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Abstract

In this paper, we propose using consistency
learning to improve constituency and depen-
dency parsing performances on a multi-task set-
ting. It utilizes a consistent constraint between
the predictions. While multi-task learning im-
plicitly learns shared representations for multi-
ple sub-tasks, our method introduces an explicit
consistency objective, which encourages shared
representations that result in consistent predic-
tions. Our intuition is that correct predictions
are more likely consistent ones. To introduce
consistent constraints, we propose a general
method for introducing consistency objectives,
as well as other prior knowledge, into exist-
ing neural models. This method only requires
a boolean function that tells whether or not
the multiple predictions are consistent, which
does not need to be differentiable. We demon-
strate the efficacy of our method by showing
that it out-performs a state-of-the-art joint de-
pendency and constituency parser on CTB.

1 Introduction

Multi-task learning (Caruana, 1998) uses a shared
representation to learn sub-tasks of different ob-
jectives. While it has been shown to improve
both learning efficiency and efficacy in applica-
tions of various domains, there is no guarantee
that the shared representation in multi-task learn-
ing is more meaningful than those in separate tasks.
In this paper, we propose consistency learning,
which introduces a consistency objective for the
shared representation that encourages consistent
(non-conflicting) predictions. As an intuition, if the
two predictions are consistent with each other, we
can, to some extend, explain each prediction by us-
ing the other prediction as its necessary condition.

The only assumption in the proposed consistency
learning method is a user-defined consistency func-
tion, which returns a consistency label indicating
whether the given predictions are consistent or not.
This function can be as simple as a few lines of

code, expressing a prior knowledge about the data,
and it is not required to be differentiable. Therefore,
our method can also be applied to many objectives
other than consistency. Specifically, in this paper,
we aim at improving the consistency between each
pair of constituency and dependency parses, and
our consistency function simply checks if there are
more than one dependency edge originated from
each constituency span.

We have two intuitions about why consis-
tency improves learning with multiple predictions.
Firstly, correct predictions are likely to be consis-
tent and incorrect ones are likely to be conflicting.
Consistency objectives therefore effectively panel-
ize the noisy training samples, which are pervasive
in practice (Marcus et al., 1993a)). Secondly, the
consistency label introduce a simple auxiliary task
that is related to the original main task with multi-
ple predictions.

To sum up, we make the following contributions
in this paper:

* We propose the consistency learning method
to improve the performance of multiple-
prediction tasks.

* We applied the proposed method on a joint
dependency and constituency parser and eval-
uate its efficacy over a state-of-the-art baseline
(Mrini et al., 2020) .

* We obtain 0.43 F1 improvement on con-
stituency parsing and a 0.36 UAS improve-
ment on dependency parsing over the state-
of-the-art joint parser on the CTB (Xue et al.,
2005) dataset.

2 Consistency learning

In the section, we will first describe the proposed
learning method in a simple multi-prediction set-
ting that involves two predictions and one consis-
tency objective. Then, we will extrapolate the
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Figure 1: Illustration of adding consistency objective.
The modules introduced for the objective are surrounded
by the box in dotted line, and the assumed consistency
function is C;. A discriminator D is first trained to
imitate C; with loss Ll(il), and then provides feedback

to 7. via loss Lgl) to penalized inconsistent shared rep-
resentation.

method to a more general setting with arbitrary
number of inputs, outputs, and consistency objec-
tives.

2.1 Consistency learning with two predictions

We base our consistency learning model on a multi-
prediction task learning network as illustrated in
Figure 1 and described in the following. Suppose
we have two prediction tasks, and Ll(tl) and ng)
are the training losses of the two sub-tasks, respec-
tively. Inputs z; and x5 of the two sub-tasks are
encoded by their encoder neural networks, E; and
FE», which project their inputs, z; and x2, into a
shared representation, r.. Here, if the two sub-tasks
have the same type of input, they can also share
the same encoder, i.e. £y = E5. With the shared
representation 7., the two sub-tasks then use their
own decoders heads, H; and Hs, to obtain their
outputs, y1 and ys.

Previous succeed in multi-task learning has
proven that a shared representation, 7., that en-
codes shared knowledge of different sub-tasks can
improve both learning efficiency and efficacy. For
better model generalization, it is desired that, for
each r. from the same x; or x2, the predictions
from H; and H5 should not contradict each other,
since otherwise one of the predictions is incorrect.
However, conventional multi-task learning does
not explicitly define an objective to encourage such
consistency, and it is questionable if such a consis-

Algorithm 1: Training with a consistency
objective
Input: A sample in training dataset:
(1‘1, tl, tQ)
Output: Gradients AF, AHy, AHo,
AD;.
Te < E1 (1’1)
foreach1 < 5 <2do
Yj < Hj(rc)
LY « CE(y;,t;) // multi-task loss

6L<]) .
AH; < —7#— // decoder gradient

oH;
d1 — Dy (TC)
c1 + Ci(y1,92)
Ly <~ BCE(dy, 1) // discriminator loss
ADq + g—lLﬁ /l discriminator gradient
if c; = 1 then
// consistency loss
LC — BCE(d1,61 = 1)
else
|l L.+ 0

AE; + 8(&;7;;%) // encoder gradient

tency objective can alway be automatically induced
from any training data.

Aiming at better generalization performance, we
propose to explicitly introduce consistency learn-
ing objectives, which are missing in conventional
multi-tasks learning. In the following, we will il-
lustrate this in the above example. Our method
only assumes simple user-defined consistency func-
tions, e.g. ¢1 = C1(y1,y2), where ¢; is a boolean
indicating whether y; and y» are inconsistent.

In Figure 1, E1, E5, H1, H; belong to the origi-
nal model of the multiple prediction tasks. In order
to introduce a consistent objective, we add a dis-
criminator D1, a user-defined consistency function
C1, and two loss functions, as shown in the right
hand side of Figure 1. D; is first trained to find the
distribution of r. that will lead to consistent out-
puts. Dy is then used to correct the distribution of
r. by moving it away from the wrong distribution
via Lgl). This approach followed the usage of the
discriminator in GANs (Goodfellow et al., 2014).

2.2 Training with a consistency objective

For simplicity, we assume a single input z, and
ignore x9 in Figure 1. As an example, in joint con-
stituency and dependency parsing, x; is an input
sentence, ¢ is a constituency parse, ts is a depen-



dency parse, and c; return whether there are con-
flicts between ¢; and t5. We define three types of
losses in total that are trained in parallel: multi-task
loss Ly, the discriminator loss L4, and the consis-
tency loss L.. Algorithm 1 shows how to obtain
these losses and their derivatives for each sample
of training data.

Assume the original tasks are classification prob-
lems. The multi-task loss Ly = CE(yi,t1) +
CE(ya,t2). We use the binary cross entropy (BCE)
between the prediction of D; and ¢; = C1(y1,y2)
to train . Other loss functions rather than BCE
can be used, similar to those defined in the GAN
variations. Since the accuracy and consistency
between y; and yy increase during training, the
ground-truth ¢; in the above loss increases from 0
to 1 during training. To balance labels for L, dur-
ing training, we randomly select an equal amount
of samples with ¢c; = 1 and ¢; = 0 to obtain L.
L. is used to train F; while D is fixed. Let B be
a batch of training data, B’ a subset of B where
y1 and yo are inconsistent, i.e. ¢; = 1 and r. is
inconsistent in each sample of B’. L. is obtained
on B’ also with the BCE loss.

2.3 Extrapolation

The above simple consistency learning illustration
with two predictions can be extrapolation to a gen-
eral multi-prediction scenarios with multiple input,
multiple output, and multiple functions of diferent
prior knowledge can be added to the network to
make r. more meaningful.

3 Joint Parsing Experiment

Our implementation is based on the open source
project ! of the state-of-the-art joint dependency
and constituency parser (Mrini et al., 2020) at the
time of writing.

3.1 Baseline parser model

The joint parser model is illustrated in Figure 2 and
briefly explained below. Please refer to the original
paper for the detailed model, hype-parameter, and
training settings. For English parsing experiments,
we use the large cased pre-trained XL-Net (Yang
et al., 2019). For Chinese parsing experiments,
we use the bert-base-chinese BERT (Devlin et al.,
2018) model. The output of the pre-trained model
is input into the transformer encoder layers, and
the output of the latter is the shared representation

"https://github.com/KhalilMrini/LAL-Parser
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Figure 2: The neural network for the joint parsing ex-
periment.

T¢. Tc 1s then sent to both the span and the edge
scorers (Dozat and Manning, 2017; Stern et al.,
2017). During training, the span scores are sent to
the chart decoder to predict the best constituency
tree with the maximum total span scores, and it
is sent to the greedy decoder to predict the best
dependency tree. The loss Lgl) of the first sub-task
is a hinge loss between the total span scores of the
predicted constituency tree and that of its ground-
truth. The loss LEQ) of the second sub-task is the
mean cross-entropy between each dependency edge
and its ground-truth. At inference time, the span
scores and the edge scores are used by the HPSG
decoder (Zhou and Zhao, 2019) to decode a simpli-
fied HPSG tree, which is a combined constituency
and dependency tree.

3.2 Experiment settings

The constituency parsing dataset that we use in-
clude the English Penn Treebank (PTB) (Marcus
etal., 1993b) and the Chinese Treebank (CTB) (Xue
et al., 2005). We follow the standard data splits,
and use the EVALB program (Sekine and Collins,
1997) to report the constituency parsing results.
The English dependency trees are obtained by con-
verting constituent trees with the Stanford Parser 2.
The Chinese dependency trees are converted from
constituent trees with Penn2Malt 3.

In addition, we perform character-level Chinese
constituency and dependency parsing (Zheng et al.,
2015; Liet al., 2018; Yan et al., 2019). We use sim-

Zhttp://nlp.stanford.edu/software/lex-parser.html
3https://cl.lingfil.uu.se/ nivre/research/Penn2Malt.html
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Figure 3: Illustration of character-level trees conversion.

l l

[UAS | LAS [ UCM | LCM |

CTB baseline | 94.53 | 93.02 | 62.36 | 53.74
CTB ours 94.89 | 93.38 | 65.23 | 56.90
CTB-C baseline | 96.10 | 94.69 | 60.06 | 49.71
CTB-C ours 96.15 | 94.85 | 60.63 | 50.86
CTB-W baseline | 94.90 | 92.91 | 67.92 | 58.70
CTB-CW | baseline | 95.07 | 93.69 | 66.21 57.68
CTB-CW | ours 95.08 | 93.44 | 68.26 | 60.07
PTB baseline | 97.30 | 96.21 | 72.52 | 62.87
PTB ours 97.20 | 96.10 | 71.32 | 62.33

Table 2: Dependency parsing results (w/o punct.)

| l

[UAS [ LAS [ UCM | LCM |

CTB baseline | 94.19 | 92.87 | 62.07 | 53.45
CTB ours 94.71 | 93.38 | 64.66 | 56.61
l [ | Recall | Precision | FScore | CTB-C baseline | 95.78 | 94.57 | 60.06 | 49.71
CTB baseline | 93.22 92.98 93.10 CTB-C ours 95.80 | 94.50 | 60.06 | 50.29
CTB ours 93.46 93.59 93.53 CTB-W baseline | 94.80 | 93.06 | 67.92 | 58.70
CTB-C baseline | 95.69 95.39 95.51 CTB-CW | baseline | 94.85 | 93.63 | 66.21 | 57.68
CTB-C ours 95.78 95.43 95.57 CTB-CW | ours 94.86 | 9342 | 67.58 | 59.39
CTB-W baseline | 92.88 93.11 92.99 PTB baseline | 96.94 | 95.98 | 68.87 | 60.06
CTB-CW | baseline | 93.04 93.19 93.11 PTB ours 96.81 | 95.85 | 67.76 | 59.56
CTB-CW | ours 93.81 93.70 93.75
PTB baseline | 96.08 | 96.23 96.16 Table 3: Dependency parsing results (with punct.)
PTB ours 9591 96.17 96.04

Table 1: Constituency parsing results

ple conversion methods to obtain character-level
constituency and the dependency trees as explained
in Figure 3, and we perform character-level experi-
ments using the same model and hype-parameters
as the word-level Chinese parsing experiment.

3.3 Consistency function

As shown in Figure 2, the consistency label c; is
obtained from the predicted consistency spans, ys,
and dependency edges, y.. c1 = C1(ys,ye) = 1 if
the consistency tree derived from y, and the depen-
dency tree derived from y, can be successfully com-
bined into a simplified HPSG tree (Zhou and Zhao,
2019). In the simplified HPSG tree, for each con-
stituent span s € ys, a word h € s is assigned the
head and another word p ¢ s is assigned the par-
ent if there exists a dependency edge (h,p) € ye.
If any span s € y; fails to find its unique A or p,
ys fails to combine with y., and ¢; = 1. Simply
put, c; = 0 if all non-root constituency span have
exactly one out-going dependency edge.

Our discriminator D consists of three trans-
former layers with factored content and position
information (Kitaev and Klein, 2018), one layer
of label attention layer (Mrini et al., 2020), a two-
layer feed-forward network with output size 1,024,
a summation over the word index dimension, and

a two-layer feed-forward network with a hidden
size 64, a ReLU activation function, and an output
linear layer of size 1.

3.4 Results

As shown in Tables 1 to 3, the results on CTB are
obtained with a consistency loss weight a. = 0.5.
Our consistency learning method achieves a 0.43
increment over the 93.10 F1, and a 0.36 improve-
ment over the 94.19 UAS (without punctuations)
of the state-of-the-art baseline.

For character-level Chinese parsing, we set c, =
0.1, and report results on the character-level trees
(CTB-C) and on the back-converted word-level
trees (CTB-CW). For the latter, 14% of the pre-
dicted parses have different word-segmentations
than the CTB testing set. We therefore compare
CTB-CW with this subset of the CTB testing set
(CTB-W). Consistency learning shows improve-
ment in all evaluation metrics except for LAS, prob-
ably due to the fact that our consistency objective
focuses only on structures rather than labels.

On PTB, we failed to find an « to obtain improve-
ment. The results reported are with o, = 0.1. It is
probably because the consistency sub-task wastes
extra model capacity while its improvement is not
dominating in PTB whose size if twice that of CTB
and its labels are less noisy and more consistent.
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