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Abstract

In-context learning refers to the learning ability
of a model during inference time without adapt-
ing its parameters. The input (i.e., prompt) to
the model (e.g., transformers) consists of both a
context (i.e., instance-label pairs) and a query in-
stance. The model is then able to output a label
for the query instance according to the context
during inference. A possible explanation for in-
context learning is that the forward pass of (linear)
transformers implements iterations of gradient de-
scent on the instance-label pairs in the context. In
this paper, we prove by construction that trans-
formers can also implement temporal difference
(TD) learning in the forward pass, a phenomenon
we refer to as in-context TD. We demonstrate
the emergence of in-context TD after training the
transformer with a multi-task TD algorithm, ac-
companied by theoretical analysis. Furthermore,
we prove that transformers are expressive enough
to implement many other policy evaluation al-
gorithms in the forward pass, including residual
gradient, TD with eligibility trace, and average-
reward TD.

1. Introduction
In-context learning has emerged as one of the most remark-
able abilities of large language models (Brown et al., 2020;
Lieber et al., 2021; Rae et al., 2021; Black et al., 2022). In
in-context learning, the input (i.e., prompt) to the model
consists of both a context (i.e., instance-label pairs) and
a query instance. The model then outputs a label for the
query instance during inference (i.e., the forward pass). An
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example of the model input and output could be

5→ number; a→ letter; 6→︸ ︷︷ ︸
input

number︸ ︷︷ ︸
output

, (1)

where “5→ number; a→ letter” is the context consisting
of two instance-label pairs and “6” is the query instance.
Based on the context, the model (e.g., Team et al. (2023);
Touvron et al. (2023); Achiam et al. (2023)) infers the label
“number” for the query “6”. Remarkably, this entire pro-
cess occurs during the model’s inference time without any
adjustment to the model’s parameters. Understanding the
mechanism behind in-context learning has recently garnered
significant attention (Garg et al., 2022; Akyürek et al., 2023;
von Oswald et al., 2023; Ahn et al., 2024).

The example in (1) illustrates a supervised learning prob-
lem. In the canonical machine learning framework (Bishop,
2006), this supervised learning problem is typically solved
by first training a classifier based on the instance-label pairs
in the context using methods such as gradient descent, and
then asking the classifier to predict the label for the query
instance. Remarkably, Akyürek et al. (2023); von Oswald
et al. (2023); Ahn et al. (2024) show that transformers are
able to implement this gradient descent training process in
their forward pass without adapting any of their parameters,
providing a possible explanation for in-context learning.

Beyond supervised learning, intelligence involves sequential
decision-making, where Reinforcement Learning (RL, Sut-
ton & Barto (2018)) has emerged as a successful paradigm.
Can transformers preform in-context RL during inference,
and how? To address these questions, we start with a
simple evaluation problem in a Markov Reward Process
(MRP, Puterman (2014)). In an MRP, an agent transitions
from state to state at every time step. We denote the se-
quence of states that the agent visits by (S0, S1, S2, . . . ).
At each state, the agent receives a reward. We denote the
sequence of rewards that the agent receives along the way
as (r(S0), r(S1), r(S2), . . . ). The evaluation problem is to
estimate the value function v, which computes for each state
the expected total (discounted) rewards the agent will re-
ceive in the future. An example of the desired input-output
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could be

S0 → r(S0);S1 → r(S1);S2 → r(S2); s→︸ ︷︷ ︸
input

v(s)︸︷︷︸
output

. (2)

Remarkably, the above task is fundamentally different from
supervised learning as the goal is to predict the value v(s)
and not the immediate reward r(s). Moreover, the query
state s is arbitrary and does not have to be S3. Temporal
Difference learning (TD, Sutton (1988)) is the most widely
used RL algorithm for solving such evaluation problems
in (2). And it is well known that TD is not gradient descent
(Sutton & Barto, 2018).

In this work, we make three main contributions. First,
we prove by construction that transformers are expressive
enough to implement TD in the forward pass, a phenomenon
we refer to as in-context TD. In other words, transformers
can solve problem (2) during inference time via in-context
TD. Beyond the most straightforward TD, transformers can
also implement many other policy evaluation algorithms,
including residual gradient (Baird, 1995), TD with eligibility
trace (Sutton, 1988), and average-reward TD (Tsitsiklis &
Roy, 1999). In particular, to implement average-reward TD,
transformers require the use of multi-head attention and
over-parameterized prompts, e.g.,

S0 → r(S0)□;S1 → r(S1)□;S2 → r(S2)□; s→︸ ︷︷ ︸
input

v(s)︸︷︷︸
output

.

Here, “□” acts as a dummy placeholder that the transform-
ers will use as “memory” during inference. Second, we
empirically demonstrate that by training transformers with
TD on multiple randomly generated evaluation problems, in-
context TD emerges. In other words, the learned transformer
parameters closely match our construction in proofs. We call
this training scheme multi-task TD. Third, we bridge the
gap between our theories and empirical results by showing
that for a single layer transformer, the transformer param-
eters required in the proof to implement in-context TD is
in a subset of the invariant set of the training algorithm
multi-task TD.

2. Background
Transformers and Linear Self-Attention. All vectors in
this paper are column vectors. We denote the identity ma-
trix in Rn by In and an m × n all-zero matrix by 0m×n.
We use Z⊤ to denote transpose of Z and use both ⟨x, y⟩
and x⊤y to denote the inner product. Given a prompt
Z ∈ Rd×n, standard single-head self-attention (Vaswani
et al., 2017) processes the prompt by AttnWk,Wq,Wv

(Z)
.
=

WvZ softmax
(
Z⊤W⊤

k WqZ
)
, where Wv ∈ Rd×d,Wk ∈

Rm×d, and Wq ∈ Rm×d represent the value, key and query

weight matrices, respectively. The softmax function is ap-
plied to each row. Linear attention has recently drawn more
attention (Schlag et al., 2021; von Oswald et al., 2023; Ahn
et al., 2024), where the softmax function is replaced by an
identity function. Given a prompt Z ∈ R(2d+1)×(n+1), we
follow Ahn et al. (2024) and define linear self-attention as

LinAttn(Z;P,Q)
.
= PZM(Z⊤QZ), (3)

where P ∈ R(2d+1)×(2d+1) and Q ∈ R(2d+1)×(2d+1) are
parameters and M ∈ R(n+1)×(n+1) is a fixed mask of the
input matrix Z, defined as

M
.
=

[
In 0n×1

01×n 0

]
. (4)

Note that we can view P and Q as reparameterizations of
the original weight matrices for simplifying presentation.
The maskM is introduced for in-context learning, following
Ahn et al. (2024), to designate the last column of Z as the
query and the first n columns as the context. We use this
fixed mask in most of this work. However, the linear self-
attention mechanism can be altered using a different mask
M ′, when necessary, by defining LinAttn(Z;P,Q,M ′) =
PZM ′(Z⊤QZ). In anL-layer transformer with parameters
{(Pl, Ql)}l=0,...,L−1, the input Z0 evolves layer by layer as

Zl+1
.
=Zl +

1

n
LinAttnPl,Ql

(Zl)

=Zl +
1

n
PlZlM(Z⊤

l QlZl). (5)

Here 1
n is a normalization factor simplifying presentation.

We follow the convention in von Oswald et al. (2023); Ahn
et al. (2024) and use

TFL(Z0; {Pl, Ql}l=0,1,...L−1
.
=− ZL[2d+ 1, n+ 1] (6)

to denote the output of the L-layer transformer, given an
input Z0. Note that Zl[2d + 1, n + 1] is the bottom-right
element of Zl.

In-Context Supervised Learning as Gradient Descent.
A linear regression task can be represented by an instance
distribution dX and a ground truth weight w∗. A train-
ing set {(x(i) ∈ R2d, y(i) ∈ R)}i=1,...,n is usually con-
structed by sampling n instances {x(i)} from dX in an
i.i.d. manner and constructing the targets as y(i) .= w⊤

∗ x
(i).

For a new instance x(n+1) sampled from dX , the goal
is to predict the correct target y(n+1). To demonstrate
in-context learning, one constructs a prompt matrix as

Z0
.
=

[
x(1) . . . x(n) x(n+1)

y(1) . . . y(n) 0

]
, where the bottom right

zero reflects that the target for x(n+1) is unknown. The L-
layer transformer is trained via gradient descent to minimize

2



Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

the following in-context loss

E(dX ,w∗)∼dtask,Z0∼dX[
(TFL(Z0; {Pl, Ql}L−1

l=0 )− w⊤
∗ x

(n+1))2
]
, (7)

where we have assumed that there is a distribution dtask
over such regression tasks. When a new regression task
(dtest

X , wtest
∗ ) is sampled from dtask and a new input Z test

0

is constructed, the trained transformer, using Z test
0 as in-

put, approximates the target
〈
x(n+1),test, wtest

∗
〉
. This is

a form of meta-learning (Vilalta & Drissi, 2002). Sur-
prisingly, the transformer’s ability to achieve this stems
from its implementation of gradient descent within its for-
ward pass. As proved by (Ahn et al., 2024), by mini-
mizing the in-context loss in (7), we may end up with a
transformer parameterized by, say {(P ∗

l , Q
∗
l )}l=0,...,L−1,

that has the following remarkable effect. Feeding the
prompt Z0 into this L-layer transformer, we get Z1, . . . , ZL

following (5). We denote the right bottom element of
Zl as y

(n+1)
l . (Ahn et al., 2024) then prove that for

l = 0, 1, . . . , L, we have y(n+1)
l = −w⊤

l x
(n+1), where

wl+1
.
= wl +

1
n

∑n
i=1(y

(i) − w⊤
l x

(i))x(i) with w0 = 0.
This sequence {wl} mirrors that produced by running gradi-
ent descent on the demonstrations {(x(i), y(i))} to minimize
the squared loss 1

n

∑n
i=1(y

(i) − w⊤x(i))2. In other words,
unrolling this transformer layer by layer is equivalent to
performing gradient descent iteration by iteration.

Reinforcement Learning. We consider an infinite hori-
zon Markov Decision Process (MDP, Puterman (2014))
with a finite state space S, a finite action space A, a re-
ward function rMDP : S × A → R, a transition func-
tion pMDP : S × S × A → [0, 1], a discount factor
γ ∈ [0, 1), and an initial distribution p0 : S → [0, 1].
An initial state S0 is sampled from p0. At a time t, an
agent at a state St takes an action At ∼ π(·|St), where
π : A × S → [0, 1] is the policy being followed by the
agent, receives a reward Rt+1

.
= rMDP(St, At), and tran-

sitions to a successor state St+1 ∼ pMDP(·|St, At). If the
policy π is fixed, the MDP can be simplified to a Markov
Reward Process (MRP) where transitions and rewards are
determined solely by the current state:St+1 ∼ p(·|St) with
Rt+1

.
= r(St). Here p(s′|s) .

=
∑

a π(a|s)pMDP(s
′|s, a)

and r(s) .
=
∑

a π(a|s)rMDP(s, a). In this work, we con-
sider the policy evaluation problem where the policy π is
fixed. So it suffices to consider only an MRP represented
by the tuple (p0, p, r), and trajectories (S0, R1, S1, R2, . . . )
sampled from it. The value function of this MRP is de-
fined as v(s) .= E

[∑∞
i=t+1 γ

i−t−1Ri|St = s
]
. Estimating

the value function v is one of the fundamental tasks in RL.
To this end, one can consider a linear architecture. Let
ϕ : S → Rd be the feature function. The goal is then to find
a weight vector w ∈ Rd such that for each s, the estimated
value v̂(s;w) .= w⊤ϕ(s) approximates v(s). TD is a preva-

lent method for learning this weight vector, which updates
w iteratively as

wt+1

=wt + αt

(
Rt+1 + γv̂(St+1;wt)− v̂(St;wt)

)
∇v̂(St;wt)

=wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
ϕ(St), (8)

where {αt} is a sequence of learning rates. Notably, TD is
not a gradient descent algorithm. It is instead considered as
a semi-gradient algorithm because the gradient is only taken
with respect to v̂ (St;wt) and does not include the depen-
dence on v̂ (St+1;wt) (Sutton & Barto, 2018). Including
this dependency modifies the update to

wt+1 = wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)

· (ϕ(St)− γϕ(St+1)) , (9)

known as the (naive version of) residual gradient method
(Baird, 1995).1 The update in (8) is also called TD(0) – a
special case of the TD(λ) algorithm (Sutton, 1988). TD(λ)
employs an eligibility trace that accumulates the gradients
as e−1

.
= 0, et

.
= γλet−1+ϕ(St) and updates w iteratively

as

wt+1 = wt + αt(Rt+1 + γw⊤
t ϕ(St+1)− w⊤

t ϕ(St))et.

The hyperparameter λ controls the decay rate of the trace.
If λ = 0, we recover (8). On the other end with λ = 1,
it is known that TD(λ) recovers Monte Carlo (Sutton,
1988). Another important setting in RL is the average-
reward setting (Puterman, 2014; Sutton & Barto, 2018),
focusing on the rate of receiving rewards, without using
a discount factor γ. The average reward r̄ is defined as
r̄
.
= limT→∞

1
T

∑T
t=1 E[Rt]. Similar to the value func-

tion in the discounted setting, a differential value function
v̄(s) is defined for the average-reward setting as v̄(s) .

=
E
[∑∞

i=t+1(Ri − r̄)|St = s
]
. One can similarly estimate

v̄(s) using a linear architecture with a vector w as w⊤ϕ(s).
Average-reward TD (Tsitsiklis & Roy, 1999) updates w
iteratively as

wt+1 = wt+αt(Rt+1 − r̄t+1

+w⊤
t ϕ(St+1)− w⊤

t ϕ(St))ϕ(St),

where r̄t
.
= 1

t

∑t
i=1Ri is the empirical average of the re-

ceived reward.

3. Transformers Can Implement In-Context
TD(0)

In this section, we prove that transformers are expressive
enough to implement TD(0) in its forward pass. Given a

1This is a naive version because the update does not account
for the double sampling issue. We refer the reader to Chapter 11
of Sutton & Barto (2018) for detailed discussion.
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trajectory (S0, R1, S1, R2, S3, R4, . . . , Sn) sampled from
an MRP, using as shorthand ϕi

.
= ϕ(Si), we define for

l = 0, 1, . . . , L− 1

Z0 =



ϕ0 . . . ϕn−1 ϕn
γϕ1 . . . γϕn 0
R1 . . . Rn 0


,

P TD
l

.
=

[
02d×2d 02d×1

01×2d 1

]
,

QTD
l

.
=



−C⊤

l C⊤
l 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0


.

(10)

Here Z0 ∈ R(2d+1)×(n+1) is the prompt matrix, Cl ∈ Rd×d

is an arbitrary matrix, and
{
(P TD

l , QTD
l )
}
l=0,1,...,L−1

are
the parameters of the L-layer transformer. We then have
Theorem 3.1 (Forward pass as TD(0)). Consider the L-
layer linear transformer following (5), using the mask (4),
parameterized by

{
P TD
l , QTD

l

}
l=0,...,L−1

in (10). Let

y
(n+1)
l be the bottom right element of the l-th layer’s out-

put, i.e., y(n+1)
l

.
= Zl[2d + 1, n + 1]. Then, it holds that

y
(n+1)
l = −⟨ϕn, wl⟩, where {wl} is defined as w0 = 0 and

wl+1

=wl +
1

n
Cl

n−1∑

j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)
ϕj .(11)

The proof is in Appendix A.1 and with numerical verifica-
tion in Appendix E as a sanity check. Notably, Theorem 3.1
holds for any Cl. In particular, if Cl = αlI , then the up-
date (11) becomes a batch version of TD(0) in (8). For a gen-
eral Cl, the update (11) can be regarded as preconditioned
batch TD(0) (Yao & Liu, 2008). Theorem 3.1 precisely
demonstrates that transformers are expressive enough to
implement iterations of TD in its forward pass. We call this
in-context TD. It should be noted that although the construc-
tion of Z0 in (10) uses ϕn as the query state for conceptual
clarity, any arbitrary state s ∈ S can serve as the query state
and Theorem 3.1 still holds. In other words, by replacing ϕn
with ϕ(s), the transformer will then estimate v(s). Notably,
if the transformer has only one layer, i.e., L = 1, there
are other parameter configurations that can also implement
in-context TD(0).
Corollary 3.2. Consider the 1-layer linear transformer
following (5), using the mask (4). Consider the following
parameters

P TD
0

.
=

[
02d×2d 02d×1

01×2d 1

]
,

QTD
0

.
=



−C⊤

l 0d×d 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0




(12)

Then, it holds that y(n+1)
1 = −⟨ϕn, w1⟩, wherew1 is defined

as

w1 = w0 +
1

n
Cl

n−1∑

j=0

(
Rj+1 + γw⊤

0 ϕj+1 − w⊤
0 ϕj

)
ϕj

with w0 = 0.

The proof is in Appendix A.2. An observant reader may
notice that this corollary holds primarily because w0 = 0,
making it a unique result for L = 1. Nevertheless, this
special case helps understand a few empirical and theoretical
results below.

4. Transformers Do Implement In-Context
TD(0)

It has been observed that in-context gradient descent
emerges during the minimization of the in-context regres-
sion loss (7) via gradient descent. In this section, we demon-
strate the emergence of in-context TD both theoretically and
empirically.

Multi-Task Temporal Difference Learning. The in-
context regression loss essentially trains the transformer
with multiple regression tasks. Inspired by this, we propose
to train the transformer with multiple evaluation tasks from
multiple MRPs. Recall, an MRP is defined by the tuple
(p0, p, r). For the evaluation problem, the feature function ϕ
also matters. We therefore define an evaluation task to be the
tuple (p0, p, r, ϕ). Assuming a distribution dtask over these
tuples, we sample evaluation tasks from this distribution.
For each sampled task, we apply TD to train the transformer
to solve the corresponding evaluation problem, as described
in the following multi-task TD algorithm (Algorithm 1).

Recall that TFL(Z0; θ) and TFL(Z
′
0; θ) are in-

tended to estimate v(St+n+1) and v(St+n+2) respec-
tively. So Algorithm 1 essentially applies TD using
(St+n+1, Rt+n+2, St+n+2) to train the transformer. Ideally,
when a new prompt Ztest is constructed using a trajectory
from a new evaluation task (p0, p, r, ϕ)test ∼ dtask(·), we
would like the predicted value TFL(Ztest; θ) with θ from
Algorithm 1 to be close to the value of the query state in
Ztest. This problem is a multi-task meta-learning problem, a
well-explored area with many existing methodologies (Beck
et al., 2023). However, the unique and significant aspect of
our work is the demonstration that in-context TD emerges
in the learned transformer, providing a novel explanation
for how the model solves the problem.

4.1. Theoretical Analysis

The problem that Algorithm 1 aims to solve is highly non-
convex and non-linear (the linear transformer is still a non-
linear function). We analyze a simplified version of Al-
gorithm 1 and leave the treatment to the full version for
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Algorithm 1 Multi-Task Temporal Difference Learning

1: Input: context length n, MRP sample length τ , number
of training MRPs k, learning rate α, discount factor γ,
transformer parameters θ .

= {Pl, Ql}l=0,1,...L−1

2: for i← 1 to k do
3: Sample (p0, p, r, ϕ) from dtask // see, e.g., Algo-

rithm 2 in Appendix B
4: Sample (S0, R1, S1, R2, . . . , Sτ , Rτ+1, Sτ+1) from

the MRP (p0, p, r)
5: for t = 0, . . . , τ − n− 1 do

6: Z0 ←




ϕt · · · ϕt+n−1 ϕt+n+1

γϕt+1 · · · γϕt+n 0
Rt+1 · · · Rt+n 0




7: Z ′
0 ←



ϕt+1 · · · ϕt+n ϕt+n+2

γϕt+2 · · · γϕt+n+1 0
Rt+2 · · · Rt+n+1 0




8: θ ← θ + α(Rt+n+2 + γTFL(Z
′
0; θ) −

TFL(Z0; θ))∇θTFL(Z0; θ) // TD
9: end for

10: end for

future work. In particular, we study the single layer case
with L = 1 and let θ .

= (P0, Q0) be the parameters of the
single-layer transformer. We consider expected updates, i.e.,

θk+1 =θk + αk∆(θk),

with

∆(θ)
.
=E [(R+ γTF1(Z

′
0, θ)− TF1(Z0, θ))∇TF1(Z0, θ)] .

(13)

Here the expectation integrates both the randomness
in sampling (p0, p, r, ϕ) from dtask and the random-
ness in constructing (R,Z0, Z

′
0) thereafter. We sample

(S0, R1, S1, . . . , Sn+1, Rn+2, Sn+2) following (p0, p, r)
and construct using shorthand ϕi

.
= ϕ(Si)

Z0
.
=



ϕ0 . . . ϕn−1 ϕn+1

γϕ1 . . . γϕn 0
R1 . . . Rn 0


,

Z ′
0
.
=



ϕ1 . . . ϕn ϕn+2

γϕ2 . . . γϕn+1 0
R2 . . . Rn+1 0


, R .

= Rn+2.

(14)

The structure of Z0 and Z ′
0 is similar to those in Algorithm 1.

The main difference is that we do not use the sliding window.
We recall that (p0, p, r, ϕ) are random variables with joint
distribution dtask. Here, ϕ is essentially a random matrix tak-
ing value in Rd×|S|, represented as, ϕ = [ϕ(s)]s∈S . We use
≜ to denote “equal in distribution" and make the following
assumptions.

Assumption 4.1. The random matrix ϕ is independent of
(p0, p, r).

Assumption 4.2. Πϕ ≜ ϕ,Λϕ ≜ ϕ, where Π is any d-
dimensional permutation matrix and Λ is any diagonal ma-
trix in Rd where each diagonal element of Λ can only be−1
or 1.

Those assumptions are easy to satisfy. For example, as
long as the elements of the random matrix ϕ are i.i.d. from
a symmetric distribution centered at zero, e.g., a uniform
distribution on [−1, 1], then both assumptions hold. We say
a set Θ is an invariant set of (13) if for any k, θk ∈ Θ =⇒
θk+1 ∈ Θ. Define

θ∗(η, c, c
′)
.
=


P0 =

[
02d×2d 02d×1

01×2d η

]
, Q0 =



cId 0d×d 0d×1

c′Id 0d×d 0d×1

01×d 01×d 0




 .

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. For
the (14) construction of (R,Z0, Z

′
0), then Θ∗

.
=

{θ∗(η, c, c′)|η, c, c′ ∈ R} is an invariant set of (13).

The proof is in Appendix A.3. Theorem 4.3 demonstrates
that once θk enters Θ∗ at some k, it can never leave, i.e., Θ∗
is a candidate set that the update (13) can possibly converge
to. Consider a subset Θ′

∗ ⊂ Θ∗ with a stricter constraint
c′ = 0, i.e., Θ′

∗
.
= {θ∗(η, c, 0)|η, c ∈ R}. Corollary 3.2 then

confirms that all parameters in Θ′
∗ implement in-context TD.

That being said, whether (13) is guaranteed to converge to
Θ∗, or further to Θ′

∗, is left for future work.

4.2. Empirical Analysis

We now empirically study Algorithm 1. To this end, we
construct dtask based on Boyan’s chain (Boyan, 1999), a
canonical environment for diagnosing RL algorithms. We
keep the structure of Boyan’s chain but randomly generate
initial distributions p0, transition probabilities p, reward
functions r, and the feature function ϕ. Details of this
random generation process are provided in Algorithm 2 with
Figure 2 visualizing Boyan’s chain, both in Appendix B.

For the linear transformer specified in (5), we first consider
the autoregressive case following (Akyürek et al., 2023;
von Oswald et al., 2023), where all the transformer layers
share the same parameters, i.e., Pl ≡ P0 and Ql ≡ Q0

for l = 0, 1, . . . , L − 1. We consider a three layer trans-
former (L = 3). Importantly, all elements of P0 and Q0 are
equally trainable – we did not force any element of P0 and
Q0 to be 0. We then run Algorithm 1 with Boyan’s chain
based evaluation tasks (i.e., dtask) to train this autoregressive
transformer. The dimension of the feature is d = 4 (i.e.,
ϕ(s) ∈ R4). Other hyperparameters of Algorithm 1 are
specified in Appendix C.1.

Figure 1a visualizes the final learned P0 and Q0 by Al-
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gorithm 1 after 4000 MRPs (i.e., k = 4000), which
closely match our specifications P TD and QTD in (10) with
Cl = Id. In Figure 1b, we visualize the element-wise
learning progress of P0 and Q0. We observe that the bot-
tom right element of P0 increases (the P0[−1,−1] curve)
while the average absolute value of all other elements re-
main close to zero (the “Avg Abs Others” curve), closely
aligning with P TD up to some scaling factor. Furthermore,
the trace of the upper left d × d block of Q0 approaches
−d (the tr(Q0[: d, : d]) curve), and the trace of the upper
right block (excluding the last column) approaches d (the
tr(Q0[: d, d : 2d]) curve). Meanwhile, the average abso-
lute value of all the other elements in Q0 remain near zero,
aligning with QTD using Cl = Id up to some scaling factor.

More empirical analysis is provided in the Appendix. In
particular, besides showing the parameter-wise convergence
in Figure 1, we also use other metrics including value dif-
ference, implicit weight similarity, and sensitivity similarity,
inspired by von Oswald et al. (2023); Akyürek et al. (2023),
to examine the learned transformer. We also study nor-
mal transformers without parameter sharing (Appendix
C.3), as well as different choices of hyperparameters in
Algorithm 1. Furthermore, we empirically investigate the
original softmax-based transformers (Appendix D). The
overall conclusion is the same – in-context TD emerges in
the transformers learned by Algorithm 1. Notably, Theo-
rem 3.1 and Corollary 3.2 suggests that for L = 1, there
are two distinct ways to implement in-context TD (i.e., (10)
v.s. (12)). Our empirical results in Appendix C.2 show that
Algorithm 1 ends up with (12) in Corollary 3.2 for L = 1,
aligning well with Theorem 4.3. For L = 2, 3, 4, Algo-
rithm 1 always ends up with (10) in Theorem 3.1, as shown
in Figure 3 in Appendix C.2. We also empirically observed
that for in-context TD to emerge, the task distribution dtask
has to be “difficult” enough. For example, if (p0, p) or
ϕ are always fixed, we did not observe the emergence of
in-context TD.

5. Transformers Can Implement More RL
Algorithms

In this section, we prove that transformers are expressive
enough to implement three additional well-known RL al-
gorithms in the forward pass. We warm up with the (naive
version of) residual gradient (RG). We then move to the
more difficult TD(λ). This section culminates with average-
reward TD, which requires multi-head linear attention and
memory within the prompt. We do note that whether those
three RL algorithms will emerge after training is left for
future work.

Residual Gradient. The construction of RG is an easy

extension of Theorem 3.1. We define

PRG
l = P TD

l , QRG
l

.
=



−C⊤

l C⊤
l 0d×1

C⊤
l −C⊤

l 0d×1

01×d 01×d 0




∈ R(2d+1)×(2d+1). (15)

Corollary 5.1 (Forward pass as Residual Gradient). Con-
sider the L-layer linear transformer following (5), using
the mask (4), parameterized by

{
P RG
l , QRG

l

}
l=0,...,L−1

in

(15). Define y(n+1)
l

.
= Zl[2d+1, n+1]. Then, it holds that

y
(n+1)
l = −⟨ϕn, wl⟩, where {wl} is defined as w0 = 0 and

wl+1 = wl+
1

n
Cl

n−1∑

j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)

·(ϕj − γϕj+1). (16)

The proof is in A.4 with numerical verification in Appendix
E as a sanity check. Again, if Cl

.
= αlId, then (16) can be

regarded as a batch version of (9). For a general Cl, it is
then preconditioned batch RG. Notably, Figure 1 empiri-
cally demonstrates that Algorithm 1 eventually ends up with
in-context TD instead of in-context RG. This matches the
conventional wisdom in the RL community that TD is usu-
ally superior to the naive RG (see, e.g., Zhang et al. (2020)
and references therein).

TD(λ). Incorporating eligibility traces is an important exten-
sion of TD(0). We now demonstrate that by using a different
mask, transformers are able to implement in-context TD(λ).
We define

MTD(λ) .=




1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0




∈ R(n+1)×(n+1). (17)

Notably, if λ = 0, the above mask for TD(λ) recovers the
mask for TD(0) in (4).

Corollary 5.2 (Forward pass as TD(λ)). Consider
the L-layer linear transformer parameterized by{
P TD
l , QTD

l

}
l=0,...,L−1

as specified in (10) with the
input mask used in (5) being MTD(λ) in (17). De-
fine y

(n+1)
l

.
= Zl[2d + 1, n + 1]. Then, it holds

that y(n+1)
l = −⟨ϕn, wl⟩ where {wl} is defined with

w0 = 0, e0 = 0, ej = λej−1 + ϕj , and

wk+1 = wk + 1
nCk

∑n−1
i=0

(
ri+1 + γw⊤

k ϕi+1 − w⊤
k ϕi

)
ei.
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(a) Learned P0 and Q0 after 4000 MRPs

0 1000 2000 3000 4000

# MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

# MRPs

−4

−2

0

2

4
Q0 Metrics

tr(Q0[ : d, : d])

tr(Q0[ : d, d : 2d])

Avg Abs Others

(b) Element-wise learning progress of P0 and Q0

Figure 1: Visualization of the learned transformers and the learning progress. Both (a) and (b) are averaged across 30 seeds
and the shaded region in (b) denotes the standard errors. Since P0 and Q0 are in the same product in (3), the algorithm
can rescale both or flip the sign of both, but still end up with exactly the same transformer. Therefore, to make sure the
visualization are informative, we rescale P0 and Q0 properly first before visualization. See Appendix C.1.1 for details.

The proof is in A.5 with numerical verification in Appendix
E as a sanity check.

Average-Reward TD. We now demonstrate that transform-
ers are expressive enough to implement in-context average-
reward TD. Different from TD(0), average-reward TD ex-
hibits additional challenges in that it updates two estimates
(i.e., wt and r̄t) in parallel. To account for this challenge,
we use two additional mechanisms beyond the naive single-
head linear transformer. Namely, we allow additional “mem-
ory” in the prompt and consider two-head linear transform-
ers. Given a trajectory (S0, R1, S1, R2, S3, R4, . . . , Sn)
sampled from an MRP, we construct the prompt matrix
Z0 as

Z0 =




ϕ0 . . . ϕn−1 ϕn
ϕ1 . . . ϕn 0
R1 . . . Rn 0
0 . . . 0 0


 ∈ R(2d+2)×(n+1).

Notably, the last row of zeros is the “memory”, which is used
by the transformer to store some intermediate quantities
during the inference time. We then define the transformer
parameters and masks as

P
TD,(1)
l

.
=



02d×2d 02d×1 02d×1

01×2d 1 0
01×2d 0 0


,

P
TD,(2)
l

.
=



02d×2d 02d×1 02d×1

01×2d 0 0
01×2d 0 1


, (18)

QTD
l

.
=



−C⊤

l C⊤
l 0d×2

0d×d 0d×d 0d×2

02×d 02×d 02×2


,

Wl
.
=

[
02d×2d 02d×1 02d×(2d+2) 02d×1

01×2d 1 01×(2d+2) 1

]
, (19)

MTD,(2) .=

[
In 0n×1

01×n 0

]
,

MTD,(1) .=
(
In+1 − Un+1diag

([
1 1

2 . . . 1
n+1

]))

·MTD,(2), (20)

where Cl ∈ Rd×d is again an arbitrary matrix, Un+1 is the
(n+1)×(n+1) upper triangle matrix where all the nonzero
elements are 1, and diag(x) constructs a diagonal matrix
with the diagonal entry being x. Here,

{
P

TD,(1)
l , QTD

l

}
are

the parameters of the first attention heads, with the input
mask being MTD,(1).

{
P

TD,(2)
l , QTD

l

}
are the parameters

of the second attention heads, with the input mask being
MTD,(2). The two heads coincide on some parameters. Wl

is the affine transformation that combines the embeddings
from the two attention heads. Define the two-head linear-
attention as

TwoHead(Z;P,Q,M,P ′, Q′,M ′,W )

.
=W

[
LinAttn(Z;P,Q,M)

LinAttn(Z;P ′, Q′,M ′)

]
.

The L-layer transformer we are interested in is then given
by

Zl+1
.
= Zl +

1

n
TwoHead(Zl;P

TD,(1)
l , QTD

l ,MTD,(1),

P
TD,(2)
l , QTD

l ,MTD,(2),Wl). (21)

Theorem 5.3 (Forward pass as average-reward TD). Con-
sider the L-layer transformer in (21). Let h(n+1)

l be the
bottom-right element of the l-th layer output, i.e., h(n+1)

l
.
=

Zl[2d+ 2, n+ 1]. Then, it holds that h(n+1)
l = −⟨ϕn, wl⟩

where {wl} is defined as w0 = 0,

wl+1 = wl +
1

n
Cl

n∑

j=1

(
Rj − r̄j + w⊤

l ϕj − w⊤
l ϕj−1

)
ϕj−1
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for l = 0, . . . , L− 1, where r̄j
.
= 1

j

∑j
k=1Rk.

The proof is in A.6 with numerical verification in Ap-
pendix E as a sanity check.

6. Related Works
In-Context Learning. Understanding in-context learning
empirically and theoretically has recently emerged as an
active research area (Garg et al., 2022; Müller et al., 2022;
Akyürek et al., 2023; von Oswald et al., 2023; Zhao et al.,
2023; Allen-Zhu & Li, 2023; Zhang et al., 2023; Mahankali
et al., 2023; Ahn et al., 2024), building on prior research
demonstrating that neural networks are able to implement
algorithms (Siegelmann & Sontag, 1992; Graves et al., 2014;
Jastrzębski et al., 2017) and achieve meta-learning from
the inputs (Hochreiter et al., 2001). This work advances
this line of research by demonstrating how transformers
implement in-context TD, accompanied by a theoretical
understanding of its emergence.

In-Context Reinforcement Learning. Existing research
on in-context RL predominantly adopts a policy-based ap-
proach, often relying on supervised pre-training (Laskin
et al., 2022; Raparthy et al., 2023; Sinii et al., 2023; Zisman
et al., 2023; Krishnamurthy et al., 2024). Transformers are
trained to output the action, instead of the value, for the
query state. Correspondingly, the prompts used in this setup
consist of previous trajectories from an MDP

S0A0R1S1A2R2 . . . St−1At−1︸ ︷︷ ︸
prompt

St︸︷︷︸
query

→ At︸︷︷︸
output

.

The dataset usually consists of multiple such prompt-query-
output pairs, where maximum likelihood estimation is essen-
tially used to train the transformers. Notably, the prompt can
be generated by following multiple policies. The prompt
can also be offline data containing all trajectories generated
during prior RL algorithm training across multiple episodes.
This line of research is closely related to offline policy distil-
lation, the goal of which is to learn a policy from offline data
using transformers (Chen et al., 2021; Janner et al., 2021;
Lee et al., 2022; Reed et al., 2022; Kirsch et al., 2023). De-
spite that empirical successes observed in the work above,
theoretical analysis is often missing. (Lin et al., 2023) pro-
vide theoretical analysis for this policy-based supervised
pre-training approach and show that the transformers can
approximate a few RL algorithms, including LinUCB (Chu
et al., 2011) and Thompson sampling (Russo et al., 2018) for
linear bandits (Lattimore & Szepesvári, 2020) and UCB-VI
(Azar et al., 2017) for MDPs. Specifically, (Lin et al., 2023)
prove the inference process of the learned transformers be-
haves similarly to those aforementioned RL algorithms in
terms of action selection probabilities, regret, and other met-
rics. This behavioral similarity is also investigated in Lee

et al. (2024). However, the underlying mechanisms within
the learned transformers that induce this similarity remains
unclear. In contrast, we go beyond behavioral similarity
and prove that transformers can exactly implement a
few RL algorithms in its forward pass. Moreover, we
do not use the supervised pre-training paradigm, which is
centered on maximum likelihood estimation. As shown in
Algorithm 1, we instead use RL pre-training predicated on
TD, a value-based method. Park et al. (2024) concurrently
use a regret-based loss for training transformers in online
learning. Brooks et al. (2024) implement policy iteration,
a value-based strategy, with transformers, but perform the
required argmax operation outside the transformers. De-
spite the observed empirical success, Brooks et al. (2024)
also lack a theoretical analysis of their approach.

Meta-Learning of RL algorithms. Our Algorithm 1 can be
regarded as a meta RL algorithm (Beck et al., 2023), where
dtask is the task distribution in the meta RL framework. The
learned transformers can be regarded as a learned algorithm,
which is used to solve new evaluation tasks from the task
distribution. Such meta learning of RL algorithms has been
explored in (Duan et al., 2016; Wang et al., 2016; Finn et al.,
2017; Kirsch et al., 2019; Oh et al., 2020; Lu et al., 2022;
Kirsch et al., 2022; Lu et al., 2023). However, those discov-
ered algorithms lack interpretability – it is not clear how the
neural network implements the discovered algorithms. By
contrast, the discovered transformer from Algorithm 1 is
well explained.

7. Conclusion
This work demonstrates that transformers can and do learn
to implement temporal difference methods for in-context
policy evaluation in the forward pass. We further provide
a theoretical explanation of how in-context TD emerges by
characterizing an invariant set of the multi-task TD algo-
rithm used in pre-training, bridging the gap between “can”
and “do”. However, there are a few limitations. First, this
work is focused on policy evaluation, with control algo-
rithms deferred to future research. Second, the analysis is
largely theoretical – we leave the large-scale verification
of the multi-task TD pre-training paradigm for future work.
Third, the theoretical analysis of the pre-training paradigm
is confined to single-layer linear transformers, leaving the
exploration of multi-layer softmax transformers for future
studies. In conclusion, this research aims to illuminate the
mechanisms of in-context learning, and motivate further
investigation into in-context value-based RL.
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A. Proofs
A.1. Proof of Theorem 3.1

Proof. We recall from (5) that the embedding evolves according to

Zl+1 = Zl +
1

n
PlZlM(Z⊤

l QlZl).

We first express Zl using elements of Z0. To this end, it is convenient to give elements of Zl different names, in particular,
we refer to the elements in Zl as

{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes it is more convenient to refer to the first half

and second half of x(i)l separately, by, e.g., ν(i)l ∈ Rd, ξ
(i)
l ∈ Rd, i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We utilize the shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We recall our definition of M

in (4) and
{
P TD
l , QTD

l

}
l=0,...,L−1

in (10). In particular, we can express QTD
l in a more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We now proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.

Recall that P TD
l

.
=

[
02d×2d 02d×1

01×2d 1

]
∈ R(2d+1)×(2d+1). Let

Wl
.
= ZlM

(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+1)×(n+1).
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The embedding evolution can then be expressed as

Zl+1 = Zl +
1

n
P TD
l Wl.

By simple matrix arithmetic, we get

P TD
l Wl =

[
02d×(n+1)

Wl(2d+ 1)

]
,

where Wl(2d+ 1) denotes the (2d+ 1)-th row of Wl. Therefore, we have Xl+1 = Xl, x
(n+1)
l+1 = x

(n+1)
l . By induction, we

get Xl ≡ X0 and x(n+1)
l ≡ x(n+1)

0 for all l = [0, . . . , L− 1].

In light of this, we drop all the subscripts of Xl, as well as subscripts of x(i)l for i = 1, . . . , n+ 1.

Claim 2.

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).

The easier way to show why this claim holds is to factor the embedding evolution into the product of P TD
l ZlM and

Z⊤
l Q

TD
l Zl. Firstly, we have

P TD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Applying the mask, we get

P TD
l ZlM =

[
02d×n 02d×1

Yl 0

]
.

Then, we analyze Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

Z⊤
l Q

TD
l Zl =

[
X⊤ Y ⊤

l

x(n+1)⊤ y
(n+1)
l

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
X⊤Al 0n×1

x(n+1)⊤Al 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]
.

Combining the two, we get

P TD
l ZlM

(
Z⊤
l Q

TD
l Zl

)
=

[
02d×n 02d×1

Yl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]

=

[
02d×n 02d×1

YlX
⊤AlX YlX

⊤Alx
(n+1)

]
.

Hence, according to our update rule in (5), we get

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).

13
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Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

j=0

B⊤
j M2XY

⊤
j

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll Yl+1 as

Yl+1 = Yl +
1

n
YlX

⊤AlX

Yl = Yl−1 +
1

n
Yl−1X

⊤Al−1X

...

Y1 = Y0 +
1

n
Y0X

⊤A0X.

We can then compactly express Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤AjX.

Recall that we define Aj = BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤M2BjM1X.

The introduction of M2 here does not break the equivalence because Bj =M2Bj . However, it will help make our proof
steps easier to comprehend later.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

j=0

YjX
⊤M2BjM1x

(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

j=0

B⊤
j M2XY

⊤
j ∈ R2d. (22)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (23)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such that we can express ψl as

ψl =

[
wl

0d×1

]
. (24)

14
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for all l = 0, 1, . . . , L.

We prove the claim by induction. The base case holds trivially since ψ0
.
= 0. Suppose that for some l, (24) holds. It can be

easily verified from the definition of ψl+1 in (22) that

ψl+1 = ψl +
1

n
B⊤

l M2XY
⊤
l . (25)

If we let

Nl =
1

n
M2XY

⊤
l ∈ R2d×1,

the evolution of ψl+1 can then be compactly expressed as,

ψl+1 = ψl +B⊤
l Nl.

By matrix arithmetic, we have

B⊤
l Nl =

[
C⊤

l 0d×d

0d×d 0d×d

]⊤[
Nl(1 : d)
Nl(d : 2d)

]

=

[
ClNl(1 : d)

0d×1

]

where Nl(1 : d) ∈ Rd and Nl(d : 2d) ∈ Rd represent the first d and second d elements of Nl respectively. Substituting in
our inductive hypothesis into (25), we have:

ψl+1 =

[
wl

0d×1

]
+

[
ClNl(1 : d)

0d×1

]
,

=

[
wl + ClNl(1 : d)

0d×1

]

if we let wl+1 = wl + ClNl(1 : d), we can see that the property holds for ψl+1, thereby verifying Claim 4.

Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2XY
⊤
l ,M1x

(n+1)
〉

(By (25))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (23))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)

0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)
(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Clν

(i)
(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.
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Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

which is the update rule for pre-conditioned TD learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

A.2. Proof of Corollary 3.2

Proof. The proof presented here closely mirrors the methodology and notation established in Theorem 3.1. Since we are
only considering a 1-layer transformer in this Corollary, we can recall the embedding evolution from (5) and write

Z1 = Z0 +
1

n
P0Z0M(Z⊤

0 Q0Z0).

We once again refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)l ∈ Rd, ξ

(i)
l ∈ Rd, to refer to the first half

and second half of x(i)l i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We further define as shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n, Yl =

[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the blockwise structure of Zl can be succinctly expressed as:

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We recall our definition of M

in (4) and {P0, Q0} in (10). In particular, we can express Q0 in a more compact way as

M1
.
=

[
−Id 0d×d

0d×d 0d×d

]
∈ R2d×2d, B0

.
=

[
C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

A0
.
=B0M1 =

[
−C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Q0
.
=

[
A0 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).
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We will proceed with the following claims.

Claim 1. X1 ≡ X0, x
(n+1)
1 ≡ x(n+1)

0

Because we are considering the special case of L = 1 and because we utilize the same definition of P0 as in Theorem 3.1,
the argument proving Claim 1 in Theorem 3.1 holds here as well. As a result, we drop all the subscripts of X1, as well as
subscripts of x(i)1 for i = 1, . . . , n+ 1.

Claim 2.

Y1 = Y0 +
1

n
Y0X

⊤A0X

y
(n+1)
1 = y

(n+1)
0 +

1

n
Y0X

⊤A0x
(n+1).

This claim is a special case of Claim 2 from the proof of Theorem 3.1 in Appendix A.1, where L = 1. Our block-wise
construction of Q0 matches that in the proof of Theorem 3.1. Although our A0 here differs from the specific form of A0

in the proof of Theorem 3.1, this specific form is not utilized in the proof of Claim 2. Therefore, the proof of Claim 2 in
Appendix A.1 applies here, and we omit the steps to avoid redundancy.

Claim 3.

y
(i)
1 = y

(i)
0 +

〈
M1x

(i),
1

n
B⊤

0 M2XY
⊤
0

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

This claim once again is the L = 1 case of Claim 3 from the proof of Theorem 3.1 in Appendix A.1. The specific form of
M1 is not utilized in the proof of Claim 3 from Appendix A.1, so it applies here.

We can then define ψ0
.
= 0 and,

ψ1
.
=

1

n
B⊤

0 M2XY
⊤
0 ∈ R2d. (26)

Then we can write

y
(i)
1 = y

(i)
0 +

〈
M1x

(i), ψ1

〉
,

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
1 =

〈
M1x

(n+1), ψ1

〉
.

Claim 4. The bottom d elements of ψ1 are always 0, i.e., there exists w1 ∈ Rd such that we can express ψ1 as

ψ1 =

[
w1

0d×1

]
.

Since our B0 here is identical to that in the proof of Theorem 3.1 in A.1, Claim 4 holds for the same reason. We therefore
omit the proof details to avoid repetition.
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Given all the claims above, we can then compute that

〈
ψ1,M1x

(n+1)
〉
=
1

n

〈
B⊤

0 M2XY
⊤
0 ,M1x

(n+1)
〉

(By (26))

=
1

n

n∑

i=1

〈
B⊤

0 M2x
(i)y

(i)
0 ,M1x

(n+1)
〉

=
1

n

n∑

i=1

〈
B⊤

0

[
ν(i)

0d×1

](
y
(i)
0

)
,M1x

(n+1)

〉

=
1

n

n∑

i=1

〈[
C0ν

(i)

0d×1

](
y
(i)
0

)
,M1x

(n+1)

〉
(By Claim 4)

=
1

n

n∑

i=1

〈[
C0ν

(i)y
(i)
0

0d×1

]
,M1x

(n+1)

〉

This means

〈
w1, ν

(n+1)
〉
=

1

n

n∑

i=1

〈
C0ν

(i)y
(i)
0 , ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

w1 =
1

n

n∑

i=1

C0y
(i)
0 ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1 and y(i)0 = Ri, we get

w1 =
1

n

n∑

i=1

C0Riϕi−1

which is the update rule for a single step of TD(0) with w0 = 0. We also have

y
(n+1)
1 =

〈
ψ1,M1x

(n+1)
〉
= −

〈
w1, ϕ

(n+1)
〉
.

This concludes our proof.

A.3. Proof of Theorem 4.3

Preliminaries Before we present the proof, we first introduce notations convenient for our analysis. We decompose P0

and Q0 as

P0 =

[
P ∈ R2d×(2d+1)

p ∈ R1×(2d+1)

]
, Q0 =



Qa ∈ Rd×d Qb ∈ Rd×d qc ∈ Rd×1

Q′
a ∈ Rd×d Q′

b ∈ Rd×d q′c ∈ Rd×1

qa ∈ R1×d qb ∈ R1×d q′′c ∈ R


.

18
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One can readily check that TF1 is independent of P,Qb, Q
′
b, qb, qc, q

′
c, q

′′
c . Thus, we can assume that these matrices are zero.

Let z(i) be the i-th column of Z0. Indeed, TF1 can be written as

TF1(Z0, {P0, Q0}) = −Z1[2d+ 1, n+ 1] (By (6))

= − 1

n
p⊤

(
n∑

i=1

z(i)z(i)
⊤

)
Q0z

(n+1)

= − 1

n

n∑

i=1

〈
p, z(i)

〉
z(i)

⊤
Q0z

(n+1)

= − 1

n

n∑

i=1

〈
p, z(i)

〉(
ϕ⊤i−1Qaϕn+1 + γϕ⊤i Q

′
aϕn+1 +Riϕ

⊤
n+1qa

)
(27)

= − 1

n

n∑

i=1



〈
p[1:d], ϕi−1

〉
+ γ
〈
p[d+1:2d], ϕi

〉
+ p[2d+1]Ri︸ ︷︷ ︸

αi(Z0,P0)




·


ϕ⊤i−1Qaϕn+1 + γ(ϕi)

⊤Q′
aϕn+1 +Riϕ

⊤
n+1qa︸ ︷︷ ︸

βi(Z0,Q0)


.

We prepare the following gradient computations for future use:

∇p[1:d]
TF1(Z0, {P0, Q0}) = −

1

n

n∑

i=1

βi(Z0, Q0)ϕi−1

∇p[d+1:2d]
TF1(Z0, {P0, Q0}) = −

γ

n

n∑

i=1

βi(Z0, Q0)ϕi

∇QaTF1(Z0, {P0, Q0}) = −
1

n

n∑

i=1

αi(Z0, P0)ϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, {P0, Q0}) = −

γ

n

n∑

i=1

αi(Z0, P0)ϕiϕ
⊤
n+1

∇qaTF1(Z0, {P0, Q0}) = −
1

n

n∑

i=1

Riαi(Z0, P0)ϕn+1.

(28)

We will also reference the following two lemmas in our main proof.

Lemma A.1. Let Λ be a diagonal matrix whose diagonal elements are i.i.d Rademacher random variables 2 ζ1, . . . ζd. For
any matrix K ∈ Rd×d, we have that EΛ[ΛKΛ] = diag(K).

Proof. First, we can write ΛKΛ explicitly as

ΛKΛ =




ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd







k11 k12 . . . k1d
k21 k22 . . . k2d

...
...

. . .
...

kd1 kd2 . . . kdd







ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd


.

Using (ΛKΛ)ij to denote the element in the i-th row at column j of ΛKΛ, from elementary matrix multiplication we have

(ΛKΛ)ij = ζikijζj .

2A Rademacher random variable takes values 1 or −1, each with an equal probability of 0.5.
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When i ̸= j, E[ζiζj ] = E[ζi]E[ζj ] = 0 becasue ζi and ζj are independent. For i = j, E[ζiζj ] = E[ζ2i ] = 1. We can then
compute the expectation

EΛ[(ΛKΛ)]ij =

{
kij i = j

0 i ̸= j.

Consequently,

EΛ[ΛKΛ] = diag(K).

Lemma A.2. Let Π ∈ Rd×d be a random permutation matrix uniformly distributed over all d× d permutation matrices
and L ∈ Rd×d be a diagonal matrix. Then, it holds that

EΠ

[
ΠLΠ⊤] = 1

d
tr(L)Id.

Proof. By definition,

[ΠLΠ⊤]ij =
d∑

k=1

ΠikLkkΠjk.

We note that each row of Π is a standard basis. Given the orthogonality of standard bases, we get

[ΠLΠ⊤]ij =

{
0 i ̸= j

Lqiqi i = j
,

where qi is the unique index such that Πiqi = 1. If the distribution of Π is uniform, then [ΠLΠ⊤]ii is equal to one of
L11, . . . , Ldd with the same probability. Thus, the expected value [ΠLΠ⊤]ii is 1

d tr(L).

Now, we start with the proof of the theorem statement.

Proof. We recall the definition of the set Θ∗ as

Θ∗ .
= ∪η,c,c′∈R



P =

[
02d×2d 02d×1

01×2d η

]
, Q =



cId 0d×d 0d×1

c′Id 0d×d 0d×1

01×d 01×d 0





.

Suppose θk ∈ Θ∗, then by (27) and (28), we get

TF1(Z0, θk) = −
ηk
n

n∑

i=1

Ri

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
(29)

TF1(Z
′
0, θk) = −

ηk
n

n∑

i=1

Ri+1

(
ckϕ

⊤
i ϕn+2 + c′kγϕ

⊤
i+1ϕn+2

)

∇p[1:d]
TF1(Z0, θk) = −

1

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi−1

∇p[d+1:2d]
TF1(Z0, θk) = −

γ

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi

∇QaTF1(Z0, θk) = −
ηk
n

n∑

i=1

Riϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, θk) = −

γηk
n

n∑

i=1

Riϕiϕ
⊤
n+1

∇qaTF1(Z0, θk) = −
ηk
n

n∑

i=1

R2
iϕn+1
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Recall the definition of ∆(θ) in (13). With a slight abuse of notation, we define ∆(p[1:d]) to be the p[1:d] component of
∆(θ), i.e.,

∆(p[1:d])
.
= E

[
(R+ γTF1(Z

′
0, θ)− TF1(Z0, θ))

∂TF1(Z0, θ)

∂p[1:d]

]
.

Same goes for ∆(p[d+1:2d]),∆(Qa),∆(Q′
a), and ∆(qa).

We will prove that

(a) ∆(p[1:d]) = ∆(p[d+1:2d]) = ∆(qa) = 0 for ∆(θk);

(b) ∆(Qa) = δId and ∆(Q′
a) = δ′Id for some δ, δ′ ∈ R for ∆(θk)

using Assumptions 4.1 and 4.2. We can see that the combination of (a) and (b) are sufficient for proving the theorem. Recall
that Z0 and Z ′

0 are sampled from (p0, p, r, ϕ). We make the following claims to assist our proof of (a) and (b).

Claim 1. Let ζ be a Rademacher random variable. We denote Zζ and Z ′
ζ as the prompts sampled from (p0, p, r, ζϕ). We

then have Z0 ≜ Zζ and Z ′
0 ≜ Z ′

ζ . To show this is true, we notice that for any realization of ζ, denoted as ζ̄ ∈ {1,−1}, we
have

Pr(p0, p, r, ϕ) = Pr(p0, p, r) Pr(ϕ) (Assumption 4.1)

= Pr(p0, p, r) Pr
(
ζ̄Idϕ

)
(Assumption 4.2)

= Pr
(
p0, p, r, ζ̄ϕ

)
. (Assumption 4.1)

It then follows that

Pr(p0, p, r, ϕ) =Pr(p0, p, r, ϕ)
∑

ζ̄∈{1,−1}

Pr
(
ζ = ζ̄

)

=
∑

ζ̄∈{1,−1}

Pr(p0, p, r, ϕ) Pr
(
ζ = ζ̄

)

=
∑

ζ̄∈{1,−1}

Pr
(
p0, p, r, ζ̄ϕ

)
Pr
(
ζ = ζ̄

)

=Pr(p0, p, r, ζϕ).

This implies Claim 1 holds.

Claim 2. Define Λ as the diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables ζ1, . . . , ζd. We
denote ZΛ and Z ′

Λ as the prompts sampled from (p0, p, r,Λϕ), where Λϕ means [Λϕ(s)]s∈S . We then have Z0 ≜ ZΛ and
Z ′
0 ≜ Z ′

Λ. The proof follows the same procedures as Claim 1.

Claim 3. Let Π be a random permutation matrix uniformly distributed over all d× d permutation matrices. We denote ZΠ

and Z ′
Π as the prompts sampled from (p0, p, r,Πϕ), where Πϕ means [Πϕ(s)]s∈S . We then have Z0 ≜ ZΠ and Z ′

0 ≜ Z ′
Π.

The proof follows the same procedures as Claim 1.

Proof of (a) using Claim 1 It is easy to check by (29) that

TF1(Zζ , θk) = −
ηk
n

n∑

i=1

Ri

(
ckζ

2ϕ⊤i−1ϕn+1 + c′kγζ
2ϕ⊤i ϕn+1

)

= ζ2︸︷︷︸
=1

TF1(Z0, θk)

= TF1(Z0, θk). (30)

Similarly, one can check that TF1(Z
′
ζ , θk) = TF1(Z

′
0, θk).
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Furthermore,

∇p[1:d]
TF1(Zζ , θk) =−

1

n

n∑

i=1


ck ζ2︸︷︷︸

=1

ϕ⊤i−1ϕn+1 + c′kγ ζ2︸︷︷︸
=1

ϕ⊤i ϕn+1


ζϕi−1

=− ζ

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi−1

=ζ∇p[1:d]
TF1(Z0, θk). (31)

Then, from (13), we get

∆(p[1:d])

=E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]

=E
[(
Rn+2 + γTF1(Z

′
ζ , θk)− TF1(Zζ , θk)

)
∇p[1:d]

TF1(Zζ , θk)
]

(By Claim 1)

=Eζ

[
E
[(
Rn+2 + γTF1(Z

′
ζ , θk)− TF1(Zζ , θk)

)
∇p[1:d]

TF1(Zζ , θk) | ζ
]]

=Eζ

[
E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))ζ∇p[1:d]

TF1(Z0, θk) | ζ
]]

(By (30), (31))

=Eζ

[
ζE
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk) | ζ
]]

=Eζ

[
ζE
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]]

=Eζ [ζ]E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]

=0.

The proof is analogous for ∆(p[d+1:2d]) = 0, and ∆(qa) = 0.

Proof of (b) using Claims 2 and 3 We first show that ∆(Qa) is a diagonal matrix. Similar to (a), we have

TF1(ZΛ, θk) = −
1

n

n∑

i=1

ηkRi

(
ckϕ

⊤
i−1 Λ2
︸︷︷︸
=I

ϕn+1 + c′kγϕ
⊤
i Λ2
︸︷︷︸
=I

ϕn+1

)
(32)

= TF1(Z0, θk).

Similarly, we get TF1(Z
′
Λ, θk) = TF1(Z

′
0, θk). Additionally, we have

∇QaTF1(ZΛ, θk) = −
1

n

n∑

i=1

ηkRiΛϕi−1ϕ
⊤
n+1Λ

⊤ = Λ∇QaTF1(Z0, θk)Λ. (33)

By (13) again, we get

∆(Qa)

=E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]

=E[(Rn+2 + γTF1(Z
′
Λ, θk)− TF1(ZΛ, θk))∇Qa

TF1(ZΛ, θk)] (By Claim 2)
=EΛ[E[(Rn+2 + γTF1(Z

′
Λ, θk)− TF1(ZΛ, θk))∇Qa

TF1(ZΛ, θk) | Λ]]
=EΛ[E[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))Λ∇Qa

TF1(Z0, θk)Λ | Λ]] (By (32), (33))
=EΛ[ΛE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk) | Λ]Λ]
=EΛ[ΛE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]Λ]

=diag(E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]) (By Lemma A.1)
=diag(∆(Qa)).

The last equation holds if and only if ∆(Qa) is diagonal. We have proven this claim.
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Now, we prove that ∆(Qa) = δId for some δ ∈ R using Claim 3 and Lemma A.2. Let Π be a random permutation matrix
uniformly distributed over all permutation matrices. Recall the definition of ZΠ and Z ′

Π in Claim 3. We have

TF1(ZΠ, θk) = −
1

n

n∑

i=1

ηkRi

(
ckϕ

⊤
i−1 Π

⊤Π︸ ︷︷ ︸
=I

ϕn+1 + c′kγϕ
⊤
i Π⊤Π︸ ︷︷ ︸

=I

ϕn+1

)
= TF1(Z0, θk). (34)

Analogously, we get TF1(Z
′
Π, θk) = TF1(Z

′
0, θk). Furthermore, we have

∇QaTF1(ZΠ, θk) = −
1

n

n∑

i=1

ηkRiΠϕi−1ϕ
⊤
n+1Π

⊤ = Π∇QaTF1(Z0, θk)Π
⊤. (35)

By (13), we are ready to show that

∆(Qa)

=E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk)]

=E[(Rn+2 + γTF1(Z
′
Π, θk)− TF1(ZΠ, θk))∇QaTF1(ZΠ, θk)] (By Claim 3)

=EΠ[E[(Rn+2 + γTF1(Z
′
Π, θk)− TF1(ZΠ, θk))∇QaTF1(ZΠ, θk) | Π]]

=EΠ

[
E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))Π∇Qa

TF1(Z0, θk)Π
⊤ | Π

]]
(By (34), (35))

=EΠ

[
ΠE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk) | Π]Π⊤]

=EΠ

[
ΠE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]Π
⊤]

=EΠ

[
Πdiag(∆(Qa))Π

⊤]

=
1

d
tr(∆(Qa))Id (By Lemma A.2)

=δId.

The proof is analogous for ∆(Q′
a) = δ′Id for some δ′ ∈ R.

Suppose that ∆(p[2d+1]) = ρ ∈ R, we now can conclude that

∆(θk) =



∆(P0) =

[
02d×2d 02d×1

01×2d ρ

]
,∆(Q0) =



δId 0d×d 0d×1

δ′Id 0d×d 0d×1

01×d 01×d 0





.

Therefore, according to (13), we get

θk+1

=θk + αk∆(θk)

=





[
02d×2d 02d×1

01×2d ηk + αkρ

]
,



ck + αkδId 0d×d 0d×1

c′k + αkδ
′Id 0d×d 0d×1

01×d 01×d 0





 ∈ Θ∗.

A.4. Proof of Corollary 5.1

Proof. We recall from (5) that the embedding evolves according to

Zl+1 = Zl +
1

n
PlZlM(Z⊤

l QlZl).

We again refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,
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where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes, it is more convenient to refer to the first half

and second half of x(i)l separately, by, e.g., ν(i)l ∈ Rd, ξ
(i)
l ∈ Rd, i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then, we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We utilize the shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We recall our definition of M

in (4) and
{
PRG
l , QRG

l

}
in (15). In particular, we can express QRG

l in a more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

M2
.
=−M1

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=M⊤

2 BlM1 =

[
−C⊤

l C⊤
l

C⊤
l −C⊤

l

]
∈ R2d×2d,

QRG
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We then verify the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.
We note that PRG

l is the key reason Claim 1 holds and is the same as the TD(0) case. Referring to A.1, we omit the proof of
Claim 1 here.

Claim 2.

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).

Since the only difference between the true residual gradient and TD(0) configurations is the internal structure of Al, we
argue that it’s irrelevant to Claim 2. We therefore again refer the readers to A.1 for a detailed proof.

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

j=0

B⊤
j M2XY

⊤
j

〉
,

for i = 1, . . . , n+ 1.

24



Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

By Claim 2, we can unroll Yl+1 as

Yl+1 = Yl +
1

n
YlX

⊤AlX

Yl = Yl−1 +
1

n
Yl−1X

⊤Al−1X

...

Y1 = Y0 +
1

n
Y0X

⊤A0X.

We can then compactly express Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤AjX.

Recall that we define Aj =M⊤
2 BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤M⊤

2 BjM1X.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

j=0

YjX
⊤M⊤

2 BjM1x
(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

j=0

B⊤
j M2XY

⊤
j ∈ R2d

=ψl +
1

n
B⊤

l M2XY
⊤
l (36)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (37)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such that we can express ψl as

ψl =

[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Since Bl is the key reason Claim 4 holds and is identical to the TD(0) case, we refer the reader to A.1 for detailed proof.
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Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2XY
⊤
l ,M1x

(n+1)
〉

(By (36))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (37))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i) − ξ(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
ν(i) − ξ(i)

)

0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
ν(i) − ξ(i)

)(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Cl

(
ν(i) − ξ(i)

)(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(
ν(i) − ξ(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
(ϕi−1 − γϕi)

which is the update rule for pre-conditioned residual gradient learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

A.5. Proof of Corollary 5.2

Proof. The proof presented here closely mirrors the methodology and notation established in the proof of Theorem 3.1 from
Appendix A.1. We begin by recalling the embedding evolution from (5) as,

Zl+1 = Zl +
1

n
PlZlM

TD(λ)(Z⊤
l QlZl).

where we have substituted the original mask defined in (4) with the TD(λ) mask in (17). We once again refer to the elements
in Zl as

{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,
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where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)l ∈ Rd, ξ

(i)
l ∈ Rd, to refer to the first half

and second half of x(i)l i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
.

Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We further define as shorthands,

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the blockwise structure of Zl can be succinctly expressed as:

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

We proceed to the formal arguments by paralleling those in Theorem 3.1. As in the theorem, we assume that certain initial
conditions, such as ξ(n+1)

0 = 0 and y(n+1)
0 = 0, hold, but other entries of Z0 are arbitrary. We recall our definition of

MTD(λ) in (17) and
{
P TD
l , QTD

l

}
l=0,...,L−1

in (10). In particular, we can express QTD
l in a more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1),

We now proceed with the following claims.

In subsequent steps, it sometimes is useful to refer to the matrix MTD(λ)Z⊤ in block form. Therefore, we will define
H⊤ ∈ R(n×2d) as the first n rows of MTD(λ)Z

⊤ except for the last column, which we define as Y (λ)
l ∈ Rn.

MTD(λ)Z⊤
l =

[
H⊤ Y

(λ)
l

01×2d 0

]
∈ R(n+1)×(2d+1)

Let h(i) denote i-th column of H .

We proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.
Because we utilize the same definition of P TD

l as in Theorem 3.1, the argument proving Claim 1 in Theorem 3.1 holds here
as well. As a result, we drop all the subscripts of Xl, as well as subscripts of x(i)l for i = 1, . . . , n+ 1.

Claim 2. Let H ∈ R(2d×n), where the i-th column of H is,

h(i) =

i∑

k=1

λi−kx(i) ∈ R2d.
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Then we can write the updates for Yl+1, and y(n+1)
l+1 as,

Yl+1 = Yl +
1

n
YlH

⊤AlX,

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlH

⊤Alx
(n+1).

We will show this by factoring the embedding evolution into the product of P TD
l Zl and MTD(λ)Z⊤

l , and QTD
l Zl. Firstly, we

have

P TD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Next we analyze MTD(λ)Z⊤
l . From basic matrix algebra we have,

MTD(λ)Z⊤ =




1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
λ2 λ 1 0 · · · 0 0
λ3 λ2 λ 1 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0







x(1)
⊤

y(1)

x(2)
⊤

y(2)

x(3)
⊤

y(3)

...
...

x(n)
⊤

y(n)

x(n+1)⊤ 0




=




x(1)
⊤

y
(1)
l

x(2)
⊤
+ λx(1)

⊤
y
(2)
l + λy

(2)
l

...
...∑n

i=1 λ
n−ix⊤i

∑n
i=1 λ

n−iy
(i)
l

01×2d 0



,

=




h(1)
⊤

y
(1)
l

h(2)
⊤

y
(2)
l + λy

(1)
l

...
...

h(n)
⊤ ∑n

i=1 λ
n−iy

(n)
l

01×2d 0




=

[
H⊤ K

(λ)
l

01×2d 0

]
,

where K(λ)
l ∈ Rd is introduced for notation simplicity.

Then, we analyze MTD(λ)Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

(
MTD(λ)Z⊤

l

)
QTD

l Zl =

[
H⊤ K

(λ)
l

01×2d 0

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
H⊤Al 0n×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]
.

Combining the two, we get

P TD
l Zl

(
MTD(λ)Z⊤

l Q
TD
l Zl

)
=

[
02d×n 02d×1

Yl y
(n+1)
l

][
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]

=

[
02d×n 02d×1

YlH
⊤AlX YlH

⊤Alx
(n+1)

]
.
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Hence, according to our update rule in (5), we get

Yl+1 = Yl +
1

n
YlH

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlH

⊤Alx
(n+1).

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

i=0

B⊤
i M2XY

⊤
i

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll the recursive definition of Yl+1 and express it compactly as,

Yl+1 = Y0 +
1

n

l∑

i=0

YiH
⊤AiX.

Recall that we define Ai = BiM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

i=0

YiH
⊤M2BiM1X.

The introduction of M2 here does not break the equivalence because Bi = M2Bi. However, it will help make our proof
steps easier to comprehend later.

With the identical recursive unrolling procedure, we can rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

i=0

YiH
⊤M2BiM1x

(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

i=0

B⊤
i M2HY

⊤
i ∈ R2d. (38)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (39)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such that we can express ψl as

ψl =

[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Because we utilize the same definition of Bl as in Theorem 3.1 when defining ψl+1, the argument proving Claim 4 in
Theorem 3.1 holds here as well. We omit the steps to avoid redundancy.
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Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2HY
⊤
l ,M1x

(n+1)
〉

(By (38))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2h
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2h
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (39))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[(∑i
k=1 λ

i−kν(i)
)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(∑i
k=1 λ

i−kν(i)
)

0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(∑i

k=1 λ
i−kν(i)

)

0d×1

]
,M1x

(n+1)

〉

This means

〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)( i∑

k=1

λi−kν(i)

)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)( i∑

k=1

λi−kν(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ei−1

where

ei =

i∑

k=1

λi−kϕk. ∈ Rd

which is the update rule for pre-conditioned TD(λ). We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

A.6. Proof of Theorem 5.3

Proof. We recall from (21) that the embedding evolves according to

Zl+1 = Zl +
1

n
TwoHead(Zl;P

TD,(1)
l , QTD

l ,MTD,(1), P
TD,(2)
l , QTD

l ,MTD,(2),Wl)

= Zl +
1

n
Wl

[
LinAttn(Zl;P

TD,(1)
l , QTD

l ,MTD,(1))

LinAttn(Zl;P
TD,(2)
l , QTD

l ,MTD,(2))

]
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In this configuration, we refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l , h

(i)
l )
}
i=1,...,n+1

in the following way,

Zl =



x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l


,

where we recall that Zl ∈ R(2d+2)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R and h(i)l ∈ R.

Sometimes, it is more convenient to refer to the first half and second half of x(i)l separately, by, e.g., ν(i)l ∈ Rd, ξ
(i)
l ∈ Rd,

i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =




ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l


.

We further define as shorthands

Xl
.
=
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl
.
=
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n,

Hl
.
=
[
h
(1)
l . . . h

(n)
l

]
∈ R1×n.

Then we can express Zl as

Zl =



Xl x

(n+1)
l

Yl y
(n+1)
l

Hl h
(n+1)
l


.

For the input Z0, we assume ξ(n+1)
0 = 0 and h(i)0 = 0 for i = 1, . . . , n+ 1. All other entries of Z0 are arbitrary. We recall

our definition of MTD,(1),MTD,(2) in (20),
{
P

TD,(1)
l , P

TD,(2)
l , QTD

l ,Wl

}
in (18) and (19). We again express QTD

l as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×2

02×2d 02×2

]
∈ R(2d+2)×(2d+2).

We now proceed with the following claims that assist in proving our main theorem.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 , Yl ≡ Y0, y(n+1)
l = y

(n+1)
0 ,∀l.

We define

V
(1)
l

.
= P

TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+2)×(n+1)

V
(2)
l

.
= P

TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+2)×(n+1).
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Then the evolution of the embedding can be written as

Zl+1 = Zl +
1

n
Wl

[
V

(1)
l

V
(2)
l

]
.

By simple matrix arithmetic, we realize Wl is merely summing up the (2d+ 1)-th row of V (1)
l and the (2d+ 2)-th row of

V
(2)
l and putting the result on its bottom row. Thus, we have

Wl

[
V

(1)
l

V
(2)
l

]
=

[
0(2d+1)×(n+1)

V
(1)
l (2d+ 1) + V

(2)
l (2d+ 2)

]
∈ R(2d+2)×(n+1),

where V (1)
l (2d+ 1) and V (2)

l (2d+ 2) respectively indicate the (2d+ 1)-th row of V (1)
l and the (2d+ 2)-th row of V (2)

l . It
clearly holds according to the update rule that

Zl+1(1 : 2d+ 1) = Zl(1 : 2d+ 1)

=⇒ Xl+1 = Xl;

x
(n+1)
l+1 = x

(n+1)
l ;

Yl+1 = Yl;

y
(n+1)
l+1 = y

(n+1)
l .

Then, we can easily arrive at our claim by a simple induction. In light of this, we drop the subscripts of Xl, x
(i)
l , Yl and y(i)l

for all i = 1, . . . , n+ 1 and write Zl as

Zl =



X x(n+1)

Y y(n+1)

Hl h
(n+1)
l


.

Claim 2.

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l +

1

n
(Hl + Y − Ȳ )X⊤Alx

(n+1),

where ȳ(i) .=
∑i

k=1
y(k)

i and Ȳ .
=
[
ȳ(1), ȳ(2), . . . , ȳ(n)

]
∈ R1×n.

We show how this claim holds by investigating the function of each attention head in our formulation. The first attention
head, corresponding to V (1)

l in claim 1, has the form

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
.

We first analyze P TD,(1)
l ZlM

TD,(1). It should be clear that P TD,(1)Zl selects out the (2d+ 1)-th row of Zl and gives us

P
TD,(1)
l =



02d×n 02d×1

Y y(n+1)

01×n 0


.

The matrix MTD,(1) is essentially computing Y − Ȳ and filtering out the (n+ 1)-th entry when applied to P TD,(1)
l Zl. We
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break down the steps here:

P
TD,(1)
l ZlM

TD,(1)

=P
TD,(1)
l Zl

(
In+1 − Un+1diag

([
1 1

2 . . . 1
n

]))
MTD,(2)

=P
TD,(1)
l ZlM

TD,(2) − P TD,(1)
l ZlUn+1diag

([
1 1

2 . . . 1
n

])
MTD,(2)

=



02d×n 02d×1

Y 0
01×n 0


−



02d×1 02d×1 · · · 02d×1 02d×1

y(1) 1
2

(
y(1) + y(2)

)
· · · 1

n

∑n
i=1 y

(i) 1
n+1

∑n+1
i=1 y

(i)

0 0 · · · 0 0


MTD,(2)

=



02d×n 02d×1

Y 0
01×n 0


−



02d×n 02d×1

Ȳ 0
01×n 0




=



02d×n 02d×1

Y − Ȳ 0
01×n 0


.

We then analyze the remaining product Z⊤
l Q

TD
l Zl.

Z⊤
l Q

TD
l Zl

=

[
X⊤ Y ⊤ H⊤

l

x(n+1)⊤ y(n+1)⊤ h
(n+1)⊤

l

]


Al 02d×1 02d×1

01×2d 0 0
01×2d 0 0





X x(n+1)

Y y(n+1)

Hl h
(n+1)
l




=

[
X⊤Al 0n×1 0n×1

x(n+1)⊤Al 0 0

]

X x(n+1)

Y y(n+1)

Hl h
(n+1)
l




=

[
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]
.

Putting them together, we get

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
=



02d×n 02d×1

Y − Ȳ 0
01×n 0



[

X⊤AlX X⊤Alx
(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]

=




02d×n 02d×1(
Y − Ȳ

)
X⊤AlX

(
Y − Ȳ

)
X⊤Alx

(n+1)

01×n 0


.

The second attention head, corresponding to V (2)
l in claim 1, has the form

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)
.

It’s obvious that P TD,(2)
l selects out the (2d+ 2)-th row of Zl as

P
TD,(2)
l Zl =

[
0(2d+1)×n 0(2d+1)×1

Hl h
(n+1)
l

]
.

Applying the mask MTD,(2), we get

P
TD,(2)
l ZlM

TD,(2) =

[
0(2d+1)×n 0(2d+1)×1

Hl 0

]
.
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The product Z⊤
l Q

TD
l Zl is identical to the first attention head. Hence, we see the computation of the second attention head

gives us

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)

=

[
0(2d+1)×n 0(2d+1)×1

Hl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]

=

[
0(2d+1)×n 0(2d+1)×1

HlX
⊤AlX HlX

⊤Alx
(n+1)

]
.

Lastly, the matrix Wl combines the output from the two heads and gives us

Wl


P

TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)

 =

[
0(2d+1)×n 0(2d+1)×1(

Hl + Y − Ȳ
)
X⊤AlX

(
Hl + Y − Ȳ

)
X⊤Alx

(n+1)

]
.

Hence, we obtain the update rule for Hl and h(n+1)
l as

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l +

1

n
(Hl + Y − Ȳ )X⊤Alx

(n+1)

and claim 2 has been verified.

Claim 3.

h
(i)
l+1 =

〈
M1x

(i),
1

n

l∑

j=0

B⊤
i M2X(Hj + Y − Ȳ )⊤

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following claim 2, we unroll Hl+1 as

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

Hl = Hl−1 +
1

n
(Hl−1 + Y − Ȳ )X⊤Al−1X

...

H1 = H0 +
1

n
(H0 + Y − Ȳ )X⊤A0X.

We therefore can express Hl+1 as

Hl+1 = H0 +
1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤AjX.

Recall that we have defined Aj
.
= BjM1 and assumed H0 = 0. Then, we have

Hl+1 =
1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤M2BjM1X.

Note that the introduction of M2 here does not break the equivalence because Bj =M2Bj . We include it in our expression
for the convenience of the main proof later.
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With the identical procedure, we can easily rewrite h(n+1)
l+1 as

h
(n+1)
l+1 =

1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤M2BjM1x
(n+1).

In light of this, we define ψ0
.
= 0, and for l = 0, . . .

ψl+1 =
1

n

l∑

j=0

B⊤
j M2X(Hj + Y − Ȳ )⊤ ∈ R2d.

We then can write

h
(i)
l+1 =

〈
M1x

(i), ψl+1

〉
(40)

for i = 1, . . . , n+ 1, which is the claim we made.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such that we can express ψl as

ψl =

[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Since our Bj here is identical to the proof of Theorem 3.1 in A.1 for j = 0, 1, . . . , Claim 4 holds for the same reason. We
therefore omit the proof details to avoid repetition.

Given all the claims above, we proceed to prove our main theorem.
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2X(Hl + Y − Ȳ )⊤,M1x
(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)(h

(i)
l + y(i) − ȳ(i)),M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y(i) − ȳ(i)

)
,M1x

(n+1)
〉

(By (40))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y(i) − ȳ(i)

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)

0d×1

](
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)
(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Clν

(i)
(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).
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In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ
(i) = ϕi and y(i) = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri − r̄i + w⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

which is the update rule for pre-conditioned average reward TD learning. We also have

h
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

B. Evaluation Task Generation
To generate the evaluation tasks used to meta-train our transformer in Algorithm 1, we utilize Boyan’s chain, detailed in
Figure 2. Notably, we make some minor adjustments to the original Boyan’s chain in Boyan (1999) to make it an infinite
horizon chain.

Recall that an evaluation task is defined by the tuple (p0, p, r, ϕ). We consider Boyan’s chain MRPs with m states. To
construct p0, we first sample a m-dimensional random vector uniformly in [0, 1]m and then normalize it to a probability
distribution. To construct p, we keep the structure of Boyan’s chain but randomize the transition probabilities. In particular,
the transition function p can be regarded as a random matrix taking value in Rm×m. For simplifying presentation, we use
both p(s, s′) and p(s′|s) to denote probability of transitioning to s′ from s. In particular, for i = 1, . . . ,m − 2, we set
p(i, i+1) = ϵ and p(i, i+2) = 1−ϵ, with ϵ sampled uniformly from (0, 1). For the last two states, we have p(m|m−1) = 1
and p(·|m) is a random distribution over all states. Each element of the vector r ∈ Rm and the matrix ϕ ∈ Rd×m are
sampled i.i.d. from a uniform distribution over [−1, 1]. The overall task generation process is summarized in Algorithm
2. Almost surely, no task will be generated twice. In our experiments in the main text, we use Boyan Chain MRPs which
consist of m = 10 states each with feature dimension d = 4.

1 2 3 m-1 m

Figure 2: Boyan’s Chain of m States

Representable Value Function. With the above sampling procedure, there is no guarantee that the true value function
v is always representable by the features. In other words, there is no guarantee that there exists a w ∈ Rd satisfying
v(s) = ⟨w, ϕ(s)⟩ for all s ∈ S. Most of our experiments use this setup. It is, however, also beneficial sometimes to work
with evaluation tasks where the true value function is guaranteed to be representable. Algorithm 3 achieves this by randomly
generating a w∗ first and compute v(s) .= ⟨w∗, ϕ(s)⟩. The reward is then analytically computed as r .

= (Im − γp)v. We
recall that in the above we regard p as a matrix in Rm×m.
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Algorithm 2 Boyan Chain MRP and Feature Generation (Non-Representable)

1: Input: state space size m = |S|, feature dimension d
2: for s ∈ S do
3: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

4: end for
5: p0 ∼ Uniform [(0, 1)m] // initial distribution
6: p0 ← p0/

∑
s p0(s)

7: r ∼ Uniform [(−1, 1)m] // reward function
8: p← 0m×m // transition function
9: for i = 1, . . . ,m− 2 do

10: ϵ ∼ Uniform [(0, 1)]
11: p(i, i+ 1)← ϵ
12: p(i, i+ 2)← 1− ϵ
13: end for
14: p(m− 1,m)← 1
15: z← Uniform [(0, 1)m]
16: z← z/

∑
s z(s)

17: p(m, 1 : m)← z
18: Output: MRP (p0, p, r) and feature map ϕ

C. Additional Experiments with Linear Transformers
C.1. Experiment Setup

We use Algorithm 2 as dtask for the experiments in the main text with Boyan’s chain of 10 states. In particular, we consider
a context of length n = 30, feature dimension d = 4, and utilize a discount factor γ = 0.9. In Section 4, we consider a
3-layer transformer (L = 3), but additional analyses on the sensitivity to the number of transformer layers (L) and results
from a larger scale experiment with d = 8, n = 60, and |S| = 20 are presented in C.2. We also explore non-autoregressive
(i.e., "sequential") layer configurations in C.3.

When training our transformer, we utilize an Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of
α = 0.001, and weight decay rate of 1× 10−6. P0 and Q0 are randomly initialized using Xavier initialization with a gain of
0.1. We trained our transformer on k = 4000 different evaluation tasks. For each task, we generated a trajectory of length
τ = 347, resulting in τ − n− 2 = 320 transformer parameter updates.

Since the models in these experiments are small (∼ 10 KB), we did not use any GPU’s during our experiments. We trained
our transformers on a standard Intel i9-12900-HK CPU and training each transformer took ∼ 20 minutes.

For implementation3, we used NumPy (Harris et al., 2020) to process the data and construct Boyan’s chain, PyTorch (Ansel
et al., 2024) to define and train our models, and Matplotlib (Hunter, 2007) plus SciencePlots (Garrett, 2021) to generate our
figures.

C.1.1. TRAINED TRANSFORMER ELEMENT-WISE CONVERGENCE METRICS

To visualize the parameters of the linear transformer trained by Algorithm 1, we report element-wise metrics. For P0, we
report the value of its bottom-right entry, which, as noted in (10), should approach one if the transformer is learning to
implement TD. The other entries of P0 should remain close to zero. Additionally, we report the average absolute value of
the elements of P0, excluding the bottom-right entry, to check if these elements stay near zero during training.

For Q0, we recall from (10) that if the transformer learned to implement normal batch TD, the upper-left d× d block of the
matrix should converge to some −Id, while the upper-right d× d block (excluding the last column) should converge to Id.
To visualize this, we report the trace of the upper-left d× d block, and the trace of the upper-right d× d block (excluding
the last column). The rest of the elements of Q0 should remain close to 0, and to verify this, we report the average absolute
value of the entries of Q0, excluding the entries that were utilized in computing the traces.

3The code will be made publicly available upon publication.
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Algorithm 3 Boyan Chain MRP and Feature Generation (Representable)

1: Input: state space size m = |S|, feature dimension d, discount factor γ
2: w∗ ∼ Uniform

[
(−1, 1)d

]
// ground-truth weight

3: for s ∈ S do
4: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

5: v(s)← ⟨w∗, ϕ(s)⟩ // ground-truth value function
6: end for
7: p0 ∼ Uniform [(0, 1)m] // initial distribution
8: p0 ← p0/

∑
s p0(s)

9: p← 0m×m // transition function
10: for i = 1, . . . ,m− 2 do
11: ϵ ∼ Uniform [(0, 1)]
12: p(i, i+ 1)← ϵ
13: p(i, i+ 2)← 1− ϵ
14: end for
15: p(m− 1,m)← 1
16: z← Uniform [(0, 1)m]
17: z← z/

∑
s z(s)

18: p(m, 1 : m)← z
19: r ← (Im − γp)v // reward function
20: Output: MRP (p0, p, r) and feature map ϕ

Since, P0 and Q0 are in the same product in (3) we sometimes observe during training that P0 converges to −P TD
0 and Q0

converges to −QTD
0 simultaneously. When visualizing the matrices, we negate both P0 and Q0 when this occurs.

It’s also worth noting that in Theorem 3.1 we prove a L-layer transformer parameterized as in (10) with C0 = Id implements
L steps of batch TD exactly with a fixed update rate of one. However, the transformer trained using Algorithm 1 could learn
to perform TD with an arbitrary learning rate (α in (8)). Therefore, even if the final trained P0 and Q0 differ from their
constructions in (10) by some scaling factor, the resulting algorithm implemented by the trained transformer will still be
implementing TD. In light of this, we rescale P0 and Q0 before visualization. In particular, we divide P0 and Q0 by the
maximum of the absolute values of their entries respectively, such that they both stay in the range [−1, 1] after rescaling.

C.1.2. TRAINED TRANSFORMER AND BATCH TD COMPARISON METRICS

To compare the transformers with batch TD we report several metrics following von Oswald et al. (2023); Akyürek et al.
(2023). Given a context C ∈ R(2d+1)×n and a query ϕ ∈ Rd, we construct the prompt as

Z(ϕ,C) .=


C




ϕ
0d×1

0




.

We will suppress the context C in subscript when it does not confuse. We use Z(s) .= Z(ϕ(s)) as shorthand. We use dp to
denote the stationary distribution of the MRP with transition function p and assume the context C is constructed based on
trajectories sampled from this MRP. Then, we can define vθ ∈ R|S|, where vθ(s)

.
= TFL(Z

(s)
0 ; θ) for each s ∈ S. Notably,

vθ is then the value function estimation induced by the transformer parameterized by θ .
= {(Pl, Ql)} given the context C.

In the rest of the appendix, we will use θTF as the learned parameter from Algorithm 1. As a result, vTF
.
= vθTF denotes the

learned value function.

We define θTD
.
=
{
(P TD

l , QTD
l )
}
l=0,...,L−1

with Cl = αI (see (10)) and

vTD(s)
.
= TFL(Z

(s)
0 ; θTD).

In light of Theorem 3.1, vTD is then the value function estimation obtained by running the batch TD algorithm (11) on the
context C for L iterations, using a constant learning rate α.
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We would like to compare the two functions vTF and vTD to future examine the behavior of the learned transformers.
However, vTD is not well-defined yet because it still has a free parameter α, the learning rate. (von Oswald et al., 2023)
resolve a similar issue in the in-context regression setting via using a line search to find the (empirically) optimal α. Inspired
by (von Oswald et al., 2023), we also aim to find the empirically optimal α for vTD. We recall that vTD is essentially the
transformer TFL(Z

(s)
0 ; θTD) with only 1 single free parameter α. We then train this transformer with Algorithm 1. We

observe that α quickly converges and use the converged α to complete the definition of vTD. We are now ready to present
different metrics to compare vTF and vTD. We recall that both are dependent on the context C.

Value Difference (VD). First for a given context C, we compute the Value Difference (VD) to measure the difference
between the value function approximated by the trained transformer and the value function learned by batch TD, weighted
by the stationary distribution. To this end, we define,

VD(vTF, vTD)
.
= ∥vTF − vTD∥2dp

,

We recall that dp ∈ R|S| is the stationary distribution of the MRP and the weighted ℓ2 norm is defined as ∥v∥d
.
=√∑

s v(s)
2d(s).

Implicit Weight Similarity (IWS). We recall that vTD is a linear function, i.e., vTD(s) = ⟨wL, ϕ(s)⟩ with wL defined in
Theorem 3.1. We refer to this wL as wTD for clarity. The learned value function vTF is, however, not linear even when
estimated by a linear transformer. Following Akyürek et al. (2023), we compute the best linear approximation of vTF. In
particular, given a context C, we define

wTF
.
= argmin

w
∥Φw − vTF∥dp

.

Here Φ ∈ R|S|×d is the feature matrix, each of which is ϕ(s)⊤. Such a wTF is referred to as implicit weight in Akyürek et al.
(2023). Following Akyürek et al. (2023), we define

IWS(vTF, vTD)
.
= dcos(wTF, wTD)

to measure the similarity between wTF and wTD. Here dcos(·, ·) computes the cos similarity between two vectors.

Sensitivity Similarity (SS). Recall that vTF(s) = TFL(Z
(s)
0 ; θTF) and vTD(s) = TFL(Z

(s)
0 ; θTD). In other words, given

a context C, both vTF(s) and vTD(s) are functions of ϕ(s). Following von Oswald et al. (2023), we then measure the
sensitivity of vTF(s) and vTD(s) w.r.t. ϕ(s). This similarity is easily captured by gradients. In particular, we define

SS(vTF, vTD)
.
=
∑

s

dp(s)dcos

(
∇ϕTFL(Z

(ϕ)
0 ; θTF)

∣∣∣∣
ϕ=ϕ(s)

, ∇ϕTFL(Z
(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

)
.

Notably, it trivially holds that

wTD = ∇ϕTFL(Z
(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

.

We note that the element-wise converge of learned transformer parameters (e.g., Figure 1a) is the most definite evidence
for the emergence of in-context TD. The three metrics defined in this section are only auxiliary when linear attention is
concerned. That being said, the three metrics are important when nonlinear attention is concerned.

C.2. Autoregressive Linear Transformers with L = 1, 2, 3, 4 Layers

In this section, we present the experimental results for autoregressive linear transformers with different numbers of layers.
In Figure 3, we present the element-wise convergence metrics for autoregressive transformers with L = 1, 2, 4 layers. The
plot with L = 3 is in Figure 1 in the main text. We can see that for the L = 1 case, P0 and Q0 converge to the construction
in Corollary 3.2, which, as proved, implements TD(0) in the single layer case. For the L = 2, 4 cases, we see that P0 and
Q0 converge to the construction in Theorem 3.1. We also observe that as the number of transformer layers L increases, the
learned parameters are more aligned with the construction of P TD

0 and QTD
0 with C0 = I .

We also present the comparison of the learned transformer with batch TD according to the metrics described in Appendix
C.1.2. In Figure 4, we present the value difference, implicit weight similarity, and sensitivity similarity. In Figures 4a – 4d,
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(b) Element-wise learning progress of P0 and Q0
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(c) Learned P0 and Q0 with L = 3
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(d) Element-wise learning progress of P0 and Q0
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(e) Learned P0 and Q0 with L = 4
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(f) Element-wise learning progress of P0 and Q0

Figure 3: Visualization of the learned autoregressive transformers and the learning progress. Averaged across 30 seeds and
the shaded region denotes the standard errors. See Appendix C.1.1 for details about normalization of P0 and Q0 before
visualization.
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we present the results for different transformer layer numbers L = 1, 2, 3, 4. In Figure 4e, we present the metrics for a
3-layer transformer, but we increase the feature dimension to d = 8 and also the context length to n = 60.

In all instances, we see strong similarity between the trained linear transformers and batch TD. We see that the cosine
similarities of the sensitivities are near one, as are the implicit weight similarities. Additionally, the value difference
approaches zero during training. This further demonstrates that the autoregressive linear transformers trained according to
Algorithm 1 learn to implement TD(0).
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(c) L = 3
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(d) L = 4
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(e) L = 3 (d = 8, n = 60)

Figure 4: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
autoregressive transformers and batch TD with different layers. All curves are averaged over 30 seeds and the shaded
regions are the standard errors.

C.3. Sequential Transformers with L = 2, 3, 4 Layers

So far, we have been using linear transformers with one parametric attention layer applied repeatedly for L steps to
implement an L-layer transformer. Another natural architecture in contrast with the autoregressive transformer is a
sequential transformer with L distinct attention layers, where the embedding passes over each layer exactly once during one
pass of forward propagation.

In this section, we repeat the same experiments we conduct on the autoregressive transformer with sequential transformers
with L = 2, 3, 4 as their architectures coincide when L = 1. We compare the sequential transformers with batch TD(0)
and report the three metrics in Figure 5. We observe that the implicit weight similarity and the sensitivity similarity grow
drastically to near 1, and the value difference drops considerably after a few hundred MRPs for all three layer numbers. It
suggests that sequential transformers trained via Algorithm 1 are functionally close to batch TD.

Figure 6 shows the visualization of the converged {Pl, Ql}l=0,1,2 of a 3-layer sequential linear transformer and their
element-wise convergence. Sequential transformers exhibit very special patterns in their learned weights. We see that the
input layer converges to a pattern very close to our configuration in Theorem (3.1). However, the deeper the layer, we observe
the more the diagonal of Ql[1 : d, d+ 1 : 2d] fades. The P matrices, on the other hand, follow our configuration closely,
especially for the final layer. We speculate this pattern emerges because sequential transformers have more parametric
attention layers and thus can assign a slightly different role to each layer but together implement batch TD(0) as suggested
by the black-box functional comparison in Figure 5.
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(b) L = 3
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(c) L = 4

Figure 5: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
autoregressive transformers and batch TD with different layers. All curves are averaged over 30 seeds and the shaded
regions are the standard errors.
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(d) Element-wise learning progress of P1 and Q1
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Figure 6: Visualization of the learned L = 3 sequential transformers and the learning progress. Averaged across 30 seeds
and the shaded region denotes the standard errors. See Appendix C.1.1 for details about normalization of P0 and Q0 before
visualization.
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Figure 7: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
softmax transformers and linear batch TD. All curves are averaged over 30 seeds and the shaded regions are the standard
errors.

D. Nonlinear Attention
Until now, we have focused on only linear attention. In this section, we empirically investigate original transformers with
the softmax function. Given a matrix Z, we recall that self-attention computes it embedding as

Attn(Z;P,Q) = PZMsoftmax
(
Z⊤QZ

)
.

Let Zl ∈ R(2d+1)×(n+1) denote the input to the l-th layer, the output of an L-layer transformer with parameters
{(Pl, Ql)}l=0,...,L−1 is then computed as

Zl+1 = Zl +
1
nAttn(Zl;Pl, Ql) = Zl +

1
nPZMsoftmax

(
Z⊤QZ

)
.

Analogous to the linear transformer, we define

T̃FL

(
Z0; {Pl, Ql}l=0,1...,L−1

)
.
= −ZL[2d+ 1, n+ 1].

As a shorthand, we use T̃FL(Z0) to denote the output of the softmax transformers given prompt Z0. We use the same
training procedure (Algorithm 1) to train the softmax transformers. In particular, we consider a 3-layer autoregressive
softmax transformer.

Notably, the three metrics in Appendix C.1.2 apply to softmax transformers as well. We still compare the learned softmax
transformer with the linear batch TD in (11). In other words, the vTD related quantities are the same, and we only recompute
vTF related quantities in Appendix C.1.2. As shown in Figure 7a, the value difference remains small and the implicit weight
similarity increases. This suggests that the learned softmax transformer behaves similarly to linear batch TD. The sensitivity
similarity, however, drops. This is expected. The learned softmax transformer T̃FL is unlikely to be a linear function w.r.t. to
the query while vTD is linear w.r.t. the query. So their gradients w.r.t. the query are unlikely to match. To further investigate
this hypothesis, we additionally consider evaluation tasks where the true value function is guaranteed to be representable
(Algorithm 3) and is thus a linear function w.r.t. the state feature. This provides more incentives for the learned softmax
transformer to behave like a linear function. As shown in Figure 7b, the sensitivity similarity now increases.

E. Numerical Verification of Proofs
We provide numerical verification for our proofs by construction (Theorem 3.1, Corollary 5.1, Corollary 5.2, and Theo-
rem 5.3) as a sanity check. In particular, we plot log

∣∣−⟨ϕn, wl⟩ − yn+1
l

∣∣ against the number of layers l. For example, for
Theorem 3.1, we first randomly generate Z0 and {Cl}. Then y(n+1)

l is computed by unrolling the transformer layer by layer
following (5) while wl is computed iteration by iteration following (11). We use double-precision floats and run for 30 seeds,
each with a new prompt. As shown in Figure 8, even after 40 layers / iterations, the difference is still in the order of 10−10.
It is not strictly 0 because of numerical errors. It sometimes increases because of the accumulation of numerical errors.
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Figure 8: Differences between transformer output and batch TD output. Curves are averaged over 30 random seeds with the
(invisible) shaded region showing the standard errors.
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