

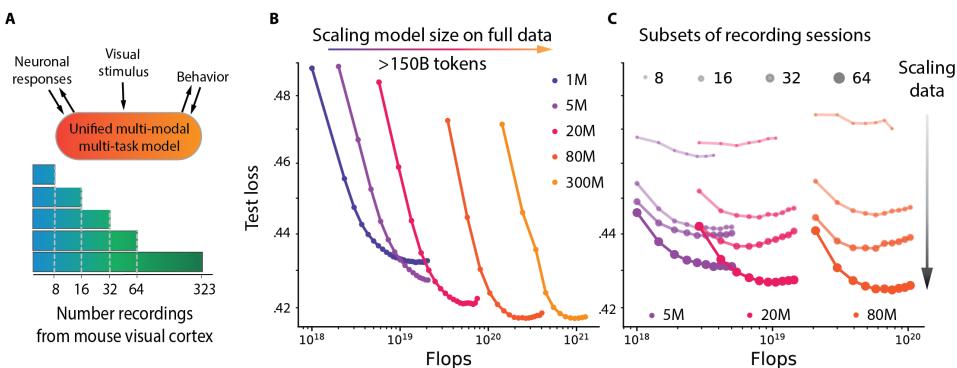
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 OMNI MOUSE: SCALING PROPERTIES OF MULTI-MODAL, MULTI-TASK BRAIN MODELS ON 150B NEURAL TOKENS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Scaling data and artificial neural networks has transformed AI, driving break-
012 throughs in language and vision. Whether similar principles apply to modeling
013 brain activity remains unclear. Here we leveraged a dataset of 3.3 million neu-
014 rons from the visual cortex of 78 mice across 323 sessions, totaling more than
015 150 billion neural tokens recorded during natural movies, images and param-
016 etric stimuli, and behavior. We train multi-modal, multi-task transformer models
017 (1M–300M parameters) that support three regimes flexibly at test time: neural
018 prediction (predicting neuronal responses from sensory input and behavior), be-
019 havioral decoding (predicting behavior from neural activity), neural forecasting
020 (predicting future activity from current neural dynamics), or any combination of
021 the three. We find that performance scales reliably with more data, but gains from
022 increasing model size saturate – suggesting that current brain models are limited
023 by data rather than compute. This inverts the standard AI scaling story: in lan-
024 guage and computer vision, massive datasets make parameter scaling the primary
025 driver of progress, whereas in brain modeling – even in the mouse visual cortex, a
026 relatively simple and low-resolution system – models remain data-limited despite
027 vast recordings. These findings highlight the need for richer stimuli, tasks, and
028 larger-scale recordings to build brain foundation models. The observation of sys-
029 tematic scaling raises the possibility of phase transitions in neural modeling, where
030 larger and richer datasets might unlock qualitatively new capabilities, paralleling
the emergent properties seen in large language models.



043 Figure 1: **A.** OmniMouse unifies neural prediction, behavior decoding, and forecasting tasks. **B.**
044 Scaling model size on an 150+ billion neural tokens shows performance saturation, unlike language
045 models. **C.** In contrast, scaling data consistently improves performance across all model sizes, sug-
046 gesting that neural prediction is currently limited by data.

1 INTRODUCTION

050 Scaling models and data has driven recent progress in machine learning, with large language, vision,
051 and multi-modal models showing consistent performance gains and enabling foundation models that
052 unify tasks across domains. A natural question is whether models of the brain can also benefit from
053 scaling. In the mouse visual cortex, large datasets (MICrONS Consortium et al., 2021; de Vries
et al., 2019; Angelaki et al., 2025) and standardized benchmarks (Willeke et al., 2022; Turishcheva

054 et al., 2024) exist. Yet, compared with internet-scale corpora, the available datasets are much smaller,
 055 more fragmented, and less diverse. The neuroscience community has recently started to work towards
 056 foundational models for EEG (Chau et al., 2024; Chen et al., 2024; Cui et al., 2024; Jiang et al., 2024;
 057 Kostas et al., 2021; Yang et al., 2023; Thapa et al., 2024; Li et al., 2024), fMRI (Caro et al., 2023;
 058 Dong et al., 2024; Kan et al., 2022; Thomas et al., 2022; d’Ascoli et al., 2025), MEG (Csaky et al.,
 059 2024), and intracranial signals (Zhang et al., 2023; Wang et al., 2023). But single-neuron resolution,
 060 multi-modal foundation models are still missing.

061 Prior work in this direction focused on isolated modalities (Ye et al., 2023; Azabou et al., 2023), a
 062 single predictive task (Wang et al., 2025), lacked scalability across datasets (Ye & Pandarinath, 2021;
 063 Mi et al., 2023; Antoniades et al., 2024), or omitted stimulus (Zhang et al., 2025) and behavioral
 064 information (Jiang et al., 2025; Mi et al., 2023). These models do not capture the multi-modal and
 065 multi-task nature of neural computation. Hence, we cannot systematically study if there are benefits
 066 of scaling – a key hallmark of foundational models – in large-scale, single-neuron recordings.

067 In this work, we introduce OmniMouse, a multi-modal, multi-task architecture for modeling activity
 068 in the mouse visual cortex. OmniMouse integrates video stimuli, neuronal responses, and behav-
 069 ioral signals (running speed, eye movements and pupil size) into a single transformer framework.
 070 Unlike prior models that are typically restricted to a single modality, task, or dataset, OmniMouse
 071 combines single-neuron tokenization, video encoding, and a structured masking framework into a
 072 unified architecture. This design enables flexible masking on both the input and output, allowing
 073 the model to handle arbitrary combinations of neural forecasting (predicting from past activity),
 074 stimulus-conditioned response prediction, sub-population prediction, and behavioral decoding—all
 075 within a single model. We train OmniMouse on the largest single-neuron dataset to date: 323 record-
 076 ings from the visual cortex of 78 awake mice viewing naturalistic movies, images, and parametric
 077 stimuli, totaling over 150 billion neuronal activity tokens. This unprecedented scale enables a sys-
 078 tematic scaling laws analysis, investigating how model and dataset size impact neuronal encoding
 079 and behavioral decoding performance.

080 Our main findings and contributions are:

- 081 • **We provide a systematic scaling analysis for neuronal data:** We find that performance improves
 082 systematically with more data, but saturates with model size beyond moderate scales. This suggests
 083 that **data, not model size, is currently the bottleneck** for predictive accuracy in neural model-
 084 ing—providing a clear directive for the field that progress requires larger and more diverse neural
 085 datasets.
- 086 • **We propose a multi-modal multi-task model accounting for a visual stimuli:** OmniMouse
 087 handles both single-modality and multi-modal inputs, supporting any combination of forecasting
 088 and stimulus-conditioned prediction across neurons, visual stimuli, time, and animals in a single
 089 model.
- 090 • **OmniMouse achieves state-of-the-art performance:** When compared to strong specialized base-
 091 lines on the same training data, OmniMouse outperforms prior methods across nearly all tasks
 092 (apart from running speed decoding) demonstrating the strength of our approach independent of
 093 data scale advantages.

096 2 RELATED WORK

097 **Large-scale deep learning models for single-neuron predictions.** Deep learning has advanced pre-
 098 dictive modeling in neuroscience, particularly in vision (Cadieu et al., 2014; Batty et al., 2017; Klindt
 099 et al., 2017; McIntosh et al., 2016; Cadena et al., 2019; Kindel et al., 2019; Walker et al., 2019; Zhang
 100 et al., 2018; Ecker et al., 2018; Sinz et al., 2018; Burg et al., 2021; Cowley & Pillow, 2020). Early
 101 CNN-based approaches introduced shared feature cores with per-neuron readouts (Antolík et al.,
 102 2016; Klindt et al., 2017; McIntosh et al., 2016), later extended with temporal dynamics (Sinz et al.,
 103 2018) and more efficient readouts (Lurz et al., 2021). Building on these advances, Wang et al. (2025)
 104 trained a 13-mice CNN model and showed that “digital twins” can capture biological phenomena
 105 beyond their training data. With the shift to transformers, new variants have explored ViT cores (Li
 106 et al., 2023), hybrid convolution-attention designs (Lin et al., 2024; Pierzchlewicz et al., 2023), and
 107 spatial-transformer readouts (Saha et al., 2024), though most still omit video input.

108 Transformers have also been applied to response-to-response modeling. The Neural Data Trans-
 109 former (NDT) (Ye & Pandarinath, 2021) predicted spikes from spikes and behavior, later extended
 110 to multiple animals (Ye et al., 2023) and neuronal masking strategies (Zhang et al., 2024). While
 111 NDT projects all neurons together via linear layers, Quantformer (Calcagno et al., 2024), also a
 112 transformer-based forecaster, introduced neuron-specific tokens to handle any number of neurons.
 113 POYO (Azabou et al., 2023), a behavior-decoding model, added spike timing to similar tokens, re-
 114 moving the need for time-window binning, and its extension POYO+ (Azabou et al., 2025) also
 115 handled discrete classification tasks such as stimulus orientation. POCO (Duan et al., 2025) com-
 116 bined POYO and NDT tokenization to predict neuronal activity from history and other neurons, while
 117 STDNT (Le & Shlizerman, 2022) explicitly modeled correlations but did not consistently outperform
 118 NDT. Representing the most significant scaling of NDT-based framework, NEDS (Zhang et al., 2025)
 119 modeled approximately 30,000 neurons across 74 sessions using a multitask loss to predict neuronal
 120 activity and behavior, also using both of them as input. However, the aforementioned models ignore
 121 visual stimuli. To study the combined effect of both the ‘brain state’ and ‘visual stimuli’ on neuronal
 122 activity, Bashiri et al. (2021) used a CNN branch for processing static input stimuli and an additional
 123 flow-branch to model trial-to-trial correlations between neurons. For dynamic video stimuli, Schmidt
 124 et al. (2025) modeled a latent brain state probabilistically, using NDT-style response tokenization.
 125 Similarly, Neuroformer (Antoniades et al., 2024) used past activity and visual input but is limited
 126 to single sessions and cannot flexibly condition on subsets of neurons or response history. CEBRA
 127 (Schneider et al., 2023), a contrastive encoder, also mapped activity to behavior or stimuli, account-
 128 ing for inter-neuron correlations. The closest work to ours, outside of single-cell studies, is d’Ascoli
 129 et al. (2025), which constructed a multi-modal fMRI predictor using concatenated video, text, and
 130 audio embeddings.

130 **General scaling laws in deep learning.** Large-scale models in language and vision exhibit pre-
 131 dictable improvements with scale, described by empirical “scaling laws”. Kaplan et al. (2020) first
 132 showed that performance follows power-law trends in model size, dataset size, and compute. Hoff-
 133 mann et al. (2022) refined this with “Chinchilla scaling”, prescribing proportional growth of model
 134 and data size for optimal efficiency. Aghajanyan et al. (2023) adjusted scaling laws for models
 135 with large per-modality pre-trained tokenizers but newer lightweight tokenization (“early-fusion”)
 136 approaches (Chameleon, 2024; Piergiovanni et al., 2024; Shukor et al., 2025) achieved stronger per-
 137 formance with fewer parameters. Hence, no universal framework for multi-modal scaling exists:
 138 Shukor et al. (2025) estimated power-law coefficients for early-fusion models but did not analyze
 139 cross-modal interactions. This gap is especially evident in scientific domains, where data are multi-
 140 modal, complex, noisy, and limited. Examples such as AlphaFold3 (Abramson et al., 2024) suggest
 141 that systematic scaling of both models and datasets can drive major advances in AI for science.

142 **Scaling neuroscience models.** There is no consensus on whether classic machine learning scaling
 143 laws apply to single-neuron data. Jiang et al. (2025) questioned their applicability, analyzing the
 144 NDT-based model of Zhang et al. (2024). Jiang et al. (2025) argued that cross-session variability
 145 – and thus implicit data heterogeneity – is crucial for scaling benefits, though it remains unclear if
 146 these results generalize to different mouse tasks or model architectures. Again using an NDT-based
 147 model but on motor cortex microelectrode data from monkeys and humans, Ye et al. (2025) reported
 148 that scaling is constrained by data variability, which pretraining alone cannot fully overcome. Con-
 149 sistent with this view, POCO (Duan et al., 2025) used calcium imaging to show that longer recordings
 150 improve predictive performance, aligning with earlier results of Lurz et al. (2021). However, POCO
 151 included fewer than 90,000 neurons, mostly from zebrafish ($\sim 77,000$). Neural saturation has also
 152 been observed: Gokce & Schrimpf (2024) found that behavioral alignment improves with model
 153 size, but neural alignment plateaus, with gains concentrated in higher-level visual areas. In contrast,
 154 Antonello et al. (2023) reported no such saturation when predicting language and audio fMRI re-
 155 sponses, suggesting that scaling limits may depend on the modality and data regime. The largest
 156 single-cell response-to-behavior prediction model is POYO+ Azabou et al. (2025) with $\sim 100,000$
 157 neurons, which did not analyze scaling. Together, these findings highlight the need for large, multi-
 158 modal, single-neuron datasets to test how scaling laws manifest in systems neuroscience.

159 3 LARGE-SCALE SINGLE-NEURON DATASET

160 **161 Neuronal responses.** We used a dataset of over 3 million single-unit neuronal recordings (Fig. 2)
 – an order of magnitude larger than the recently published Brain-Wide Map dataset (BWD, 621,733

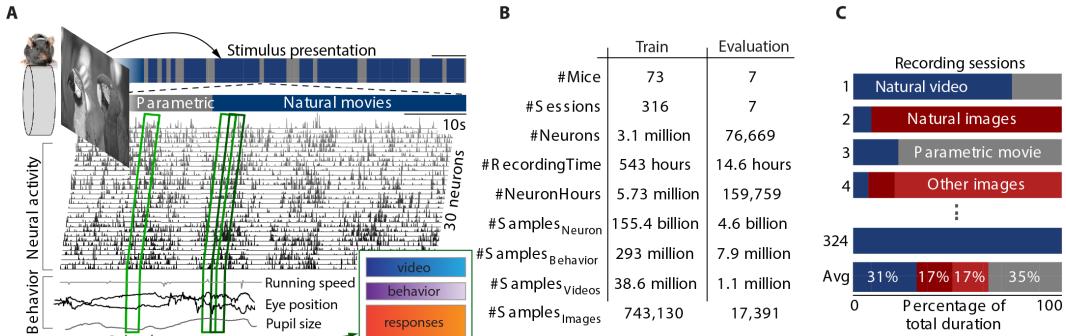


Figure 2: **Data.** **A.** Data were collected from head-fixed mice running on a wheel while viewing videos. Neuronal responses were recorded via calcium imaging, 4210 to 11284 neurons per session. Behavior variables include pupil center x and y positions, pupil dilation and its derivative and running speed. **B.** Dataset statistics. The total number of unique mice in our dataset is 78, since some mice had sessions in both train and evaluation sets. **C.** Different visual stimuli were presented across sessions, with stimulus types varying by session. The bottom row shows their overall distribution.

neurons, $\leq 1 \times 10^6$ neuron-hours) (Angelaki et al., 2025). The dataset contains excitatory neurons' responses in visual cortex recorded via wide-field two-photon calcium imaging at 6–14 Hz in awake, head-fixed, behaving mice (Sofroniew et al., 2016), with spiking activity extracted by CAIMAN (Giovannucci et al., 2019).

Visual stimuli. The mice were presented with naturalistic images sampled from ImageNet (Russakovsky et al., 2015) and videos sampled from cinematic movies and the Sports-1M dataset (Karpathy et al., 2014). In addition, mice were shown parametric stimuli such as static and drifting Gabors (Petkov & Subramanian, 2007), directional pink noise, flashing Gaussian dots, random dot kinematograms (Morrone et al., 2000), and model-generated stimuli (similar to Walker et al., 2019). All stimuli were presented at 30–60 Hz, with images presented for 500 ms and preceded by a 300–500 ms blank screen.

Behavior variables. Our dataset contains five behavior variables: running speed, recorded at 50–100 Hz, and four pupil variables: pupil center x and y positions, pupil dilation and its derivative, all recorded at 20 Hz.

Data utilization. Similar to Azabou et al. (2023), we sample 2-second windows from any point in the experiment, including inter-trial intervals and blank screens. Critically, we reconstruct the visual stimulus presented throughout the entire recording, enabling continuous representation of the full experimental timeline including blank periods across all diverse visual paradigms. For model training, we downsample all behaviors to 20 Hz, visual stimuli to 30 Hz, and linearly upsample all neuronal responses to 30Hz to be comparable to the SENSORIUM 2023 benchmark.

4 OMNIMOUSE ARCHITECTURE

We sample 2-second chunks of multi-modal data: video frames $\mathbf{V} \in \mathbb{R}^{h \times w \times ch \times time}$ ($\mathbb{R}^{36 \times 64 \times 1 \times 60}$), neural calcium traces $\mathbf{X} \in \mathbb{R}^{P \times time}$ ($\mathbb{R}^{P \times 60}$) for population P , and behavioral traces $\mathbf{B} \in \mathbb{R}^{ch \times time}$

Table 1: **Scaling variants of OmniMouse.** L : multi-modal transformer layers; d_m : model dimension; h : number of attention heads; d_e : dimensions of all embeddings; p_L : multi-modal transformer layer parameters; p_M : model parameters (excluding neuronal embeddings); p_N : all neuronal, session, and animal parameters; p_T : total parameters; S : sequence length.

Model	L	d_m	h	d_e	p_L	p_M	p_N	p_T	S
OmniMouse-1M	2	256	4	256	1.7M	6M	779M	885M	4096
OmniMouse-5M	6	256	8	256	5.1M	10.4M	779M	891M	4096
OmniMouse-20M	6	512	8	256	19.1M	29.1M	779M	810M	4096
OmniMouse-80M	12	768	12	256	88M	115M	779M	894M	4096
OmniMouse-300M	24	1024	16	256	308M	348M	779M	1.1B	4096

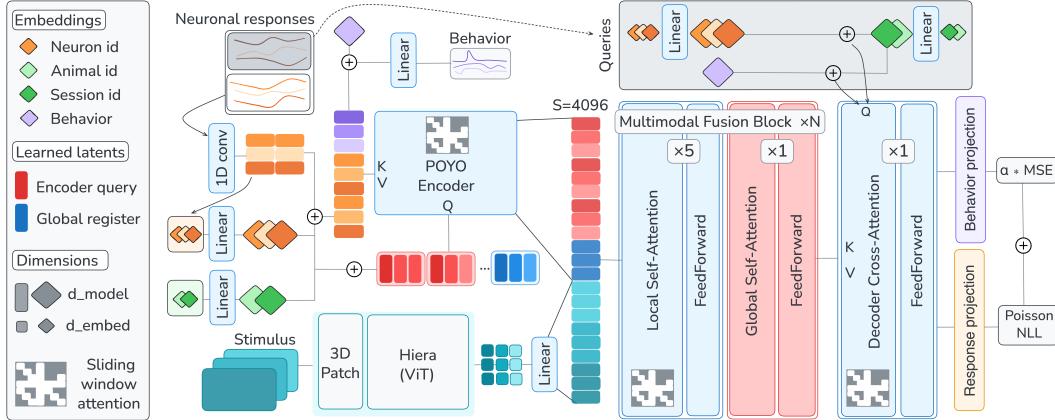


Figure 3: **Model architecture.** OmniMouse introduces a unified framework that handles arbitrary combinations of neural forecasting, sub-population prediction, stimulus encoding, and behavioral decoding through flexible masking. We adopt single-neuron, single-time-chunk tokenization and a cross-attention encoder (following POYO+ (Azabou et al., 2025)), along with analogous queries to the multi-modal cross-attention decoder, enabling per-neuron, per-chunk masking by simply removing tokens from the input and adding corresponding queries to the decoder. A lightweight hierarchical vision transformer tokenizes video at frame-level granularity, allowing temporal masking of visual context. These video features fuse with encoded neural and behavioral embeddings through our transformer stack, creating a unified multi-modal representation from which masked neural activity or behavior can be decoded. Training across 119 App. D.4.1, diverse masking configurations—spanning both core tasks, as well as partial combinations with varying context from each modality—drives strong multi-task performance and enables seamless task switching purely through mask configuration at test time

$(\mathbb{R}^{5 \times 40})$ (running speed, pupil xy -position / size / size derivative). Alongside the chunk, we sample a masking configuration for each modality.

For *video*, the sampled mask defines a starting frame v_0 and the length of visible frames v_c such that $v_0 + v_c \leq 60$, $v_c \in [10, 20, 30, 40, 50, 60]$. The resulting sequence $\mathbf{V}_{v_0:v_0+v_c}$ is encoded through a lightweight, randomly-initialized Hiera vision transformer (Ryali et al., 2023), followed by a linear projection to our model dimension, d_M , producing spatiotemporal embeddings $\tilde{\mathbf{V}} \in \mathbb{R}^{h' \times w' \times v'_c \times d_M}$, where h' , w' , and v'_c result from the stride of the Hiera module.

For *neural responses*, during training we randomly sample $S = 4096$ neurons from population P . From these we select $P_{target} = 3072$ neurons whose final second of activity serves as our prediction target. From the remaining data, we collect activity sequences of each neuron’s *unmasked* samples. For OmniMouse, we developed a novel and a flexible neural activity masking scheme that allows for any combination of input masks, down to single-neuron single-sample precision (Fig. 5). The scheme defines a *population prefix* — activity from the population before the last 30 samples — and a *population context* — activity from neurons not being predicted, possibly overlapping in time with the prediction targets. To avoid inflated scores from upsampling artifacts, a gap of at least 0.17 seconds (5 samples) was enforced between the *prefix* and the prediction target. To tokenize the unmasked activity, we apply a strided 1D-convolution to each neuron’s sequence and concatenate the outputs, creating a unified sequence of activity embeddings, $\tilde{\mathbf{X}} \in \mathbb{R}^{S \times T \times d_M}$, where T is the number of strides per neuron sequence. Following POYO (Azabou et al., 2023), we add learned identity embeddings for each neuron, session, and animal to the activity features. We use a smaller dimension, d_e , for these embeddings and up-project to d_M in order to reduce the number of parameters learned per-neuron. For *behavior*, we either fully mask or fully unmask the input. When unmasked, we use a shared linear layer to project the traces along the temporal dimension and add learned channel-specific embeddings (as well as the session/animal embeddings), yielding

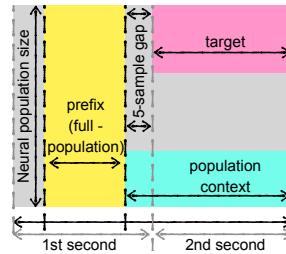


Figure 4: **Neuronal response masking.** We introduce a flexible scheme that supports arbitrary input masks, down to single-neuron, single-sample, and single-frame precision.

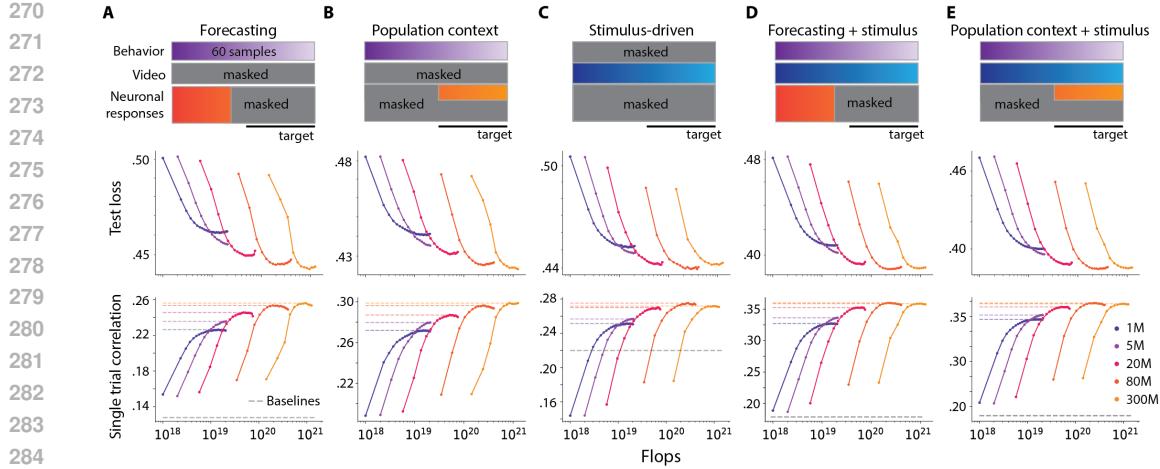


Figure 5: **Task-specific performance gains with model scaling.** Top row: masking schema. Middle row: Test loss. Bottom row: single-trial correlation. Loss and correlation metrics are computed on the held-out test sets of the seven evaluation mice. **A.** Forecasting: predicting one second of future neuronal activity, conditioned only on past neuronal activity (prefix = 25 samples). **B.** Population context: predicting one second of neuronal activity of a sub-population, conditioned only on $n = 256$ neurons. **C.** Stimulus-driven: Neuronal encoding conditioned on the visual stimulus. **D.** Stimulus-conditioned forecasting: same as forecasting, but also conditioned on prefix = 25 samples. **E.** Stimulus-conditioned population context, context = 256 neurons.

$\tilde{\mathbf{B}} \in \mathbb{R}^{5 \times d_M}$, for 5 behavior channels. Each token also maintains its timestamp for positional encoding in the input sequence.

Model architecture. After tokenization, we concatenate activity and behavior, $[\tilde{\mathbf{X}}, \tilde{\mathbf{B}}]$, and encode using cross-attention with a repeated set of learned latents (Azabou et al., 2023), $\mathbf{Z} \in \mathbb{R}^{M \times N \times d_M}$, (M unique latents and N repeats, each repeat with a unique timestamp evenly spaced across the context window), generally reducing the number of input tokens by ~ 10 . Within the cross-attention block, we implement *local sliding-window attention*, where latent features only attend to response / behavior features within a fixed temporal window. We also append $g = 256$ “global registers” (Darce et al., 2023), $\mathbf{G} \in \mathbb{R}^{g \times d_M}$ which always attend to the entire sequence.

Then we concatenate the cross-attention output and video features, $[\tilde{\mathbf{Z}}, \tilde{\mathbf{V}}]$, and pass the sequence to a series of L multi-modal transformer layers (Tab. 1). We interleave local attention (with a sliding-window mask), and global attention blocks at a ratio of 5 : 1 (Fig. 3).

To decode neuronal activity and behavior, we use a cross-attention followed by a shared feed-forward network, with fused multi-modal features as keys K and values V (Fig. 3). Query construction mirrors input construction: for the response prediction targets, we create a temporal sequence of embeddings using the same learned neuron, animal, and session identity embeddings. Each query also maintains a timestamp indicating the position of the neuronal response and we again employ local causal sliding-window attention. For behavior decoding, we re-use the learned behavioral channel embeddings as queries, with added animal and session embedding. Finally, similar to POYO+ (Azabou et al., 2025), the outputs of the decoder cross-attention block for each modality are routed to modality-specific linear readouts, projecting from d_M back to the original dimensionality. All attentions use RoPE (Su et al., 2024) to encode relative timing between features, both within and across modalities, as well as recent best practices including: RMSNorm pre-normalization layers, query-key normalization, and gated SiLU feed-forward networks (Shazeer, 2020; OLMo et al., 2024; Yang et al., 2025; Biderman et al., 2023).

Training. We trained our model to predict both neuronal responses and behavioral traces, using Poisson loss (averaged across neurons) for neural encoding and mean squared error (MSE) loss for behavior decoding. We used 119 masking configurations (App. D.4.1) during training, varying which modalities were fully or partially masked as well as the amount and duration of neuronal context. To balance the two objectives, the behavioral loss is down-weighted by a factor of 0.1 so that its scale

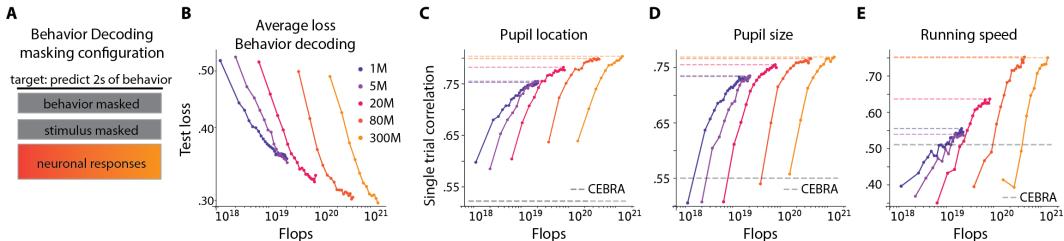


Figure 6: **Behavior decoding scales with model size.** **A.** Masking for behavior decoding. **B.** Decoding loss averaged over all behavioral variables. **C.** Pupil center: correlations computed separately for x and y , then averaged. **D.** Pupil size and its derivative: correlations trace, then averaged. **E.** Running speed: correlation with ground truth.

matches the magnitude of the Poisson loss. For our scaling experiments, we trained models on either the complete dataset of 323 sessions or constructed collections (8, 16, 32, 64 sessions) to study data scaling effects. These nested collections were designed so that larger collections always contained all sessions from smaller ones, ensuring consistent evaluation (see below for evaluation details). We followed Hu et al. (2024); Wen et al. (2024); Hägele et al. (2024) and trained our model with a warmup followed by a constant learning rate for at least 250k steps (~ 500 B tokens), saving checkpoints every 20k steps. After initial training, we continue from each checkpoint for 10k steps using an inverse-square-root learning rate decay, where each decayed checkpoint provides a final evaluation point in Fig. 7.

5 UNIFIED EVALUATION FRAMEWORK

All scaling experiments use a standardized evaluation protocol on the same mice to ensure fair comparison across models, baselines, and conditions. We chose seven mice (*evaluation mice*) comprised of five publicly available datasets from SENSORIUM 2023 and two test mice from SENSORIUM 2022. For all analyses, we use the held-out set provided by these datasets. We evaluate five regimes of response prediction (Fig. 5) as well as behavior decoding (Fig. 6):

Forecasting conditions predictions on the past activity of the entire population and 40 samples of behavior. We always predict the last second (30 response samples) within each two-second batch, using the first 25 samples of the batch as context. Since NDT-based models (Ye & Pandarinath, 2021) dominate in the forecasting literature, we use IBL (Zhang et al., 2024), a variant of NDT trained with multiple masking strategies similar to ours, as a baseline.

Table 2: **Baseline comparisons.** Results displayed in **bold** indicate the highest score per task in either the data-matched condition (8 sessions; top) or when using the full dataset (323 sessions; bottom). Evaluation conditions in this table were chosen to allow for a fair comparison with all baselines. Baselines were evaluated for all conditions that they support, with **X** denoting an unsupported condition. Conditions: Forecasting (*Fcst*), forecasting + stimulus (*Fcst+S*), population context (*Pop*) with $n = 256$ visible neurons ($n = 1024$ shown in parentheses), population context + stimulus with $n = 256$ visible neurons(*Pop+S*). Behavioral decoding: Average score across all behaviors (*Avg*), Pupil location (*pupil-loc*), pupil size (*pupil-size*), running speed (*Running*).

Model	Neuronal Activity Prediction				Behavior Decoding			
	Fcst	Fcst+S	Pop	Pop+S	Avg	Pupil-loc	Pupil-size	Running
MtM (Zhang et al., 2024)	0.12	X	0.07 (0.21)	X	X	X	X	X
Latent Model (Schmidt et al., 2025)	X	0.18	X	0.16	X	X	X	X
CEBRA (Schneider et al., 2023)	X	X	X	X	0.53	0.52	0.55	0.51
POYO+ (Azabou et al., 2025)	X	X	X	X	0.55	0.56	0.63	0.47
OmniMouse-5M (data-matched)	0.18	0.30	0.25 (0.34)	0.27	0.59	0.68	0.66	0.44
OmniMouse-1M (full data)	0.18	0.33	0.27 (0.36)	0.35	0.68	0.75	0.73	0.55
OmniMouse-5M (full data)	0.22	0.34	0.28 (0.37)	0.35	0.69	0.76	0.74	0.57
OmniMouse-20M (full data)	0.23	0.35	0.29 (0.38)	0.37	0.75	0.78	0.75	0.73
OmniMouse-80M (full data)	0.25	0.36	0.29 (0.39)	0.37	0.77	0.80	0.76	0.75
OmniMouse-300M (full data)	0.25	0.36	0.30 (0.39)	0.37	0.76	0.80	0.76	0.73

378 **Population context** conditions predictions on $N = 256$ other simultaneously recorded neurons and
 379 40 samples of behavior. As in the forecasting regime, we predict the last second of each batch and
 380 evaluate performance on this interval. This setting assesses how much of the trial-to-trial variability
 381 can be explained by simultaneously recorded neurons.

382 **Stimulus-driven** conditions predictions on two seconds of video and predicts activity for all neurons
 383 in the batch. We provide two seconds of input and evaluate predictions on the final second of neural
 384 activity. SENSORIUM 2023 (Turishcheva et al., 2024) establishes a strong baseline for this setting.
 385 **Stimulus-conditioned forecasting** is identical to forecasting, except that the full 2 seconds of video
 386 are also provided as input. We used Schmidt et al. (2025) as a baseline model, which also conditions
 387 on neurons, video and behavior.

388 **Stimulus-conditioned population context** is identical to population context, except that the full 2
 389 seconds of video are also provided as input. Again, Schmidt et al. (2025) was used as a baseline.

390 **Behavior prediction** conditions on the activity of all neurons (without video) and simultaneously
 391 predicts all behavioral traces (i. e. pupil size, pupil location and running speed). CEBRA (Schneider
 392 et al., 2023) is used as a baseline for this regime.

393 We train all state-of-the-art baselines on the collection of eight mice, used in our smallest data-scaling
 394 experiment (Fig. 7) to reduce computational cost. Implementation details and hyperparameters for
 395 each baseline are provided in App. D. Consistent with SENSORIUM 2022/2023 competitions, we
 396 use single-trial correlation as an evaluation metric. Additionally we evaluate our model on the SEN-
 397 SORIUM 2023 competition test set, which allows direct comparison against the state of the art model
 398 of predicting mouse visual cortex responses from video stimuli. We use OmniMouse-80M, freeze
 399 the entire model, and train only the neuron and animal embeddings using the released training data
 400 of five mice provided by the competition.

402 6 RESULTS: THE BENEFITS OF SCALING

404 **Current neuronal-predictive models are not compute- or parameter-limited.** Because collecting
 405 neuronal data is costly, we first asked if existing models are already limited by compute or parameters,
 406 or if more data would still improve performance. To answer this question, we trained models on
 407 all 323 sessions while scaling width and depth as in Tab. 1. We evaluated five neuronal response
 408 masking strategies (Fig. 5, top row): two based on response dynamics (forecasting and population
 409 context), two analogous variants that additionally condition on video (video-conditioned forecasting
 410 and video-conditioned population context), and one stimulus-driven strategy (video & behavior). For
 411 each strategy, models ranged from 1M to 300M parameters, and we tracked both test loss and single-
 412 trial correlation as a function of total compute (model FLOPs, excluding FLOPS of neuron-specific
 413 parameters). Performance improved across all neuronal prediction tasks as model size increased up
 414 to 80M parameters (Fig. 5). Beyond this point, gains were minimal, as loss curves saturated or overfit,
 415 indicating that current models are data-limited rather than compute- or parameter-limited.

416
 417
 418 Table 3: **Sensorium 2023 benchmark results.** Models with Σ suffix denote ensemble predictions.
 419 We use n=5 models in the OmniMouse ensemble, from different random seeds, which determines
 420 model initialization and ordering of training batches. \uparrow indicates higher is better. We either run
 421 the full multi-modal training, or only train the model with a single masking condition(*Unimodal*) –
 422 predicting neuronal responses conditioned on behavior and visual stimulus – comparable to all other
 423 models of the competition.

424 Model	425 Training	426 Main track \uparrow	427 OOD track \uparrow
428 DwiseNeuro- Σ (Turishcheva et al., 2024)	429 end-to-end	430 0.291	431 0.221
432 OmniMouse-5M-Unimodal	433 end-to-end	434 $0.288 \pm .003$	435 $0.256 \pm .002$
436 OmniMouse-5M-Unimodal- Σ	437 end-to-end	438 0.332	439 0.296
440 OmniMouse-5M	441 end-to-end	442 $0.295 \pm .005$	443 $0.263 \pm .003$
444 OmniMouse-5M- Σ	445 end-to-end	446 0.327	447 0.293
448 OmniMouse-80M	449 frozen	450 $0.313 \pm .001$	451 $0.274 \pm .001$
454 OmniMouse-80M- Σ	455 frozen	456 0.327	457 0.288

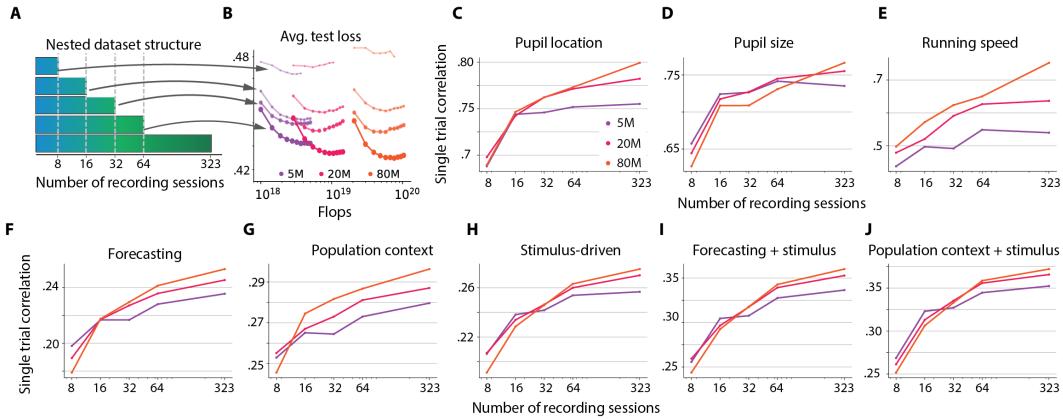


Figure 7: **Scaling data improves model performance.** **A.** Nested datasets structure. **B.** Test loss for different model and data sizes, averaged across all response prediction tasks. **C-K.** Performance improvements when scaling dataset from 8 to 323 sessions: **C.** Pupil center location. **D.** Pupil size and rate of pupil change. **E.** Running speed. **F.** Forecasting, prefix = 25 samples. **J.** Population context, context = 256 neurons. **H.** Stimulus-driven. **I.** Stimulus-conditioned forecasting, prefix = 25 samples. **K.** Stimulus-conditioned population context, context = 256 neurons.

OmniMouse achieves state-of-the-art performance. Our large-scale model outperforms all baselines across six evaluation regimes for both response prediction and behavior decoding (Tab. 2). Crucially, these gains are not simply due to training on more data: in data-matched comparisons, where OmniMouse and baselines are trained and evaluated on identical datasets, our model still outperforms strong specialized methods across nearly all tasks. This demonstrates that the architectural and masking design of OmniMouse provides advantages independent of data scale. We set a new state of the art on the Sensorium 2023 competition (Tab. 3), surpassing the winning entry on both the main and out-of-distribution (OOD) tracks in two evaluation settings: (1) with a frozen pretrained OmniMouse-80M backbone and only neuron-specific parameters trained, and (2) with full end-to-end training on the same 10-mouse competition dataset. In both cases, OmniMouse outperforms prior methods even without the ensembling strategies employed by competition entries. The improvements are particularly pronounced on the OOD track, which evaluates generalization to novel stimuli. We note that while our data-matched setting uses same mice sessions, our framework additionally enables training across video boundaries — an information not available for the previous models.

Behavior prediction shows the most promising scaling dynamics on the available data. To characterize the scaling of behavior prediction, we used the same models and evaluated their ability to predict pupil location, pupil size, and running speed from neuronal activity only (Fig. 6). Across all three settings, performance improved smoothly with compute budget, reminiscent of classic scaling-law behavior. Larger models consistently achieved higher single-trial correlations, albeit with an indication of saturation at the largest scale tested. Note, though, that training was stopped to avoid overfitting for the response prediction task. The models had not yet fully converged for the behavior prediction task and longer training could have improved performance further even on the largest model. OmniMouse not only matches, but surpasses the performance of all strong baselines such as CEBRA, particularly for running speed prediction, where correlation improves by over 0.15% relative to the baseline. These results show that behavioral prediction continues to improve with model scaling and may benefit from further increases in capacity.

Scaling dataset size improves performance. To study how dataset size affects performance, we trained three model sizes – 5M, 20M, and 80M – on nested collections of 8, 16, 32, 64, and 323 sessions such that the larger collections are supersets of the smaller ones (Fig. 7A). For evaluation, we test the model on the same held-out test set of the same seven mice that were contained in all collections (Fig. 7C–J). In all cases, performance improved with the number of sessions, exhibiting predictable data-scaling trends. Larger models consistently benefited more from additional data. The larger models required a minimum size of the training set to outperform the smaller models and the performance gap widened as the dataset increased in size. Behavior decoding benefited the most from data scaling (Fig. 7C–E), showing no saturation and large performance differences between 5M and 80M models. For responses, the strongest gains were observed for tasks that included video

486 input (Fig. 7C–E), where the 80M models continued to improve even beyond 100 sessions, suggesting
 487 that they remained data-limited rather than capacity-limited. The *forecasting* and *population context*
 488 showed bigger benefits from scaling of both data and model sizes. The gaps between 20M and 80M
 489 models (Fig. 7A, B) increased faster compared to the tasks with video input, which could indicate a
 490 lack of diversity of the visual stimuli in our dataset. Overall, these results highlight that scaling both
 491 model size and data quantity is synergistic and necessary to approach peak predictive performance.

492 **OmniMouse enables systematic evaluation of how neuronal context shapes predictive perfor-**
 493 **mance.** Lastly, we assessed the model’s generalization by testing on masking conditions not seen dur-
 494 ing training, varying neuronal history duration (10–25 samples) and population context size (16–2048
 495 neurons). Performance scaled smoothly with additional context demonstrating that OmniMouse
 496 learns generalizable representations that enables systematic analyses of contextual contributions to
 497 neural variability (see Fig. S2, Fig. S3, and App. B).

498 7 DISCUSSION

501 In this work we introduce OmniMouse, a multi-modal, multi-task model of mouse visual cortex that
 502 integrates neural activity, video, and behavior across animals, making one step towards a foundation
 503 model of mouse vision. A single model achieves state-of-the-art performance on diverse tasks –
 504 predicting neural responses from visual stimuli, forecasting activity and decoding behavior. Trained
 505 on the largest neural dataset to date (3.3M neurons, 78 mice, 323 sessions), OmniMouse enables
 506 systematic study of scaling in brain models.

507 Our motivation for studying scaling laws is practical: if brain models are to become foundation
 508 models for neuroscience, it is essential to ask whether current data can sustain scaling. Despite using
 509 naturalistic movies and images, we find that performance saturates with model size, suggesting data –
 510 not compute – as the limiting factor. Even in the relatively simple mouse visual system, richer tasks,
 511 more varied stimuli, and larger-scale recordings are needed to support continued scaling. At the same
 512 time, relatively sparse sampling already yields strong models: with 60,000 neurons from just eight
 513 mice, predictive accuracy is high, likely due to redundancy in neural codes. Additional gains from
 514 larger datasets appear modest, paralleling language and vision models – yet in those domains, such
 515 small improvements have triggered phase transitions to qualitatively new abilities. By analogy, richer
 516 neuroscience data may similarly unlock new capabilities in brain models, revealing deeper principles
 517 of neural computation.

518 **Limitations.** Our work has several limitations. First, OmniMouse parameters scale linearly with
 519 the number of neurons, as it learns per-neuron embeddings. This makes training computationally
 520 prohibitively expensive may limit scaling to even larger datasets. Second, large-scale transformers
 521 remain difficult to interpret, and like deep learning models, they are prone to optimization issues and
 522 overparameterization, which constrain the biological insights that can be drawn. Furthermore, the
 523 behavioral data present in our data is limited to spontaneous activity and it is thus unclear if this
 524 approach can transfer to more complex behaviors.

525 **Future work.** Future work could extend to stimulus decoding (Benchetrit et al., 2023; Bauer et al.,
 526 2024; Zhu et al., 2025) and more precise study of training dynamics of modality interactions and
 527 multi-task learning to improve the masking recipe. Beyond calcium imaging in mouse visual cor-
 528 tex, models could integrate other data types such as electrophysiological recordings, diverse animal
 529 species, and more multi-modal stimuli such as audio. Alternatively, one could test generalization of
 530 the existing model across new tasks, stimuli, and species via (semi) closed-loop in-silico experiments
 531 (Ustyuzhaninov et al., 2022; Li et al., 2025), potentially finding biological insights about neuronal
 532 functional properties as in Walker et al. (2019); Li et al. (2025). Finally, jointly modeling visual in-
 533 put, neuronal responses, and behavior enables analysis of spontaneous and evoked activity (Stringer
 534 et al., 2019), revealing how brain state shapes sensory processing and core principles of computation.

535
 536
 537
 538
 539

540

REPRODUCIBILITY STATEMENT

541

542 To ensure the reproducibility of our results, we provide the complete source code for our multi-
543 modal model, including scripts for training, evaluation, fine-tuning, and inference, available at
544 <https://anonymous.4open.science/r/unraveling-70BA/>. Additionally, the data-loading
545 logic is provided at <https://anonymous.4open.science/r/experanto-iclr/>. Regarding the
546 dataset, which consists of large-scale neuronal responses from the visual cortex and naturalistic visual
547 stimulation, we have detailed the data acquisition and processing pipeline in Appendix E. While the
548 full dataset is currently undergoing final preparation due to its unprecedented scale, we are committed
549 to releasing it publicly within six months.

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ron-
597 neberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure pre-
598 diction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

599 Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
600 Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
601 mixed-modal language models. In *International Conference on Machine Learning*, pp. 265–279.
602 PMLR, 2023.

603 Dora Angelaki, Brandon Benson, Julius Benson, Daniel Birman, Niccolò Bonacchi, Kénia
604 Bougrová, Sebastian A Bruijns, Matteo Carandini, Joana A Catarino, et al. A brain-wide map
605 of neural activity during complex behaviour. *Nature*, 645(8079):177–191, 2025.

606 Ján Antolík, Sonja B Hofer, James A Bednar, and Thomas D Mrsic-Flogel. Model constrained by
607 visual hierarchy improves prediction of neural responses to natural scenes. *PLoS computational
608 biology*, 12(6):e1004927, 2016.

609 Richard Antonello, Aditya Vaidya, and Alexander Huth. Scaling laws for language encoding models
610 in fmri. *Advances in Neural Information Processing Systems*, 36:21895–21907, 2023.

611 Antonis Antoniades, Yiyi Yu, Joseph Canzano, William Wang, and Spencer LaVere Smith. Neu-
612 roformer: Multimodal and multitask generative pretraining for brain data, 2024. URL <https://arxiv.org/abs/2311.00136>.

613 Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh Nachimuthu, Michael
614 Mendelson, Blake Richards, Matthew Perich, Guillaume Lajoie, and Eva Dyer. A unified, scalable
615 framework for neural population decoding. *Advances in Neural Information Processing Systems*,
616 36:44937–44956, 2023.

617 Mehdi Azabou, Krystal Xuejing Pan, Vinam Arora, Ian Jarratt Knight, Eva L Dyer, and Blake Aaron
618 Richards. Multi-session, multi-task neural decoding from distinct cell-types and brain regions. In
619 *The Thirteenth International Conference on Learning Representations*, 2025.

620 Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah Muhammad,
621 Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-based latent state gener-
622 ative model of neural population responses to natural images. *Advances in Neural Information
623 Processing Systems*, 34:15801–15815, 2021.

624 Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan Litke,
625 EJ Chichilnisky, and Liam Paninski. Multilayer recurrent network models of primate retinal gan-
626 glion cell responses. In *International Conference on Learning Representations*, 2017.

627 Joel Bauer, Troy W Margrie, and Claudia Clopath. Movie reconstruction from mouse visual cortex
628 activity. *bioRxiv*, pp. 2024–06, 2024.

629 Yohann Benchetrit, Hubert Banville, and Jean-Rémi King. Brain decoding: toward real-time recon-
630 struction of visual perception. *arXiv preprint arXiv:2310.19812*, 2023.

631 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
632 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff, Aviya
633 Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: A suite for analyzing large lan-
634 guage models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun
635 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th
636 International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
637 Research*, pp. 2397–2430. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/biderman23a.html>.

638 David H Brainard and Spatial Vision. The psychophysics toolbox. *Spatial vision*, 10(4):433–436,
639 1997.

648 Max F Burg, Santiago A Cadena, George H Denfield, Edgar Y Walker, Andreas S Tolias, Matthias
 649 Bethge, and Alexander S Ecker. Learning divisive normalization in primary visual cortex. *PLOS*
 650 *Computational Biology*, 17(6):e1009028, 2021.

651 Santiago A. Cadena, George H. Denfield, Edgar Y. Walker, Leon A. Gatys, Andreas S. Tolias, Matthias
 652 Bethge, and Alexander S. Ecker. Deep convolutional models improve predictions of
 653 macaque v1 responses to natural images. *PLOS Computational Biology*, 15(4):e1006897, April
 654 2019. doi: 10.1371/journal.pcbi.1006897.

655 Charles F Cadieu, Ha Hong, Daniel L K Yamins, Nicolas Pinto, Diego Ardila, Ethan A Solomon,
 656 Najib J Majaj, and James J DiCarlo. Deep neural networks rival the representation of primate IT
 657 cortex for core visual object recognition. *PLoS Comput. Biol.*, 10(12):e1003963, 2014.

658 Salvatore Calcagno, Isaak Kavasidis, Simone Palazzo, Marco Brondi, Luca Sità, Giacomo Turri,
 659 Daniela Giordano, Vladimir R. Kostic, Tommaso Fellin, Massimiliano Pontil, and Concetto
 660 Spampinato. Quantformer: Learning to quantize for neural activity forecasting in mouse visual
 661 cortex, 2024. URL <https://arxiv.org/abs/2412.07264>.

662 Josue Ortega Caro, Antonio H de O Fonseca, Christopher Averill, Syed A Rizvi, Matteo Rosati,
 663 James L Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M Dhodapkar, et al.
 664 Brainlm: A foundation model for brain activity recordings. *bioRxiv*, pp. 2023–09, 2023.

665 Team Chameleon. Chameleon: Mixed-modal early-fusion foundation models, 2024. URL
 666 <https://arxiv.org/abs/2405.09818>, 9(8), 2024.

667 Geeling Chau, Christopher Wang, Sabera Talukder, Vighnesh Subramaniam, Saraswati Soedarmadji,
 668 Yisong Yue, Boris Katz, and Andrei Barbu. Population transformer: Learning population-level
 669 representations of neural activity. *ArXiv*, pp. arXiv–2406, 2024.

670 Yuqi Chen, Kan Ren, Kaitao Song, Yansen Wang, Yifan Wang, Dongsheng Li, and Lili Qiu. Eeg-
 671 former: Towards transferable and interpretable large-scale eeg foundation model. *arXiv preprint*
 672 *arXiv:2401.10278*, 2024.

673 BR Cowley and JW Pillow. High-contrast "gaudy" images improve the training of deep neural net-
 674 work models of visual cortex. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
 675 (eds.), *Advances in Neural Information Processing Systems* 33, pp. 21591–21603. Curran Asso-
 676 ciates, Inc., 2020.

677 Richard Csaky, Mats WJ van Es, Oiwi Parker Jones, and Mark Woolrich. Foundational gpt model
 678 for meg. *arXiv preprint arXiv:2404.09256*, 2024.

679 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
 680 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *2024 IEEE International*
 681 *Symposium on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2024.

682 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 683 registers. *arXiv preprint arXiv:2309.16588*, 2023.

684 Stéphane d’Ascoli, Jérémie Rapin, Yohann Benchetrit, Hubert Banville, and Jean-Rémi King.
 685 Tribe: Trimodal brain encoder for whole-brain fmri response prediction. *arXiv preprint*
 686 *arXiv:2507.22229*, 2025.

687 Saskia E. J. de Vries, Jerome A. Lecoq, Michael A. Buice, Peter A. Groblewski, Gabriel K. Ocker,
 688 Michael Oliver, David Feng, Nicholas Cain, Peter Ledochowitsch, Daniel Millman, Kate Roll,
 689 Marina Garrett, Tom Keenan, Leonard Kuan, Stefan Mihalas, Shawn Olsen, Carol Thompson,
 690 Wayne Wakeman, Jack Waters, Derric Williams, Chris Barber, Nathan Berbesque, Brandon Blan-
 691 chard, Nicholas Bowles, Shiella D. Caldejon, Linzy Casal, Andrew Cho, Sissy Cross, Chinh
 692 Dang, Tim Dolbeare, Melise Edwards, John Galbraith, Nathalie Gaudreault, Terri L. Gilbert,
 693 Fiona Griffin, Perry Hargrave, Robert Howard, Lawrence Huang, Sean Jewell, Nika Keller, Ulf
 694 Knoblich, Josh D. Larkin, Rachael Larsen, Chris Lau, Eric Lee, Felix Lee, Arielle Leon, Lu Li,
 695 Fuhui Long, Jennifer Luviano, Kyla Mace, Thuyanh Nguyen, Jed Perkins, Miranda Robertson,
 696 Sam Seid, Eric Shea-Brown, Jianghong Shi, Nathan Sjoquist, Cliff Slaughterbeck, David Sulli-
 697 van, Ryan Valenza, Casey White, Ali Williford, Daniela M. Witten, Jun Zhuang, Hongkui Zeng,
 698 700 701

702 Colin Farrell, Lydia Ng, Amy Bernard, John W. Phillips, R. Clay Reid, and Christof Koch. A
 703 large-scale standardized physiological survey reveals functional organization of the mouse visual
 704 cortex. *Nature Neuroscience*, 23(1):138–151, December 2019. doi: 10.1038/s41593-019-0550-9.
 705 URL <https://doi.org/10.1038/s41593-019-0550-9>.

706 Zhiwei Ding, Dat T. Tran, Kayla Ponder, Zhuokun Ding, Rachel Froebe, Lydia Ntanavara, Paul G.
 707 Fahey, Erick Cobos, Luca Baroni, Maria Diamantaki, Eric Y. Wang, Andersen Chang, Stelios Pa-
 708 padopoulos, Jiakun Fu, Taliah Muhammad, Christos Papadopoulos, Santiago A. Cadena, Alexan-
 709 dros Evangelou, Konstantin Willeke, Fabio Anselmi, Sophia Sanborn, Jan Antolik, Emmanouil
 710 Froudarakis, Saumil Patel, Edgar Y. Walker, Jacob Reimer, Fabian H. Sinz, Alexander S. Ecker,
 711 Katrin Franke, Xaq Pitkow, and Andreas S. Tolias. Bipartite invariance in mouse primary visual
 712 cortex. *bioRxiv*, 2025a. doi: 10.1101/2023.03.15.532836. URL <https://www.biorxiv.org/content/early/2025/04/19/2023.03.15.532836>.

713 Zhuokun Ding, Paul G Fahey, Stelios Papadopoulos, Eric Y Wang, Brendan Celii, Christos Pa-
 714 padopoulos, Andersen Chang, Alexander B Kunin, Dat Tran, Jiakun Fu, et al. Functional con-
 715 nectomics reveals general wiring rule in mouse visual cortex. *Nature*, 640(8058):459–469, 2025b.

716 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong,
 717 Christopher Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics foundation model with
 718 gradient positioning and spatiotemporal masking. *Advances in Neural Information Processing
 719 Systems*, 37:86048–86073, 2024.

720 Yu Duan, Hamza Tahir Chaudhry, Misha B Ahrens, Christopher D Harvey, Matthew G Perich, Karl
 721 Deisseroth, and Kanaka Rajan. Poco: Scalable neural forecasting through population conditioning.
 722 *arXiv preprint arXiv:2506.14957*, 2025.

723 Alexander S. Ecker, Fabian H. Sinz, Emmanouil Froudarakis, Paul G. Fahey, Santiago A. Cadena,
 724 Edgar Y. Walker, Erick Cobos, Jacob Reimer, Andreas S. Tolias, and Matthias Bethge. A rotation-
 725 equivariant convolutional neural network model of primary visual cortex. *arXiv*, 2018.

726 Paul G Fahey, Taliah Muhammad, Cameron Smith, Emmanouil Froudarakis, Erick Cobos, Jiakun
 727 Fu, Edgar Y Walker, Dimitri Yatsenko, Fabian H Sinz, Jacob Reimer, et al. A global map of
 728 orientation tuning in mouse visual cortex. *BioRxiv*, pp. 745323, 2019.

729 Emmanouil Froudarakis, Philipp Berens, Alexander S Ecker, R James Cotton, Fabian H Sinz, Dimitri
 730 Yatsenko, Peter Saggau, Matthias Bethge, and Andreas S Tolias. Population code in mouse V1
 731 facilitates readout of natural scenes through increased sparseness. *Nat. Neurosci.*, 17(6):851–857,
 732 June 2014.

733 Marina E Garrett, Ian Nauhaus, James H Marshel, and Edward M Callaway. Topography and areal
 734 organization of mouse visual cortex. *J. Neurosci.*, 34(37):12587–12600, September 2014.

735 Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L Brown, Sue Ann
 736 Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, Pengcheng Zhou, et al. Caiman an
 737 open source tool for scalable calcium imaging data analysis. *elife*, 8:e38173, 2019.

738 Abdulkadir Gokce and Martin Schrimpf. Scaling laws for task-optimized models of the primate
 739 visual ventral stream. *arXiv preprint arXiv:2411.05712*, 2024.

740 Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
 741 Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In A. Globerson,
 742 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances
 743 in Neural Information Processing Systems*, volume 37, pp. 76232–76264. Curran Associates,
 744 Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/8b970e15a89bf5d12542810df8ae8fc-Paper-Conference.pdf.

745 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
 746 Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
 747 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

748 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
 749 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
 750 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

756 Linxing Preston Jiang, Shirui Chen, Emmanuel Tanumihardja, Xiaochuang Han, Weijia Shi, Eric
 757 Shea-Brown, and Rajesh PN Rao. Data heterogeneity limits the scaling effect of pretraining neural
 758 data transformers. [bioRxiv](#), pp. 2025–05, 2025.

759 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic repre-
 760 sentations with tremendous eeg data in bci. [arXiv preprint arXiv:2405.18765](#), 2024.

761 Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer.
 762 [Advances in Neural Information Processing Systems](#), 35:25586–25599, 2022.

763 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 764 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 765 [arXiv preprint arXiv:2001.08361](#), 2020.

766 Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-
 767 Fei. Large-Scale video classification with convolutional neural networks. In [2014 IEEE](#)
 768 [Conference on Computer Vision and Pattern Recognition](#), pp. 1725–1732, June 2014.

769 William F Kindel, Elijah D Christensen, and Joel Zylberberg. Using deep learning to probe the neural
 770 code for images in primary visual cortex. [Journal of vision](#), 19(4):29–29, 2019.

771 Mario Kleiner, David Brainard, and Denis Pelli. What's new in psychtoolbox-3? 2007.

772 David Klindt, Alexander S Ecker, Thomas Euler, and Matthias Bethge. Neural system identification
 773 for large populations separating “what” and “where”. [Advances in neural information processing](#)
 774 [systems](#), 30, 2017.

775 Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bndr: Using transformers and a
 776 contrastive self-supervised learning task to learn from massive amounts of eeg data. [Frontiers in](#)
 777 [Human Neuroscience](#), 15:653659, 2021.

778 Trung Le and Eli Shlizerman. Stndt: Modeling neural population activity with spatiotemporal trans-
 779 formers. [Advances in Neural Information Processing Systems](#), 35:17926–17939, 2022.

780 Bryan M Li, Isabel M Cornacchia, Nathalie L Rochefort, and Arno Onken. V1t: large-scale mouse
 781 v1 response prediction using a vision transformer. [arXiv preprint arXiv:2302.03023](#), 2023.

782 Bryan M Li, Wolf De Wulf, Danai Katsanevaki, Arno Onken, and Nathalie LI Rochefort. Movie-
 783 trained transformer reveals novel response properties to dynamic stimuli in mouse visual cortex.
 784 [bioRxiv](#), 2025. doi: 10.1101/2025.09.16.676524. URL <https://www.biorxiv.org/content/early/2025/09/17/2025.09.16.676524>.

785 Yamin Li, Ange Lou, Ziyuan Xu, Shengchao Zhang, Shiyu Wang, Dario Englot, Soheil Kolouri,
 786 Daniel Moyer, Roza Bayrak, and Catie Chang. Neurobolt: Resting-state eeg-to-fmri synthesis
 787 with multi-dimensional feature mapping. [Advances in Neural Information Processing Systems](#),
 788 37:23378–23405, 2024.

789 Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, and Tai Sing Lee. Incremental learning and
 790 self-attention mechanisms improve neural system identification. [arXiv e-prints](#), pp. arXiv–2406,
 791 2024.

792 Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Willeke, Akshay Jagadish, Eric Wang,
 793 Edgar Y. Walker, Santiago A Cadena, Taliah Muhammad, Erick Cobos, Andreas S. Tolias, Alexan-
 794 der S Ecker, and Fabian H. Sinz. Generalization in data-driven models of primary visual cortex.
 795 In [International Conference on Learning Representations](#), 2021. URL <https://openreview.net/forum?id=Tp7kI90Htd>.

796 Alexander Mathis, Pranav Mamtanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Macken-
 797 zie Weygandt Mathis, and Matthias Bethge. DeepLabCut: markerless pose estimation of user-
 798 defined body parts with deep learning. [Nat. Neurosci.](#), 21(9):1281–1289, September 2018.

799 Lane T McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen A Baccus.
 800 Deep learning models of the retinal response to natural scenes. [Adv. Neural Inf. Process. Syst.](#), 29
 801 (Nips):1369–1377, 2016.

810 Lu Mi, Trung Le, Tianxing He, Eli Shlizerman, and Uyar Sümbül. Learning time-invariant rep-
 811 resentations for individual neurons from population dynamics. *Advances in Neural Information*
 812 *Processing Systems*, 36:46007–46026, 2023.

813

814 MICrONS Consortium. Functional connectomics spanning multiple areas of mouse visual cortex.
 815 *Nature*, 640(8058):435–447, April 2025.

816

817 MICrONS Consortium, J Alexander Bae, Mahaly Baptiste, Agnes L Bodor, Derrick Brittain, Joann
 818 Buchanan, Daniel J Bumbarger, Manuel A Castro, Brendan Celii, Erick Cobos, Forrest Collman,
 819 Nuno Maçarico da Costa, Sven Dorkenwald, Leila Elabbady, Paul G Fahey, Tim Fliss, Emmanouil
 820 Froudakis, Jay Gager, Clare Gamlin, Akhilesh Halageri, James Hebditch, Zhen Jia, Chris Jordan,
 821 Daniel Kapner, Nico Kemnitz, Sam Kinn, Selden Koolman, Kai Kuehner, Kisuk Lee, Kai
 822 Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Sarah McReynolds, Elanine Miranda, Eric
 823 Mitchell, Shanka Subhra Mondal, Merlin Moore, Shang Mu, Taliah Muhammad, Barak Nehoran,
 824 Oluwaseun Ogedengbe, Christos Papadopoulos, Stelios Papadopoulos, Saumil Patel, Xaq Pitkow,
 825 Sergiy Popovych, Anthony Ramos, R Clay Reid, Jacob Reimer, Casey M Schneider-Mizell, H
 826 Sebastian Seung, Ben Silverman, William Silversmith, Amy Sterling, Fabian H Sinz, Cameron L
 827 Smith, Shelby Suckow, Zheng H Tan, Andreas S Tolias, Russel Torres, Nicholas L Turner, Edgar Y
 828 Walker, Tianyu Wang, Grace Williams, Sarah Williams, Kyle Willie, Ryan Willie, William Wong,
 829 Jingpeng Wu, Chris Xu, Runzhe Yang, Dimitri Yatsenko, Fei Ye, Wenjing Yin, and Szi-Chieh
 830 Yu. Functional connectomics spanning multiple areas of mouse visual cortex. *bioRxiv*, pp.
 2021.07.28.454025, July 2021.

831

832 Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
 833 triain, and Jianfeng Gao. Large language models: A survey. *arXiv preprint arXiv:2402.06196*,
 2024.

834

835 M C Morrone, M Tosetti, D Montanaro, A Fiorentini, G Cioni, and D C Burr. A cortical area that
 836 responds specifically to optic flow, revealed by fMRI. *Nat. Neurosci.*, 3(12):1322–1328, December
 837 2000.

838

839 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 840 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 841 models. *ACM Transactions on Intelligent Systems and Technology*, 16(5):1–72, 2025.

842

843 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
 844 Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
 845 Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
 846 Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
 847 Lester James V Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
 848 Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wil-
 849 son, Luke Zettlemoyer, Ali Farhadi, Noah A Smith, and Hannaneh Hajishirzi. 2 OLMo 2 furious.
 December 2024.

850

851 Denis G Pelli. The videotoolbox software for visual psychophysics: transforming numbers into
 852 movies. *Spatial vision*, 10(4):437–442, 1997.

853

854 Nicolai Petkov and Easwar Subramanian. Motion detection, noise reduction, texture suppression,
 855 and contour enhancement by spatiotemporal gabor filters with surround inhibition. *Biol. Cybern.*,
 97(5-6):423–439, December 2007.

856

857 AJ Piergiovanni, Isaac Noble, Dahun Kim, Michael S Ryoo, Victor Gomes, and Anelia Angelova.
 858 Mirasol3b: A multimodal autoregressive model for time-aligned and contextual modalities. In
 859 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 26804–26814, 2024.

860

861 Paweł A Pierzchlewicz, Konstantin F Willeke, Arne F Nix, Pavithra Elumalai, Kelli Restivo, Tori
 862 Shinn, Cate Nealey, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, Andreas S Tolias, and
 863 Fabian H Sinz. Energy guided diffusion for generating neurally exciting images. In *Advances in*
Neural Processing Systems (NeurIPS 2023), pp. 2023.05.18.541176, May 2023.

864 Jacob Reimer, Emmanouil Froudarakis, Cathryn R Cadwell, Dimitri Yatsenko, George H Denfield,
 865 and Andreas S Tolias. Pupil fluctuations track fast switching of cortical states during quiet wake-
 866 fulness. *Neuron*, 84(2):355–362, 2014.

867

868 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 869 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei. ImageNet
 870 large scale visual recognition challenge. *Int. J. Comput. Vis.*, 115(3):211–252, December 2015.

871

872 Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggar-
 873 wal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical vision
 874 transformer without the bells-and-whistles. In *International conference on machine learning*, pp.
 29441–29454. PMLR, 2023.

875

876 Shreya Saha, Ishaan Chadha, et al. Modeling the human visual system: Comparative insights from
 877 response-optimized and task-optimized vision models, language models, and different readout
 878 mechanisms. [arXiv preprint arXiv:2410.14031](https://arxiv.org/abs/2410.14031), 2024.

879

880 Finn Schmidt, Polina Turishcheva, Suhas Shrinivasan, and Fabian H. Sinz. Modeling dynamic neural
 881 activity by combining naturalistic video stimuli and stimulus-independent latent factors, 2025.
 882 URL <https://arxiv.org/abs/2410.16136>.

883

884 Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
 joint behavioural and neural analysis. *Nature*, 617(7960):360–368, 2023.

885

886 Noam Shazeer. GLU variants improve transformer. February 2020.

887

888 Mustafa Shukor, Enrico Fini, Victor Guilherme Turrisi da Costa, Matthieu Cord, Joshua Susskind,
 889 and Alaaeldin El-Nouby. Scaling laws for native multimodal models. [arXiv preprint
 arXiv:2504.07951](https://arxiv.org/abs/2504.07951), 2025.

890

891 Fabian Sinz, Alexander S Ecker, Paul Fahey, Edgar Walker, Erick Cobos, Emmanouil Froudarakis,
 892 Dimitri Yatsenko, Zachary Pitkow, Jacob Reimer, and Andreas Tolias. Stimulus domain transfer
 893 in recurrent models for large scale cortical population prediction on video. *Advances in neural
 information processing systems*, 31, 2018.

894

895 Nicholas James Sofroniew, Daniel Flickinger, Jonathan King, and Karel Svoboda. A large field of
 896 view two-photon mesoscope with subcellular resolution for in vivo imaging. *elife*, 5:e14472, 2016.

897

898 Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and
 899 Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. *Science*,
 900 364(6437):eaav7893, 2019.

901

902 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

903

904 Rahul Thapa, Bryan He, Magnus Ruud Kjaer, Hyatt Moore, Gauri Ganjoo, Emmanuel Mignot, and
 905 James Zou. Sleepfm: Multi-modal representation learning for sleep across brain activity, ecg and
 906 respiratory signals. [arXiv preprint arXiv:2405.17766](https://arxiv.org/abs/2405.17766), 2024.

907

908 Armin Thomas, Christopher Ré, and Russell Poldrack. Self-supervised learning of brain dynam-
 909 ics from broad neuroimaging data. *Advances in neural information processing systems*, 35:
 21255–21269, 2022.

910

911 Polina Turishcheva, Paul Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder,
 912 Yongrong Qiu, Konstantin Willeke, Mohammad Bashiri, Ruslan Baikulov, et al. Retrospective for
 913 the dynamic sensorium competition for predicting large-scale mouse primary visual cortex activity
 914 from videos. *Advances in Neural Information Processing Systems*, 37:118907–118929, 2024.

915

916 Ivan Ustyuzhaninov, Max F Burg, Santiago A Cadena, Jiakun Fu, Taliah Muhammad, Kayla Ponder,
 917 Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, Andreas S Tolias, et al. Digital twin re-
 veals combinatorial code of non-linear computations in the mouse primary visual cortex. *BioRxiv*,
 918 pp. 2022–02, 2022.

918 Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G
919 Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops dis-
920 cover what excites neurons most using deep predictive models. *Nat. Neurosci.*, 22(12):2060–2065,
921 December 2019.

922 Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
923 Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial
924 recordings. *arXiv preprint arXiv:2302.14367*, 2023.

925 Eric Y Wang, Paul G Fahey, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
926 warmup-stable-decay learning rates: A river valley loss landscape perspective. October 2024.

927 Konstantin F Willeke, Paul G Fahey, Mohammad Bashiri, Laura Pede, Max F Burg, Christoph Bless-
928 ing, Santiago A Cadena, Zhiwei Ding, Konstantin-Klemens Lurz, Kayla Ponder, et al. The senso-
929 rium competition on predicting large-scale mouse primary visual cortex activity. *arXiv preprint*
930 *arXiv:2206.08666*, 2022.

931 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
932 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
933 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
934 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
935 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
936 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
937 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
938 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
939 Qiu. Qwen3 technical report. May 2025.

940 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
941 the wild. *Advances in Neural Information Processing Systems*, 36:78240–78260, 2023.

942 Joel Ye and Chethan Pandarinath. Representation learning for neural population activity with neural
943 data transformers. *arXiv preprint arXiv:2108.01210*, 2021.

944 Joel Ye, Jennifer Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: multi-context
945 pretraining for neural spiking activity. *Advances in Neural Information Processing Systems*, 36:
946 80352–80374, 2023.

947 Joel Ye, Fabio Rizzoglio, Adam Smoulder, Hongwei Mao, Xuan Ma, Patrick Marino, Raeed Chowd-
948 hury, Dalton Moore, Gary Blumenthal, William Hockeimer, et al. A generalist intracortical motor
949 decoder. *bioRxiv*, pp. 2025–02, 2025.

950 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant: Foun-
951 dation model for intracranial neural signal. *Advances in Neural Information Processing Systems*,
952 36:26304–26321, 2023.

953 Yimeng Zhang, T-S Tai Sing Lee, Ming Li, Fang Liu, Shiming Tang, Tai Sing, Lee Ming, Li Fang,
954 Liu Shiming, T-S Tai Sing Lee, Ming Li, Fang Liu, and Shiming Tang. Convolutional neural
955 network models of V1 responses to complex patterns. *J. Comput. Neurosci.*, pp. 1–22, 2018.

956 Yizi Zhang, Yanchen Wang, Donato Jiménez-Benetó, Zixuan Wang, Mehdi Azabou, Blake Richards,
957 Renee Tung, Olivier Winter, Eva Dyer, Liam Paninski, et al. Towards a “universal translator” for
958 neural dynamics at single-cell, single-spike resolution. *Advances in Neural Information Processing
959 Systems*, 37:80495–80521, 2024.

960 Yizi Zhang, Yanchen Wang, Mehdi Azabou, Alexandre Andre, Zixuan Wang, Hanrui Lyu, The In-
961 ternational Brain Laboratory, Eva Dyer, Liam Paninski, and Cole Hurwitz. Neural encoding and
962 decoding at scale, 2025. URL <https://arxiv.org/abs/2504.08201>.

963 Yu Zhu, Bo Lei, Chunfeng Song, Wanli Ouyang, Shan Yu, and Tiejun Huang. Multi-modal latent
964 variables for cross-individual primary visual cortex modeling and analysis. In *Proceedings of the
965 AAAI Conference on Artificial Intelligence*, volume 39, pp. 1228–1236, 2025.

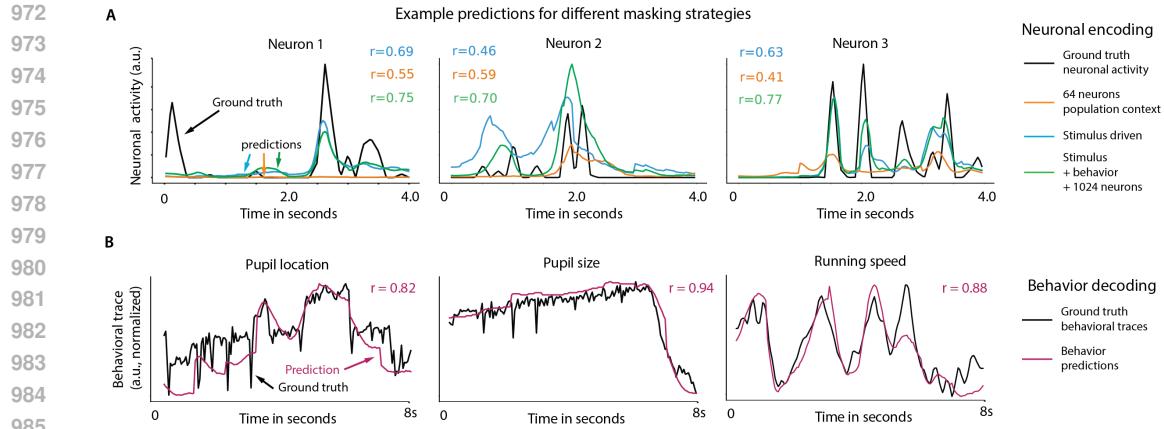


Figure S1: **Example predictions of neuronal activity and behavioral variables.** **A.** Here we show three example neurons and their ground truth neuronal activity for 4 seconds (black). We also show the model prediction of OmniMouse for three evaluation conditions: *population context of 64 neurons* (orange), *stimulus-driven* (blue), *stimulus + behavior + neuron context* (green). The predictive performance, shown as pearson correlation r is increasing with more information provided to the model. Our model is designed to disentangle the relative contributions of sensory input, behavior, and population dynamics to individual neurons' activity. **B.** Ground truth and predictions for behavioral variables.

A QUALITATIVE VISUALIZATIONS

B SUPPLEMENTAL RESULTS

OmniMouse enables systematic evaluation of how neuronal context shapes predictive performance. We evaluated OmniMouse on conditions not seen during training, systematically varying neuronal history duration (10-25 samples) and population context size (16-2048 neurons) for population context tasks. Performance scaled smoothly with context availability across all conditions Fig. S2. When video was available, performance plateaued more quickly for forecasting but continued to improve for population context, suggesting that nearby neurons carry complementary information beyond visual input. These systematic evaluations demonstrate that OmniMouse has learned generalizable representations of neural variability, enabling quantitative assessment of how different sources of context—temporal history contribute to explaining variability in neural responses.

Furthermore, we hypothesized that harder tasks might benefit more from scaling, as shown for large language models (Minaee et al., 2024; Naveed et al., 2025). To test this, we varied the neuronal history duration (*full-population prefix* $\in [10, 15, 20, 25]$) for forecasting tasks and context size (*context* $\in [16, 32, \dots, 1024, 2048]$) for population context tasks, where shorter contexts represent harder tasks. We also compared performance with and without 2 seconds of video input. Fig. S2 confirms our hypothesis: performance improves consistently as context grows, hence, bigger context indicates easier task. Non-video conditioned regimes scale more steeply, likely due to lower baselines. For forecasting, they never match video-conditioned models, since video provides temporal information unavailable at prediction. For population context, however, sufficient neural responses recover enough information to match video performance. However, contrary to LLMs, in our case scaling does not preferentially benefit harder tasks: across all tasks, curves for different model sizes remain parallel. If harder tasks gained more, larger models (20–80M) would show bigger advantages over smaller ones (1–5M) at minimal context.

C RELATION TO OTHER NEUROSCIENCE SCALING.

This is the first study to systematically scale both model and data size using only neuro-data, yet our findings align with prior neuro-scaling work. Consistent with Gokce & Schrimpf (2024), behavior prediction improves with larger models, and the greater gains from joint model–data scaling

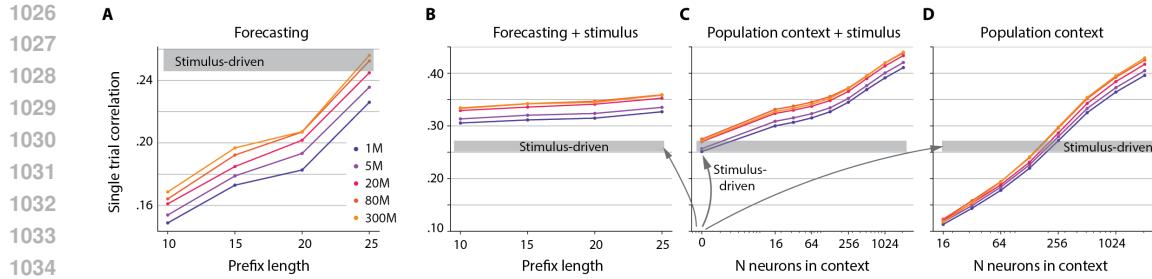


Figure S2: Using the models capabilities to investigate context lengths for forecasting and population context tasks. **A.** Forecasting with a change of prefix length, i.e. how many samples of the full population are unmasked. A prefix length of 10 corresponds to one third of a second of neuronal activity. **B.** Same change of forecasting context as **A**, but with video. **C.** Performance improvements in addition to video with population context. # neurons in context = 0 means that all neurons are masked, and the model conditions its prediction purely on the visual stimulus. In all panels, the stimulus-driven performance is denoted as the gray box for ease of comparison. Remarkably, as seen in panel **A**, forecasting a whole second of neuronal activity given the past second (i.e. prefix length = 25) yields to the same performance as showing the entire video. Context increases from 0-16-...-2048. **D.** Population context only, 16 - 2048 neurons

on non-video tasks (Fig. 7A,B) support claims from Jiang et al. (2025); Ye et al. (2025) that data heterogeneity limits scaling: our visual stimuli include many repeats, while neural responses vary with latent brain state and noise even when the visual stimuli is same.

D BASELINES

To establish baseline comparisons while managing computational costs, we train state-of-the-art baseline models on the smallest nested dataset containing eight mice (the seven evaluation mice plus one additional training mouse). This approach ensures that all methods are compared under identical conditions while keeping baseline training tractable. We train all baselines on 8 recordings from 8 unique mice – 5 fully released mice from the sensorium 2023 competition (keeping the original train-validation-test splits), 2 mice from the sensorium 2022 competition that were used for the test split. session from the MiCRONs collection. The same 8 mice were used in the smallest scaling experiment.

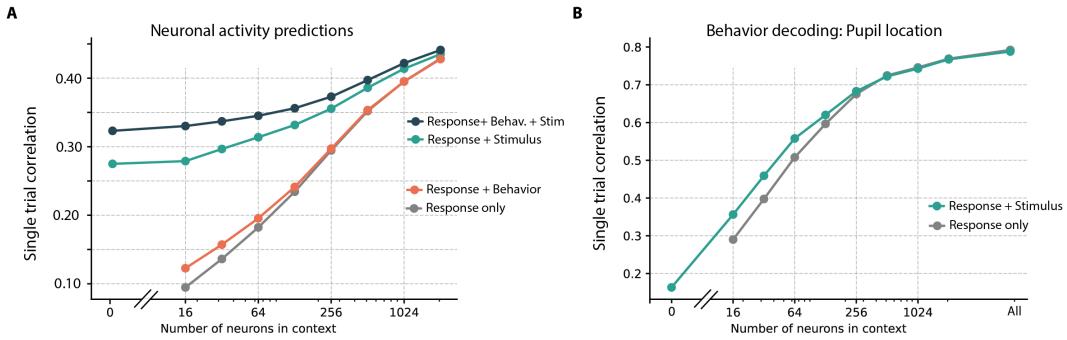


Figure S3: Systematic evaluation across mask configurations. We evaluate the neuronal prediction and behavior decoding performance of OmniMouse-80M by systematically varying the model inputs via masking. Only masks using $N = [64, 256, 1024]$ have been seen during training. OmniMouse generalizes to unseen conditions, and allows to systematically study the contribution of visual stimulus, behavioral variables, and neuronal (sub)-population activity. **A.** Neuronal activity predictions given different amounts of visible neurons in context. **B.** Behavior decoding.

1080
1081

D.1 CEBRA

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

CEBRA explanation: CEBRA performs dimensionality reduction on neural activity using InfoNCE contrastive learning, where positive and negative pairs are defined by auxiliary variables such as time or behavior. When the auxiliary variable is discrete, for example a left or right wheel turn, it selects positives uniformly from all samples with the same label. When the variable is continuous, such as running speed or pupil direction, it chooses a random point within a time window around the sample and then find the closest match in the dataset using either Euclidean or cosine distance; this sample becomes the positive pair, which adds diversity and prevents repeatedly selecting the same example. Negative pairs are sampled randomly. For decoding, CEBRA encode neural responses, find the nearest latent vectors for responses in the training set, and returns their associated behavioral variables as predictions.

1092
1093
1094
1095
1096
1097
1098
1099
1100

Model hyperparameters: We trained a joint model for 8 mice, using a batch size of 512 and learning rate of $3 \cdot 10^{-4}$. The network contained 256 hidden units and produced 128-dimensional outputs (both doubled relative to the Allen example https://cebra.ai/docs/demo_notebooks/Demo_Allen.html). Training ran for up to 50,000 iterations with cosine distance as the loss metric. The model used a temperature of 1, time-delta conditioning to enable behavior mode, and time offsets of 5. As CEBRA requires same frequencies between responses and behavior, both were resamples to 20 Hz, in order to compute correlation on the same predictions as for the OmniMouse. Please note that downsampling from 30 Hz responses is not reducing any information as responses were upsampled from 6-16 Hz to 30 Hz and the upsampling is done with nearest-neighbor interpolation.

1101
1102

D.2 UNIVERSAL SPIKE TRANSLATOR

1103
1104
1105
1106
1107
1108
1109
1110
1111

Universal Spike Translator explanation: The Universal Spike Translator Zhang et al. (2024) performs a self-supervised modeling approach called multi-task-masking (MtM). The model alternates between masking out and reconstructing neural activity across different time steps and neurons. It uses a learnable token that provides the model with context about the specific masking scheme that is being applied during training, allowing for "mode switching" at test time for different downstream tasks. During training, the masking schemes are sampled randomly which are: **(1) Neuron masking:** Randomly masks individual neurons and reconstructs their activity using the unmasked neurons as context. **(2) Causal masking:** Masks future time steps and predicts them using the past steps as context.

1112
1113
1114
1115

Model hyperparameters: We used the default hyperparameters from "ndt1_stitching_prompting" and "ssl_session_trainer" configs from https://github.com/colehurwitz/IBL_MtM_model. Please note that compared to our forecasting settings, IBL does not take behavior as model input.

1116
1117

D.3 LATENT DYNAMIC MODEL

1118
1119
1120
1121
1122
1123
1124
1125
1126

Latent dynamic model explanation: This is a probabilistic model that predicts the joint distribution of neuronal responses from naturalistic video stimuli and stimulus-independent latent factors. Specifically, the model predicts time-varying neuronal response using a Zero-Inflated-Gamma (ZIG) distribution to model the distribution of neuronal responses conditioned on the stimulus and the latent factor. This is a modification of the deterministic factorized 3D convolutional core and a Gaussian readout, where we have an additional encoder that takes a subset of neurons as input to derive a latent variable. This latent variable is then combined with the transformed visual input to predict the activity of other neurons in the session. The model is trained by maximizing the Evidence Lower Bound (ELBO) of $p_{ZIG}(y|x)$ via variational inference.

1127
1128
1129
1130
1131
1132
1133

Model hyperparameters: For both SENSORIUM 2023 baseline and Schmidt et al. (2025) baseline we used the default hyperparameters from Schmidt et al. (2025): 3 layer core with both spatial and temporal kernel = 11 in the first layer and 5 on the layer two and three. For more details see App.C from Schmidt et al. (2025). All data modalities were upsampled to 30 Hz as both SENSORIUM 2023 baseline and Schmidt et al. (2025) latent model require all modalities to have the same frequencies. Both SENSORIUM 2023 baseline and Schmidt et al. (2025) latent model predict 42 samples from a 60-frame video input, we always used only last 30 frames for evaluation, to make it consistent with OmniMouse, who was trained to predict 30 samples. Please note that OmniMouse support flexible

size of predictions, while SENSORIUM 2023 baseline and Schmidt et al. (2025) latent model cannot do it.

D.4 IMPLEMENTATION DETAILS

D.4.1 MASKING STRATEGIES USED DURING TRAINING

Mask	Behavior	Video (last frames visible)	Visible Neurons	Context (from → to)	Prefix (from → to)	Predicted Behavior
1–3	✓	0	[64, 256, 1024]	0 → 60	—	
4	✗	0	4096	0 → 60	—	✓
5–7	✗	0	[64, 256, 1024]	0 → 60	—	✓
8–19	✓	0	[64, 256, 1024, 4096]	—	[0, 10, 15] → 25	
20–28	✓	0	[64, 256, 1024]	25 → 60	[0, 10, 15] → 25	
29–37	✗	0	[64, 256, 1024]	25 → 60	[0, 10, 15] → 25	✓
38–40	✓	10	[64, 256, 1024]	10 → 60	—	
41–52	✓	10	[64, 256, 1024, 4096]	—	[0, 10, 15] → 25	
53–58	✓	10	[64, 256, 1024, 4096]	25 → 60	[10, 15] → 25	
59–61	✓	20	[64, 256, 1024]	20 → 60	—	
62–73	✓	20	[64, 256, 1024, 4096]	—	[0, 10, 15] → 25	
74–79	✓	20	[64, 256, 1024]	25 → 50	[10, 15] → 25	
80–82	✓	20	[64, 256, 1024]	30 → 60	—	
83–94	✓	30	[64, 256, 1024, 4096]	—	[0, 10, 15] → 25	
95–100	✓	30	[64, 256, 1024]	25 → 40	[10, 15] → 25	
101–103	✓	40	[64, 256, 1024]	30 → 50	—	
104–111	✓	40	[64, 256, 1024, 4096]	—	[10, 15] → 25	
112–114	✓	50	[64, 256, 1024]	30 → 40	—	
115–118	✓	50	[64, 256, 1024, 4096]	—	10 → 20	
119	✓	60	—	—	—	

Table 4: **Summary of training mask configurations.** In each batch all behavior traces for the whole 2 seconds were either given as input or predicted. For each batch 4096 neurons were randomly sampled from N neurons per mouse and last second (30 responses) for 3072 neurons of these 4096 the activity was predicted.

D.4.2 NESTED SCALING DATASET CONSTRUCTION

The nested dataset was constructed such that for the 7 mice we conducted evaluation on - 3 mice we had repeated sessions, such that the number of repeats grew proportionally to the dataset growth, and 4 other mice had a single session. As session-per-mice distribution is highly skewed, the other sessions were samples randomly.

D.5 DISTRIBUTION OF SESSIONS PER MOUSE

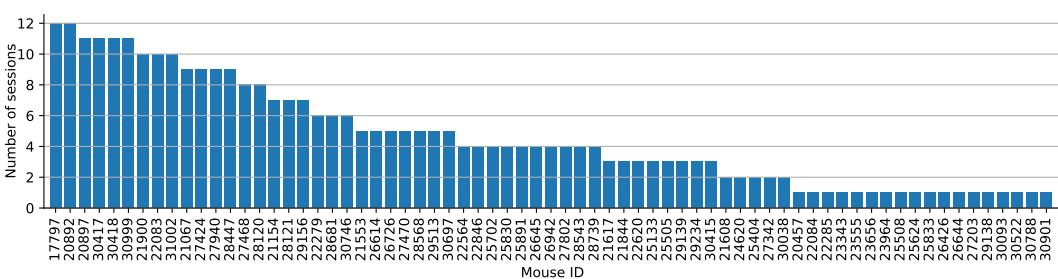


Figure S4: **Distribution of 316 sessions across 69 mice.** More than 100 sessions come from first 10 mice.

1188 **E NEUROPHYSIOLOGICAL EXPERIMENTS**
 1189

1190 Model evaluation was performed on neurophysiological data from Sensorium 2022 ((Willeke et al.,
 1191 2022), Mouse 1 and 2, evaluation animals for Sensorium and Sensorium Plus tracks) and Sensorium
 1192 2023 ((Turishcheva et al., 2024), all animals). Model training was performed on historical data,
 1193 including data from MICrONS Consortium (2025), Wang et al. (2025), Ding et al. (2025b), Ding
 1194 et al. (2025a), Fahey et al. (2019), Willeke et al. (2022), Turishcheva et al. (2024), but also included
 1195 data not previously published.

1196 All procedures were approved by the Institutional Animal Care and Use Committee of Baylor Col-
 1197 lege of Medicine. Seventy-eight mice (*Mus musculus*, 32 females, 46 males, P50–155 on day of
 1198 first scan) expressing GCaMP6s in excitatory neurons via *Slc17a7-Cre* and *Ai162* transgenic lines
 1199 (recommended and generously shared by Hongkui Zeng at Allen Institute for Brain Science; Jack-
 1200 son Labs stock 023527 and 031562, respectively) were anesthetized and a 4 mm craniotomy was
 1201 made over the visual cortex of the right hemisphere as described previously (Reimer et al., 2014;
 1202 Froudarakis et al., 2014). In two of the seventy-six animals, GCaMP6s was additionally expressed in
 1203 inhibitory neurons via *DLX5-CreER* (Jackson Labs stock 010705), following treatment with tamox-
 1204 ifen (orogastric gavage of tamoxifen (Sigma Aldrich T5648) dissolved in corn oil (Sigma Aldrich
 1205 C8267) at 15 mg/mL, 200 mg/kg body weight, two doses two days apart, second dose \geq 13 days
 1206 before the first included scan).

1207 Mice were head-mounted above a cylindrical treadmill and calcium imaging was performed us-
 1208 ing Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm and a large field of view mesoscope
 1209 (Sofroniew et al., 2016) equipped with a custom objective (excitation NA 0.6, collection NA 1.0,
 1210 21 mm focal length). Laser power after the objective was increased exponentially as a function of
 1211 depth from the surface according to:

$$P = P_0 \times e^{(z/L_z)} \quad (1)$$

1212 Here P is the laser power used at target depth z , P_0 is the power used at the surface (typically not
 1213 exceeding 25 mW), and L_z is the depth constant (160-220 μm). The greatest laser output of ca.
 1214 112 mW was used at approximately 400-500 μm from the surface.

1215 The craniotomy window was leveled with regards to the objective with six degrees of freedom. Pixel-
 1216 wise responses from an ROI spanning the cortical window (1.7-4 mm diameter FOV, $>0.2 \text{ px}/\mu\text{m}$,
 1217 superficial cortex, $>2.47 \text{ Hz}$) to drifting bar stimuli were used to generate a sign map for delineating
 1218 visual areas (Garrett et al., 2014). In some but not all cases where the imaging field of view spanned
 1219 multiple areas, area boundaries on the sign map were manually annotated. Imaging FOV of varying
 1220 dimensions were targeted to lie within the boundaries of visual cortex, and may span between primary
 1221 visual cortex and surrounding higher visual areas depending on the scan design.

1222 Scan dimensions typically fell into one of three categories. Local field of view scans contained
 1223 multiple imaging planes at different depths (10-13 planes, most commonly with 5 μm z spacing but
 1224 ranging between 3 and 45 μm z spacing), with each plane spanning 600-630 \times 600-630 μm (240-252
 1225 \times 240-252 pixels, 0.4 $\text{px}/\mu\text{m}$ resolution), acquired most commonly at 7.98 Hz (range 4.34-8.31 Hz).
 1226 Large field of view scans contained single imaging planes at a single depth, with each plane scanning
 1227 1.5 - 3 mm diameter (0.33 - 0.4 $\text{px}/\mu\text{m}$ resolution), acquired at between 6.5 - 12.4 Hz. In between
 1228 are scans containing multiple imaging planes at different depths (2-5 planes, with variable interplane
 1229 spacing between 5 and 150 μm), with each plane spanning approximately 0.8-1.2 mm diameter (0.4-
 1230 0.6 $\text{px}/\mu\text{m}$ resolution), acquired at between 6.3 and 9.6 Hz. Scans with multiple planes, especially
 1231 at high sampling densities (ex. 5 μm z spacing), have a high likelihood of multiple segmented traces
 1232 emerging from multiple planes intersecting with the soma of a single neuron in a single scan. Multiple
 1233 scans were also often collected from the same animal, and as a result single biological neurons may
 1234 be recorded across multiple scans.

1235 Movie of the animal's eye and face was captured throughout the experiment. A hot mirror (Thorlabs
 1236 FM02) positioned between the animal's left eye and the stimulus monitor was used to reflect an IR
 1237 image onto a camera (Genie Nano C1920M, Teledyne Dalsa) without obscuring the visual stimulus.
 1238 The position of the mirror and camera were manually calibrated per session and focused on the pupil.
 1239 Field of view was manually cropped for each session to contain the left eye in its entirety, although
 1240 across different experiments the field of view may have additionally contained more or less of the
 1241

1242 face, centered or not centered on the eye, or characterized the pupil at different resolutions. Video
 1243 was captured at ca. 20 Hz. Frame times were time stamped in the behavioral clock for alignment
 1244 to the stimulus and scan frame times. Video was compressed using Labview’s MJPEG codec with
 1245 quality constant of 600 and stored in an AVI file.

1246 Light diffusing from the laser during scanning through the pupil was used to capture pupil diameter
 1247 and eye movements. A DeepLabCut model (Mathis et al., 2018) was trained as previously described
 1248 (Turishcheva et al., 2024) on 17 manually labeled samples from 11 animals to label each frame of
 1249 the compressed eye video (intraframe only H.264 compression, CRF:17) with 8 eyelid points and 8
 1250 pupil points at cardinal and intercardinal positions. Pupil points with likelihood >0.9 were fit with
 1251 the smallest enclosing circle, and the radius and center of this circle was extracted. Frames with < 3
 1252 pupil points with likelihood >0.9, or producing a circle fit with outlier > 5.5 standard deviations from
 1253 the mean in any of the three parameters (center x, center y, radius) were discarded. Gaps in behavior
 1254 were replaced by linear interpolations over the whole session, if there were more than 2 frames with
 1255 gaps, then the video is removed.

1256 The mouse was head-restrained during imaging but could walk on a treadmill. Rostro-caudal tread-
 1257 mill movement was measured using a rotary optical encoder (Accu-Coder 15T-01SF-2000NV1ROC-
 1258 F03-S1) with a resolution of 8000 pulses per revolution, and was recorded at approx. 50-100 Hz in
 1259 order to extract locomotion velocity.

1260 Visual stimuli were presented with Psychtoolbox 3 in MATLAB (Brainard & Vision, 1997; Kleiner
 1261 et al., 2007; Pelli, 1997) to the left eye with a 31.8×56.5 cm (height \times width) monitor (ASUS
 1262 PB258Q) with a resolution of 1080×1920 pixels positioned 15 cm away from the eye. When the
 1263 monitor is centered on and perpendicular to the surface of the eye at the closest point, this corre-
 1264 sponds to a visual angle of $3.8^\circ/\text{cm}$ at the nearest point and $0.7^\circ/\text{cm}$ at the most remote corner of the
 1265 monitor. As the craniotomy coverslip placement during surgery and the resulting mouse position-
 1266 ing relative to the objective is optimized for imaging quality and stability, uncontrolled variance in
 1267 animal skull position relative to the washer used for head-mounting was compensated with tailored
 1268 monitor positioning on a six dimensional monitor arm. The pitch of the monitor was kept in the
 1269 vertical position for all animals, while the roll was visually matched to the roll of the animal’s head
 1270 beneath the headbar by the experimenter. In order to optimize the translational monitor position for
 1271 centered visual cortex stimulation with respect to the imaging field of view, we used a dot stimulus
 1272 with a bright background (maximum pixel intensity) and a single dark square dot (minimum pixel
 1273 intensity). Dot locations were randomly ordered from a grid tiling a portion of the screen, either a 10×10
 1274 grid tiling a central square (approx. 90° width and height, 10 repeats per location, 200-300 ms
 1275 presentation at each location), or a 5×8 grid tiling the majority of the monitor (approx. 93° height
 1276 and 119° width, 20 repeats per location, 200 ms presentation at each location). The final monitor
 1277 position for each animal was chosen in order to center the population receptive field of the scan field
 1278 ROI on the monitor, with the yaw of the monitor visually matched to be perpendicular to and 15 cm
 1279 from the nearest surface of the eye at that position.

1280 A photodiode (TAOS TSL253) was sealed to the top left corner of the monitor, and the voltage was
 1281 recorded at 10 kHz and timestamped on the behavior clock (MasterClock PCIe-OSC-HSO-2 card).
 1282 Simultaneous measurement with a luminance meter (LS-100 Konica Minolta) perpendicular to and
 1283 targeting the center of the monitor was used to generate a lookup table for linear interpolation between
 1284 photodiode voltage and monitor luminance in cd/m^2 for 16 equidistant values from 0-255, and one
 1285 baseline value with the monitor unpowered.

1286 At the beginning of each experimental session, we collected photodiode voltage for 52 full-screen
 1287 pixel values from 0 to 255 for one second trials. The mean photodiode voltage for each trial V_{pd} was
 1288 fit as a function of the pixel intensity V_{in} :

$$V_{pd} = B + A \times V_{in}^\gamma \quad (2)$$

1289 in order to estimate the γ value of the monitor ($\approx 1.50 - 1.76$). All stimuli were shown with no γ
 1290 correction.

1291 During the stimulus presentation, sequence information was encoded in a 3 level signal according to
 1292 the binary encoding of the flip number assigned in-order. This signal underwent a sine convolution,
 1293 allowing for local peak detection to recover the binary signal. A linear fit was applied to the trial

1296 timestamps in the behavioral and stimulus clocks, and the offset of that fit was applied to the data to
1297 align the two clocks, allowing linear interpolation between them. The mean photodiode voltage of
1298 the sequence encoding signal at pixel values 0 and 255 was used to estimate the luminance range of
1299 the monitor during the stimulus, with typical maximum values of approx. 10-12 cd/m².
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349