Transformers Learn Temporal Difference Methods
for In-Context Reinforcement Learning

Jiugi Wang*! Ethan Blaser "' Hadi Daneshmand? Shangtong Zhang '

Abstract

In-context learning refers to the learning ability
of a model during inference time without adapt-
ing its parameters. The input (i.e., prompt) to
the model (e.g., transformers) consists of both a
context (i.e., instance-label pairs) and a query in-
stance. The model is then able to output a label
for the query instance according to the context
during inference. A possible explanation for in-
context learning is that the forward pass of (linear)
transformers implements iterations of gradient de-
scent on the instance-label pairs in the context. In
this paper, we prove by construction that trans-
formers can also implement temporal difference
(TD) learning in the forward pass, a phenomenon
we refer to as in-context TD. We demonstrate
the emergence of in-context TD after training the
transformer with a multi-task TD algorithm, ac-
companied by theoretical analysis. Furthermore,
we prove that transformers are expressive enough
to implement many other policy evaluation al-
gorithms in the forward pass, including residual
gradient, TD with eligibility trace, and average-
reward TD.

1. Introduction

In-context learning has emerged as one of the most remark-
able abilities of large language models (Brown et al., 2020;
Lieber et al., 2021; Rae et al., 2021; Black et al., 2022). In
in-context learning, the input (i.e., prompt) to the model
consists of both a context (i.e., instance-label pairs) and
a query instance. The model then outputs a label for the
query instance during inference (i.e., the forward pass). An

*E(}ual contribution. The order is determined by tossing a fair
coin. “Department of Computer Science, University of Virginia,
Charlottesville, the United States “MIT LIDS/Boston University,
Boston, the United States. Correspondence to: Shangtong Zhang
<shangtong @virginia.edu>.

Proceedings of the 1% Workshop on In-Context Learning at the
415 International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

example of the model input and output could be

5 — number; a — letter; 6 — number, (D
——"

input output

where “5 — number; a — letter” is the context consisting
of two instance-label pairs and “6” is the query instance.
Based on the context, the model (e.g., Team et al. (2023);
Touvron et al. (2023); Achiam et al. (2023)) infers the label
“number” for the query “6”. Remarkably, this entire pro-
cess occurs during the model’s inference time without any
adjustment to the model’s parameters. Understanding the
mechanism behind in-context learning has recently garnered
significant attention (Garg et al., 2022; Akyiirek et al., 2023;
von Oswald et al., 2023; Ahn et al., 2024).

The example in (1) illustrates a supervised learning prob-
lem. In the canonical machine learning framework (Bishop,
2006), this supervised learning problem is typically solved
by first training a classifier based on the instance-label pairs
in the context using methods such as gradient descent, and
then asking the classifier to predict the label for the query
instance. Remarkably, Akyiirek et al. (2023); von Oswald
et al. (2023); Ahn et al. (2024) show that transformers are
able to implement this gradient descent training process in
their forward pass without adapting any of their parameters,
providing a possible explanation for in-context learning.

Beyond supervised learning, intelligence involves sequential
decision-making, where Reinforcement Learning (RL, Sut-
ton & Barto (2018)) has emerged as a successful paradigm.
Can transformers preform in-context RL during inference,
and how? To address these questions, we start with a
simple evaluation problem in a Markov Reward Process
(MRP, Puterman (2014)). In an MRP, an agent transitions
from state to state at every time step. We denote the se-
quence of states that the agent visits by (S, S1, Sa, ...).
At each state, the agent receives a reward. We denote the
sequence of rewards that the agent receives along the way
as (r(So),7(S1),7(S2), ...). The evaluation problem is to
estimate the value function v, which computes for each state
the expected total (discounted) rewards the agent will re-
ceive in the future. An example of the desired input-output

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

could be

So = 1(S0); S1 — r(S1); S2 = r(S2);5 = v(s). (2)
N2

input output

Remarkably, the above task is fundamentally different from
supervised learning as the goal is to predict the value v(s)
and not the immediate reward r(s). Moreover, the query
state s is arbitrary and does not have to be S3. Temporal
Difference learning (TD, Sutton (1988)) is the most widely
used RL algorithm for solving such evaluation problems
in (2). And it is well known that TD is not gradient descent
(Sutton & Barto, 2018).

In this work, we make three main contributions. First,
we prove by construction that transformers are expressive
enough to implement TD in the forward pass, a phenomenon
we refer to as in-context TD. In other words, transformers
can solve problem (2) during inference time via in-context
TD. Beyond the most straightforward TD, transformers can
also implement many other policy evaluation algorithms,
including residual gradient (Baird, 1995), TD with eligibility
trace (Sutton, 1988), and average-reward TD (Tsitsiklis &
Roy, 1999). In particular, to implement average-reward TD,
transformers require the use of multi-head attention and
over-parameterized prompts, e.g.,

So = 1(So) 0;.51 — r(S1)0; 52 — r(S2) O; s = v(s).
~

input output

Here, “[J” acts as a dummy placeholder that the transform-
ers will use as “memory” during inference. Second, we
empirically demonstrate that by training transformers with
TD on multiple randomly generated evaluation problems, in-
context TD emerges. In other words, the learned transformer
parameters closely match our construction in proofs. We call
this training scheme multi-task TD. Third, we bridge the
gap between our theories and empirical results by showing
that for a single layer transformer, the transformer param-
eters required in the proof to implement in-context TD is
in a subset of the invariant set of the training algorithm
multi-task TD.

2. Background

Transformers and Linear Self-Attention. All vectors in
this paper are column vectors. We denote the identity ma-
trix in R™ by I,, and an m X n all-zero matrix by 0., .
We use Z' to denote transpose of Z and use both (z,)
and z 'y to denote the inner product. Given a prompt
Z € R¥" standard single-head self-attention (Vaswani
et al., 2017) processes the prompt by Attnyy, w, w,(Z) =
W, Z softmax(Z T W, W,Z), where W, € RI*4 W, e
R™*d and W, € R™*4 represent the value, key and query

weight matrices, respectively. The softmax function is ap-
plied to each row. Linear attention has recently drawn more
attention (Schlag et al., 2021; von Oswald et al., 2023; Ahn
et al., 2024), where the softmax function is replaced by an
identity function. Given a prompt Z € RZ4+Dx(n+1) e
follow Ahn et al. (2024) and define linear self-attention as

LinAttn(Z; P,Q) = PZM(Z " QZ), (3)

where P € R(24+1)x(2d+1) gpd Q e REZd+1)*(2d+1) gre
parameters and M € R+ x(+1) ig 3 fixed mask of the
input matrix Z, defined as

- In 0n><1
M= {om 0 } @

Note that we can view P and () as reparameterizations of
the original weight matrices for simplifying presentation.
The mask M is introduced for in-context learning, following
Ahn et al. (2024), to designate the last column of Z as the
query and the first n columns as the context. We use this
fixed mask in most of this work. However, the linear self-
attention mechanism can be altered using a different mask
M’, when necessary, by defining LinAttn(Z; P,Q, M) =
PZM'(ZTQZ). Inan L-layer transformer with parameters
{(P1,Qu)} ... 11 the input Zj evolves layer by layer as

1
Zl+1 =7, + ﬁLinAttl’lthl(Zl)
1
=71+ ~PZLM(Z] Qi Z). (5)

Here % is a normalization factor simplifying presentation.
We follow the convention in von Oswald et al. (2023); Ahn
et al. (2024) and use

TFL(Zo; { P, Qi}1—o1. 11
= — Zp[2d+1,n+1] (6)

to denote the output of the L-layer transformer, given an
input Zy. Note that Z;[2d + 1,n + 1] is the bottom-right
element of Z;.

In-Context Supervised Learning as Gradient Descent.
A linear regression task can be represented by an instance
distribution dy and a ground truth weight w,. A train-
ing set {(x(i) e R 4 ¢ R)}i=1,... n is usually con-
structed by sampling n instances {z("} from dx in an
i.i.d. manner and constructing the targets as (") = w, z(%).
For a new instance (1) sampled from dy, the goal
is to predict the correct target y("*t1). To demonstrate
in-context learning, one constructs a prompt matrix as
A LS A CORI G)
Q=10 oy
zero reflects that the target for ("1 is unknown. The L-
layer transformer is trained via gradient descent to minimize

, where the bottom right

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

the following in-context loss

E(dX sw*)’\’dlashzo"’dX
[(TFL(Zoi (P QY S) —wl ™02,)

where we have assumed that there is a distribution dag
over such regression tasks. When a new regression task
(d$", w") is sampled from disc and a new input Z§™
is constructed, the trained transformer, using Zg"s‘ as in-
put, approximates the target (z(" 1t ¢®t) This is
a form of meta-learning (Vilalta & Drissi, 2002). Sur-
prisingly, the transformer’s ability to achieve this stems
from its implementation of gradient descent within its for-
ward pass. As proved by (Ahn et al., 2024), by mini-
mizing the in-context loss in (7), we may end up with a
transformer parameterized by, say {(P, Q;)}i=o,...,1.—1.
that has the following remarkable effect. Feeding the
prompt Zj into this L-layer transformer, we get Z1, ..., 2,
following (5). We denote the right bottom element of

Z (n+1) " (Ahn et al., 2024) then prove that for

as y,
!l =0,1,...,L, we have yl("H) = —w, ("D where

w1 = wy + %E?:l(y(i) — w 2M)z® with wy = 0.
This sequence {w; } mirrors that produced by running gradi-
ent descent on the demonstrations {(z(), y(*))} to minimize
the squared loss 2 37 (y — wT2())2. In other words,

unrolling this transformer layer by layer is equivalent to
performing gradient descent iteration by iteration.

Reinforcement Learning. We consider an infinite hori-
zon Markov Decision Process (MDP, Puterman (2014))
with a finite state space S, a finite action space A, a re-
ward function rypp : S X A — R, a transition func-
tion pypp : S X § x A — [0,1], a discount factor
~v € [0,1), and an initial distribution py : S — [0,1].
An initial state Sy is sampled from py. At a time ¢, an
agent at a state S; takes an action A; ~ 7(-|S;), where
m: AxS — [0,1] is the policy being followed by the
agent, receives a reward R;y1 = 7mpp(St, A¢), and tran-
sitions to a successor state S¢y1 ~ pmpp(-|St, At). If the
policy 7 is fixed, the MDP can be simplified to a Markov
Reward Process (MRP) where transitions and rewards are
determined solely by the current state:Sy+1 ~ p(+|S;) with
Ripr = r(Sy). Here p(s'|s) = >, m(als)pmpp(s’[s, a)
and r(s) = Y, m(als)rmpp(s, a). In this work, we con-
sider the policy evaluation problem where the policy 7 is
fixed. So it suffices to consider only an MRP represented
by the tuple (po, p,), and trajectories (So, R1, .51, Ra,...)
sampled from it. The value function of this MRP is de-
finedas v(s) = E Y72, 7" "' R;|S; = s]. Estimating
the value function v is one of the fundamental tasks in RL.
To this end, one can consider a linear architecture. Let
¢ : S — R? be the feature function. The goal is then to find
a weight vector w € R4 such that for each s, the estimated
value 9(s;w) = w' ¢(s) approximates v(s). TD is a preva-

lent method for learning this weight vector, which updates
w iteratively as

Wi+1
=wi + oy (Rt_t,_l + 7@(315—}-1; U)t) - ’LAJ(St, wt))V@(St, U)t)

=w; + a; (Reg1 +yw/ ¢(Seg1) — w]! ¢(S1)) 4(Sh), (8)

where {a;} is a sequence of learning rates. Notably, TD is
not a gradient descent algorithm. It is instead considered as
a semi-gradient algorithm because the gradient is only taken
with respect to ¢ (S¢; w;) and does not include the depen-
dence on ¥ (S¢41; we) (Sutton & Barto, 2018). Including
this dependency modifies the update to

W1 = Wy + Qi (Rt+1 + ’thT(Zﬁ(St-H) - thQb(St))
(@(St) —79(Se41)))

known as the (naive version of) residual gradient method
(Baird, 1995).! The update in (8) is also called TD(0) — a
special case of the TD(\) algorithm (Sutton, 1988). TD(\)
employs an eligibility trace that accumulates the gradients
ase_; =0, e; = yAes—1+ ¢(S;) and updates w iteratively
as

W1 = wy + a(Reg1 +yw] ¢(Sev1) — w/ ¢(Se))er

The hyperparameter A controls the decay rate of the trace.
If A = 0, we recover (8). On the other end with A = 1,
it is known that TD()\) recovers Monte Carlo (Sutton,
1988). Another important setting in RL is the average-
reward setting (Puterman, 2014; Sutton & Barto, 2018),
focusing on the rate of receiving rewards, without using
a discount factor y. The average reward 7 is defined as
7 = limroee & 30—, E[R:]. Similar to the value func-
tion in the discounted setting, a differential value function
o(s) is defined for the average-reward setting as o(s) =
E[> 2, 1(Ri —7)|S; = s]. One can similarly estimate
(s) using a linear architecture with a vector w as w ' ¢(s).
Average-reward TD (Tsitsiklis & Roy, 1999) updates w
iteratively as

W1 = Wity (Rep1 — Teqa
+w ¢(Se1) — w $(80)(Sy),

_ 1t . ..
where 7, = ¢ >, R; is the empirical average of the re-
ceived reward.

3. Transformers Can Implement In-Context
TD(0)

In this section, we prove that transformers are expressive
enough to implement TD(0) in its forward pass. Given a

'This is a naive version because the update does not account
for the double sampling issue. We refer the reader to Chapter 11
of Sutton & Barto (2018) for detailed discussion.

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

trajectory (So, R1,S1, Ra,S3, Ry, ..., Sy,) sampled from
an MRP, using as shorthand ¢; = ¢(S;), we define for
1=0,1,....[—1

[¢0 DR d)nfl ¢n
Zo =71 - YPn 0],
Ry ... R, 0
™ - |02dx2d O2dx1
—C O 0axa
P = 04xa Oaxa Oax1
_01><d 01xa 0

Here Z, € R(24+Dx(n+1) js the prompt matrix, C; € R¥*¢
is an arbitrary matrix, and {(F®,Q[°)},_,, , , are
the parameters of the L-layer transformer. We ‘then have

Theorem 3.1 (Forward pass as TD(0)). Consider the L-
layer linear transformer following (5), using the mask (4),
parameterized by {PZTD, QlTD}z:o....,L—1 in (10). Let

yl(nH) be the bottom right element of the l-th layer’s out-

put, i.e., yl(nH) = 7Zj[2d + 1,n + 1]. Then, it holds that

yl(nH) = —{(¢n,wy), where {w;} is defined as wy = 0 and

Wi+1

n—1
= ~C R; L bi1 —w o) ¢;.(11
wl"’n ljz:;)(j+1 T yw; ¢J+1 w; ¢]>¢]()

The proof is in Appendix A.1 and with numerical verifica-
tion in Appendix E as a sanity check. Notably, Theorem 3.1
holds for any Cj. In particular, if C; = o4, then the up-
date (11) becomes a batch version of TD(0) in (8). For a gen-
eral ', the update (11) can be regarded as preconditioned
batch TD(0) (Yao & Liu, 2008). Theorem 3.1 precisely
demonstrates that transformers are expressive enough to
implement iterations of TD in its forward pass. We call this
in-context TD. It should be noted that although the construc-
tion of Zj in (10) uses ¢,, as the query state for conceptual
clarity, any arbitrary state s € S can serve as the query state
and Theorem 3.1 still holds. In other words, by replacing ¢,,
with ¢(s), the transformer will then estimate v(s). Notably,
if the transformer has only one layer, i.e., L. = 1, there
are other parameter configurations that can also implement
in-context TD(0).

Corollary 3.2. Consider the I-layer linear transformer
following (5), using the mask (4). Consider the following
parameters

piD - 02dx24 0O2ax1
0 01x24d 17
—C Oaxa Odax1 (12)
P =104xa Odaxa Oaxi
O1xqa Oixq O

Then, it holds that yi"H) = —(dn, w1), where wy is defined
as
n—1
- ~C R. Ty —awd) b
w1 = wp + ” ljz::() (Rjs1 +ywy ¢j41 — wo 65) 6

with wg = 0.

The proof is in Appendix A.2. An observant reader may
notice that this corollary holds primarily because wy = 0,
making it a unique result for L = 1. Nevertheless, this
special case helps understand a few empirical and theoretical
results below.

4. Transformers Do Implement In-Context
TD(0)

It has been observed that in-context gradient descent
emerges during the minimization of the in-context regres-
sion loss (7) via gradient descent. In this section, we demon-
strate the emergence of in-context TD both theoretically and
empirically.

Multi-Task Temporal Difference Learning. The in-
context regression loss essentially trains the transformer
with multiple regression tasks. Inspired by this, we propose
to train the transformer with multiple evaluation tasks from
multiple MRPs. Recall, an MRP is defined by the tuple
(po, p,). For the evaluation problem, the feature function ¢
also matters. We therefore define an evaluation task to be the
tuple (po, p, 7, ¢). Assuming a distribution dy,y over these
tuples, we sample evaluation tasks from this distribution.
For each sampled task, we apply TD to train the transformer
to solve the corresponding evaluation problem, as described
in the following multi-task TD algorithm (Algorithm 1).

Recall that TFp(Zp;6) and TFp(Z];0) are in-
tended to estimate v(Si4n+1) and v(Siy,12) respec-
tively. So Algorithm 1 essentially applies TD using
(Stin+t1s Ritnt2, St4nt2) to train the transformer. Ideally,
when a new prompt Zy is constructed using a trajectory
from a new evaluation task (po,p, 7, ®)west ~ duask(), We
would like the predicted value TFy,(Zyey; 6) with 6 from
Algorithm 1 to be close to the value of the query state in
Zyest- This problem is a multi-task meta-learning problem, a
well-explored area with many existing methodologies (Beck
et al., 2023). However, the unique and significant aspect of
our work is the demonstration that in-context TD emerges
in the learned transformer, providing a novel explanation
for how the model solves the problem.

4.1. Theoretical Analysis

The problem that Algorithm 1 aims to solve is highly non-
convex and non-linear (the linear transformer is still a non-
linear function). We analyze a simplified version of Al-
gorithm 1 and leave the treatment to the full version for

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Algorithm 1 Multi-Task Temporal Difference Learning

1: Input: context length n, MRP sample length 7, number
of training MRPs k, learning rate «, discount factor +,
2: fori < 1to k do ’
3: Sample (po,p,r, @) from dy
rithm 2 in Appendix B
4: Sample (Sp, R1, 51, Ra, . -
the MRP (po, p,)
5 fort=0,....T—n—1do

/l see, e.g., Algo-

Sy Rry1,Sr41) from

on Ottn—-1 Otynt+l
6: Zy < [v7Pi11 VPt tn 0
=Rt+1 Rt+n 0
¢t+1 ¢t+n ¢t+n+2
7: Zy | vPr42 YPt4n+1 0
| Rit2 Riyni1 0
8: 0 <+« 0 + Q(Rt+n+2 + ’)’TFL(Z(/); 9) —

TF(Z0;0))VeTFL(Zy;0) // TD
9: end for
10: end for

future work. In particular, we study the single layer case
with L = 1 and let § = (P, Q) be the parameters of the
single-layer transformer. We consider expected updates, i.e.,

Or1 =0, + arA(Ok),

with

A(6) =E [(R + yTF1(Zg,0) — TF1(Zo, 6)) VIF1(Z0,0)]

13)

Here the expectation integrates both the randomness
in sampling (pg,p,r,¢) from dyg and the random-
ness in constructing (R, Zy, Z|) thereafter. We sample

(SO7 Rlu Sl7 ey Sn+17 Rn+27 S’n+2) fOHOWil’lg (p07p7 T)
and construct using shorthand ¢; = ¢(.5;)
¢O cee ¢n—1 ¢n+1
Zo = V1 YPn 0 |,
Ry ... R, 0
- (14)
¢1 cee ¢n ¢n+2
Z(/) = 7¢2 ’7¢n+1 0 ,R = Rn+2-
| B2 ... Rupp 0

The structure of Zy and Z/, is similar to those in Algorithm 1.
The main difference is that we do not use the sliding window.
We recall that (po, p, r, ¢) are random variables with joint
distribution d,s. Here, ¢ is essentially a random matrix tak-
ing value in R**ISI, represented as, ¢ = [¢(s)]scs. We use
£ to denote “equal in distribution" and make the following
assumptions.

Assumption 4.1. The random matrix ¢ is independent of
(p07 b, ’I") .

Assumption 4.2. TIp £ ¢, A¢ = ¢, where I is any d-
dimensional permutation matrix and A is any diagonal ma-
trix in R? where each diagonal element of A can only be —1
or 1.

Those assumptions are easy to satisfy. For example, as
long as the elements of the random matrix ¢ are i.i.d. from
a symmetric distribution centered at zero, e.g., a uniform
distribution on [—1, 1], then both assumptions hold. We say
a set © is an invariant set of (13) if for any &k, 0, € © —
Or+1 € O. Define

9*(77707 Cl) =
Ondwag Ongxi clg Ogxa Ogxi
Py = |:01,><2d ﬁx }Qo = |Is Ogxa Oaxi
x 01><d 01><d 0

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. For
the (14) construction of (R,Zy,Z}), then ©, =
{0.(n,¢,c)|n, ¢, € R} is an invariant set of (13).

The proof is in Appendix A.3. Theorem 4.3 demonstrates
that once 0, enters ©, at some k, it can never leave, i.e., ©,
is a candidate set that the update (13) can possibly converge
to. Consider a subset ©’, C O, with a stricter constraint
d =0,ie., 0, ={0.(n,¢0)|n,c e R} Corollary 3.2 then
confirms that all parameters in ©’, implement in-context TD.

That being said, whether (13) is guaranteed to converge to
O, or further to ©’,, is left for future work.

4.2. Empirical Analysis

We now empirically study Algorithm 1. To this end, we
construct d,g based on Boyan’s chain (Boyan, 1999), a
canonical environment for diagnosing RL algorithms. We
keep the structure of Boyan’s chain but randomly generate
initial distributions pg, transition probabilities p, reward
functions r, and the feature function ¢. Details of this
random generation process are provided in Algorithm 2 with
Figure 2 visualizing Boyan’s chain, both in Appendix B.

For the linear transformer specified in (5), we first consider
the autoregressive case following (Akyiirek et al., 2023;
von Oswald et al., 2023), where all the transformer layers
share the same parameters, i.e., P, = Py and Q; = Qg
for! = 0,1,...,L — 1. We consider a three layer trans-
former (L = 3). Importantly, all elements of Py and Q) are
equally trainable — we did not force any element of P, and
Qo to be 0. We then run Algorithm 1 with Boyan’s chain
based evaluation tasks (i.e., dy,) to train this autoregressive
transformer. The dimension of the feature is d = 4 (i.e.,
#(s) € R*). Other hyperparameters of Algorithm 1 are
specified in Appendix C.1.

Figure la visualizes the final learned Py and Qg by Al-

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

gorithm 1 after 4000 MRPs (i.e., & = 4000), which
closely match our specifications P™ and Q™™ in (10) with
C; = I;. In Figure 1b, we visualize the element-wise
learning progress of Py and (Jg. We observe that the bot-
tom right element of Py increases (the Py[—1, —1] curve)
while the average absolute value of all other elements re-
main close to zero (the “Avg Abs Others” curve), closely
aligning with P™ up to some scaling factor. Furthermore,
the trace of the upper left d x d block of)y approaches
—d (the tr(Qo[: d,: d]) curve), and the trace of the upper
right block (excluding the last column) approaches d (the
tr(Qol: d,d : 2d]) curve). Meanwhile, the average abso-
lute value of all the other elements in () remain near zero,
aligning with Q™ using C; = I up to some scaling factor.

More empirical analysis is provided in the Appendix. In
particular, besides showing the parameter-wise convergence
in Figure 1, we also use other metrics including value dif-
ference, implicit weight similarity, and sensitivity similarity,
inspired by von Oswald et al. (2023); Akyiirek et al. (2023),
to examine the learned transformer. We also study nor-
mal transformers without parameter sharing (Appendix
C.3), as well as different choices of hyperparameters in
Algorithm 1. Furthermore, we empirically investigate the
original softmax-based transformers (Appendix D). The
overall conclusion is the same — in-context TD emerges in
the transformers learned by Algorithm 1. Notably, Theo-
rem 3.1 and Corollary 3.2 suggests that for L = 1, there
are two distinct ways to implement in-context TD (i.e., (10)
v.s. (12)). Our empirical results in Appendix C.2 show that
Algorithm 1 ends up with (12) in Corollary 3.2 for L =1,
aligning well with Theorem 4.3. For L = 2, 3,4, Algo-
rithm 1 always ends up with (10) in Theorem 3.1, as shown
in Figure 3 in Appendix C.2. We also empirically observed
that for in-context TD to emerge, the task distribution di,s
has to be “difficult” enough. For example, if (pg,p) or
¢ are always fixed, we did not observe the emergence of
in-context TD.

5. Transformers Can Implement More RL
Algorithms

In this section, we prove that transformers are expressive
enough to implement three additional well-known RL al-
gorithms in the forward pass. We warm up with the (naive
version of) residual gradient (RG). We then move to the
more difficult TD(X). This section culminates with average-
reward TD, which requires multi-head linear attention and
memory within the prompt. We do note that whether those
three RL algorithms will emerge after training is left for
future work.

Residual Gradient. The construction of RG is an easy

extension of Theorem 3.1. We define

Cl—r C’l—r del
PR =P QR =| ¢ —C 041
led led 0

c R(2d+1)x(2d+1). (15)

Corollary 5.1 (Forward pass as Residual Gradient). Con-
sider the L-layer linear transformer following (5), uszng
the mask (4), parameterized by {PRG QRG} 1=0..

(15). Define y{" 1) =

L1t
Z1[2d+ 1, n+1). Then, it holds that

yl("H) = —{bn,wy), where {w;} is defined as wg = 0 and
1 n—1
w1 = wit— G > (Rjr +yw ¢j11 — w/)
J=0
(pj —vPj11)- (16)

The proof is in A.4 with numerical verification in Appendix
E as a sanity check. Again, if C; = «;14, then (16) can be
regarded as a batch version of (9). For a general Cj, it is
then preconditioned batch RG. Notably, Figure 1 empiri-
cally demonstrates that Algorithm 1 eventually ends up with
in-context TD instead of in-context RG. This matches the
conventional wisdom in the RL community that TD is usu-
ally superior to the naive RG (see, e.g., Zhang et al. (2020)
and references therein).

TD()). Incorporating eligibility traces is an important exten-
sion of TD(0). We now demonstrate that by using a different
mask, transformers are able to implement in-context TD(\).
We define

1 0 0 0 0 0
A 1 0 0 0 0
M = : : : Do
)\nfl)\n72)\n73)\n74 1 0
0 0 0 0 0 0
c R(n+1)><(n+1). (17)

Notably, if A = 0, the above mask for TD(\) recovers the
mask for TD(0) in (4).

Corollary 5.2 (Forward pass as TD(\)). Consider
the L-layer linear transformer parameterized by
{PlTDanTD}l:o,,..,L,1 as specified in (10) with the
input mask used in (5) being M™X in (17). De-
fine y(”H) Z)2d + 1,n + 1]. Then, it holds
that v, — (¢, w;) where {w;} is defined with
wo = 0 €ep = 0, €; =)\6]',1 + ¢j’ and

("+1)

-1
W1 = w4+ 20 Y02 (riv1 + ywg, diy1 — wy di)e;

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Final P,

Final Qo

0 1 2 3 4 5 6 7 8

.

0 1 2 3 4 5 6

(a) Learned Py and Qo after 4000 MRPs

100
s o 2.0
0 L5t
025
0.00 Lor-
025
0.5
~050
d 0.0
0. 0
~100

Py Metrics Qo Metrics
T T 4 T T T T
Pyl-1, 1] tr(Qo:d, :d))
—— Avg Abs Others | ol tr(Qol:d, d: 2d]) i
Avg Abs Others
o
ol
4t
1000 2000 3000 4000 0 1000 2000 3000 4000
MRPs # MRPs

(b) Element-wise learning progress of Py and Qo

Figure 1: Visualization of the learned transformers and the learning progress. Both (a) and (b) are averaged across 30 seeds
and the shaded region in (b) denotes the standard errors. Since Py and @) are in the same product in (3), the algorithm
can rescale both or flip the sign of both, but still end up with exactly the same transformer. Therefore, to make sure the
visualization are informative, we rescale Iy and () properly first before visualization. See Appendix C.1.1 for details.

The proof is in A.5 with numerical verification in Appendix
E as a sanity check.

Average-Reward TD. We now demonstrate that transform-
ers are expressive enough to implement in-context average-
reward TD. Different from TD(0), average-reward TD ex-
hibits additional challenges in that it updates two estimates
(i.e., w; and 74) in parallel. To account for this challenge,
we use two additional mechanisms beyond the naive single-
head linear transformer. Namely, we allow additional “mem-
ory” in the prompt and consider two-head linear transform-
ers. Given a trajectory (Sp, Ry, S1, R2,S3, R4, ..., Sn)
sampled from an MRP, we construct the prompt matrix
Zp as

¢O e (bnfl ¢n
N K T S U (2d+2)x (n+1)
Zo=\p, ... R, o€k :
0o ... 0 0

Notably, the last row of zeros is the “memory”, which is used
by the transformer to store some intermediate quantities
during the inference time. We then define the transformer
parameters and masks as

B.00) [024x2d O2dx1 O24x1|
Pl ’ = O1><2d 1 0 ’
| O1x2d 0 0
.2 [024x2d4 O2dx1 O24x1|
P =1 0124 0 0 1, (18)
| O1x2d 0 1
-G G Oaxe
P =1 0axa Oaxd Oaxz|,
| O2xa O2xa O2x2

W~ 02dx2d 02ax1 O2ax(2d+2) 0O2dx1

- . (19
7 O1x2a 1 01 (2d+2) 1 (19)

ﬁ,(Z) . In 07L><1

M o |:01><n 0 :l ’

M™O (1, — Uy adiag([L 3 ... =4]))
.M, (20)

where C; € R9*? is again an arbitrary matrix, U,, ;1 is the
(n+1) x (n+1) upper triangle matrix where all the nonzero
elements are 1, and diag(x) constructs a diagonal matrix
with the diagonal entry being . Here, {PZTD’(I), QZTD} are
the parameters of the first attention heads, with the input

mask being M D,(1), PlTD’(Q), QlTiD} are the parameters
of the second attention heads, with the input mask being
M™:(2)_ The two heads coincide on some parameters. W;
is the affine transformation that combines the embeddings
from the two attention heads. Define the two-head linear-
attention as

TwoHead(Z; P,Q, M, P',Q', M', W)
N LinAttn(Z; P,Q, M)
7 |LinAttn(Z; P/, Q', M") |’
The L-layer transformer we are interested in is then given
by

1 = —_
Zi41 = Z; + —TwoHead(Z;; PITD’(I)’ QI°, M™ (),
n

PP QP M™®). e

Theorem 5.3 (Forward pass as average-reward TD). Con-

sider the L-layer transformer in (21). Let hl("+1) be the

bottom-right element of the l-th layer output, i.e., hl("+1) =

Z1[2d + 2,n + 1]. Then, it holds that h§n+1) = —(¢pn,wy)

where {w,} is defined as woy = 0,

wir1 = wy + %Cl Z (Rj—7j+w/ ¢j —w/ ¢j_1)dj-1
j=1

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

forl=0,...,L—1, wherer; =137 _, Ry,

The proof is in A.6 with numerical verification in Ap-
pendix E as a sanity check.

6. Related Works

In-Context Learning. Understanding in-context learning
empirically and theoretically has recently emerged as an
active research area (Garg et al., 2022; Miiller et al., 2022;
Akyiirek et al., 2023; von Oswald et al., 2023; Zhao et al.,
2023; Allen-Zhu & Li, 2023; Zhang et al., 2023; Mahankali
et al., 2023; Ahn et al., 2024), building on prior research
demonstrating that neural networks are able to implement
algorithms (Siegelmann & Sontag, 1992; Graves et al., 2014;
Jastrzgbski et al., 2017) and achieve meta-learning from
the inputs (Hochreiter et al., 2001). This work advances
this line of research by demonstrating how transformers
implement in-context TD, accompanied by a theoretical
understanding of its emergence.

In-Context Reinforcement Learning. Existing research
on in-context RL predominantly adopts a policy-based ap-
proach, often relying on supervised pre-training (Laskin
et al., 2022; Raparthy et al., 2023; Sinii et al., 2023; Zisman
et al., 2023; Krishnamurthy et al., 2024). Transformers are
trained to output the action, instead of the value, for the
query state. Correspondingly, the prompts used in this setup
consist of previous trajectories from an MDP

SQA0R151A2R2...St,1At,1 St — At .
~~ ~~

output

prompt query

The dataset usually consists of multiple such prompt-query-
output pairs, where maximum likelihood estimation is essen-
tially used to train the transformers. Notably, the prompt can
be generated by following multiple policies. The prompt
can also be offline data containing all trajectories generated
during prior RL algorithm training across multiple episodes.
This line of research is closely related to offline policy distil-
lation, the goal of which is to learn a policy from offline data
using transformers (Chen et al., 2021; Janner et al., 2021;
Lee et al., 2022; Reed et al., 2022; Kirsch et al., 2023). De-
spite that empirical successes observed in the work above,
theoretical analysis is often missing. (Lin et al., 2023) pro-
vide theoretical analysis for this policy-based supervised
pre-training approach and show that the transformers can
approximate a few RL algorithms, including LinUCB (Chu
etal., 2011) and Thompson sampling (Russo et al., 2018) for
linear bandits (Lattimore & Szepesvari, 2020) and UCB-VI
(Azar et al., 2017) for MDPs. Specifically, (Lin et al., 2023)
prove the inference process of the learned transformers be-
haves similarly to those aforementioned RL algorithms in
terms of action selection probabilities, regret, and other met-
rics. This behavioral similarity is also investigated in Lee

et al. (2024). However, the underlying mechanisms within
the learned transformers that induce this similarity remains
unclear. In contrast, we go beyond behavioral similarity
and prove that transformers can exactly implement a
few RL algorithms in its forward pass. Moreover, we
do not use the supervised pre-training paradigm, which is
centered on maximum likelihood estimation. As shown in
Algorithm 1, we instead use RL pre-training predicated on
TD, a value-based method. Park et al. (2024) concurrently
use a regret-based loss for training transformers in online
learning. Brooks et al. (2024) implement policy iteration,
a value-based strategy, with transformers, but perform the
required arg max operation outside the transformers. De-
spite the observed empirical success, Brooks et al. (2024)
also lack a theoretical analysis of their approach.

Meta-Learning of RL algorithms. Our Algorithm 1 can be
regarded as a meta RL algorithm (Beck et al., 2023), where
drask 18 the task distribution in the meta RL framework. The
learned transformers can be regarded as a learned algorithm,
which is used to solve new evaluation tasks from the task
distribution. Such meta learning of RL algorithms has been
explored in (Duan et al., 2016; Wang et al., 2016; Finn et al.,
2017; Kirsch et al., 2019; Oh et al., 2020; Lu et al., 2022;
Kirsch et al., 2022; Lu et al., 2023). However, those discov-
ered algorithms lack interpretability — it is not clear how the
neural network implements the discovered algorithms. By
contrast, the discovered transformer from Algorithm 1 is
well explained.

7. Conclusion

This work demonstrates that transformers can and do learn
to implement temporal difference methods for in-context
policy evaluation in the forward pass. We further provide
a theoretical explanation of how in-context TD emerges by
characterizing an invariant set of the multi-task TD algo-
rithm used in pre-training, bridging the gap between “can”
and “do”. However, there are a few limitations. First, this
work is focused on policy evaluation, with control algo-
rithms deferred to future research. Second, the analysis is
largely theoretical — we leave the large-scale verification
of the multi-task TD pre-training paradigm for future work.
Third, the theoretical analysis of the pre-training paradigm
is confined to single-layer linear transformers, leaving the
exploration of multi-layer softmax transformers for future
studies. In conclusion, this research aims to illuminate the
mechanisms of in-context learning, and motivate further
investigation into in-context value-based RL.

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Akyiirek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou,
D. What learning algorithm is in-context learning? inves-
tigations with linear models. The Eleventh International
Conference on Learning Representations, 2023.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 1,
context-free grammar. arXiv preprint arXiv:2305.13673,
2023.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-
nesensky, M., Bao, B., Bell, P, Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk,
C., Mabher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim,
M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang,
E., Wang, X., Wen, W., Zhang, S., Zhao, X., Zhou, K.,
Zou, R., Mathews, A., Chanan, G., Wu, P., and Chin-
tala, S. PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph
Compilation. In 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April
2024. doi: 10.1145/3620665.3640366. URL https:
//pytorch.org/assets/pytorch2-2.pdf.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International con-
ference on machine learning, pp. 263-272. PMLR, 2017.

Baird, L. C. Residual algorithms: Reinforcement learn-
ing with function approximation. In Proceedings of the
International Conference on Machine Learning, 1995.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn,
C., and Whiteson, S. A survey of meta-reinforcement
learning. arXiv preprint arXiv:2301.08028, 2023.

Bishop, C. M. Pattern recognition and machine learning.
Springer google schola, 2:1122-1128, 2006.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Boyan, J. A. Least-squares temporal difference learning. In

Proceedings of the International Conference on Machine
Learning, 1999.

Brooks, E., Walls, L., Lewis, R. L., and Singh, S. Large lan-

guage models can implement policy iteration. Advances
in Neural Information Processing Systems, 36, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8acl42f64a—Paper.
pdf.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,

Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084-15097, 2021.

Chu, W, Li, L., Reyzin, L., and Schapire, R. Contextual

bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208-214. IMLR Workshop
and Conference Proceedings, 2011.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,

I, and Abbeel, P. RI2: nforcement learning via slow
reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-

learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126-1135.
PMLR, 2017.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What

can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583-30598, 2022.

Garrett, J. D. garrettj403/SciencePlots. September 2021. doi:

10.5281/zenodo.4106649. URL http://doi.org/
10.5281/zenodo.4106649.

Graves, A., Wayne, G., and Danihelka, I. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014.

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://doi.org/10.5281/zenodo.4106649
http://doi.org/10.5281/zenodo.4106649

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rio, J. F,,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357-362, September 2020. doi: 10.
1038/s41586-020-2649-2. URL https://doi.org/
10.1038/s41586-020-2649-2.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Dorffner, G., Bischof,
H., and Hornik, K. (eds.), Artificial Neural Networks
— ICANN 2001, pp. 87-94, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90-95, 2007. doi:
10.1109/MCSE.2007.55.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-

vances in neural information processing systems, 34:
1273-1286, 2021.

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T.,
and Bengio, Y. Residual connections encourage iterative
inference. arXiv preprint arXiv:1710.04773, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the International Confer-
ence on Learning Representations, 2015.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. Improv-
ing generalization in meta reinforcement learning using
learned objectives. arXiv preprint arXiv:1910.04098,
2019.

Kirsch, L., Flennerhag, S., Hasselt, H. v., Friesen, A., Oh,
J., and Chen, Y. Introducing symmetries to black box
meta reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(7):7202-7210,
Jun. 2022.

Kirsch, L., Harrison, J., Freeman, C., Sohl-Dickstein, J.,
and Schmidhuber, J. Towards general-purpose in-context
learning agents. In NeurIPS 2023 Foundation Models
for Decision Making Workshop, 2023. URL https:
//openreview.net/forum?id=zDTqQVGgzH.

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C.,
and Slivkins, A. Can large language models explore
in-context? arXiv preprint arXiv:2403.15371, 2024.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with

10

algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Lattimore, T. and Szepesvari, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining
can learn in-context reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, 1., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:

27921-27936, 2022.

Lieber, O., Sharir, O., Lenz, B., and Shoham, Y. Jurassic-1:
Technical details and evaluation. White Paper. AI21 Labs,
1:9, 2021.

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv preprint arXiv:2310.08566,
2023.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt,
C., and Foerster, J. Discovered policy optimisation. Ad-
vances in Neural Information Processing Systems, 35:
16455-16468, 2022.

Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foerster, J.,
Singh, S., and Behbahani, F. Structured state space mod-
els for in-context reinforcement learning. In Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 47016—47031. Curran
Associates, Inc., 2023.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner

with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Miiller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do bayesian inference. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=KSugKcbNf9.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt,
H. P, Singh, S., and Silver, D. Discovering reinforcement
learning algorithms. Advances in Neural Information
Processing Systems, 33:1060-1070, 2020.

Park, C., Liu, X., Ozdaglar, A., and Zhang, K. Do llm agents
have regret? a case study in online learning and games.
arXiv preprint arXiv:2403.16843, 2024.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=zDTqQVGgzH
https://openreview.net/forum?id=zDTqQVGgzH
https://openreview.net/forum?id=KSugKcbNf9
https://openreview.net/forum?id=KSugKcbNf9

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rae, J. W, Borgeaud, S., Cai, T., Millican, K., Hoffmann,
J., Song, F., Aslanides, J., Henderson, S., Ring, R.,
Young, S., et al. Scaling language models: Methods,

analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision

making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, 1., Wen,
Z., et al. A tutorial on thompson sampling. Foundations
and Trends® in Machine Learning, 11(1):1-96, 2018.

Schlag, L., Irie, K., and Schmidhuber, J. Linear transform-
ers are secretly fast weight programmers. In Interna-
tional Conference on Machine Learning, pp. 9355-9366.
PMLR, 2021.

Siegelmann, H. T. and Sontag, E. D. On the computational
power of neural nets. In Proceedings of the fifth annual

workshop on Computational learning theory, pp. 440—
449, 1992.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and
Kolesnikov, S. In-context reinforcement learning for

variable action spaces. arXiv preprint arXiv:2312.13327,
2023.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction (2nd Edition). MIT press, 2018.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P,,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tsitsiklis, J. N. and Roy, B. V. Average cost temporal-
difference learning. Automatica, 1999.

11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, 1., Luxburg, U. V,,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91£fbd053clcd4a845aa-Paper.
pdf.

Vilalta, R. and Drissi, Y. A perspective view and survey of
meta-learning. Artificial intelligence review, 18:77-95,
2002.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M.
Transformers learn in-context by gradient descent, 2023.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Yao, H. and Liu, Z.-Q. Preconditioned temporal differ-
ence learning. In Proceedings of the 25th international
conference on Machine learning, pp. 1208-1215, 2008.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

Zhang, S., Boehmer, W., and Whiteson, S. Deep residual
reinforcement learning. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 2020.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. Do trans-
formers parse while predicting the masked word? arXiv
preprint arXiv:2303.08117, 2023.

Zisman, 1., Kurenkov, V., Nikulin, A., Sinii, V., and
Kolesnikov, S. Emergence of in-context reinforce-
ment learning from noise distillation. arXiv preprint
arXiv:2312.12275, 2023.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

A. Proofs
A.1. Proof of Theorem 3.1

Proof. We recall from (5) that the embedding evolves according to
1
Zisy = Zi+ ~RZM(Z] Qi Z)).

We first express Z; using elements of Zj. To this end, it is convenient to give elements of Z; different names, in particular,

we refer to the elements in Z; as {(x(i) ()

1Y)}1:1 _, inthe following way
(1) (n) (n+1)_

Zl = xél) x%n) l‘én-&-l))
Y Y Y |

where we recall that Z; € R(d+1Dx(n+1) xl(i) € R, yl(i) € R. Sometimes it is more convenient to refer to the first half

_ A . _ [,
and second half of xl(z) separately, by, e.g., Vl(l) € R, fll) € RY ie., xl(z) = Zl(z)l . Then we have
1St
'Vl(l) Vl(n) Vl(n+1)'
7, = gl(l) l(n) l(n-‘rl)
1 n n+1
" u" oyt
We utilize the shorthands
X, = xl(l) xl(n):| € R2xn
Y, ::ylu) yl(n)] c RIXn.
Then we have
P Xl x(n+1)
1= n .
Y, yl(+1)

For the input Z, we assume gé”“) =0, y(()"ﬂ) = 0 but all other entries of Z; are arbitrary. We recall our definition of M

in (4)and {P°,QfP},_ , in (10). In particular, we can express Q" in a more compact way as

M, = (-1, I4 c R24x2d,
10axa Odxa
B = [Oaxa € R24x2d,
[0axd Odxd
AT T
Al ~B,M, = Cl Cl c RQdX2d,
ded 0d><d
™ - [A 02ax1 c R2d+1)x(2d+1).
b7 |0ix2a 0

We now proceed with the following claims.
Claim 1. X; = Xo,acl(nﬂ) = a:énﬂ),w.

024x1

Recall that PP = {02dx2d g

O1x24

} € RRA+1)X(2d+1) [o

Wl - ZZM(ZlTQ;FDZl) c R(2d+1)><(n+1).

12

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

The embedding evolution can then be expressed as
L S
Ziy1 =21+ EPI wi.
By simple matrix arithmetic, we get

™1, _ | O2dx(n+1)
P = [Wl(2d+ 1)
where W;(2d 4 1) denotes the (2d 4 1)-th row of W;. Therefore, we have X; 1 = X, a:l(z'fl) = xl("ﬂ). By induction, we
get X; = Xgand 2" = 2" forall 1 = [0,...,L — 1.

In light of this, we drop all the subscripts of X, as well as subscripts of xl(i) fori=1,...,n+ 1.

Claim 2.
1 T
Y=Y+ EYIX A X

n n 1
s =y + VX T A,

The easier way to show why this claim holds is to factor the embedding evolution into the product of P°Z; M and
Z"QIPZ,. Firstly, we have

Pz, — [02d><n 02d><1:|'

i oyt

Applying the mask, we get

™ ~ |02dxn O2dx1
P, ZZM_[v Dt

Then, we analyze Z lT QTP Z,. Applying the block matrix notations, we get

Xt v, H A 02d><1:| [X I(nﬂ)]

Z—r TDZ = n "
1 Q24 (D) yl([01x2a 0 ||V yz(v

XTA Opxi][X 2(tD

20T 0 [y Y

[XTAX X T AztD
_x("“)TAlX x(n-{—l)TAlx(n—i-l) :

Combining the two, we get

XTAX XT Azt

)/l 0 :L'(n""l)TAlX x(n+1)TAlx(n+l)

| O2qxn 024x1
TIVXTAX VX TAz0tD |

O2dxn O
PlTDZlM(ZlTQ’erZl> _ |: 2dx 2d><1:| I:

Hence, according to our update rule in (5), we get

1
Y=Y+ -V XTA4X
n

n n 1 n
yl(+-1H) = yl(4 EYIXTAZI(+1),

13

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Claim 3.

l
yl(-l—)l = y(()) —|— <M1£C(), nZBJTM2XY7T>7
Jj=0

fori_la"';n+17WhereM2_|:Id OdXd:|'

Odxa Odxd

Following Claim 2, we can unroll Y;; as
1
Yipr =Yi+ -ViXTAX
n

1
Y=Y+ EYl_leAl_lx

1
Vi =Y+ Yo X T Ao X.
n

We can then compactly express Y; 1 as

l
1
Vioi=Yo+-) YV:XTAX.
+1 O+nj;0j J

Recall that we define A; = B;M;. Then, we can rewrite Y} as

l
1
Y = ~ >d ;)
b =Yo+ ZY]X MyB; M X
7=0
The introduction of M, here does not break the equivalence because B; = M, B;. However, it will help make our proof
steps easier to comprehend later.

(n+1)

With the identical procedure, we can easily rewrite y; ,

as

l
. 1
yl(l—li-l) _ yén-‘rl) + ﬁ Z YjXTMgBlex("H).
=0

In light of this, we define)9 = 0 and for [=0, . ..

l

1 T T 2d
Y = Z B] M>XY," € R (22)
7=0
Then we can write
yl(:-)l = y(()i) + <M1$(i),¢l+1>, (23)
fori =1,...,n 4+ 1, which is the claim we made. In particular, since we assume y(()"H) = 0, we have

1
yfﬁf) = <M1I(”+1),¢l+1>-
Claim 4. The bottom d elements of v/; are always 0, i.e., there exists a sequence {wl € Rd} such that we can express ; as

Y = [o } (24)

Od><1

14

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

foralll =0,1,...,L.

We prove the claim by induction. The base case holds trivially since 1)y = 0. Suppose that for some [, (24) holds. It can be
easily verified from the definition of v, in (22) that

1
Vi =+ B Mo XY (25)
If we let
1
Nl — 7M2X)/ZT c]:&2d><17
n
the evolution of ;41 can then be compactly expressed as,
Yre1 =¥+ B Ni.
By matrix arithmetic, we have
T
BN, = [c' odxd} {Nl(l 2 d) }
Odxd Oaxa| [Ni(d:2d)

_ {C’z]\é;(xlli d)]

where N;(1: d) € R% and Ny(d : 2d) € R represent the first d and second d elements of N; respectively. Substituting in
our inductive hypothesis into (25), we have:

Vs = [OZ)XZJ n [ClNl(l : d)}

del
_ w; + CN(1: d)
del

if we let w1 = w; + C;N;(1 : d), we can see that the property holds for v, 1, thereby verifying Claim 4.

Given all the claims above, we can then compute that

<¢l+17M193(n+1)

1
—{y, Mlx(”+1>> n 7<BZT MoXYT, M1x<"+1>> (By (25))
n
1 n
=(apy, Mz D)) 4 ﬁz <B;M2x(’)y() M x(”+1)>
=1
1 < . , _
_ (n+1) < T (i) (#) (7) (n+1)
= (0 M) 4 2 5B Moa® (v Mia®) +47), M) (By (23))

1 — (@) @ 4 g(i)} > (-))
- B/ 7 +y), My tD
o 2 (0 e (o [0 i) a0
1 « D]/ . ,
=1, Mzt) + - Z < [CO’;VXl] (yé) +w €@ — wlTl/(Z)),Mlx("+1)> (By Claim 4)
i=1
n i) (,,(0) i i
={ Ml.’L‘(n+1) + lz< Cly()(yo —&—wl—rg() _wl—ru())‘|,M1m("+1)>
iz Odx1
i=1

This means

(it 40 = (o) (00 (4Tl i)

15

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Since the choice of the query (" *1) is arbitrary, we get
1< i i i)\, (@
Wiy = wp + Ezcl(yé) +w §D —w vt))V().
i=1

In particular, when we construct Zy such that (9 = ¢;_1, £() = ~¢; and y(()i) = R;, we get

1 n
Wil =W+ Z Ci(Ri +yw/ ¢i — w/ di—1) i1

=1

which is the update rule for pre-conditioned TD learning. We also have

yl(n+1) = <¢Z7M1x(”+1)> = —<wz,¢(n+1)>-
This concludes our proof. O

A.2. Proof of Corollary 3.2

Proof. The proof presented here closely mirrors the methodology and notation established in Theorem 3.1. Since we are
only considering a 1-layer transformer in this Corollary, we can recall the embedding evolution from (5) and write

1
7= Zo+ EPOZOM(ZOTQOZO).
(i), (i)

We once again refer to the elements in Z; as {(ml Y)} in the following way
i=1 n

yeeey

Z =

A0 ™ xwl

l
yl(l) yl(n) yl(n+1)

where we recall that Z; € R4 x(n+1) 500 ¢ R2d () ¢ R We utilize, v € R, £ € RY, to refer to the first half
, , (@)

and second half of xl(l) ie., :cl(l) = lglﬁ)] . Then we have

!

_l/(l) e l/l(n) l/l(n+1)
1 n n+1
Zi=|g" og” gty
1 1
DRSNS
We further define as shorthands
X, :[xlu) o xl(n) € R2xn y, — {ylu) o yl(n) c R,
Then the blockwise structure of Z; can be succinctly expressed as:
X, xl(n—l—l)
Zl = Y (”_,’_1) .
1Y
For the input Z, we assume ,f(g”H) =0, y(()”H) = 0 but all other entries of Zj are arbitrary. We recall our definition of M

in (4) and { Py, Qp} in (10). In particular, we can express (o in a more compact way as

M T
M, = I Oaxa| R2x2d B - Co Uaxd| R2dx2d
[0dxd Odxad Odxd Oaxd

- M, = _C(;r Odxa 2dx2d
AO —Bo 1= eR)
Odxd Odxd

Q0 = [Ao 02dx1] € R2A+1)x (2d+1).
01x2¢ O

16

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

We will proceed with the following claims.
Claim 1. X; = X, """ = 5"

Because we are considering the special case of L = 1 and because we utilize the same definition of F; as in Theorem 3.1,
the argument proving Claim 1 in Theorem 3.1 holds here as well. As a result, we drop all the subscripts of X, as well as
subscripts of xgl) fori=1,...,n+1.

Claim 2.

1
Vi=Yy+ -YoX A, X
n
n n 1 n
y£ +1) _ y(() +) | EYOXTon(+1)
This claim is a special case of Claim 2 from the proof of Theorem 3.1 in Appendix A.1, where L = 1. Our block-wise
construction of)y matches that in the proof of Theorem 3.1. Although our Ag here differs from the specific form of Ag

in the proof of Theorem 3.1, this specific form is not utilized in the proof of Claim 2. Therefore, the proof of Claim 2 in
Appendix A.1 applies here, and we omit the steps to avoid redundancy.

Claim 3.

i i o 1
i =y 4 <M133(), nBOTMgXYOT>,

fori =1,...,n+ 1, where My = {

Is Ogxa
Odgxa Oaxd|

This claim once again is the L = 1 case of Claim 3 from the proof of Theorem 3.1 in Appendix A.1. The specific form of
Mj is not utilized in the proof of Claim 3 from Appendix A.1, so it applies here.

We can then define ¥y = 0 and,

1
P = EBOT MyXY, € R, (26)

Then we can write
yil) = y(()l) + <M1$(l), w1>7

fort =1,...,n 4+ 1, which is the claim we made. In particular, since we assume y(()nﬂ) = 0, we have

y§n+1) = <M193(n+1),¢1>~

Claim 4. The bottom d elements of), are always 0, i.e., there exists w; € R4 such that we can express 1 as

w
Y1= [dell}'

Since our By here is identical to that in the proof of Theorem 3.1 in A.1, Claim 4 holds for the same reason. We therefore
omit the proof details to avoid repetition.

17

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Given all the claims above, we can then compute that

<1/;1 M1x<“+1>> <BOT MyXY, M, a:<”+1>> (By (26))

- Z <BTM 2@y (i) Mlx(n+1)>

[0 } (()))Mx<n+1>>
dx1

{Co” }) M x("+1)> (By Claim 4)
del

[COM)y] (n+1)>
del

1 n
n;<
1 1
-2
1 n
This means

1 N (i
<n+1>> =-3 <C (6),,) (n+1)>_
<’UJ1, v n oV Yo HV

i=1

Since the choice of the query v("*1) is arbitrary, we get
1< D
=— Z Coy(() @),
"=

In particular, when we construct Zj such that (@) = ¢;—1 and y(()i) = R;, we get

1 n
wy =~ ; CoRiti
which is the update rule for a single step of TD(0) with wy = 0. We also have

y£n+1) _ <¢17M1$("+1)> _ 7<w1,¢(”+1)>,

This concludes our proof. O

A.3. Proof of Theorem 4.3

Preliminaries Before we present the proof, we first introduce notations convenient for our analysis. We decompose Py
and Qg as

P e R2dx (2d+1)

Py = |:peR1><(2d+1) Q, ER™ Q) e R4 gl e R!

] Qu c Rdxd Qb c Rdxd ge € Rdx1
» &0
o 6Rlxd qbeRlxd qé’ER

18

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

One can readily check that TF; is independent of P, Qy, @}, gb, 4c, ¢.., g - Thus, we can assume that these matrices are zero.
Let 2(9 be the 4-th column of Zy. Indeed, TF; can be written as

TF(Zo, {Po, Qo}) = =71 [2d +1,n+1] (By (6))

(e
= - Z <pa >) QOZ (n+1)

S () (0T 1 Qubnis + 16T Qoo + RibTs100) @7)
i=1

1 n
- Z (preaps Gi—1) + V{Plat+1:2d)> Pi) + Pat1) Ri

a;i(Zo,Po)

¢;r—1Qa¢n+1 + 7(¢i)TQ;¢n+l + Ri¢;§+1qq
Bi(Z0,Qo)

We prepare the following gradient computations for future use:
Voua TF1(Zo, {Po, Qo}) = —% Zn:ﬁi(zm Qo)pi—1
Vptasrea TF1(Zo, {Po, Qo}) Zﬂz Zo, Qo) i
V@, TF1(Zo, {Po, Qo}) = —— Z% Zo, Po)bi-10p 11 (28)
Vo, TF1(Zo, {FPo, Qo}) = —% Z%‘(Zo, Po) ity
V. TF1(Zo,{ Py, Qo}) = —% ,Z: Riai(Zo, Po)bnt1-

We will also reference the following two lemmas in our main proof.

Lemma A.1. Let A be a diagonal matrix whose diagonal elements are i.i.d Rademacher random variables > (1, . .. Cq. For
any matrix K € R4? we have that EA[AK A] = diag(K).

Proof. First, we can write AK A explicitly as

Cl 0 ce 0]{,’11]{,’12 A kld Cl 0 A 0

<2 e 0 kgl k22 e kgd 0 <2 e 0

AKA = e .
0 0 e Cd kdl kdg . kdd 0 0 e Cd

Using (AKA) ;; to denote the element in the i-th row at column j of AK A, from elementary matrix multiplication we have

(AKA)Z‘J‘ = Giki; G-

A Rademacher random variable takes values 1 or —1, each with an equal probability of 0.5.

19

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

When i # j, E[(;¢;] = E[G]E[¢;] = 0 becasue ¢; and (; are independent. For i = j, E[(;¢;] = E[¢?] = 1. We can then
compute the expectation
kij 0=
EA[(AKA),. =< "
A[(AKA)]; {0 it

Consequently,
EA[AKA] = diag(K).
O

Lemma A.2. Let II € R**4 be a random permutation matrix uniformly distributed over all d x d permutation matrices
and L € R4 pe q diagonal matrix. Then, it holds that

1
En[IILI'] = Etr(L)Id.

Proof. By definition,
[ILIT"],; Z L5, L T

k=1
We note that each row of II is a standard basis. Given the orthogonality of standard bases, we get

ML) = {O 1# ,

L%‘,th =]
where ¢; is the unique index such that II;;, = 1. If the distribution of II is uniform, then [HLHT]ii is equal to one of
L1, ..., Lyq with the same probability. Thus, the expected value [HLHT]“- is é tr(L). O

Now, we start with the proof of the theorem statement.

Proof. We recall the definition of the set ©* as

02dx2d O2ax1 cla - Oaxa Daxa
CHES Un,c,c’ R P= |:0 x * :|aQ = |cIs Odaxa Oaxi
1x2d n
01><d 01><d 0

Suppose 6, € ©*, then by (27) and (28), we get

TF:1(Zo, 01) = ZR (ckd1bni1 + 7D Gnta) (29)

7]
TF) (2, 61) = == S Rer (cx6 s + 16T 16012)

i=1

1
\Y 1d]TF1(Z070k EZ: ck¢z 1¢n+1 +Ck7¢ ¢n+1)¢1 1
v Dld+1:2d)] TF1(207 ek) %Z (ck¢;zl¢n+1 + C%7¢j¢n+l)¢i

2

0.1

Vo.TF1(Zy,0k) = _Z ZRi¢i—1¢z+1
VQ/ TFl(Zo, Gk 777k Z de’z n+1
=1

V. TF1 (Zo, 01) = Z Ripnia

20

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Recall the definition of A(6) in (13). With a slight abuse of notation, we define A(py;.q)) to be the pj1.q) component of
A(0), ie.,

OTF1(Zo, 0)

A(p[l:d]) =E (R + ’YTFl(Z(/), 9) - TFI(Z07 9)) ap[ld]

Same goes for A(p[dJrlz2cl])a A(Qa)v A(Q:l), and A(Qa)'
We will prove that

@ App:q) = APa+1:2q) = A(ga) = 0 for A(Or);

(b) A(Q,) = 614 and A(Q),) = §'I, for some 6,0 € R for A(6y,)
using Assumptions 4.1 and 4.2. We can see that the combination of (a) and (b) are sufficient for proving the theorem. Recall
that Z, and Z|, are sampled from (po, p, r, $). We make the following claims to assist our proof of (a) and (b).

Claim 1. Let ¢ be a Rademacher random variable. We denote Z; and Zé as the prompts sampled from (po, p, r, (¢). We

then have Z, £ Z; and Z)) = Zé. To show this is true, we notice that for any realization of ¢, denoted as ¢ € {1, —1}, we
have

Pr(po,p, 7, ¢) = Pr(po, p,7) Pr(¢) (Assumption 4.1)
= Pr(po,p,r) Pr(¢lag) (Assumption 4.2)
= Pr(po,p, 7, (o). (Assumption 4.1)

It then follows that

Pr(po,p,r,¢) =Pr(po,p,r,0) Y Pr(¢=)

fe{1,-1}
= Z Pr(p(hpa T, ¢) PI‘(C = 5)
fe{1,-1}
= Z Pr<p07p7 T, é¢) Pr(c = 6)
fe{1,—-1}

= PY(P07P7 T, C¢)

This implies Claim 1 holds.

Claim 2. Define A as the diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables (1, . .., (y. We
denote Z, and Z/ as the prompts sampled from (po, p, 7, Ap), where A¢ means [A¢(s)]scs. We then have Zy = Z, and
Z} & Z/. The proof follows the same procedures as Claim 1.

Claim 3. Let II be a random permutation matrix uniformly distributed over all d x d permutation matrices. We denote Zp
and Z; as the prompts sampled from (po, p, 7, I1¢), where I1¢ means [I1¢)(s)]scs. We then have Zy £ Ziy and Z)) = Z};.
The proof follows the same procedures as Claim 1.

Proof of (a) using Claim 1 It is easy to check by (29) that

TF1(Z¢,0r) = —%C Z Ri(ckCPéi_10nt1 + v dnir)
i=1
= (* TF1(Zo,0k)
1
= TF(Zy, Oy). (30)

Similarly, one can check that TF; (Zé7 1) = TF1(Z}, 0%).

21

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Furthermore,

1 n
Vp[lzd]TFl(ZC’ek) == n Z (Ck\gi@—'r@nﬂ + C;ﬂ CQ ¢;r¢n+1) Chi—1

=1 =1 =1

- %Z (ki 1Pnt1 + kYD) Pny1)dia
i=1
:Cvpu:d] TFl(ZOa 9k)~

Then, from (13), we get

A(pu :d])

n+2 +YTFL(Zg, 0x) — TRy (Zo, 0k)) V.. TF1(Zo, 01|
nt2 + YTFL(ZE, 01) — TF1(Z¢, 01)) V. TF1(Z, 01|
[(Rnt2 +yTF1(ZL, 0k) — TF1(Z¢, 01)) V. TF1(Z¢, 0k) | €]]
[(Rut2 +~TF1(Z5,01) — TRy (Zo, 0x))CV)
=E¢ [CE[(Ry42 +YTF1(Z), 01) — TFl(ZO,Qk))Vp N d]TFl(Zm 0x)
=E¢ [CE[(Ry42 +TF1(Z), 01) — TF1(Zo, 01))V)
=E¢[CJE[(Rn 42 +YTF1(Zg, 0x) — TF1(Zo, 01)) V.. TF1(Z0, 01|
=0.

=E

=E[
=E[
9

E¢
<

(R
(R
E
[E
[
[P

The proof is analogous for A(pig41:24)) = 0, and A(g,) = 0.

€1V

(By Claim 1)

(By (30), 31))

Proof of (b) using Claims 2 and 3 We first show that A(Q,) is a diagonal matrix. Similar to (a), we have

TF1(Z4,0k) = —— Z%R <0k¢1 L A2 ¢n+1 + Clﬂéb A2 ¢n+1>
= > 7
= TFl(ZO,Hk).

Similarly, we get TF1(Z}, 0;) = TF1(Zy, 0)). Additionally, we have

Vo.TF(Za,0) = —— anR Api—1¢) 1 AT = AV, TF1(Zo, 1) A.

i=1
By (13) again, we get

A(Qa)
=E[(Rn+2 +7TF1(Zy, 0x) — TF1(Zo, 01))V, TF1(Zo, 0]
=E[(Rn+2 +7TF1(Z}, 0r) — TF1(Za, 04)) V@, TF1(Z4, 0)]

=EA[E[(Rpn+2 + YTF1(Z), 0k) — TF1(Z4,0k))V . TF1(Za, 01) | Al]
=EA[E[(Rp+2 + vTF1(Z], 0x) — TF1(Zo, 01))AV g, TF1(Zo, 01)A | A]]
=EA[AE[(Rpy2 + YTF1(Zy, 0x) — TF1(Z0, 0%)) V@, TF1(Zo, 0x) | AJA]
=EA[AE[(Rnt2 + YTF1(Zy, 0x) — TF1(Zo, 0x))V o, TF1(Zo, 0k) |A]
=diag(E[(Rn+2 +vTF1(Z5, 0) — TF1(Zo0, 0k))V @, TF1(Zo, 0r)])
=diag(A(Qa)).

The last equation holds if and only if A(Q,) is diagonal. We have proven this claim.

22

(32)

(33)

(By Claim 2)

(By (32), (33))

(By Lemma A.1)

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Now, we prove that A(Q,) = dI; for some § € R using Claim 3 and Lemma A.2. Let IT be a random permutation matrix
uniformly distributed over all permutation matrices. Recall the definition of Zy; and Zj; in Claim 3. We have

TF1(Zn, 0r) = —*anR <0k¢ piiglt "W dnt1 + o] T H¢n+1> = TF1(Zo, Ok)- (34)
i=1 :I =I

Analogously, we get TF; (Z];, 0;.) = TF1(Z{, 0,). Furthermore, we have

V. TF (Z1,0k) = —fznkR ;16,1117 =1V, TF(Zo, 041" . (35)
i=1

By (13), we are ready to show that

A(Qa)
=E[(Ry+2 +YTF1(Z), 0x) — TF1(Zo,0k))V @, TF1(Zo, 01))]
=E[(Ry 12 +TF1(Z},0x) — TF1(Z11,601)) Vo, TF1 (Z11, 1)) (By Claim 3)
=En[E[(Rn+2 +YTF1(Z1, 0x) — TF1(Z11, 01)) Ve, TF1(Z11, 0y.) | 1]
=En [E[(Rnt2 +YTF1(Z), 0) — TF1(Zo, 01))[IV o, TF1(Zo, 0,)I" | I1]] (By (34), (35))
=En [IE[(Ry 42 + VTF1(Zp, 0x) — TF1(Zo,)V @, TF1(Zo, 0x) | T |
=Ep [IE[(R,12 + 'yTFl(ZO, 01) — TF1(Zo,01))V @, TF1(Zo, 01" |
=En [Idiag(A(Q,))I1"]

1
=2 tr(A(Qa)) g (By Lemma A.2)
=61,

The proof is analogous for A(Q",) = ¢’ I, for some ¢’ € R.

Suppose that A(pj2q+1)) = p € R, we now can conclude that

0 0 01 Ogxa Oaxi
A(Or) = A(FRy) = { 2d>x2d 2Xm},A(Qo) = |01y Odaxa Oax1
O1x2d P O1xa Oixa O

Therefore, according to (13), we get

Or+1
=0, + OtkA(gk)
ek +agdly Ogxa Oaxi
C;C + aké’ld Odgxd Ogx1 € 0,.

_ |:O2d><2d 02dx1 }
01><d 01><d 0

O1x2d Mk +axp|’

A .4. Proof of Corollary 5.1

Proof. We recall from (5) that the embedding evolves according to
1
=21+ EP;Z;M(ZZTQZZZ).

We again refer to the elements in Z; as {(xl(), yl(z))} in the following way
et

1 n n+1
I |
e Y Y,

Z =

23

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

where we recall that Z; € R(2d+1)x(n+1) :vl(i) € R, yl(i) € R. Sometimes, it is more convenient to refer to the first half

)))) [()
and second half of xl(l) separately, by, e.g., l/l(l) € R?, l(z) eR e, :cl(l) = Zl(l)] . Then, we have
kS)
l/l(l) e l/l(n) l/l(n+1)
Zi= M g m
1 1
oy oy
We utilize the shorthands
X, = xl(l) zl(n)} € RZdxn
i . 4] B

Then we have

7, =

}/l yl(nJrl)

Xl x§n+1)‘|

For the input Z, we assume gé”“) =0, y(()”ﬂ) = 0 but all other entries of Z are arbitrary. We recall our definition of M
in (4) and { PR%, QR9} in (15). In particular, we can express QR in a more compact way as

[-Ia Ia] 2dx2d
M, = eR ,
! [ded Odxd]
My = — M,
B = C' Odxal R24x2d,
Odxd Odxd]
'_C«T OT
A =M, BIM; = | ! } € R¥2d
2 el

RC,.[A 02d><1} € Rd+1)x(2d+1)
! 01x24 0 .

We then verify the following claims.
Claim 1. X, = X, 2" ™) = 2{"™) .

We note that PRY is the key reason Claim 1 holds and is the same as the TD(0) case. Referring to A.1, we omit the proof of
Claim 1 here.

Claim 2.
1
Vig =Y+ -VXTA4X
n
I+1 -

1
y(n+1) _ yl(n-‘rl) + EEXTAZI'(”+1)-

Since the only difference between the true residual gradient and TD(0) configurations is the internal structure of A;, we
argue that it’s irrelevant to Claim 2. We therefore again refer the readers to A.1 for a detailed proof.

Claim 3.

l
i i o 1
u =ud) + <M1‘E() nZBjTMzXYjT>»
=0

fortr=1,...,n+ 1.

24

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

By Claim 2, we can unroll Y7, as

1
YVigr =Y+ -V XTAX
n

1
Y=Y+ ﬁYl_leAl_lx

1
Vi =Yy + —YoX T ApX.
n
We can then compactly express Y as
1J
Vi = — XTAX.
b =Yo+ — ZYJX A X
7=0
Recall that we define A; = MQT B;M;. Then, we can rewrite Y; 1 as

l
1
Vi =Yo+ = > V;X" M, B;MX.
n iz

(n+1)

With the identical procedure, we can easily rewrite y;. |

S

l

n+1 n+1 1 n

YD) ~ D VX TMy B My,
J=0

In light of this, we define g = 0 and for [=0, . ..

l
1
Vi1 =) B MpXY;" € R*

j=0
—u+ % By MyXY" (36)
Then we can write
vt = " + (M2 i), 37
fori =1,...,n+ 1, which is the claim we made. In particular, since we assume y(()"ﬂ) = 0, we have

yfﬁ?” = <M1I(”+1),¢l+1>-

Claim 4. The bottom d elements of 1; are always 0, i.e., there exists a sequence {wl € Rd} such that we can express 1); as

w
Vi = [dell}'

foralll=0,1,...,L.

Since B; is the key reason Claim 4 holds and is identical to the TD(0) case, we refer the reader to A.1 for detailed proof.

25

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Given all the claims above, we can then compute that

<¢z+1, Mliﬂ("+1)>

=(0, M1z} 4 (BT Mo XY, My) (By (36)
:<wl M m(n+1)> 1 3 <BIM2m<i)yl(“, Mlx(”+1)>
=1
1 & . , ,
(1, Mra D)+ = > (BT Mo (0, My) + 57), My 40) (By 37)
1 FONPI0 EYORPI0 ;
_ (n+1) il T (2) (n+1)
~(onanae)52 o [(o [0) b))
" (1) _ (@) -) ,
=<wl Mla:("*”> - % > < [Ol (”OM ¢)} (yé” +w €D —w! u‘“) : M1m<"+1>> (By Claim 4)
i=1
n (1) _ ¢() (9) Tel@) _ T @
— (i, 2ty 4 Ly (O) (38 + €0 =l V0N e
n i=1 0d><1

This means
1 S 3 1 7 7 7 n
<wl+1, V(”+1)> = <wz, V("+1)> + - Z <Cl (V(l) - f(‘)) (yé) +w] €@ —w vl)),u(+1)>.
i=1
Since the choice of the query v("*1) is arbitrary, we get

RS i i i i i
le:wl—i—ngC;(;y(())—&-wle()—w?u())(u()—f()).

In particular, when we construct Zy such that (9 = ¢;_;, £€() = ~v¢; and y(()i) = R;, we get

n

1
Wi =W+ D Ci(Ri +yw] ¢ — w dia)(di1 — i)

i=1

which is the update rule for pre-conditioned residual gradient learning. We also have

y " = <¢17M1w("+1)> = —<wl,¢<n+1>>.

This concludes our proof. O

A.S. Proof of Corollary 5.2

Proof. The proof presented here closely mirrors the methodology and notation established in the proof of Theorem 3.1 from
Appendix A.1. We begin by recalling the embedding evolution from (5) as,

1
Zio1 = Z1+ —PZIM™N(Z Q7).
n

where we have substituted the original mask defined in (4) with the TD(\) mask in (17). We once again refer to the elements

in Z; as {(xl(i), yl(z))} R in the following way

.13(1) N l'(n) J)(n+1)

7z = | . L :
FERNNNCRNCS

26

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

where we recall that Z; € Rd+Dx(n+1) :cl(i) € R, yl(i) € R. We utilize, I/l(i) € RY, fl(i) € R?, to refer to the first half

) . (%)
and second half of xl(l) ie., xl(z) = lyl(i)])
1

Then we have

_z/l(l) ul(n) Vl(nH)
Zy= gV g™ gl
1 n n+1
g Y
‘We further define as shorthands,
X = l’l(l) xl(")} € RZdxn
Y, Z[yl(l) yl(")} € RY*™,

Then the blockwise structure of Z; can be succinctly expressed as:

X, 1 xl(nH)
Z1 = v, D[
1Y
We proceed to the formal arguments by paralleling those in Theorem 3.1. As in the theorem, we assume that certain initial
conditions, such as 56"“) = 0 and y(()"ﬂ) = 0, hold, but other entries of Z; are arbitrary. We recall our definition of

M™®™ in (17) and {PI°, QfP},_ | in(10). In particular, we can express Q] in a more compact way as

M, = [—1a I € R24x2d,
[0dxd Oaxa
B = [C Odxa € R24x2d
|0dxd Odxd

T T
Al iBlMl —_ Cl Ol c RQdX2d’
Oaxa Oaxd

[A 0
TD _- l 2dx 1 (2d+1)x (2d+1)
Ql _01><2d 0] ek ’
We now proceed with the following claims.

In subsequent steps, it sometimes is useful to refer to the matrix A/™™ ZT in block form. Therefore, we will define
HT e R("%24) a5 the first n rows of MTD(A)ZT except for the last column, which we define as Yl()‘) € R™.

AN T | HT v, R+ x(2d+1)
! O1x2¢ O

Let h(®) denote i-th column of H.

We proceed with the following claims.

Claim 1. X; = X, 2" ™" = 2" w1,

Because we utilize the same definition of PP as in Theorem 3.1, the argument proving Claim 1 in Theorem 3.1 holds here
as well. As a result, we drop all the subscripts of X, as well as subscripts of acl(’) fori=1,...,n+ 1.
Claim 2. Let H € R(29%1) where the i-th column of H is,
RO = 37 Akl ¢ R
k=1

27

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Then we can write the updates for Y; 1, and yl(z'fl) as,

1
Vijn =Y+ -YH A4X,
n

n n 1 n
yiT = o+ Y H T A,

We will show this by factoring the embedding evolution into the product of P°Z; and M™M Z" and QTP Z,. Firstly, we
have

Pz - [02dxn 02d><1:|.

i/l yl(n+1)

Next we analyze M ™™ Z,". From basic matrix algebra we have,

1 0 0 0 0 0] ;07 07
A 1 0 0 0 0 2)T 2
@7 @)
2ooa 10 0 ol Ty Yo
€ Y
MO LT | A3 A2 A 1 0 0
: : : : : ;T :n
)\nfl >\n72)\n73)\n74 1 0 {E()T y()
o 0o o0 0 -0 0l 0]

27 l(l)
AT Ty
dim1 At D ie1)‘n_iyl(i)
L 0124 0
r T

jNe) yl(l)

ROy gV

Z?:l)\nfiyl(”)

IXON

|01x24 0

I HT KZ(A):|
~ [O1x2a O]

where K l(/\) € R% is introduced for notation simplicity.

Then, we analyze M ™™ Z T QTP Z,. Applying the block matrix notations, we get

(HT KM A Oggsa] [X 2D
(M™NZ QP Z, = 0100 0 Holm 0 HYz yl(n+1)]
B HTA, 0,1 [X 2(n+1)
~ [O1x2a 0 HYz yl(”“)]
_[HTAX HTAl:c(”“)}
| O1x2d 0 '

Combining the two, we get

Rz (7 Q) = [P Sty] [H A HT A

"y gL 01xoa 0
| O2dxn 024x1
T IMHTAX YHTA(tD |

28

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Hence, according to our update rule in (5), we get
1
Yigr =Y+ -V H AX
n

n+ n+ 1 n+
yl(11) = yl(D +7n§lH All'(1).
Claim 3.

l
4 i o 1 T T
= (a0, 2 S T,
1=

foril,...,n+1,whereM2{Li ded}

Odxd Odxd

Following Claim 2, we can unroll the recursive definition of Y;,; and express it compactly as,

l
1
Yiri =Y+ EZOY;HTAZX

Recall that we define A; = B; M. Then, we can rewrite Y, 1 as

l
1
Yo =Yo+) Vi MyBiM X.
" =0

The introduction of M here does not break the equivalence because B; = M, B;. However, it will help make our proof
steps easier to comprehend later.

(n+1)

With the identical recursive unrolling procedure, we can rewrite y; .,

as

!
(1) _) LSSy T o)
0 =+ LS YT Bt

1+1
i=0
In light of this, we define ¥y = 0 and for [=0, . ..
1
Y1 ==Y B M,HY;" € R*. (38)
=0
Then we can write
yi = o) + (Mia 9,), (39)
fori =1,...,n+ 1, which is the claim we made. In particular, since we assume y(()"H) = 0, we have

yit = <M1~T(”+1),1/11+1>~

Claim 4. The bottom d elements of v); are always 0, i.e., there exists a sequence {wl € Rd} such that we can express v; as

— | W
"/)l B [de1:|.

foralll =0,1,...,L.

Because we utilize the same definition of B; as in Theorem 3.1 when defining ;4 1, the argument proving Claim 4 in
Theorem 3.1 holds here as well. We omit the steps to avoid redundancy.

29

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Given all the claims above, we can then compute that

1)
i1, Myt >

+ = (B My HY, M+ (By (38))

v

-
Il
-

<Bl—rM2h(l)yl(l)7 Mlx("+1)>

+
S|
-
S

E

5

s
Il
—

PO (1, Maa D) +), Maa) (By (39)

(ke 2 700) (o [/ €Y wal?) e
Ogx1 ’ Odx1 o)

i i—k (i)
Cl(Zkzl)‘ v)1(9 4o €@ T) M1x<n+1)> (By Claim 4)

del

Ci(u + wl €0 —wv) (Thoy N v)],Mﬂ<n+1>>

del

-
Il
_

s
3 |
-

I
&
=
aﬁ

3
T
o)
~_— ~_— ~_— ~_— ~_— \/
+
S
[

&
Il
-

+

S

M=
o~ o~ _——_

This means

1 n
(n+1)> :< (n+1)> C((4) Gy) \i—k () (nt1) |
<wl+171/ wy, V +n _51 Yy +wy f w o E U
Since the choice of the query (" *1) is arbitrary, we get

W41 =W + — ZC (+w €9 — wlTV(i)) (i)\i_ku(i))

k=1

In particular, when we construct Zy such that (9 = ¢;_;, £€() = ~v¢; and y(()i) = R;, we get

1 n
Wiy =W+ ch (Ri +yw/ ¢i — w/ di—1)eia

i=1

where

e; = i AN Fgp. e RY
1 Z ¢k

which is the update rule for pre-conditioned TD()\). We also have

yz(nﬂ) = <¢17M193("+1)> = —<wl7¢("+1)>-
This concludes our proof. O

A.6. Proof of Theorem 5.3

Proof. We recall from (21) that the embedding evolves according to
Ziyn =21 + Tonead(Zl7 po-M ™ 3.1, pﬁ@)7 ™ 22 1)

_ 7,4 Ly, [LinAtn(Z; P, P QI T0.(1))
= 4
n | LinAttn(Z); P, TD (2 QD MTD.(2))

30

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

In this configuration, we refer to the elements in Z; as {(Il(i), yl(i), hl(i))} in the following way,
i=1,...,n+1
I’(l) e I’l(n) I’l(n+1)
7, = (1) yl(n) yl(nJrl) 7
h(” U R T

where we recall that Z; € R24+2)x(n+1) () ¢ p2d @ ¢ R and " € R,

Sometimes, it is more convenient to refer to the first half and second half of xl(i) separately, by, e.g., Vl(i) IS R‘ﬂ fl(i) € R4,

) (1)
ie., :cl(z) = [Vl(i)] . Then we have
&

AR
e P S
My T M
1 n n+1
LRy oy h,
We further define as shorthands
X = _;vl(l) xl(”)} € R4,
N U) p s
= 3@ (n) 1xr
H = [0 n] e R
Then we can express Z; as
X; (”Jrl)
Zl _ Y—l (n+1)
H h(n+1
For the input Z, we assume §; (") — 0 and h 0 —o for i =1,...,n+ 1. All other entries of Zj are arbitrary. We recall
our definition of M- A7TD,(2) in (20), { TD (1) P QTD VVl} in (18) and (19). We again express QTD
M, = [—1a 14 € R2d4x2d
|0dxd Oaxa ’

1T 0uxa
B = 1 X c R2d><2d’
! |0dxd Odxa

AT T
Al iBlMl — Cl Cl c RQdX2d,
Odxd Oaxd

™ .| A Osaxo € R(2d+2)x(2d+2)
[02x2a O2x2

We now proceed with the following claims that assist in proving our main theorem.
Claim 1. X, = Xo,xl(n+l) = z6n+1), Y, =Y, yl(n'H) = y(()"'H),Vl.
We define

Vl(l) - Plﬁ7(1)ZlMﬁ,(1) (ZZTQZTT)ZZ) € R(2d+2)x(n+1)

Vz(2) - Plﬁ,@)ZlMﬁ,(z) (ZlTQlTT)Zl) c R2d+2)x(n+1)

31

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Then the evolution of the embedding can be written as

Ziy1 =21+ =W
n

By simple matrix arithmetic, we realize W, is merely summing up the (2d + 1)-th row of VZm and the (2d + 2)-th row of

W(Q) and putting the result on its bottom row. Thus, we have

e

Wi 1(2) O2d+1)x(n+1) :|ER(2d+2)><(n+1)7
Vi

- {Vl(l)(Qd +1)+ VP (2d+2)

where Vl(l)(Qd +1)and VI(Q)(Qd + 2) respectively indicate the (2d + 1)-th row of Vl(l) and the (2d + 2)-th row of Vl(g). It
clearly holds according to the update rule that

Zl+1(]. : 2d+].) = Zl(]. : 2d+].)
= Xl+1 = Xl;
(n+1) x(n+1).

Tl =T)
Y=Y
(n+1) _ (n+1)

v =y

Then, we can easily arrive at our claim by a simple induction. In light of this, we drop the subscripts of X7, xl(i), Y, and yl(i)
forallt=1,...,n+ 1 and write Z; as

X grth
Zl =Y y(nJrl)
H, hl(nJrl)

Claim 2.
1 _
Hy = H + E(Hl +Y -Y)X 4 X
+1

1 _
RO = b L S (H + Y - V)X T A,
n

where 5 = S0 @ andY = [y, @ . gM] e RI*",
We show how this claim holds by investigating the function of each attention head in our formulation. The first attention

head, corresponding to Vlm in claim 1, has the form
PP ZM™ W (2] QI 2).
We first analyze Plﬁ’(l)ZlMﬁv(l). It should be clear that PTP:(1) Z; selects out the (2d + 1)-th row of Z; and gives us

. 02dxn O2dx1
PlTDv(l) — Y y(n+1)

len 0

The matrix M ™-() is essentially computing Y — ¥ and filtering out the (n + 1)-th entry when applied to Plﬁ"(l)Zl. We

32

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

break down the steps here:
Plﬁ,(l)ZlMﬁ,u)

=P W7, (1,41 — Uy 41 diag([1 1)) M™ >
1
2

TD (1) 7 2fTD.(2 D, (1) 1 TD, (2
=p>WzM™® _ pf ZlUn+1d1ag([1Hmm™@
[02d%n O2ax1| [02ax1 02dx1 a O2ax1 O2ax L
_|y 0 [|30 LW 4y@) . Lyr 0 L E’” @ | /™
_01><n 0 i L 0 0
[02axn O2ax1| [O2axn O2dx1
=| Y 0 — Y 0
_len 0 i _01><n 0
[O2axn O2dx1
=|Y-Y 0
L Oan 0

We then analyze the remaining product Z, lT QlTiDZl.

2" Qi
[xT yvT H A O2gx1 O2ax1 | [X xEni;
Y n
nt)T 4T)T | [O1x2a O 0 y
(E() y() hl 01><2d 0 0 Hl hl(n+l)
X (n+1)
_ XTAI 0n><1 0'n,><1 Y x(n+1)
Tzt 4, 0 0 y(nH)
- Hy h
[XTAX X T Aznty)
__gc(”“)TAlX w(n-i—l)TAlx(n-i-l) .
Putting them together, we get
T5,(1) ; /T5.(1) (T ()TD [Oaaxs Dzt XTAX XT At
P, ZiM (Zl Q Zl>: lf)l_y 8 { (n+1) AIX 2(n+1) Alx(nJrl)
L Yixn
[02d5n ~ 02ax1
= |[(Y-Y)XTAX (Y -Y)XTAztD
L 01X7’L 0

The second attention head, corresponding to Vl(z) in claim 1, has the form
PP 2™ (2] QP 2,).
It’s obvious that Plﬁ’@) selects out the (2d + 2)-th row of Z; as

APz, = [Pt Qe
1

Applying the mask MT™(2) we get

TD,(2) ™,2) _ |0@dtryxn O@dr1)x1
P, M = [i, 0 .

33

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

The product Z, lT QZTT)ZZ is identical to the first attention head. Hence, we see the computation of the second attention head
gives us

PP ™) (2] QP 2,)

_19@d+1xn O@dtr1)x1 XTAX XT A+
B H, 0 a4 X gD 4 (D)

_| O@d+1)xn O2d+1)x1
HXTAX HXTAzD|

Lastly, the matrix W; combines the output from the two heads and gives us

PP Wz M™ 0 (7T QP 7,

02d+1)xn O2d+1)x1
pP® ZzM™@ (7T Q7 '

H+Y -Y)XTAX (H+Y-Y)XTA4z0tD)

Hence, we obtain the update rule for H; and hl("+1) as

1 _
Hiy=H + E(Hl +Y -V)XTAX
n n 1 Ve

hl(JrJlrl) _ h‘l(+1) + E(Hl i Y)XTAlx(n—i-l)
and claim 2 has been verified.

Claim 3.
(i) 5 1¢ o
h'y = <M1x(’), - z;) B MyX(H; +Y — Y)T>,
]:

forizl,...,n—kl,WhereMz:{Id 0d><d:|-

Odxd Odxd

Following claim 2, we unroll H;; as

1 _
Hypy = Hi+ —(Hi+Y - V)XTAX

1 _
Hy=H_1+ E(Hl_l +Y -Y)XTA X

1 _
Hy=Hy+-(Ho+Y -Y)X Ay X.
n

We therefore can express H;4 1 as

l
1 _
Hipy = Ho+ > (Hj+Y -Y)XTA;X.
3=0

Recall that we have defined A; = B;M; and assumed Hy = 0. Then, we have

l
1 _
Hipy =~ > (Hj+Y - Y)X " MyB; M, X.

=0

Note that the introduction of M5 here does not break the equivalence because B; = M, B;. We include it in our expression
for the convenience of the main proof later.

34

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

(nt1)

141~ as

With the identical procedure, we can easily rewrite h

l

1

n+1 n+1

B _EE (H; +Y —Y)X " MyB; M2+,
j=0

In light of this, we define g = 0, and for [=0, . ..
l
1 T T 2d
Pry1 = gZBj MyX(H; +Y —Y)T € R¥,

We then can write
hi = (M, i) (40)
fort =1,...,n 4+ 1, which is the claim we made.

Claim 4. The bottom d elements of 1; are always 0, i.e., there exists a sequence {wl € Rd} such that we can express 1); as
_ | W
wl B [de 1:| '

Since our B; here is identical to the proof of Theorem 3.1 in A.1 for j = 0,1, ..., Claim 4 holds for the same reason. We
therefore omit the proof details to avoid repetition.

foralll =0,1,...,L.

Given all the claims above, we proceed to prove our main theorem.

:<¢1,M1x<”+1>> + %<B MyX(H, +Y —Y) M1z<"+1>>

:<¢l, Mlx("+1)> n % i <BTM2x(i>(h<) 4y) M1x<”+1>>

:<¢l, M1z<n+1>> + % il <B;M2z< >(<¢l Mlzc(l)> Y gu)) ’ Mlx(”+1)> (By (40))

=, Mya D) + % zj; <BlT {OZ(:)J <<¢l, [”(S)d:f(i)} > +y® - yu)) ’ Mlx(”+1)>

:<¢l, Mlx("+1)> n % Zj; < (éldl;(l)] (y(n 70 1wl €0 — w;y<i>)7M1x(n+1>> (By Claim 4)
{ RN

[B e |

Odx1 ’

This means

w1, V"N = (g, oD —i—l . O D (@ — 5@ fw[€@ — @) p(FDY,
>

=1

Since the choice of the query (" *1) is arbitrary, we get

1 &))
— 720(0)_—@ Tel) _ T())().
W41 wl—l—n "y gy twp € w, v

i=1

35

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

In particular, when we construct Zg such that () = ¢;_1, £ = ¢, and y = R;, we get

1 n
Wiy =Wt ;Cl (Ri — 7 +w] ¢ —w] $i—1) i

which is the update rule for pre-conditioned average reward TD learning. We also have

hl(n+1) _ <¢17M1x(n+1)> _ _<wl’¢(n+1)>.

This concludes our proof. O

B. Evaluation Task Generation

To generate the evaluation tasks used to meta-train our transformer in Algorithm 1, we utilize Boyan’s chain, detailed in
Figure 2. Notably, we make some minor adjustments to the original Boyan’s chain in Boyan (1999) to make it an infinite
horizon chain.

Recall that an evaluation task is defined by the tuple (pg, p, 7, ¢). We consider Boyan’s chain MRPs with m states. To
construct pg, we first sample a m-dimensional random vector uniformly in [0, 1] and then normalize it to a probability
distribution. To construct p, we keep the structure of Boyan’s chain but randomize the transition probabilities. In particular,
the transition function p can be regarded as a random matrix taking value in R™*™. For simplifying presentation, we use
both p(s, s") and p(s’|s) to denote probability of transitioning to s’ from s. In particular, for ¢ = 1,...,m — 2, we set
p(i,i4+1) = eand p(i,i+2) = 1 —¢, with ¢ sampled uniformly from (0, 1). For the last two states, we have p(m|m—1) = 1
and p(-|m) is a random distribution over all states. Each element of the vector r € R™ and the matrix ¢ € R¥*™ are
sampled i.i.d. from a uniform distribution over [—1, 1]. The overall task generation process is summarized in Algorithm
2. Almost surely, no task will be generated twice. In our experiments in the main text, we use Boyan Chain MRPs which
consist of m = 10 states each with feature dimension d = 4.

’/"\‘ ’/"\\ //"\
(1 —> 2 —> 3

/ \

— -------*ﬂ"m_l\}—>m

J _ J N

Figure 2: Boyan’s Chain of m States

Representable Value Function. With the above sampling procedure, there is no guarantee that the true value function
v is always representable by the features. In other words, there is no guarantee that there exists a w € R? satisfying
v(s) = (w, ¢(s)) for all s € S. Most of our experiments use this setup. It is, however, also beneficial sometimes to work
with evaluation tasks where the true value function is guaranteed to be representable. Algorithm 3 achieves this by randomly
generating a w, first and compute v(s) = (wy, ¢(s)). The reward is then analytically computed as r = (I,,, — vp)v. We
recall that in the above we regard p as a matrix in R,

36

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Algorithm 2 Boyan Chain MRP and Feature Generation (Non-Representable)

: Input: state space size m = |S|, feature dimension d
: for s € Sdo
¢(s) ~ Uniform [(—1,1)%] // feature
end for
: po ~ Uniform [(0,1)™] // initial distribution
:po = Ppo/ Y, Po(s)
: 7 ~ Uniform [(—1,1)™] // reward function
p < Opxm // transition function
cfori=1,...,m—2do
€ ~ Uniform [(0, 1)]
piyi41) e
p(i,i+2)+1—¢
: end for
cp(m—1,m) + 1
: 2z = Uniform [(0,1)™]
sz z) Yy 2(s)
:pimy,1:m) 2
: Output: MRP (po, p, r) and feature map ¢

e e e e e

C. Additional Experiments with Linear Transformers

C.1. Experiment Setup

We use Algorithm 2 as d,s for the experiments in the main text with Boyan’s chain of 10 states. In particular, we consider
a context of length n = 30, feature dimension d = 4, and utilize a discount factor v = 0.9. In Section 4, we consider a
3-layer transformer (L = 3), but additional analyses on the sensitivity to the number of transformer layers (L) and results
from a larger scale experiment with d = 8, n = 60, and |S| = 20 are presented in C.2. We also explore non-autoregressive
(i.e., "sequential") layer configurations in C.3.

When training our transformer, we utilize an Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of
a = 0.001, and weight decay rate of 1 x 1075, P, and) are randomly initialized using Xavier initialization with a gain of
0.1. We trained our transformer on k£ = 4000 different evaluation tasks. For each task, we generated a trajectory of length
7 = 347, resulting in 7 — n — 2 = 320 transformer parameter updates.

Since the models in these experiments are small (~ 10 KB), we did not use any GPU’s during our experiments. We trained
our transformers on a standard Intel 19-12900-HK CPU and training each transformer took ~ 20 minutes.

For implementation®, we used NumPy (Harris et al., 2020) to process the data and construct Boyan’s chain, PyTorch (Ansel
et al., 2024) to define and train our models, and Matplotlib (Hunter, 2007) plus SciencePlots (Garrett, 2021) to generate our
figures.

C.1.1. TRAINED TRANSFORMER ELEMENT-WISE CONVERGENCE METRICS

To visualize the parameters of the linear transformer trained by Algorithm 1, we report element-wise metrics. For Py, we
report the value of its bottom-right entry, which, as noted in (10), should approach one if the transformer is learning to
implement TD. The other entries of Py should remain close to zero. Additionally, we report the average absolute value of
the elements of Py, excluding the bottom-right entry, to check if these elements stay near zero during training.

For Qg, we recall from (10) that if the transformer learned to implement normal batch TD, the upper-left d x d block of the
matrix should converge to some —I;, while the upper-right d x d block (excluding the last column) should converge to ;.
To visualize this, we report the trace of the upper-left d x d block, and the trace of the upper-right d x d block (excluding
the last column). The rest of the elements of ()¢ should remain close to 0, and to verify this, we report the average absolute
value of the entries of @)y, excluding the entries that were utilized in computing the traces.

3The code will be made publicly available upon publication.

37

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Algorithm 3 Boyan Chain MRP and Feature Generation (Representable)

1: Input: state space size m = |S|, feature dimension d, discount factor
2: w* ~ Uniform [(—1,1)%] // ground-truth weight
3: for s € Sdo
4. ¢(s) ~ Uniform [(—1,1)¢] // feature
5: w(s) < (w*, ¢(s)) // ground-truth value function
6: end for
7: po ~ Uniform [(0,1)™] //initial distribution
8: po < po/ D Po(s)
9: p < Opxm // transition function
10: fort:=1,...,m —2do
11: € ~ Uniform[(0, 1)]
122 p(i,i+1) <€
13: p(i,i+2)«1—¢
14: end for
15: p(m —1,m) + 1
16: z < Uniform [(0,1)™]
17: 22/, 2(s)
18: p(m,1:m) <+ z
19: 7 < (I, —yp)v // reward function
20: Output: MRP (pg, p,) and feature map ¢

Since, Py and @) are in the same product in (3) we sometimes observe during training that Py converges to fPOTD and Qg
converges to —@Q{P simultaneously. When visualizing the matrices, we negate both P and @y when this occurs.

It’s also worth noting that in Theorem 3.1 we prove a L-layer transformer parameterized as in (10) with Cy = I; implements
L steps of batch TD exactly with a fixed update rate of one. However, the transformer trained using Algorithm 1 could learn
to perform TD with an arbitrary learning rate (« in (8)). Therefore, even if the final trained Py and Q) differ from their
constructions in (10) by some scaling factor, the resulting algorithm implemented by the trained transformer will still be
implementing TD. In light of this, we rescale Py and) before visualization. In particular, we divide Py and Qg by the
maximum of the absolute values of their entries respectively, such that they both stay in the range [—1, 1] after rescaling.

C.1.2. TRAINED TRANSFORMER AND BATCH TD COMPARISON METRICS

To compare the transformers with batch TD we report several metrics following von Oswald et al. (2023); Akyiirek et al.
(2023). Given a context C' € R(4+1)*" and a query ¢ € RY, we construct the prompt as

¢
2D =1C |04
0

We will suppress the context C' in subscript when it does not confuse. We use Z(*) = Z(#(*)) as shorthand. We use dp to
denote the stationary distribution of the MRP with transition function p and assume the context C' is constructed based on
trajectories sampled from this MRP. Then, we can define vy € R!S!, where vg(s) = TFL(ZSS); 0) for each s € S. Notably,
vg is then the value function estimation induced by the transformer parameterized by 6 = {(P;, Q;)} given the context C.
In the rest of the appendix, we will use ftr as the learned parameter from Algorithm 1. As a result, vrp = vy, denotes the
learned value function.

We define rp = {(P'®, QzTD)}l:o ., With C; = aI (see (10)) and

UTD(S) = TFL(Z(SS); eTD)-

In light of Theorem 3.1, vrp is then the value function estimation obtained by running the batch TD algorithm (11) on the
context C for L iterations, using a constant learning rate .

38

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

We would like to compare the two functions vr and vrp to future examine the behavior of the learned transformers.
However, vrp is not well-defined yet because it still has a free parameter «, the learning rate. (von Oswald et al., 2023)
resolve a similar issue in the in-context regression setting via using a line search to find the (empirically) optimal «. Inspired
by (von Oswald et al., 2023), we also aim to find the empirically optimal « for vrp. We recall that vyp is essentially the
transformer TF L(Zés); O1p) with only 1 single free parameter c. We then train this transformer with Algorithm 1. We
observe that a quickly converges and use the converged « to complete the definition of vpp. We are now ready to present
different metrics to compare vrp and vrp. We recall that both are dependent on the context C'.

Value Difference (VD). First for a given context C, we compute the Value Difference (VD) to measure the difference
between the value function approximated by the trained transformer and the value function learned by batch TD, weighted
by the stationary distribution. To this end, we define,

VD(vrg, vrp) = ||vrF — UTD”(lev

We recall that d, € RISl is the stationary distribution of the MRP and the weighted £, norm is defined as |v||, =
V2 v(s)%d(s).

Implicit Weight Similarity (IWS). We recall that vrp is a linear function, i.e., vrp(s) = (wr,, ¢(s)) with wy, defined in
Theorem 3.1. We refer to this wy, as wrp for clarity. The learned value function vrg is, however, not linear even when

estimated by a linear transformer. Following Akyiirek et al. (2023), we compute the best linear approximation of vrg. In
particular, given a context C, we define

wrp = argmin || ®w — vrg||,
w P

Here ® € RIS1*9 is the feature matrix, each of which is #(s) . Such a wry is referred to as implicit weight in Akyiirek et al.
(2023). Following Akyiirek et al. (2023), we define

IWS(vrE, v1D) = deos (WTE, WD)
to measure the similarity between wrr and wrp. Here deos(, -) computes the cos similarity between two vectors.

Sensitivity Similarity (SS). Recall that vrg(s) = TF L(Zés); frr) and vrp(s) = TFL(Z(SS); Orp). In other words, given
a context C, both vrg(s) and vrp(s) are functions of ¢(s). Following von Oswald et al. (2023), we then measure the
sensitivity of vre(s) and vrp(s) w.r.t. ¢(s). This similarity is easily captured by gradients. In particular, we define

¢—¢(8)> .

y V¢TFL (Z(()¢); HTD)
$=¢(s)

SS(UT]:7 'UTD) = Z dp(s)dcos <V¢TFL(Z(§¢); 91‘]:)
Notably, it trivially holds that

wTtp = V¢TFL(Z(()¢); OTD)

d=¢(s)

We note that the element-wise converge of learned transformer parameters (e.g., Figure 1a) is the most definite evidence
for the emergence of in-context TD. The three metrics defined in this section are only auxiliary when linear attention is
concerned. That being said, the three metrics are important when nonlinear attention is concerned.

C.2. Autoregressive Linear Transformers with L = 1,2, 3, 4 Layers

In this section, we present the experimental results for autoregressive linear transformers with different numbers of layers.
In Figure 3, we present the element-wise convergence metrics for autoregressive transformers with L = 1,2, 4 layers. The
plot with L = 3 is in Figure 1 in the main text. We can see that for the L = 1 case, Py and () converge to the construction
in Corollary 3.2, which, as proved, implements TD(0) in the single layer case. For the L. = 2,4 cases, we see that P, and
Qo converge to the construction in Theorem 3.1. We also observe that as the number of transformer layers L increases, the
learned parameters are more aligned with the construction of P and Q{P with Cy = 1.

We also present the comparison of the learned transformer with batch TD according to the metrics described in Appendix
C.1.2. In Figure 4, we present the value difference, implicit weight similarity, and sensitivity similarity. In Figures 4a — 4d,

39

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Flnal PO

(a) Learned Py and Qo with L = 1
Flnal PO Flnal QO

(¢) Learned Py and Qo with L = 3
Fmal PO Flnal QO

1 708 7

(e) Learned Py and Qo with L = 4

Figure 3: Visualization of the learned autoregressive transformers and the learning progress. Averaged across 30 seeds and
the shaded region denotes the standard errors. See Appendix C.1.1 for details about normalization of Py and Q)¢ before

visualization.

Flnal QO) ‘

100

0.00

—0.25

~0.50

—0.75

~1.00

1.00

0.75

0.50

0.25

0.00

—0.25

~0.50

~0.75

~1.00

2.0

1.0

0.5

0.0

2.0

151

0.5

0.0

2.0

0.5

0.0

P Metrlcs Qo Metrics
— hl- 1 -1 or]
—— Avg Abs Others
1l |
tx(Qo[:d, :d])

—— te(Qo[: d, d:2d))
—— Avg Abs Others

1000 2000 3000 4000 0 1000 2000 3000
MRPs # MRPs

(b) Element-wise learning progress of Py and Qo

Py Metrics Qo Metrics

.
4000

Bl-1, -1]

Avg Abs Others

40

MRPs # MRPs

(f) Element-wise learning progress of Py and Qo

2r //—’—’_& |
(3 i 1
| ix(@Qu[:d, :d)]

— tr(Qol:d,d:2d))
e p— Avg Abs Others 7
0 1600 20‘00 30b0 4600 6 ldUO 2600 3600 4dOO

MRPs # MRPs
(d) Element-wise learning progress of Py and Qo
Py Metrlcs Qo Metncs
— B[~ 1 -1 tr(Qa[d, d])

—— Avg Abs Others | 2 —— tr(Qo[:d,d:2d)) 4

—— Avg Abs Others
4 0r]
o} |
‘ ‘ ‘ -4k, ‘ ‘ ‘ =
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

we present the results for different transformer layer numbers L = 1,2, 3,4. In Figure 4e, we present the metrics for a
3-layer transformer, but we increase the feature dimension to d = 8 and also the context length to n = 60.

In all instances, we see strong similarity between the trained linear transformers and batch TD. We see that the cosine
similarities of the sensitivities are near one, as are the implicit weight similarities. Additionally, the value difference
approaches zero during training. This further demonstrates that the autoregressive linear transformers trained according to
Algorithm 1 learn to implement TD(0).

Learned TF and Batch TD Comparison Learned TF and Batch TD Comparison Learned TF and Batch TD Comparison
T T T T ™ 0.30 T T T T ™ 0.30 T T T T ™ 0.30
1.0+ 1.0 1.0+
0.25 10.25 0.25
z 08} g 208 g zo0s8ft g
E 0.20 5 E 10.20 § § 0.20 é
Eo6f . S Fo6f S Eo6f &
S — IWS {0155 & 10153 @ 015 5
g g 8 g g g
g 04r 010 % E 041 {010z Z04 0.10 %
o} > O > O >
0.2 0.05 0.2 10.05 0.2 0.05
0.0+ . . — (.00 0.0+ . v v — (.00 0.0+ v v . — (.00
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
MRPs # MRPs # MRPs
(@ L=1 b)L=2 (©L=3
Learned TF and Batch TD Comparison Learned TF and Batch TD Comparison
T T T T ™ 0.30 T T T T ™— 0.30
1.0 1.0+
0.25 0.25
£08 g £08 3
E 0.20 é E 0.20 §
E 06l £ Eo6t &
& 0155 & 0.15 &
g g & e
Zoaf {0105 g 04 0.10 3
o} > O >
021 10.05 02 0.05
0.0 . . v — (.00 0.0+ v v L “— (.00
0 1000 2000 3000 4000 0 1000 2000 3000 4000
MRPs # MRPs
dL=4 () L=3(d=38, n=060)

Figure 4: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
autoregressive transformers and batch TD with different layers. All curves are averaged over 30 seeds and the shaded
regions are the standard errors.

C.3. Sequential Transformers with L = 2, 3, 4 Layers

So far, we have been using linear transformers with one parametric attention layer applied repeatedly for L steps to
implement an L-layer transformer. Another natural architecture in contrast with the autoregressive transformer is a
sequential transformer with L distinct attention layers, where the embedding passes over each layer exactly once during one
pass of forward propagation.

In this section, we repeat the same experiments we conduct on the autoregressive transformer with sequential transformers
with L = 2, 3,4 as their architectures coincide when L = 1. We compare the sequential transformers with batch TD(0)
and report the three metrics in Figure 5. We observe that the implicit weight similarity and the sensitivity similarity grow
drastically to near 1, and the value difference drops considerably after a few hundred MRPs for all three layer numbers. It
suggests that sequential transformers trained via Algorithm 1 are functionally close to batch TD.

Figure 6 shows the visualization of the converged { P, Ql}l:0,1,2 of a 3-layer sequential linear transformer and their
element-wise convergence. Sequential transformers exhibit very special patterns in their learned weights. We see that the
input layer converges to a pattern very close to our configuration in Theorem (3.1). However, the deeper the layer, we observe
the more the diagonal of Q;[1 : d,d + 1 : 2d] fades. The P matrices, on the other hand, follow our configuration closely,
especially for the final layer. We speculate this pattern emerges because sequential transformers have more parametric
attention layers and thus can assign a slightly different role to each layer but together implement batch TD(0) as suggested
by the black-box functional comparison in Figure 5.

41

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Learned TF and Batch TD Compariso% 2

Learned TF and Batch TD Comparisor(l) 2

10F Lo} 10t
{0.25 10.25 1
z 08} g 08¢ g z08¢
E 40.20 5 E 10.20 é E 9
Eo6r £ Zo6f S Eo6f
s 10155 @ {015 F & |
204 g £y ER -
Rl 10108 & [10108 BT 1
S 8 £ 3
02+ 10.05 02r 1005 02r 1
0.0 ‘ ‘ : ! 0.00 0.0 ‘ - 0.00 0.0 ‘ ‘
0 1000 2000 3000 4000 0 2000 3000 4000 0 1000 2000 3000 4000
MRPs # MRPs # MRPs
(@ L=2 (b)L=3)L =4

Learned TF and Batch TD Comparisor%J 20

o
=
ot
Value Difference

Figure 5: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
autoregressive transformers and batch TD with different layers. All curves are averaged over 30 seeds and the shaded

regions are the standard errors.

(a) Learned Py and Qo

Final P,

8

(c) Learned P; and Q1
Final ,PZ

708

(e) Learned P> and Q2

Final @ ‘
o 1 4 7 8 0 1 2 3 1 5 6 7 8 .
Final Q. ‘
1 2 3 1 5 6 7 8

~0.25

~0.50

—0.75

~1.00

1.00

075

2.0

15

1.0

0.5

0.0

2.0

1.0

0.5

0.0

2.0

1.0

Py Metrics Qo Metrics

Sl — (Qufed) =
—— tr(Qol:d, d:2d))

— B-1,-1]
— Avg Abs Others |

Ir— Avg Abs Others 1
ol |
) |
1 2t 4
3} |
0 1600 2600 SUbO 4600 6 ldUU 2600 3600 4600
MRPs # MRPs
(b) Element-wise learning progress of Py and Qo
P, Metrics Q1 Metrics
— P[-1,-1] 2l i
| — Avg Abs Others]
o (@l:d, :d)

—— tr(Q1[:d, d:2d])
—— Avg Abs Others]

0 1600 ZdOO 30b0 4600 6 ldOO 2600 3(:;00 4dOO
MRPs # MRPs
(d) Element-wise learning progress of P; and (1
P, Metrics Q2 Metrics
— P, -1 ol |
—— Avg Abs Others]
ol |
4l |
| w(Qal:d, +d)
6] (Qulzd.d:2a) \]
—— Avg Abs Others
0 1600 20‘00 30b0 4600 6 ldOO 2600 3600 4dOO
MRPs # MRPs

(f) Element-wise learning progress of P> and Q2

Figure 6: Visualization of the learned L = 3 sequential transformers and the learning progress. Averaged across 30 seeds
and the shaded region denotes the standard errors. See Appendix C.1.1 for details about normalization of Py and ¢ before

visualization.

42

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

Learned TF and Batch TD Comparison Learned TF and Batch TD Comparison
T T - : — 0.30 T T T T — 3.0
1LOf ---- S8 10} ---- SS
WS 10.25 IWS las
£ 08— VD g £08F — VD \¢ i 8
z \ 1020 £ Z i.fﬂ,....'ﬂ“-'Mm#, TOABSIRAING {20 =
R & Eo6f ﬁ,* £
& 10.15 & & : {15 5
g y g g 04l g
£ 04f Jo.10 £ g 0 11.0 3
S > 3 =
02 10.05 02r 105
ol ‘ ‘ ‘ o, 0.0 ‘ ‘ ‘ oo
005 1000 2000 3000 4000 % 0 1000 2000 3000 4000
MRPs # MRPs
(a) General Value Function (b) Representable Value Function

Figure 7: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS) between the learned
softmax transformers and linear batch TD. All curves are averaged over 30 seeds and the shaded regions are the standard
errors.

D. Nonlinear Attention

Until now, we have focused on only linear attention. In this section, we empirically investigate original transformers with
the softmax function. Given a matrix Z, we recall that self-attention computes it embedding as

Atn(Z; P, Q) = PZMsoftmax(Z ' QZ).

Let Z, € REHDX(+1) denote the input to the [-th layer, the output of an L-layer transformer with parameters
{(P,Qu)},— 1_y is then computed as

Ziv1 =21+ %Attn(Zl; P,Q) =2+ %PZMsoftmax(ZTQZ).

Analogous to the linear transformer, we define
TFp, (Zo; {P, Ql}lzo,l_”,L_l) =—Zp2d+1,n+1].

As a shorthand, we use TF 1.(Zp) to denote the output of the softmax transformers given prompt Z;. We use the same
training procedure (Algorithm 1) to train the softmax transformers. In particular, we consider a 3-layer autoregressive
softmax transformer.

Notably, the three metrics in Appendix C.1.2 apply to softmax transformers as well. We still compare the learned softmax
transformer with the linear batch TD in (11). In other words, the vyp related quantities are the same, and we only recompute
vrr related quantities in Appendix C.1.2. As shown in Figure 7a, the value difference remains small and the implicit weight
similarity increases. This suggests that the learned softmax transformer behaves similarly to linear batch TD. The sensitivity
similarity, however, drops. This is expected. The learned softmax transformer TF, is unlikely to be a linear function w.r.t. to
the query while vrp is linear w.r.t. the query. So their gradients w.r.t. the query are unlikely to match. To further investigate
this hypothesis, we additionally consider evaluation tasks where the true value function is guaranteed to be representable
(Algorithm 3) and is thus a linear function w.r.t. the state feature. This provides more incentives for the learned softmax
transformer to behave like a linear function. As shown in Figure 7b, the sensitivity similarity now increases.

E. Numerical Verification of Proofs

We provide numerical verification for our proofs by construction (Theorem 3.1, Corollary 5.1, Corollary 5.2, and Theo-
rem 5.3) as a sanity check. In particular, we plot log |7<¢n, wy) — yl"'H| against the number of layers /. For example, for

Theorem 3.1, we first randomly generate Z and {C;}. Then yl("+1) is computed by unrolling the transformer layer by layer

following (5) while w; is computed iteration by iteration following (11). We use double-precision floats and run for 30 seeds,
each with a new prompt. As shown in Figure 8, even after 40 layers / iterations, the difference is still in the order of 10710,
It is not strictly 0 because of numerical errors. It sometimes increases because of the accumulation of numerical errors.

43

Transformers Learn Temporal Difference Methods for In-Context Reinforcement Learning

-10 P
— TD(0)
I B Residual Gradient
TD())
ol T Avg Reward TD
; +1
log |— (¢, wy) — y;”)
—25 s
-30 , T -
_35 ///,,/’///
0 5 10 15 20 25 30 35 40
Layers

Figure 8: Differences between transformer output and batch TD output. Curves are averaged over 30 random seeds with the
(invisible) shaded region showing the standard errors.

44

