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Figure 1: SPACECONTROL enables spatially controlled 3D asset generation using simple geometric
primitives such as superquadrics (light blue) or other geometry (e.g., meshes). Top: rapid asset
generation. From quick 3D sketches and brief text prompts, we can generate high quality assets.
Bottom: fine-grained editing, including adjusting a chair’s backrest and adding armrests (left) or
precisely controlling a sofa’s dimensions and pillow arrangements (right).

ABSTRACT

Generative methods for 3D assets have recently achieved remarkable progress,
yet providing intuitive and precise control over the object geometry remains a
key challenge. Existing approaches predominantly rely on text or image prompts,
which often fall short in geometric specificity: language can be ambiguous, and
images are cumbersome to edit. In this work, we introduce SPACECONTROL,
a training-free test-time method for explicit spatial control of 3D generation.
Our approach accepts diverse geometric inputs, from coarse primitives to de-
tailed meshes, and conditions a powerful pre-trained generative model without
additional training. A controllable parameter lets users trade off between ge-
ometric fidelity and output realism. Extensive quantitative evaluation and user
studies demonstrate that SPACECONTROL outperforms both training-based and
optimization-based baselines in geometric faithfulness while preserving high vi-
sual quality. Finally, we present an interactive user interface that enables online
editing of superquadrics for direct conversion into textured 3D assets, facilitating
practical deployment in creative workflows.

1 INTRODUCTION

Generating 3D assets is a fundamental step in building virtual worlds, useful for gaming, simulation,
virtual reality applications, and digital design. Recently the field of 3D object generation gained
immense traction, and we are now able to create assets of previously unseen quality (Xiang et al.,
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2025; Zhang et al., 2024; Vahdat et al., 2022; Gao et al., 2022; Wu et al., 2025; Siddiqui et al., 2024;
Zhao et al., 2025; Chen et al., 2025). A persistent challenge, however, is controllability, i.e., how
users can effectively steer generation to align with desired shapes and appearances.

Current controllable 3D generation methods rely mainly on text or image conditioning. Text is
accessible and flexible but inherently ambiguous and ill-suited for specifying precise geometry. Im-
ages provide stronger alignment with 3D structures but are cumbersome to edit and not intuitive
for fine-grained adjustments. As a result, neither modality enables artists or designers to directly
manipulate the geometry of generated objects. A more natural paradigm is to allow users to interact
with the generative model in 3D space, starting from coarse or abstract geometry and refining toward
detailed assets.

Existing methods that introduce 3D geometric control fall into two categories: training-based and
guidance-based. Training-based methods fine-tune existing generative models to support a spe-
cific form of geometric input, e.g. LION (Vahdat et al., 2022) for voxel conditioning, and Spice-
E (Sella et al., 2024) for primitive or mesh conditioning. These methods provide controllability
but require retraining, which reduces the original model’s generalization capabilities. In contrast,
guidance-based methods such as LatentNeRF (Metzer et al., 2023) and Coin3D (Dong et al., 2024)
act solely at inference time without retraining, but usually involve substantial optimization overhead
and constrain 3D structure only indirectly. Other works enrich existing 3D assets with geometric
and appearance detail (Michel et al., 2022; Chen et al., 2023; Barda et al., 2025), yet they assume
fine-grained input geometry, limiting usability in creative workflows where artists often begin with
coarse sketches.

In this work, we present SPACECONTROL, a training-free method that injects explicit geometric
control into Trellis (Xiang et al., 2025), a recent framework for text- or image-conditioned 3D gen-
eration, by directly encoding user-specified geometry into its latent space and using it as explicit
guidance. Our method requires no additional training and enables controllable generation from di-
verse forms of geometry, ranging from simple primitives to detailed meshes.

We compare SPACECONTROL against both training-based (Sella et al., 2024) and guidance-
based (Dong et al., 2024) approaches, as well as a stronger training-based variant of Spice-E adapted
to Trellis. Remarkably, despite requiring no fine-tuning, SPACECONTROL achieves superior geo-
metric faithfulness while preserving visual realism. We further provide a user interface that allows
online editing of superquadrics and real-time generation of textured assets, supporting practical de-
ployment in design workflows.

In summary, our contributions are the following:

• We introduce a training-free guidance method that conditions a powerful pre-trained gen-
erative model (Trellis) on user-defined geometry via latent space intervention, enabling
geometry-aware generation without the need for costly fine-tuning.

• We conduct extensive evaluations, including a user study and quantitative analysis, showing
that our method outperforms prior state-of-the-art methods for shape-conditioned 3D asset
generation.

• We develop an interactive user interface that enables online editing of superquadrics and
their real-time conversion into detailed, textured 3D assets, supporting practical deploy-
ment in creative workflows.

2 RELATED WORK

2.1 3D GENERATIVE MODELS

The field of 3D generation has experienced a rapid growth during the past few years both in terms
of output modalities and controllability. Similar to the first image diffusion models (Ramesh et al.,
2021), early applications of diffusion models for 3D generation (Nichol et al., 2022) were conducting
the diffusion process in the original input space and were limited in the generated output type.
More recent approaches (Vahdat et al., 2022; Jun & Nichol, 2023) started running the generation
in a more compact latent space, leading to substantial improvements both in terms of quality and
efficiency. To achieve an even increased efficiency, (Zhang et al., 2024; Xiang et al., 2025) have
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started to disentangle the modeling of the structure from the appearance, leading to unprecedented
high-quality generations. The separate modeling of geometry and appearance opens the door to
explicit forms of spatially grounded conditioning, as done in our SPACECONTROL.

2.2 CONTROLLABLE GENERATIVE MODELS

Given a pretrained generative model, there are two main approaches to introduce a new control
modality: (1) methods which finetune a part or the whole network to take new types of conditioning
as input, and (2) training-free methods which condition the generation via inference-time guidance.
In the last years many approaches have been developed to control the generation of image generative
models, enabling conditioning in several forms as strokes, depth maps, and human poses. The same
cannot be said for the field of 3D generation, which is still at his infancy.

CONTROLLING IMAGE GENERATIVE MODELS

A wide variety of methods have been proposed to introduce new control modalities to image genera-
tive models. Among works based on finetuning, we identify two main lines of research. On one side,
there are works based on ControlNet (Zhang et al., 2023; Bhat et al., 2024) which add conditional
control to a section of the network by introducing a trainable copy connected to the original via zero
convolution. The key idea is to learn to control the original network without throwing information
from the original training. On the other side, there are approaches which add additional layers for
additional control of the network (Garibi et al., 2025; Hertz et al., 2022). Among training-free meth-
ods (Von Rütte et al., 2024; Meng et al., 2022; Sajnani et al., 2025), one closely related to our work
is SDEdit (Meng et al., 2022) which uses stroke paintings to condition the generation of SDE-based
generative models for images, by leveraging the denoising process of SDE-based generative models.

CONTROLLING 3D GENERATIVE MODELS

Only limited works have explored spatially grounded control of 3D generative models. On one
side, approaches as LatentNERF (Metzer et al., 2023), Fantasia3D (Chen et al., 2023), and In-
stant3dit (Barda et al., 2025) leverage timely test-time optimization to achieve shape-conditioned
novel view synthesis. On the other side, Spice-E (Sella et al., 2024) achieves the same goal
by finetuning Shap-E (Jun & Nichol, 2023) separately on chairs, tables and airplanes from
ShapeNet (Chang et al., 2015). These approaches attempt explicit spatial control, but nonetheless
fall short of introducing a method that’s as usable in unconstrained settings as introduced in their 2D
counterparts. The former still requires long optimization times and use the geometric input to con-
dition the generation of the 2D projections of the 3D objects, instead of directly conditioning in 3D.
The latter needs class-specific fine-tuning which limits the applicability in unconstrained settings
and does not allow to model the strength of the geometric control.

3 PRELIMINARIES

Before introducing our SPACECONTROL, we review the foundations on which it builds: rectified
flow matching, the Trellis generative model, as well as superquadrics.

3.1 RECTIFIED FLOW MODELS

Rectified flow models use a linear interpolation forward (diffusion) process where for a specific time
step t ∈ [0, 1], the latent zt can be expressed as zt = (1− t)z0 + tϵ, where ϵ ∼ N (0, I) and z0 is a
clean sample from the target data distribution. The backward (denoising) process is represented by a
time dependent velocity field v(zt, t) = ∇tzt. In practice, starting from a noisy sample z1, we can
obtain the denoised version z0 by discretizing the time interval [0, 1] into T discrete steps, possibly
not uniformly distributed, and recursively applying the equation

zt(i+1) = zt(i) − vθ

(
zt(i), t(i)

)(
t(i)− t(i+ 1)

)
, (1)

where i ∈ [1, T − 1] and the vector field vθ(·) is predicted for example by a Diffusion Trans-
former (Peebles & Xie, 2023) as in Trellis (Xiang et al., 2025).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Structure FM

Skip Flow

Appearance FM

Flow

1 0Im
ag

e
Te

xt
Sp

at
ia

l

Input Structure Generation

Noise up to t0

zc,0 zt0

t01 0

Appearance Generation

x0

Output

Figure 2: Model Overview. Given an input conditioning which includes a spatial control, a text
prompt and an image (optional), SPACECONTROL produces realistic 3D assets. First the different
conditioning are encoded in a latent space. Specifically, the spatial control is voxelized and encoded
by Trellis’ encoder E , the text is encoded by a CLIP encoder ECLIP , and the image (if present) is
encoded by a DINOv2 encoder EDINO. The obtained latents z0,c are noised up to t0 to obtain zt0 .
From t0 to t = 0, zt0 are denoised by the Structure Flow Model (FM), guided by the text prompt
features. The clean latents z0 are then fed into the decoder D, which outputs the voxel grid x0. Then,
the active voxels are augmented with point-wise noisy latent features, denoised by the Appearance
Flow Model (FM), using either text or image conditioning. The clean latents can then be decoded
into versatile output formats such as 3D gaussians (GS), radiance fields (RF), and meshes (M) via
specific decoders DO = {DGS ,DRF ,DM}.

3.1.1 STEPS SCHEDULE

Time steps are initially defined as t(τ) = 1− τ/T for τ ∈ [0, T ], and then rescaled by a factor λ:

t(τ) =
λt(τ)

1 + (λ− 1)t(τ)
. (2)

Since t can be obtained from τ and vice versa, we will refer to either one interchangeably.

3.2 TRELLIS

Trellis (Xiang et al., 2025) is a recent 3D generative model which employs rectified flow models to
generate 3D assets from either textual or image conditioning. Specifically, it consists of two separate
steps of generations, where the first aims to generate the structure, while the second focus on the
appearance.

3.2.1 STRUCTURE GENERATION

In the first step, a noisy latent variable z1 ∈ R16×16×16×8 is sampled from N (0, I) and denoised by
a rectified flow model iteratively applying Eq. 1 using either image or text conditioning. Specifically,
text conditions are encoded via a CLIP (Radford et al., 2021) text encoder, while image conditions
are encoded via a DINOv2 (Oquab et al., 2024) encoder. The denoised latent z0 is then decoded by
a decoder D to obtain a voxel grid x ∈ {0, 1}64×64×64, which encodes the spatial structure of the
3D asset. Notice that the decoder D is pretrained jointly with an associated encoder E , not explicitly
used in the Trellis pipeline.

3.2.2 APPEARANCE GENERATION

In the second step, the L active voxels are augmented with point-wise noisy latent features
s1 ∈ RL×8 sampled from N (0, I), denoised by a second flow model, using either text or image con-
ditioning. The clean latents s0 ∈ RL×8 can then be decoded into versatile formats such as 3D gaus-
sians (GS), radiance fields (RF), and meshes (M) via specific decoders DO = {DGS ,DRF ,DM}.

3.3 SUPERQUADRICS

Superquadrics (Barr, 1981) provide a compact parametric family of shapes capable of representing
diverse geometries. A canonical superquadric is defined by five parameters: scales (sx, sy, sz) and
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Realistic Faithful

Figure 3: Realism-faithfulness tradeoff. The hyperparameter τ0 allows a smooth control over
the strength of the control. In the left figure we show how variations of τ0 affects the generations
quantitatively in terms of Chamfer distance to the spatial control (lower means more faithful) and
of FID score (lower means more realistic). In the right figure we show it qualitatively, visualizing
how higher values of τ0 lead to assets whose geometry looks even more similar to the control. For
conciseness we only show the untextured geometry.

exponents (ϵ1, ϵ2). With parametric coordinates (η, ω) we can define their surface as:

s(η, ω) =

sxcos (η)ϵ1 cos (ω)ϵ2

sycos (η)ϵ1 sin (ω)ϵ2

szsin (η)ϵ1

 . (3)

Extending to world coordinates requires 6 additional pose parameters (3 translation, 3 rotation), giv-
ing 11 parameters in total. Their compactness makes them well-suited as spatial control primitives.

4 METHOD

We start introducing our problem setup in Sec. 4.1. We present our approach in Sec. 4.2, and discuss
how we achieve a flexible control over the strength of the spatial control in Sec. 4.3.

4.1 SETUP

To introduce spatial control in the generation of 3D models the user needs to provide a geometric
conditioning, together with a text prompt. Our goal is to produce 3D assets with two desiderata:

• Faithfulness: the generated asset should be aligned with the control geometry.
• Realism: the generated asset should retain the quality of the original model.

4.2 APPROACH

In this section we introduce SPACECONTROL and describe how it can perform guided generation
of 3D assets by introducing spatial guidance to a pretrained Trellis model. As our control strategy
differs from the first to the second stage of generation, we explain how we guide the former in
Sec. 4.2.1 and the latter in Sec. 4.2.2.

4.2.1 STRUCTURE GENERATION

To control the first step of generation given an explicit control geometry we employ a similar frame-
work to SEdit (Meng et al., 2022), where instead of using strokes to guide the generation of 2D
images, we use either coarse or detailed 3D geometry to guide the generation of 3D assets. Specif-
ically, given a user-specified 3D geometry, we voxelize it to obtain xc ∈ {0, 1}64×64×64 and feed
xc into the pretrained encoder E to obtain zc,0 ∈ R16×16×16×8. Then given a specific time step
t0 ∈ [0, 1] we noise up the latents zc,0 to that specific step via the rectified flows forward equation
as:

zt0 = t0z1 + (1− t0) zc,0 , (4)

where z1 ∼ N (0, I). Given zt0 , z0 can then obtained by iteratively applying Eq. 1 starting from t0
and employing the by the original Structure Flow Model. We note that this process does not require
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any need of architectural changes nor training. We guide the generation with additional textual
prompt, which is helpful to disambiguate the semantic of the object. As in the standard setting, the
denoised latent z0 is then decoded into a final geometric structure x0 ∈ {0, 1}64×64×64 by D.

4.2.2 APPEARANCE GENERATION

Given the geometric structure generated in the first stage, we then employ either text or image
conditioning to guide the generation of its appearance, by first expanding the active voxels with
point-wise noisy latent features and then denoising them using the Appearance Flow Model. Notice
that, even if the structure generation is always conditioned on text, image conditioning can still be
used in to guide the appearance generation, allowing for finer control over the visual details (see
Fig. 6a and Appendix).

4.3 CONTROLLING THE STRENGTH OF SPATIAL CONTROL

The strength of spatial control can be tuned through the parameter τ0. For lower values of τ0, the
latent zt0 is initialized closer to the noise z1 than to the control signal zc,0, leading the model to
perform more denoising steps. This favors samples that follow the data distribution of the original
Trellis, producing outputs that are generally more realistic but less faithful to the spatial condition-
ing. In contrast, higher values of τ0 bias zt0 towards zc,0, effectively skipping earlier denoising steps
and preserving more of the injected spatial structure, albeit sometimes at the expense of realism.

Boat Chicken Cow Elephant Radio Submarine Tree Whale
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Figure 4: Qualitative Comparison of Spatially Conditioned Generation. We show generations
obtained conditioning our SPACECONTROL and baselines on text prompts and superquadrics from
the Toys4K dataset. While other methods either fails to follow the conditioning (e.g., the antenna
from the radio generated by Spice-E is wrongly placed) or to generate visually appealing 3D assets
(e.g., the chicken generated by SPICE-E-T exhibits anatomically incorrect body part placements),
SPACECONTROL exhibits a good balance between realism and faithfulness.

5 EXPERIMENTS

5.1 COMPARING WITH STATE-OF-THE-ART METHODS

Tasks We evaluate the capabilities of our SPACECONTROL when the spatial condition is provided
as (1) coarse and (2) detailed geometry. In the former case we employ simple geometric primitives,
in the latter detailed object meshes.
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Table 1: Comparison with Baselines. The evaluation metrics are L2 Chamfer Distance (CD) and
Fréchet Inception Distance (FID). CD quantifies alignment with spatial control, while FID assesses
realism. Results for SPACECONTROL are reported at τ0 = 6. CD scores are multiplied by 103. †

indicates methods fine-tuned on chair and table. Trellis (Xiang et al., 2025) (model: txt-DiT-XL)
does not offer spatial guidance, and is shown for reference only.

Toys4K Chair Table
Method CD↓ CLIP-I↑ FID↓ P-FID↓ CD↓ CLIP-I↑ FID↓ P-FID↓ CD↓ CLIP-I↑ FID↓ P-FID↓
TRELLIS 117 0.33 217 78.60 14.7 0.31 129 40.82 19.7 0.30 132 49.40

Geometric Primitives
Coin3D 54.4 0.21 231 102.0 18.5 0.25 218 47.54 28.82 0.22 245 71.58
Spice-E† 65.9 0.29 233 66.52 7.66 0.29 166 38.66 10.3 0.29 148 78.85
SPICE-E-T† 39.1 0.32 223 53.51 5.92 0.31 135 39.22 4.73 0.30 122 47.36
SPACECONTROL (Ours) 14.0 0.32 221 81.3 0.98 0.30 146 34.06 3.72 0.29 157 46.28

Meshes
Coin3D 77.8 0.04 293 182.5 14.6 0.01 308 111.0 20.4 0.01 224 178.2
Spice-E (stylization) 7.40 0.30 224 81.21 6.37 0.30 152 41.51 28.2 0.29 132 58.01
SPICE-E-T† 23.3 0.32 222 90.99 22.7 0.31 132 39.70 7.59 0.30 116 46.76
SPACECONTROL (Ours) 4.89 0.29 244 72.47 0.66 0.29 137 30.96 0.48 0.28 130 42.33

Baselines We compare SPACECONTROL to state-of-the-art training-based and guidance-based
baselines. As training-based baseline we compare to Spice-E (Sella et al., 2024), which fine-tunes
Shap-E (Jun & Nichol, 2023) to support cuboid primitives as spatial guidance for 3D object genera-
tion. Since Spice-E is based on the Shap-E model (Jun & Nichol, 2023), to allow a fairer comparison
we implement its correspondent for Trellis (Xiang et al., 2025), which we will refer to as SPICE-E-
T. We provide more details on its implementation and training in the Appendix. Note that Spice-E
provides a separate checkpoint for shape stylization, which is used to evaluate the method on mesh
conditioning, as it lead to better results. As guidance-based baseline we compare to Coin3D (Dong
et al., 2024), which uses the shape-guidance to generate consistent multiple views of the desired
3D asset and then interpolate them in 3D by training a NeRF (Mildenhall et al., 2020) for 2000
iterations, and finally extract a mesh using.
Datasets To evaluate how different approaches handle geometric conditioning, we create a dataset
of objects which contains the original mesh, a decomposition of it into geometric primitives, and a
textual description of the asset. We use the mesh to evaluate methods on mesh-conditioned gener-
ation and geometric primitives to evaluate on shape-conditioned generation. Moreover, to evaluate
both generation and generalization capabilities, we use objects of two ShapeNet (Chang et al.,
2015) categories (chairs and tables) that Spice-E was explicitly trained on together with objects
from the Toys4K (Stojanov et al., 2021) dataset, unseen by all methods during training. We use
SuperDec (Fedele et al., 2025) to obtain the decomposition of the 3D assets into superquadrics and
Gemini on rendered views to obtain a textual description of the assets from ShapeNet (Chang et al.,
2015). For objects from Toys4k we use the textual description from Xiang et al. (2025).
Metrics Our experiments aim to evaluate both the faithfulness to the spatial and textual control
and the realism of the generated assets. Faithfulness to the spatial control is quantified using the
L2 Chamfer Distance (CD) between vertices sampled from the input superquadric primitives and
the generated mesh decoded by DM . Faithfulness to the textual control is quantified with the CLIP
similarity (CLIP-I) between the renderings of generated assets and the textual prompts. Realism
is evaluated for texture via the Fréchet Inception Distance (FID) (Heusel et al., 2017) on image
renderings and for geometry, via the P-FID (Nichol et al., 2022), the point cloud analog for FID.
To measure the FID on image rendering we measure the distance between the inception features
extracted from the original image renderings of the datasets and the generated ones. To measure the
P-FID of the generated meshes we measure the distance between the PointNet++ (Qi et al., 2017)
features of the generated and original object meshes.
Results Quantitative results are reported in Table 1, while qualitative results are shown in Fig-
ure 4. Both Spice-E and SPICE-E-T perform well on chairs and tables but struggle to faithfully
generate objects that they were not fine-tuned on (Toys4K). SPACECONTROL significantly outper-
forms the baselines in all experiments in terms of Chamfer Distance (CD) to the spatial control, while
achieving comparable CLIP-I, FID, and P-FID scores. For completeness, we also report scores for
the text-conditioned Trellis using the DiT-XL backbone, which is also the base model used in our
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Table 2: Analysis of τ0. The evaluation metrics are L2 Chamfer Distance (CD) and Fréchet Incep-
tion Distance (FID). CD quantifies alignment with spatial control, while FID assesses realism. CD
scores are scaled by 103. We show scores for spatial control given as geometric primitives (P) and
meshes (M).

Toys4K Chair Table
CD ↓ CLIP-I ↑ FID ↓ P-FID ↓ CD ↓ CLIP-I ↑ FID ↓ P-FID ↓ CD ↓ CLIP-I ↑ FID ↓ P-FID ↓

τ0 P M P M P M P M P M P M P M P M P M P M P M P M

0 117 75.4 0.33 0.29 217 254.9 78.6 79.4 14.7 30.6 0.31 0.29 129 133.7 40.8 39.9 19.7 49.21 0.30 0.28 132 137.5 49.40 49.3
2 110 65.5 0.33 0.29 216 256.9 79.1 82.7 14.1 30.0 0.31 0.29 131 136.7 41.2 41.5 18.5 43.51 0.30 0.28 132 134.7 51.97 41.5
4 56.8 32.4 0.32 0.29 222 252.8 84.1 83.9 7.3 13.9 0.31 0.29 137 141.1 34.1 31.9 6.33 2.68 0.30 0.28 135 133.5 51.79 45.8
6 14.0 4.89 0.32 0.29 221 244.9 81.3 72.5 0.98 0.66 0.30 0.29 146 136.6 34.0 31.0 3.72 0.48 0.29 0.28 157 131.0 46.28 42.3
8 9.04 1.57 0.29 0.29 257 241.3 94.0 77.0 0.27 0.28 0.30 0.28 156 134.3 37.1 29.2 3.29 0.19 0.29 0.28 175 127.3 50.16 43.2
10 8.85 1.84 0.27 0.29 268 209.3 101 74.9 0.22 0.26 0.30 0.28 160 134.0 36.5 30.1 3.26 0.19 0.29 0.29 181 125.9 50.74 42.6

SPACECONTROL. Note that for the sake of simplicity in Tab. 1 we only report results of SPACE-
CONTROL with τ0 = 6. However, τ0 can be chosen freely by the user, depending on the desired
strength of conditioning. For completeness, we report results for different values of τ0 in Tab. 2. We
can see that by increasing the value of τ0 and thus strength of the spatial conditioning, we obtain
generations which align more closely to the input spatial control.
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Figure 5: User Study Results. The bar plots
present the proportion of favorable comparisons
achieved by our SPACECONTROL against the
baselines on overall appearance, faithfulness to
spatial control, and realism, respectively.

User Study. To validate the numerical results,
we conduct a user study (Fig. 5) involving 52
volunteers, each one evaluating on average 20
randomly selected samples. Participants were
asked to compare pairs of generated objects,
voting which one was more faithful to the in-
put control shape, which model looked more
realistic, and which one they liked overall bet-
ter (see appendix for more details). The study
is performed on the same datasets discussed
above, i.e.on ShapeNet (Chang et al., 2015) and
Toys4k (Stojanov et al., 2021). We compare our
SPACECONTROL to the Spice-E and Spice-E-
T baselines. We observe that our SPACECON-
TROL is always the preferred method both in
terms of overall appearance and alignment to the
input spatial control.

5.2 QUALITATIVE RESULTS

Besides Figures 1, 4, and 6, we provide additional qualitative results for object editing in the Ap-
pendix, visualizing outputs of different methods conditioned on both coarse and detailed input con-
trols. In general, training-based methods struggle to generate objects in specific poses, whereas
SPACECONTROL consistently produces plausible results. For example, other methods generate a
cow with two heads (Spice-E and Spice-E-T), an elephant with an eye on its back (Spice-E), or
shapes that fail to strictly follow the spatial conditioning or exhibit low quality (Coin3D).

5.3 ANALYSIS EXPERIMENTS

The Effect of the Control Parameter τ0. While existing methods for 3D spatial conditioning do
not provide a way to control its strength, our SPACECONTROL enables flexible interpolation between
different levels of adherence. In this section, we evaluate how the parameter τ0 governs the trade-off
between fidelity to the spatial control signal and the realism of the generated asset. Quantitative
results are reported in Table 2, using the same metrics and datasets as in Table 1. We further present
qualitative results in Fig. 3 and in the Appendix, showing how varying the conditioning strength
produces different outcomes. Adjusting τ0 allows users to regulate this trade-off according to their
preferences, balancing higher shape quality against stronger adherence to the spatial guidance. Ad-
ditionally, the plot in Figure 3 (left) illustrates this trade-off on Toys4K, indicating that τ0 ∈ [4, 6]
generally provides a good compromise between spatial adherence and shape quality.
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”floral chair”

”floral chair”

(a) Image conditioning. Given the two
different spatial controls shown in thefirst
row, we show objects generated by our
SPACECONTROL without (second row)
and with (third row) image conditioning.

Trellis

n/a

Coin3D Spice-E SPICE-E-T Oursτ0=5
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(b) Spatial alignment. We show how different methods align the
generated 3D asset with the input condition. In the first row we
show the input control, in the second the generated asset and in the
third, we overlay the two. All the generations use the same prompt
”A wooden chair.”.

Figure 6: Image conditioning and fine-grained alignment. We show analysis experiments on the
role of image conditioning (left) and on fine-grained spatial alignment (right).

The Role of Image Conditioning. SPACECONTROL supports multi-modal control for 3D asset
generation by combining spatial guidance via superquadrics with natural language and optional
image conditioning. While the model can synthesize assets using only superquadrics and textual
prompts, images are particularly useful for maintaining visual consistency during object edits, as
shown in Figure 6a and in the Appendix. As we only use image prompts in the Appearance Flow
Model of Trellis, they primarily affect texture, with only minor influence on geometry. While this ca-
pability originates from the pre-trained Trellis, SPACECONTROL enables its practical use for cross-
modal texture transfer, effectively performing style transfer from 2D images to generated 3D shapes.

Spatial Alignment. We believe that a key advantage of a training-free approach that performs
conditioning directly in 3D space is its ability to achieve fine-grained spatial control. In this section,
we provide an example where the conditioning shapes are not aligned with axis-oriented rotations.
As shown in Fig. 6b, our method is the only one that perfectly aligns with the input conditioning
while preserving the quality of the generated mesh. Additional results are provided in the Appendix.

6 DISCUSSION AND CONCLUSION

In summary, our approach introduces the first training-free method that by operating directly in the
3D space is able to spatially condition the generation of high quality assets. Through extensive
evaluations and a practical interface, we demonstrate both the effectiveness and usability of our
method in real-world creative workflows.

Limitations and future work. While SPACECONTROL enables flexible spatial control via a tunable
adherence parameter τ0, this parameter is currently selected manually. Although this supports user-
driven control over the realism–faithfulness tradeoff, it complicates automated generation of diverse,
high-quality assets without per-instance tuning. Additionally, our current formulation enforces a
uniform adherence level across the entire object. Future work could explore part-aware control,
allowing users to specify which regions should closely follow the input structure and which can
deviate more freely to support creative variation.

Reproducibility statement. Our approach builds on the open-source Trellis model (Xiang et al.,
2025), and our experiments use open-source datasets, namely ShapeNet (Chang et al., 2015) and
Toys4k (Stojanov et al., 2021). All experiments are fully reproducible, and upon acceptance, we
will release our code to facilitate replication of our method and results.
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7 ADDITIONAL REBUTTAL RESULTS

7.1 LOCAL CONTROL

Without local semantic conditioning. With local semantic conditioning.

Figure 7: Local semantic control. From left to right we show: the input geometric control, the 3D
asset generated by globally conditioning on “A white chair.”, the 3D asset generated by conditioning
globally on “A white chair.” and locally (on the superquadric highlighted in red) on “A read seat.”.

7.2 SEMANTICALLY CONTRADICTORY CONDITIONINGS

Geometric guidance “A boat.” “A car.”

Figure 8: Contrasting conditioning. We use a coarse geometric sketch of a boat (left) as geometric
control and pair it with two different textual prompts: “A boat.” (middle) and “A car.” (right). When
the prompts align, SpaceControl produces a coherent result. When they conflict, the model injects
car-like appearance cues (e.g. wheels) while preserving the underlying boat geometry.

7.3 TAPERING AND BENDING OF SUPERQUADRICS

Figure 9: Tapering and bending of superquadrics. A superquadric with tapering and bending
transformations (left, from Jaklic et al. (2000)) and an animal composed by superquadrics with
bending and taperings (right, from Pelossof et al. (2004)).

10
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A ADDITIONAL RESULTS

A.1 FINE-GRAINED SPATIAL EDITING

In this section we provide additional results which show how the generations from our SPACECON-
TROL are influenced by the change of the spatial control. We show results in pairs where the textual
and/or image prompts are kept fixed. We notice that by providing additional image control, we are
able to preserve the texture between different generations.

“Birthday cake” “Daisy flower” “Satellite”
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“House” “Knife” “Clock”

Figure 10: Fine-grained spatial editing with superquadrics. Superquadrics offer fine-grained
spatial control that is useful not only for generating a wide variety of 3D assets, but also for editing
them. They enable intuitive and localized modifications of 3D shapes, in a more direct manner
than text- or image-only generative models in practicality. In addition to natural language prompts
(top), SPACECONTROL supports image conditioned generation (bottom), enabling consistent visual
appearance across edits.
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A.2 COARSE AND FINE-GRAINED SPATIAL CONTROL WITH SUPERQUADRICS

In this section, we provide additional results generated with different control strengths. Here the
hyperparameter is chosen so that we were satisfied with the final result. Superquadrics prove to be
an effective tool to provide both coarse and fine-grained control to the 3D generation. By combining
the expressivity of superquadrics with the flexible control strength offered by our SPACECONTROL,
users can condition the generation by either carefully designing geometric details or only drafting
the spatial setting of the desired output.

τ0 = 4 τ0 = 6 τ0 = 5

“An airplane” “A motorbike” “Staircase” “A snowman”

τ0 = 6

“A duck”
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“Greek column”

τ0 = 5

“A guitar”

τ0 = 5

“Military helicopter”

τ0 = 5

“Fighter jet”

τ0 = 5

“Drumkit”

τ0 = 3

Figure 11: Coarse and fine-grained control with superquadrics. Superquadrics offer both fine-
grained spatial control when used to sculpt precise geometry (motorbike, staircase, helicopter) and
coarse control, when only used to draft a 3D sketch (duck, drumkit).
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A.3 FINE-GRAINED ALIGNMENT WITH STATE-OF-THE-ART METHODS

In Fig. 12 we show the results for the same experiment provided in the main paper, but with different
control strengths.
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Figure 12: Fine-grained alignment of SPACECONTROL with different τ0. In the first row we
show the input control, in the second the generated asset and in the third, we overlay the two, to
better visualize alignment. All the generations use the same spatial control and the same prompt ”A
wooden chair.”.

Furthermore, in Fig. 13 we show a practical application when fine-grained spatial control can be par-
ticularly useful. With our method, a user can provide a sketch of the geometric primitives composing
the scene and directly condition the generation on this input, without requiring any time-consuming
post-processing to align the generated shapes.

Input spatial control Output 3D assets

Figure 13: SPACECONTROL for 3D scene generation. We show how SPACECONTROL can be
used to generate objects of full scenes starting from a coarse conditioning. On the left we show the
superquadrics for the scene, where each object is represented with a different color. On the right
we show the assets generated with SPACECONTROL using the geometric primitives from the right
as spatial condition. Note that each object is generated independently, by scaling the superquadrics
to unit cube and giving them as spatial control to SPACECONTROL. Generated objects are then
automatically placed, by undoing the transformation.
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B INTERACTIVE USER INTERFACE

In Fig. 14 we visualize our interactive user interface. Starting from scratch or from a template
of superquadrics, users can freely edit superquadrics using their parameters, and add/delete them.
Once given the conditioning, they can select a control strength (higher control strength means that
the generated shape looks more like the primitives) and a text (and optionally image) conditioning.
They can then toggle between the input primitives and meshes and proceed with new generations.
We provide a demo of the user interface in the supplementary video.

Figure 14: Visualization of our interactive user interface. Users can control the generated geom-
etry by changing the shape of the geometric primitives and deciding the strength of the conditioning.
Other than spatial control, users can use text and, optionally, images.

C USER STUDY

Figure 15: User study interface.

In Fig. 15, we show the
web interface of our user
study. From left to right,
we show the given con-
trol shape, and two com-
peting methods. The par-
ticipants then choose which
generated object is more
faithful to the input control
shape, which model looks
more realistic, and which
one they like best.
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D SPICE-E-T

Figure 16: Comparison between the
Flow Transformer from the original Trel-
lis (left) and the one from SPICE-E-T
(right), adapted to enable spatial control
via superquadrics.

We obtain our training-based baseline SPICE-E-T by
adding an additional conditioning layer to the flow
transformer blocks in the structure generator of text-
conditioned Trellis model (see Fig. 16) which perform
cross attention on the shape conditioning. We encode the
shape conditioning using the Trellis encoder E , and we
perform the Cross-Attention in that feature space. We
initialize the original layers with the weights from the
text-conditioned Trellis and the newly added ones ran-
domly. We then train the modified Structure Generator
for 120.000 iterations with a batch size of 4 on the ABO
dataset (Collins et al., 2022), where the shape condi-
tioning are obtained by running SuperDec (Fedele et al.,
2025). During training, we use the same reconstruction
loss of the original Trellis model.
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