

not explicitly define an objective to encourage such107

consistency, and it is questionable if such a consis-108

Algorithm 1: Training with a consistency
objective
Input: A sample in training dataset:

(x1, t1, t2)
Output: Gradients ∆E1, ∆H1, ∆H2,

∆D1.
rc ← E1(x1)
foreach 1 ≤ j ≤ 2 do

yj ← Hj(rc)

L
(j)
t ← CE(yj , tj) // multi-task loss

∆Hj ←
∂L

(j)
t

∂Hj
// decoder gradient

d1 ← D1(rc)
c1 ← C1(y1, y2)
Ld ← BCE(d1, c1) // discriminator loss
∆D1 ← ∂Ld

∂D1
// discriminator gradient

if c1 = 1 then
// consistency loss
Lc ← BCE(d1, c1 = 1)

else
Lc ← 0

∆E1 ← ∂(Lt+αcLc)
∂Ei

// encoder gradient

tency objective can alway be automatically induced 109

from any training data. 110

Aiming at better generalization performance, we 111

propose to explicitly introduce consistency learn- 112

ing objectives, which are missing in conventional 113

multi-tasks learning. In the following, we will il- 114

lustrate this in the above example. Our method 115

only assumes simple user-defined consistency func- 116

tions, e.g. c1 = C1(y1, y2), where c1 is a boolean 117

indicating whether y1 and y2 are inconsistent. 118

In Figure 1, E1, E2, H1, H1 belong to the origi- 119

nal model of the multiple prediction tasks. In order 120

to introduce a consistent objective, we add a dis- 121

criminator D1, a user-defined consistency function 122

C1, and two loss functions, as shown in the right 123

hand side of Figure 1. D1 is first trained to find the 124

distribution of rc that will lead to consistent out- 125

puts. D1 is then used to correct the distribution of 126

rc by moving it away from the wrong distribution 127

via L(1)
c . This approach followed the usage of the 128

discriminator in GANs (Goodfellow et al., 2014). 129

2.2 Training with a consistency objective 130

For simplicity, we assume a single input x1, and 131

ignore x2 in Figure 1. As an example, in joint con- 132

stituency and dependency parsing, x1 is an input 133

sentence, t1 is a constituency parse, t2 is a depen- 134
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dency parse, and c1 return whether there are con-135

flicts between t1 and t2. We define three types of136

losses in total that are trained in parallel: multi-task137

loss Lt, the discriminator loss Ld, and the consis-138

tency loss Lc. Algorithm 1 shows how to obtain139

these losses and their derivatives for each sample140

of training data.141

Assume the original tasks are classification prob-142

lems. The multi-task loss Lt = CE(y1, t1) +143

CE(y2, t2). We use the binary cross entropy (BCE)144

between the prediction of D1 and c1 = C1(y1, y2)145

to train D1. Other loss functions rather than BCE146

can be used, similar to those defined in the GAN147

variations. Since the accuracy and consistency148

between y1 and y2 increase during training, the149

ground-truth c1 in the above loss increases from 0150

to 1 during training. To balance labels for Ld dur-151

ing training, we randomly select an equal amount152

of samples with c1 = 1 and c1 = 0 to obtain Ld.153

Lc is used to train E1 while D1 is fixed. Let B be154

a batch of training data, B′ a subset of B where155

y1 and y2 are inconsistent, i.e. c1 = 1 and rc is156

inconsistent in each sample of B′. Lc is obtained157

on B′ also with the BCE loss.158

2.3 Extrapolation159

The above simple consistency learning illustration160

with two predictions can be extrapolation to a gen-161

eral multi-prediction scenarios with multiple input,162

multiple output, and multiple functions of diferent163

prior knowledge can be added to the network to164

make rc more meaningful.165

3 Joint Parsing Experiment166

Our implementation is based on the open source167

project 1 of the state-of-the-art joint dependency168

and constituency parser (Mrini et al., 2020) at the169

time of writing.170

3.1 Baseline parser model171

The joint parser model is illustrated in Figure 2 and172

briefly explained below. Please refer to the original173

paper for the detailed model, hype-parameter, and174

training settings. For English parsing experiments,175

we use the large cased pre-trained XL-Net (Yang176

et al., 2019). For Chinese parsing experiments,177

we use the bert-base-chinese BERT (Devlin et al.,178

2018) model. The output of the pre-trained model179

is input into the transformer encoder layers, and180

the output of the latter is the shared representation181

1https://github.com/KhalilMrini/LAL-Parser

Encoder:	
transformer	layers 

word	embeddings 

rc 

span	scorer 

pred	spans 
gt	spans 

L	t(1) 

edge	scorer 

CE 

L	t(2) 

C1 

D1 

BCE 

d1 

c1 

L	d(1) 

BCE 

L	c(1) 

1 

Consistent	
Learning 

chart	
decoder 

hinge	
loss 

span	scores edge	scores 

Greedy	
decoder 

gt	edges pred	
edges 

HPSG	
decoder 

combined	
constituency	
dependency	

tree	

Figure 2: The neural network for the joint parsing ex-
periment.

rc. rc is then sent to both the span and the edge 182

scorers (Dozat and Manning, 2017; Stern et al., 183

2017). During training, the span scores are sent to 184

the chart decoder to predict the best constituency 185

tree with the maximum total span scores, and it 186

is sent to the greedy decoder to predict the best 187

dependency tree. The loss L(1)
t of the first sub-task 188

is a hinge loss between the total span scores of the 189

predicted constituency tree and that of its ground- 190

truth. The loss L(2)
t of the second sub-task is the 191

mean cross-entropy between each dependency edge 192

and its ground-truth. At inference time, the span 193

scores and the edge scores are used by the HPSG 194

decoder (Zhou and Zhao, 2019) to decode a simpli- 195

fied HPSG tree, which is a combined constituency 196

and dependency tree. 197

3.2 Experiment settings 198

The constituency parsing dataset that we use in- 199

clude the English Penn Treebank (PTB) (Marcus 200

et al., 1993b) and the Chinese Treebank (CTB) (Xue 201

et al., 2005). We follow the standard data splits, 202

and use the EVALB program (Sekine and Collins, 203

1997) to report the constituency parsing results. 204

The English dependency trees are obtained by con- 205

verting constituent trees with the Stanford Parser 2. 206

The Chinese dependency trees are converted from 207

constituent trees with Penn2Malt 3. 208

In addition, we perform character-level Chinese 209

constituency and dependency parsing (Zheng et al., 210

2015; Li et al., 2018; Yan et al., 2019). We use sim- 211

2http://nlp.stanford.edu/software/lex-parser.html
3https://cl.lingfil.uu.se/ nivre/research/Penn2Malt.html
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Figure 3: Illustration of character-level trees conversion.

Recall Precision FScore
CTB baseline 93.22 92.98 93.10
CTB ours 93.46 93.59 93.53
CTB-C baseline 95.69 95.39 95.51
CTB-C ours 95.78 95.43 95.57
CTB-W baseline 92.88 93.11 92.99
CTB-CW baseline 93.04 93.19 93.11
CTB-CW ours 93.81 93.70 93.75
PTB baseline 96.08 96.23 96.16
PTB ours 95.91 96.17 96.04

Table 1: Constituency parsing results

ple conversion methods to obtain character-level212

constituency and the dependency trees as explained213

in Figure 3, and we perform character-level experi-214

ments using the same model and hype-parameters215

as the word-level Chinese parsing experiment.216

3.3 Consistency function217

As shown in Figure 2, the consistency label c1 is218

obtained from the predicted consistency spans, ys,219

and dependency edges, ye. c1 = C1(ys, ye) = 1 if220

the consistency tree derived from ys and the depen-221

dency tree derived from ye can be successfully com-222

bined into a simplified HPSG tree (Zhou and Zhao,223

2019). In the simplified HPSG tree, for each con-224

stituent span s ∈ ys, a word h ∈ s is assigned the225

head and another word p /∈ s is assigned the par-226

ent if there exists a dependency edge (h, p) ∈ ye.227

If any span s ∈ ys fails to find its unique h or p,228

ys fails to combine with ye, and c1 = 1. Simply229

put, c1 = 0 if all non-root constituency span have230

exactly one out-going dependency edge.231

Our discriminator D1 consists of three trans-232

former layers with factored content and position233

information (Kitaev and Klein, 2018), one layer234

of label attention layer (Mrini et al., 2020), a two-235

layer feed-forward network with output size 1,024,236

a summation over the word index dimension, and237

UAS LAS UCM LCM
CTB baseline 94.53 93.02 62.36 53.74
CTB ours 94.89 93.38 65.23 56.90
CTB-C baseline 96.10 94.69 60.06 49.71
CTB-C ours 96.15 94.85 60.63 50.86
CTB-W baseline 94.90 92.91 67.92 58.70
CTB-CW baseline 95.07 93.69 66.21 57.68
CTB-CW ours 95.08 93.44 68.26 60.07
PTB baseline 97.30 96.21 72.52 62.87
PTB ours 97.20 96.10 71.32 62.33

Table 2: Dependency parsing results (w/o punct.)

UAS LAS UCM LCM
CTB baseline 94.19 92.87 62.07 53.45
CTB ours 94.71 93.38 64.66 56.61
CTB-C baseline 95.78 94.57 60.06 49.71
CTB-C ours 95.80 94.50 60.06 50.29
CTB-W baseline 94.80 93.06 67.92 58.70
CTB-CW baseline 94.85 93.63 66.21 57.68
CTB-CW ours 94.86 93.42 67.58 59.39
PTB baseline 96.94 95.98 68.87 60.06
PTB ours 96.81 95.85 67.76 59.56

Table 3: Dependency parsing results (with punct.)

a two-layer feed-forward network with a hidden 238

size 64, a ReLU activation function, and an output 239

linear layer of size 1. 240

3.4 Results 241

As shown in Tables 1 to 3, the results on CTB are 242

obtained with a consistency loss weight αc = 0.5. 243

Our consistency learning method achieves a 0.43 244

increment over the 93.10 F1, and a 0.36 improve- 245

ment over the 94.19 UAS (without punctuations) 246

of the state-of-the-art baseline. 247

For character-level Chinese parsing, we set αc = 248

0.1, and report results on the character-level trees 249

(CTB-C) and on the back-converted word-level 250

trees (CTB-CW). For the latter, 14% of the pre- 251

dicted parses have different word-segmentations 252

than the CTB testing set. We therefore compare 253

CTB-CW with this subset of the CTB testing set 254

(CTB-W). Consistency learning shows improve- 255

ment in all evaluation metrics except for LAS, prob- 256

ably due to the fact that our consistency objective 257

focuses only on structures rather than labels. 258

On PTB, we failed to find an α to obtain improve- 259

ment. The results reported are with αc = 0.1. It is 260

probably because the consistency sub-task wastes 261

extra model capacity while its improvement is not 262

dominating in PTB whose size if twice that of CTB 263

and its labels are less noisy and more consistent. 264
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