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Abstract

Scaling data and artificial neural networks has transformed AI, driving break-
throughs in language and vision. Whether similar principles apply to modeling
brain activity remains unclear. Here we leveraged a dataset of 3.3 million neu-
rons from the visual cortex of 78 mice across 323 sessions, totaling more than
150 billion neural tokens recorded during natural movies, images and paramet-
ric stimuli, and behavior. We train multi-modal, multi-task transformer models
(1M–300M parameters) that support three regimes flexibly at test time: neural
prediction (predicting neuronal responses from sensory input and behavior), be-
havioral decoding (predicting behavior from neural activity), neural forecasting
(predicting future activity from current neural dynamics), or any combination of
the three. We find that performance scales reliably with more data, but gains from
increasing model size saturate – suggesting that current brain models are limited
by data rather than compute. This inverts the standard AI scaling story: in lan-
guage and computer vision, massive datasets make parameter scaling the primary
driver of progress, whereas in brain modeling – even in the mouse visual cortex, a
relatively simple and low-resolution system – models remain data-limited despite
vast recordings. These findings highlight the need for richer stimuli, tasks, and
larger-scale recordings to build brain foundation models. The observation of sys-
tematic scaling raises the possibility of phase transitions in neural modeling, where
larger and richer datasets might unlock qualitatively new capabilities, paralleling
the emergent properties seen in large language models.

Figure 1: A. OmniMouse unifies neural prediction, behavior decoding, and forecasting tasks. B.
Scaling model size on an 150+ billion neural tokens shows performance saturation, unlike language
models. C. In contrast, scaling data consistently improves performance across all model sizes, sug-
egsting that neural prediction is currently limited by data.

1 Introduction

Scaling models and data has driven recent progress in machine learning, with large language, vision,
and multi-modal models showing consistent performance gains and enabling foundation models that
unify tasks across domains. A natural question is whether models of the brain can also benefit from
scaling. In the mouse visual cortex, large datasets (MICrONS Consortium et al., 2021; de Vries
et al., 2019; Angelaki et al., 2025) and standardized benchmarks (Willeke et al., 2022; Turishcheva
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et al., 2024) exist. Yet, compared with internet-scale corpora, the available datasets are much smaller,
more fragmented, and less diverse. The neuroscience community has recently started to work towards
foundational models for EEG (Chau et al., 2024; Chen et al., 2024; Cui et al., 2024; Jiang et al., 2024;
Kostas et al., 2021; Yang et al., 2023; Thapa et al., 2024; Li et al., 2024), fMRI (Caro et al., 2023;
Dong et al., 2024; Kan et al., 2022; Thomas et al., 2022; d’Ascoli et al., 2025), MEG (Csaky et al.,
2024), and intracranial signals (Zhang et al., 2023; Wang et al., 2023). But single-neuron resolution,
multi-modal foundation models are still missing.

Prior work in this direction focused on isolated modalities (Ye et al., 2023; Azabou et al., 2023), a
single predictive task (Wang et al., 2025), lacked scalability across datasets (Ye & Pandarinath, 2021;
Mi et al., 2023; Antoniades et al., 2024), or omitted stimulus (Zhang et al., 2025) and behavioral
information (Jiang et al., 2025; Mi et al., 2023). These models do not capture the multi-modal and
multi-task nature of neural computation. Hence, we cannot systematically study if there are benefits
of scaling – a key hallmark of foundational models – in large-scale, single-neuron recordings.

In this work, we introduce OmniMouse, a multi-modal, multi-task architecture for modeling activity
in the mouse visual cortex. OmniMouse integrates video stimuli, neuronal responses, and behav-
ioral signals (running speed, eye movements and pupil size) into a single transformer framework.
Unlike prior models that are typically restricted to a single modality, task, or dataset, OmniMouse
combines single-neuron tokenization, video encoding, and a structured masking framework into a
unified architecture. This design enables flexible masking on both the input and output, allowing
the model to handle arbitrary combinations of neural forecasting (predicting from past activity),
stimulus-conditioned response prediction, sub-population prediction, and behavioral decoding—all
within a single model We train OmniMouse on the largest single-neuron dataset to date: 323 record-
ings from the visual cortex of 78 awake mice viewing naturalistic movies, images, and parametric
stimuli, totaling over 150 billion neuronal activity tokens. This unprecedented scale enables a sys-
tematic scaling laws analysis, investigating how model and dataset size impact neuronal encoding
and behavioral decoding performance.

Our main findings and contributions are:
• We provide a systematic scaling analysis for neuronal data: We find that performance improves
systematically with more data, but saturates with model size beyondmoderate scales. This suggests
that data, not model size, is currently the bottleneck for predictive accuracy in neural model-
ing—providing a clear directive for the field that progress requires larger and more diverse neural
datasets.

• We propose a multi-modal multi-task model accounting for a visual stimuli: OmniMouse
handles both single-modality and multi-modal inputs, supporting any combination of forecasting
and stimulus-conditioned prediction across neurons, visual stimuli, time, and animals in a single
model.

• OmniMouse achieves state-of-the-art performance: When compared to strong specialized base-
lines on the same training data, OmniMouse outperforms prior methods across nearly all tasks
(apart from running speed decoding) demonstrating the strength of our approach independent of
data scale advantages.

2 Related work

Large-scale deep learning models for single-neuron predictions. Deep learning has advanced pre-
dictive modeling in neuroscience, particularly in vision (Cadieu et al., 2014; Batty et al., 2017; Klindt
et al., 2017; McIntosh et al., 2016; Cadena et al., 2019; Kindel et al., 2019;Walker et al., 2019; Zhang
et al., 2018; Ecker et al., 2018; Sinz et al., 2018; Burg et al., 2021; Cowley & Pillow, 2020). Early
CNN-based approaches introduced shared feature cores with per-neuron readouts (Antolík et al.,
2016; Klindt et al., 2017; McIntosh et al., 2016), later extended with temporal dynamics (Sinz et al.,
2018) and more efficient readouts (Lurz et al., 2021). Building on these advances, Wang et al. (2025)
trained a 13-mice CNN model and showed that “digital twins” can capture biological phenomena
beyond their training data. With the shift to transformers, new variants have explored ViT cores (Li
et al., 2023), hybrid convolution-attention designs (Lin et al., 2024; Pierzchlewicz et al., 2023), and
spatial-transformer readouts (Saha et al., 2024), though most still omit video input.
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Transformers have also been applied to response-to-response modeling. The Neural Data Trans-
former (NDT) (Ye & Pandarinath, 2021) predicted spikes from spikes and behavior, later extended
to multiple animals (Ye et al., 2023) and neuronal masking strategies (Zhang et al., 2024). While
NDT projects all neurons together via linear layers, Quantformer (Calcagno et al., 2024), also a
transformer-based forecaster, introduced neuron-specific tokens to handle any number of neurons.
POYO (Azabou et al., 2023), a behavior-decoding model, added spike timing to similar tokens, re-
moving the need for time-window binning, and its extension POYO+ (Azabou et al., 2025) also
handled discrete classification tasks such as stimulus orientation. POCO (Duan et al., 2025) com-
bined POYO andNDT tokenization to predict neuronal activity from history and other neurons, while
STDNT (Le& Shlizerman, 2022) explicitly modeled correlations but did not consistently outperform
NDT. Representing themost significant scaling of NDT-based framework, NEDS (Zhang et al., 2025)
modeled approximately 30,000 neurons across 74 sessions using a multitask loss to predict neuronal
activity and behavior, also using both of them as input. However, the aforementioned models ignore
visual stimuli. To study the combined effect of both the ‘brain state’ and ‘visual stimuli’ on neuronal
activity, Bashiri et al. (2021) used a CNN branch for processing static input stimuli and an additional
flow-branch to model trial-to-trial correlations between neurons. For dynamic video stimuli, Schmidt
et al. (2025) modeled a latent brain state probabilistically, using NDT-style response tokenization.
Similarly, Neuroformer (Antoniades et al., 2024) used past activity and visual input but is limited
to single sessions and cannot flexibly condition on subsets of neurons or response history. CEBRA
(Schneider et al., 2023), a contrastive encoder, also mapped activity to behavior or stimuli, account-
ing for inter-neuron correlations. The closest work to ours, outside of single-cell studies, is d’Ascoli
et al. (2025), which constructed a multi-modal fMRI predictor using concatenated video, text, and
audio embeddings.

General scaling laws in deep learning. Large-scale models in language and vision exhibit pre-
dictable improvements with scale, described by empirical “scaling laws”. Kaplan et al. (2020) first
showed that performance follows power-law trends in model size, dataset size, and compute. Hoff-
mann et al. (2022) refined this with “Chinchilla scaling”, prescribing proportional growth of model
and data size for optimal efficiency. Aghajanyan et al. (2023) adjusted scaling laws for models
with large per-modality pre-trained tokenizers but newer lightweight tokenization (“early-fusion”)
approaches (Chameleon, 2024; Piergiovanni et al., 2024; Shukor et al., 2025) achieved stronger per-
formance with fewer parameters. Hence, no universal framework for multi-modal scaling exists:
Shukor et al. (2025) estimated power-law coefficients for early-fusion models but did not analyze
cross-modal interactions. This gap is especially evident in scientific domains, where data are multi-
modal, complex, noisy, and limited. Examples such as AlphaFold3 (Abramson et al., 2024) suggest
that systematic scaling of both models and datasets can drive major advances in AI for science.

Scaling neuroscience models. There is no consensus on whether classic machine learning scaling
laws apply to single-neuron data. Jiang et al. (2025) questioned their applicability, analyzing the
NDT-based model of Zhang et al. (2024). Jiang et al. (2025) argued that cross-session variability
– and thus implicit data heterogeneity – is crucial for scaling benefits, though it remains unclear if
these results generalize to different mouse tasks or model architectures. Again using an NDT-based
model but on motor cortex microelectrode data from monkeys and humans, Ye et al. (2025) reported
that scaling is constrained by data variability, which pretraining alone cannot fully overcome. Con-
sistent with this view, POCO (Duan et al., 2025) used calcium imaging to show that longer recordings
improve predictive performance, aligning with earlier results of Lurz et al. (2021). However, POCO
included fewer than 90,000 neurons, mostly from zebrafish (∼77,000). Neural saturation has also
been observed: Gokce & Schrimpf (2024) found that behavioral alignment improves with model
size, but neural alignment plateaus, with gains concentrated in higher-level visual areas. In contrast,
Antonello et al. (2023) reported no such saturation when predicting language and audio fMRI re-
sponses, suggesting that scaling limits may depend on the modality and data regime. The largest
single-cell response-to-behavior prediction model is POYO+ Azabou et al. (2025) with ∼100,000
neurons, which did not analyze scaling. Together, these findings highlight the need for large, multi-
modal, single-neuron datasets to test how scaling laws manifest in systems neuroscience.

3 Large-scale single-neuron dataset

Neuronal responses. We used a dataset of over 3 million single-unit neuronal recordings (Fig. 2)
– an order of magnitude larger than the recently published Brain-Wide Map dataset (BWD, 621,733
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Figure 2: Data. A. Data were collected from head-fixed mice running on a wheel while viewing
videos. Neuronal responses were recorded via calcium imaging, 4210 to 11284 neurons per session.
Behavior variables include pupil center x and y positions, pupil dilation and its derivative and running
speed. B. Dataset statistics. The total number of unique mice in our dataset is 78, since some mice
had sessions in both train and evaluation sets. C. Different visual stimuli were presented across
sessions, with stimulus types varying by session. The bottom row shows their overall distribution.

neurons, ≤ 1× 106 neuron-hours) (Angelaki et al., 2025). The dataset contains excitatory neurons’
responses in visual cortex recorded via wide-field two-photon calcium imaging at 6–14Hz in awake,
head-fixed, behaving mice (Sofroniew et al., 2016), with spiking activity extracted by CAIMAN
(Giovannucci et al., 2019).

Visual stimuli. The mice were presented with naturalistic images sampled from ImageNet (Rus-
sakovsky et al., 2015) and videos sampled from cinematic movies and the Sports-1M dataset (Karpa-
thy et al., 2014). In addition, mice were shown parametric stimuli such as static and drifting Gabors
(Petkov & Subramanian, 2007), directional pink noise, flashing Gaussian dots, random dot kine-
matograms (Morrone et al., 2000), and model-generated stimuli (similar to Walker et al., 2019). All
stimuli were presented at 30–60Hz, with images presented for 500 ms and preceded by a 300–500ms
blank screen.

Behavior variables. Our dataset contains five behavior variables: running speed, recorded at 50
-100 Hz, and four pupil variables: pupil center x and y positions, pupil dilation and its derivative, all
recorded at 20 Hz.

Data utilization. Similar to Azabou et al. (2023), we sample 2-second windows from any point
in the experiment, including inter-trial intervals and blank screens. Critically, we reconstruct the
visual stimulus presented throughout the entire recording, enabling continuous representation of the
full experimental timeline including blank periods across all diverse visual paradigms. For model
training, we downsample all behaviors to 20 Hz, visual stimuli to 30 Hz, and linearly upsample all
neuronal responses to 30Hz to be comparable to the SENSORIUM 2023 benchmark.

4 OmniMouse architecture

We sample 2-second chunks of multi-modal data: video frames V ∈ Rh×w×ch×time (R36×64×1×60),
neural calcium traces X ∈ RP×time (RP×60) for population P , and behavioral traces B ∈ Rch×time

Table 1: Scaling variants of OmniMouse. L: multi-modal transformer layers; dm: model dimen-
sion; h: number of attention heads; de: dimensions of all embeddings; pL: multi-modal transformer
layer parameters; pM : model parameters (excluding neuronal embeddings); pN : all neuronal, ses-
sion, and animal parameters; pT : total parameters; S: sequence length.

Model L dm h de pL pM pN pT S

OmniMouse-1M 2 256 4 256 1.7M 6M 779M 885M 4096
OmniMouse-5M 6 256 8 256 5.1M 10.4M 779M 891M 4096
OmniMouse-20M 6 512 8 256 19.1M 29.1M 779M 810M 4096
OmniMouse-80M 12 768 12 256 88M 115M 779M 894M 4096
OmniMouse-300M 24 1024 16 256 308M 348M 779M 1.1B 4096
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Figure 3: Model architecture. OmniMouse introduces a unified framework that handles arbitrary
combinations of neural forecasting, sub-population prediction, stimulus encoding, and behavioral
decoding through flexible masking. We adopt single-neuron, single-time-chunk tokenization and a
cross-attention encoder (following POYO+ (Azabou et al., 2025)), along with analogous queries to
the multi-modal cross-attention decoder, enabling per-neuron, per-chunk masking by simply remov-
ing tokens from the input and adding corresponding queries to the decoder. A lightweight hierarchical
vision transformer tokenizes video at frame-level granularity, allowing temporal masking of visual
context. These video features fuse with encoded neural and behavioral embeddings through our
transformer stack, creating a unified multi-modal representation from which masked neural activity
or behavior can be decoded. Training across 119 App. D.4.1, diverse masking configurations—span-
ning both core tasks, as well as partial combinationswith varying context from eachmodality—drives
strong multi-task performance and enables seamless task switching purely through mask configura-
tion at test time

(R5×40) (running speed, pupil xy-position / size / size derivative). Alongside the chunk, we sample
a masking configuration for each modality.

For video, the sampled mask defines a starting frame v0 and the length of visible frames vc such that
v0 + vc ≤ 60, vc ∈ [10, 20, 30, 40, 50, 60]. The resulting sequence Vv0:v0+vc is encoded through a
lightweight, randomly-initialized Hiera vision transformer (Ryali et al., 2023), followed by a linear
projection to our model dimension, dM , producing spatiotemporal embeddings Ṽ ∈ Rh′∗w′∗v′

c×dM ,
where h′, w′, and v′c result from the stride of the Hiera module.

For neural responses, during training we randomly sample S = 4096 neurons from population P .
From these we select Ptarget = 3072 neurons whose final second of activity serves as our prediction
target. From the remaining data, we collect activity sequences of each neuron’s unmasked samples.
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Figure 4: Neuronal re-
sponse masking. We in-
troduce a flexible scheme
that supports arbitrary in-
put masks, down to single-
neuron, single-sample, and
single-frame precision.

For OmniMouse, we developed a novel and a flexible neural activ-
ity masking scheme that allows for any combination of input masks,
down to single-neuron single-sample precision (Fig. 5). The scheme
defines a population prefix — activity from the population before the
last 30 samples — and a population context — activity from neu-
rons not being predicted, possibly overlapping in time with the pre-
diction targets. To avoid inflated scores from upsampling artifacts, a
gap of at least 0.17 seconds (5 samples) was enforced between the pre-
fix and the prediction target. To tokenize the unmasked activity, we
apply a strided 1D-convolution to each neuron’s sequence and con-
catenate the outputs, creating a unified sequence of activity embed-
dings, X̃ ∈ RS∗T×dM , where T is the number of strides per neuron
sequence. Following POYO (Azabou et al., 2023), we add learned
identity embeddings for each neuron, session, and animal to the activ-
ity features. We use a smaller dimension, de, for these embeddings and
up-project to dM in order to reduce the number of parameters learned
per-neuron. For behavior, we either fully mask or fully unmask the in-
put. When unmasked, we use a shared linear layer to project the traces along the temporal dimension
and add learned channel-specific embeddings (as well as the session/animal embeddings), yielding
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Figure 5: Task-specific performance gains with model scaling. Top row: masking schema. Middle
row: Test loss. Bottom row: single-trial correlation. Loss and correlation metrics are computed on
the held-out test sets of the seven evaluation mice. A. Forecasting: predicting one second of future
neuronal activity, conditioned only on past neuronal activity (prefix = 25 samples). B. Population
context; predicting one second of neuronal activity of a sub-population, conditioned only on n = 256
neurons. C. Stimulus-driven: Neuronal encoding conditioned on the visual stimulus. D. Stimulus-
conditioned forecasting: same as forecasting, but also conditioned oprefix = 25 samples. E. Stimulus-
conditioned population context, context = 256 neurons.

B̃ ∈ R5×dM , for 5 behavior channels.Each token also maintains its timestamp for positional encoding
in the input sequence.

Model architecture. After tokenization, we concatenate activity and behavior, [X̃, B̃], and encode
using cross-attention with a repeated set of learned latents (Azabou et al., 2023), Z ∈ RM∗N×dM ,
(M unique latents and N repeats, each repeat with a unique timestamp evenly spaced across the
context window), generally reducing the number of input tokens by∼ 10. Within the cross-attention
block, we implement local sliding-window attention, where latent features only attend to response
/ behavior features within a fixed temporal window. We also append g = 256 “global registers”
(Darcet et al., 2023) , G ∈ Rg×dM which always attend to the entire sequence.

Then we concatenate the cross-attention output and video features, [Z̃, Ṽ], and pass the sequence to
a series of L multi-modal transformer layers (Tab. 1). We interleave local attention (with a sliding-
window mask), and global attention blocks at a ratio of 5 : 1 (Fig. 3).

To decode neuronal activity and behavior, we use a cross-attention followed by a shared feedfor-
ward network, with fused multi-modal features as keysK and values V (Fig. 3). Query construction
mirrors input construction: for the response prediction targets, we create a temporal sequence of em-
beddings using the same learned neuron, animal, and session identity embeddings. Each query also
maintains a timestamp indicating the position of the neuronal response and we again employ local
causal sliding-window attention. For behavior decoding, we re-use the learned behavioral channel
embeddings as queries, with added animal and session embedding. Finally, similar to POYO+ (Az-
abou et al., 2025), the outputs of the decoder cross-attention block for each modality are routed to
modality-specific linear readouts, projecting from dM back to the original dimensionality. All atten-
tions use RoPE (Su et al., 2024) to encode relative timing between features, both within and across
modalities, as well as recent best practices including: RMSNorm pre-normalization layers, query-
key normalization, and gated SiLU feed-forward networks (Shazeer, 2020; OLMo et al., 2024; Yang
et al., 2025; Biderman et al., 2023).

Training. We trained our model to predict both neuronal responses and behavioral traces, using
Poisson loss (averaged across neurons) for neural encoding and mean squared error (MSE) loss for
behavior decoding. We used 119masking configurations (App. D.4.1) during training, varyingwhich
modalities were fully or partially masked as well as the amount and duration of neuronal context. To
balance the two objectives, the behavioral loss is down-weighted by a factor of 0.1 so that its scale
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Figure 6: Behavior decoding scales with model size. A. Masking for behavior decoding. B. De-
coding loss averaged over all behavioral variables. C. Pupil center: correlations computed separately
for x and y, then averaged. D. Pupil size and its derivative: correlations trace, then averaged. E. Run-
ning speed: correlation with ground truth.

matches the magnitude of the Poisson loss. For our scaling experiments, we trained models on either
the complete dataset of 323 sessions or constructed collections (8, 16, 32, 64 sessions) to study data
scaling effects. These nested collections were designed so that larger collections always contained
all sessions from smaller ones, ensuring consistent evaluation (see below for evaluation details). We
followedHu et al. (2024);Wen et al. (2024); Hägele et al. (2024) and trained ourmodel with awarmup
followed by a constant learning rate for at least 250k steps (∼ 500B tokens), saving checkpoints every
20k steps. After initial training, we continue from each checkpoint for 10k steps using an inverse-
square-root learning rate decay, where each decayed checkpoint provides a final evaluation point in
Fig. 7.

5 Unified evaluation framework

All scaling experiments use a standardized evaluation protocol on the same mice to ensure fair com-
parison across models, baselines, and conditions. We chose seven mice (evaluation mice) comprised
of five publicly available datasets from SENSORIUM 2023 and two test mice from SENSORIUM
2022. For all analyses, we use the held-out set provided by these datasets. We evaluate five regimes
of response prediction (Fig. 5) as well as behavior decoding (Fig. 6):

Forecasting conditions predictions on the past activity of the entire population and 40 samples of
behavior. We always predict the last second (30 response samples) within each two-second batch,
using the first 25 samples of the batch as context. Since NDT-based models (Ye& Pandarinath, 2021)
dominate in the forecasting literature, we use IBL (Zhang et al., 2024), a variant of NDT trained with
multiple masking strategies similar to ours, as a baseline.

Table 2: Baseline comparisons. Results displayed in bold indicate the highest score per task in either
the data-matched condition (8 sessions; top) or when using the full dataset (323 sessions; bottom).
Evaluation conditions in this table were chosen to allow for a fair comparison with all baselines.
Baselines were evaluated for all conditions that they support, with 7 denoting an unsupported con-
dition. Conditions: Forecasting (Fcst), forecasting + stimulus (Fcst+S), population context (Pop)
with n = 256 visible neurons (n = 1024 shown in parentheses), population context + stimulus with
n = 256 visible neurons(Pop+S). Behavioral decoding: Average score across all behaviors (Avg),
Pupil location (pupil-loc), pupil size (pupil-size), running speed (Running).

Neuronal Activity Prediction Behavior Decoding
Model Fcst Fcst+S Pop Pop+S Avg Pupil-loc Pupil-size Running

MtM (Zhang et al., 2024) 0.12 7 0.07 (0.21) 7 7 7 7 7
Latent Model (Schmidt et al., 2025) 7 0.18 7 0.16 7 7 7 7
CEBRA (Schneider et al., 2023) 7 7 7 7 0.53 0.52 0.55 0.51
POYO+ (Azabou et al., 2025) 7 7 7 7 0.55 0.56 0.63 0.47
OmniMouse-5M (data-matched) 0.18 0.30 0.25 (0.34) 0.27 0.59 0.68 0.66 0.44

OmniMouse-1M (full data) 0.18 0.33 0.27 (0.36) 0.35 0.68 0.75 0.73 0.55
OmniMouse-5M (full data) 0.22 0.34 0.28 (0.37) 0.35 0.69 0.76 0.74 0.57
OmniMouse-20M (full data) 0.23 0.35 0.29 (0.38) 0.37 0.75 0.78 0.75 0.73
OmniMouse-80M (full data) 0.25 0.36 0.29 (0.39) 0.37 0.77 0.80 0.76 0.75
OmniMouse-300M (full data) 0.25 0.36 0.30 (0.39) 0.37 0.76 0.80 0.76 0.73
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Population context conditions predictions on N = 256 other simultaneously recorded neurons and
40 samples of behavior. As in the forecasting regime, we predict the last second of each batch and
evaluate performance on this interval. This setting assesses how much of the trial-to-trial variability
can be explained by simultaneously recorded neurons.
Stimulus-driven conditions predictions on two seconds of video and predicts activity for all neurons
in the batch. We provide two seconds of input and evaluate predictions on the final second of neural
activity. SENSORIUM 2023 (Turishcheva et al., 2024) establishes a strong baseline for this setting.
Stimulus-conditioned forecasting is identical to forecasting, except that the full 2 seconds of video
are also provided as input. We used Schmidt et al. (2025) as a baseline model, which also conditions
on neurons, video and behavior.
Stimulus-conditioned population context is identical to population context, except that the full 2
seconds of video are also provided as input. Again, Schmidt et al. (2025) was used as a baseline.
Behavior prediction conditions on the activity of all neurons (without video) and simultaneously
predicts all behavioral traces (i. e. pupil size, pupil location and running speed). CEBRA (Schneider
et al., 2023) is used as a baseline for this regime.

We train all state-of-the-art baselines on the collection of eight mice, used in our smallest data-scaling
experiment (Fig. 7) to reduce computational cost. Implementation details and hyperparameters for
each baseline are provided in App. D. Consistent with SENSORIUM 2022/2023 competitions, we
use single-trial correlation as an evaluation metric. Additionally we evaluate our model on the SEN-
SORIUM 2023 competition test set, which allows direct comparison against the state of the art model
of predicting mouse visual cortex responses from video stimuli. We use OmniMouse-80M, freeze
the entire model, and train only the neuron and animal embeddings using the released training data
of five mice provided by the competition.

6 Results: The benefits of scaling

Current neuronal-predictive models are not compute- or parameter-limited. Because collecting
neuronal data is costly, we first asked if existingmodels are already limited by compute or parameters,
or if more data would still improve performance. To answer this question, we trained models on
all 323 sessions while scaling width and depth as in Tab. 1. We evaluated five neuronal response
masking strategies (Fig. 5, top row): two based on response dynamics (forecasting and population
context), two analogous variants that additionally condition on video (video-conditioned forecasting
and video-conditioned population context), and one stimulus-driven strategy (video & behavior). For
each strategy, models ranged from 1M to 300M parameters, and we tracked both test loss and single-
trial correlation as a function of total compute (model FLOPs, excluding FLOPS of neuron-specific
parameters). Performance improved across all neuronal prediction tasks as model size increased up
to 80M parameters (Fig. 5). Beyond this point, gains were minimal, as loss curves saturated or overfit,
indicating that current models are data-limited rather than compute- or parameter-limited.

Table 3: Sensorium 2023 benchmark results. Models with Σ suffix denote ensemble predictions.
We use n=5 models in the OmniMouse ensemble, from different random seeds, which determines
model initialization and ordering of training batches. ↑ indicates higher is better. We either run
the full multi-modal training, or only train the model with a single masking condition( Unimodal) –
predicting neuronal responses conditioned on behavior and visual stimulus – comparable to all other
models of the competition.

Model Training Main track ↑ OOD track ↑
DwiseNeuro-Σ (Turishcheva et al., 2024) end-to-end 0.291 0.221

OmniMouse-5M-Unimodal end-to-end 0.288 ± .003 0.256 ± .002
OmniMouse-5M-Unimodal-Σ end-to-end 0.332 0.296
OmniMouse-5M end-to-end 0.295 ± .005 0.263 ± .003
OmniMouse-5M-Σ end-to-end 0.327 0.293
OmniMouse-80M frozen 0.313 ± .001 0.274 ± .001
OmniMouse-80M-Σ frozen 0.327 0.288
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Figure 7: Scaling data improves model performance. A. Nested datasets structure. B. Test loss
for different model and data sizes, averaged across all response prediction tasks. C-K. Performance
improvements when scaling dataset from 8 to 323 sessions: C. Pupil center location. D. Pupil size
and rate of pupil change. E. Running speed. F. Forecasting, prefix = 25 samples. J. Population
context, context = 256 neurons. H. Stimulus-driven. I. Stimulus-conditioned forecasting, prefix =
25 samples. K. Stimulus-conditioned population context, context = 256 neurons.

OmniMouse achieves state-of-the-art performance. Our large-scale model outperforms all base-
lines across six evaluation regimes for both response prediction and behavior decoding (Tab. 2).
Crucially, these gains are not simply due to training on more data: in data-matched comparisons,
where OmniMouse and baselines are trained and evaluated on identical datasets, our model still out-
performs strong specialized methods across nearly all tasks. This demonstrates that the architectural
and masking design of OmniMouse provides advantages independent of data scale. We set a new
state of the art on the Sensorium 2023 competition (Tab. 3), surpassing the winning entry on both the
main and out-of-distribution (OOD) tracks in two evaluation settings: (1) with a frozen pretrained
OmniMouse-80M backbone and only neuron-specific parameters trained, and (2) with full end-to-
end training on the same 10-mouse competition dataset. In both cases, OmniMouse outperforms
prior methods even without the ensembling strategies employed by competition entries. The im-
provements are particularly pronounced on the OOD track, which evaluates generalization to novel
stimuli. We note that while our data-matched setting uses same mice sessions, our framework ad-
ditionally enables training across video boundaries — an information not available for the previous
models.

Behavior prediction shows the most promising scaling dynamics on the available data. To char-
acterize the scaling of behavior prediction, we used the same models and evaluated their ability to
predict pupil location, pupil size, and running speed from neuronal activity only (Fig. 6). Across all
three settings, performance improved smoothly with compute budget, reminiscent of classic scaling-
law behavior. Larger models consistently achieved higher single-trial correlations, albeit with an
indication of saturation at the largest scale tested. Note, though, that training was stopped to avoid
overfitting for the response prediction task. The models had not yet fully converged for the behav-
ior prediction task and longer training could have improved performance further even on the largest
model. OmniMouse not only matches, but surpasses the performance of all strong baselines such as
CEBRA, particularly for running speed prediction, where correlation improves by over 0.15% rela-
tive to the baseline. These results show that behavioral prediction continues to improve with model
scaling and may benefit from further increases in capacity.

Scaling dataset size improves performance. To study how dataset size affects performance, we
trained three model sizes – 5M, 20M, and 80M – on nested collections of 8, 16, 32, 64, and 323
sessions such that the larger collections are supersets of the smaller ones (Fig. 7A). For evaluation,
we test the model on the same held-out test set of the same seven mice that were contained in all
collections (Fig. 7C–J). In all cases, performance improved with the number of sessions, exhibiting
predictable data-scaling trends. Larger models consistently benefited more from additional data. The
larger models required a minimum size of the training set to outperform the smaller models and the
performance gap widened as the dataset increased in size. Behavior decoding benefited the most
from data scaling (Fig. 7C–E), showing no saturation and large performance differences between
5M and 80M models. For responses, the strongest gains were observed for tasks that included video
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input (Fig. 7C–E), where the 80Mmodels continued to improve even beyond 100 sessions, suggesting
that they remained data-limited rather than capacity-limited. The forecasting and population context
showed bigger benefits from scaling of both data and model sizes. The gaps between 20M and 80M
models (Fig. 7A, B) increased faster compared to the tasks with video input, which could indicate a
lack of diversity of the visual stimuli in our dataset. Overall, these results highlight that scaling both
model size and data quantity is synergistic and necessary to approach peak predictive performance.

OmniMouse enables systematic evaluation of how neuronal context shapes predictive perfor-
mance. Lastly, we assessed themodel’s generalization by testing onmasking conditions not seen dur-
ing training, varying neuronal history duration (10–25 samples) and population context size (16–2048
neurons). Performance scaled smoothly with additional context demonstrating that OmniMouse
learns generalizable representations that enables systematic analyses of contextual contributions to
neural variability (see Fig. S2, Fig. S3, and App. B).

7 Discussion

In this work we introduce OmniMouse, a multi-modal, multi-task model of mouse visual cortex that
integrates neural activity, video, and behavior across animals, making one step towards a foundation
model of mouse vision. A single model achieves state-of-the-art performance on diverse tasks –
predicting neural responses from visual stimuli, forecasting activity and decoding behavior. Trained
on the largest neural dataset to date (3.3M neurons, 78 mice, 323 sessions), OmniMouse enables
systematic study of scaling in brain models.

Our motivation for studying scaling laws is practical: if brain models are to become foundation
models for neuroscience, it is essential to ask whether current data can sustain scaling. Despite using
naturalistic movies and images, we find that performance saturates with model size, suggesting data –
not compute – as the limiting factor. Even in the relatively simple mouse visual system, richer tasks,
more varied stimuli, and larger-scale recordings are needed to support continued scaling. At the same
time, relatively sparse sampling already yields strong models: with 60,000 neurons from just eight
mice, predictive accuracy is high, likely due to redundancy in neural codes. Additional gains from
larger datasets appear modest, paralleling language and vision models – yet in those domains, such
small improvements have triggered phase transitions to qualitatively new abilities. By analogy, richer
neuroscience data may similarly unlock new capabilities in brain models, revealing deeper principles
of neural computation.

Limitations. Our work has several limitations. First, OmniMouse parameters scale linearly with
the number of neurons, as it learns per-neuron embeddings. This makes training computationally
prohibitively expensive may limit scaling to even larger datasets. Second, large-scale transformers
remain difficult to interpret, and like deep learning models, they are prone to optimization issues and
overparameterization, which constrain the biological insights that can be drawn. Furthermore, the
behavioral data present in our data is limited to spontaneous activity and it is thus unclear if this
approach can transfer to more complex behaviors.

Future work. Future work could extend to stimulus decoding (Benchetrit et al., 2023; Bauer et al.,
2024; Zhu et al., 2025) and more precise study of training dynamics of modality interactions and
multi-task learning to improve the masking recipe. Beyond calcium imaging in mouse visual cor-
tex, models could integrate other data types such as electrophysiological recordings, diverse animal
species, and more multi-modal stimuli such as audio. Alternatively, one could test generalization of
the existing model across new tasks, stimuli, and species via (semi) closed-loop in-silico experiments
(Ustyuzhaninov et al., 2022; Li et al., 2025), potentially finding biological insights about neuronal
functional properties as in Walker et al. (2019); Li et al. (2025). Finally, jointly modeling visual in-
put, neuronal responses, and behavior enables analysis of spontaneous and evoked activity (Stringer
et al., 2019), revealing how brain state shapes sensory processing and core principles of computation.
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Reproducibility Statement

To ensure the reproducibility of our results, we provide the complete source code for our multi-
modal model, including scripts for training, evaluation, fine-tuning, and inference, available at
https://anonymous.4open.science/r/unraveling-70BA/. Additionally, the data-loading
logic is provided at https://anonymous.4open.science/r/experanto-iclr/. Regarding the
dataset, which consists of large-scale neuronal responses from the visual cortex and naturalistic visual
stimulation, we have detailed the data acquisition and processing pipeline in Appendix E. While the
full dataset is currently undergoing final preparation due to its unprecedented scale, we are committed
to releasing it publicly within six months.
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Figure S1: Example predictions of neuronal activity and behavioral variables. A. Here we show
three example neurons and their ground truth neuronal activity for 4 seconds (black). We also show
the model prediction of OmniMouse for three evaluation conditions: population context of 64 neu-
rons (orange), stimulus-driven (blue), stimulus + behavior + neuron context (green). The predictive
performance, shown as pearson correlation r is increasing with more information provided to the
model. Our model is designed to disentangle the relative contributions of sensory input, behavior,
and population dynamics to individual neurons’ activity. B. Ground truth and predictions for behav-
ioral variables.

A Qualitative visualizations

B Supplemental results

OmniMouse enables systematic evaluation of how neuronal context shapes predictive perfor-
mance. We evaluated OmniMouse on conditions not seen during training, systematically varying
neuronal history duration (10-25 samples) and population context size (16-2048 neurons) for pop-
ulation context tasks. Performance scaled smoothly with context availability across all conditions
Fig. S2. When video was available, performance plateaued more quickly for forecasting but contin-
ued to improve for population context, suggesting that nearby neurons carry complementary infor-
mation beyond visual input. These systematic evaluations demonstrate that OmniMouse has learned
generalizable representations of neural variability, enabling quantitative assessment of how different
sources of context—temporal history contribute to explaining variability in neural responses.

Furthermore, we hypothesized that harder tasks might benefit more from scaling, as shown for large
language models (Minaee et al., 2024; Naveed et al., 2025). To test this, we varied the neuronal
history duration (full-population prefix ∈ [10, 15, 20, 25]) for forecasting tasks and context size (con-
text ∈ [16, 32, ..., 1024, 2048]) for population context tasks, where shorter contexts represent harder
tasks. We also compared performance with and without 2 seconds of video input. Fig. S2 confirms
our hypothesis: performance improves consistently as context grows, hence, bigger context indicates
easier task. Non-video conditioned regimes scale more steeply, likely due to lower baselines. For
forecasting, they never match video-conditioned models, since video provides temporal informa-
tion unavailable at prediction. For population context, however, sufficient neural responses recover
enough information to match video performance. However, contrary to LLMs, in our case scaling
does not preferentially benefit harder tasks: across all tasks, curves for different model sizes remain
parallel. If harder tasks gained more, larger models (20–80M) would show bigger advantages over
smaller ones (1–5M) at minimal context.

C Relation to other neuroscience scaling.

This is the first study to systematically scale both model and data size using only neuro-data, yet
our findings align with prior neuro-scaling work. Consistent with Gokce & Schrimpf (2024), be-
havior prediction improves with larger models, and the greater gains from joint model–data scaling
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Figure S2: Using the models capabilities to investigate context lengths for forecasting and pop-
ulation context tasks. A. Forecasting with a change of prefix length, i.e. how many samples of the
full population are unmasked. A prefix length of 10 corresponds to one third of a second of neuronal
activity.. B. Same change of forecasting context as A, but with video. C. Performance improvements
in addition to video with population context. # neurons in context = 0 means that all neurons are
masked, and the model conditions its prediction purely on the visual stimulus. In all panels, the
stimulus-driven performance is denoted as the gray box for ease of comparison. Remarkably, as seen
in panel A, forecasting a whole second of neuronal activity given the past second (i.e. prefix length
= 25) yields to the same performance as showing the entire video. Context increases from 0-16-...-
2048. D. Population context only, 16 - 2048 neurons

on non-video tasks (Fig. 7A,B) support claims from Jiang et al. (2025); Ye et al. (2025) that data
heterogeneity limits scaling: our visual stimuli include many repeats, while neural responses vary
with latent brain state and noise even when the visual stimuli is same.

D Baselines

To establish baseline comparisons while managing computational costs, we train state-of-the-art
baseline models on the smallest nested dataset containing eight mice (the seven evaluation mice
plus one additional training mouse). This approach ensures that all methods are compared under
identical conditions while keeping baseline training tractable. We train all baselines on 8 recordings
from 8 unique mice – 5 fully released mice from the sensorium 2023 competition (keeping the orig-
inal train-validation-test splits), 2 mice from the sensorium 2022 competition that were used for the
test split. session from the MiCRONs collection. The same 8 mice were used in the smallest scaling
experiment.

Figure S3: Systematic evaluation across mask configurations. We evaluate the neuronal predic-
tion and behavior decoding performance of OmniMouse-80M by systematically varying the model
inputs via masking. Only masks using N = [64, 256, 1024] have been seen during training. Omni-
Mouse generalizes to unseen conditions, and allows to systematically study the contribution of visual
stimulus, behavioral variables, and neuronal (sub)-population activity. A. Neuronal activity predic-
tions given different amounts of visible neurons in context. B. Behavioral decoding.
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D.1 CEBRA

CEBRA explanation: CEBRA performs dimensionality reduction on neural activity using InfoNCE
contrastive learning, where positive and negative pairs are defined by auxiliary variables such as time
or behavior. When the auxiliary variable is discrete, for example a left or right wheel turn, it selects
positives uniformly from all samples with the same label. When the variable is continuous, such
as running speed or pupil direction, it chooses a random point within a time window around the
sample and then find the closest match in the dataset using either Euclidean or cosine distance; this
sample becomes the positive pair, which adds diversity and prevents repeatedly selecting the same
example. Negative pairs are sampled randomly. For decoding, CEBRA encode neural responses,
find the nearest latent vectors for responses in the training set, and returns their associated behavioral
variables as predictions.

Model hyperparameters: We trained a joint model for 8 mice, using a batch size of 512 and learning
rate of 3 · 10−4. The network contained 256 hidden units and produced 128-dimensional outputs
(both doubled relative to the Allen example https://cebra.ai/docs/demo_notebooks/Demo_
Allen.html). Training ran for up to 50,000 iterations with cosine distance as the loss metric. The
model used a temperature of 1, time-delta conditioning to enable behavior mode, and time offsets of
5. As CEBRA requires same frequencies between responses and behavior, both were resamples to 20
Hz, in order to compute correlation on the same predictions as for the OmniMouse. Please note that
downsampling from 30 Hz responses is not reducing any information as responses were upsampled
from 6-16 Hz to 30 Hz and the upsampling is done with nearest-neighbor interpolation.

D.2 Universal Spike Transalator

Universal Spike Translator explaination: The Universal Spike Translator Zhang et al. (2024) per-
forms a self-supervised modeling approach called multi-task-masking (MtM). The model alternates
between masking out and reconstructing neural activity across different time steps and neurons. It
uses a learnable token that provides the model with context about the specific masking scheme that
is being applied during training, allowing for ”mode switching” at test time for different downstream
tasks. During training, the masking schemes are sampled randomly which are: (1) Neuron mask-
ing: Randomly masks individual neurons and reconstructs their activity using the unmasked neurons
as context. (2) Causal masking: Masks future time steps and predicts them using the past steps as
context.

Model hyperparameters: We used the default hyperparameters from “ndt1_stitching_prompting”
and “ssl_session_trainer” configs from https://github.com/colehurwitz/IBL_MtM_model.
Please note that compared to our forecasting settings, IBL does not take behavior as model input.

D.3 Latent dynamic model

Latent dynamic model explanation: This is a probabilistic model that predicts the joint distribu-
tion of neuronal responses from naturalistic video stimuli and stimulus-independent latent factors.
Specifically, the model predicts time-varying neuronal response using a Zero-Inflated-Gamma (ZIG)
distribution to model the distribution of neuronal responses conditioned on the stimulus and the latent
factor. This is a modification of the deterministic factorized 3D convolutional core and a Gaussian
readout, where we have an additional encoder that takes a subset of neurons as input to derive a la-
tent variable. This latent variable is then combined with the transformed visual input to predict the
activity of other neurons in the session. The model is trained by maximizing the Evidence Lower
Bound (ELBO) of pZIG(y|x) via variational inference.

Model hyperparameters: For both SENSORIUM 2023 baseline and Schmidt et al. (2025) baseline
we used the default hyperparameters from Schmidt et al. (2025): 3 layer core with both spatial and
temporal kernel = 11 in the first layer and 5 on the layer two and three. For more details see App.C
from Schmidt et al. (2025). All data modalities were upsampled to 30 Hz as both SENSORIUM 2023
baseline and Schmidt et al. (2025) latent model require all modalities to have the same frequencies.
Both SENSORIUM 2023 baseline and Schmidt et al. (2025) latent model predict 42 samples from a
60-frame video input, we always used only last 30 frames for evaluation, to make it consistent with
OmniMouse, who was trained to predict 30 samples. Please note that OmniMouse suppost flexible
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size of predictions, while SENSORIUM 2023 baseline and Schmidt et al. (2025) latent model cannot
do it.

D.4 Implementation details

D.4.1 Masking strategies used during training

Mask Behavior Video (last Visible Context Prefix Predicted
frames visible) Neurons (from → to) (from → to) Behavior

1–3 3 0 [64, 256, 1024] 0 → 60 —
4 7 0 4096 0 → 60 — 3
5–7 7 0 [64, 256, 1024] 0 → 60 — 3
8–19 3 0 [64, 256, 1024, 4096] — [0, 10, 15] → 25
20–28 3 0 [64, 256, 1024] 25 → 60 [0, 10, 15] → 25
29–37 7 0 [64, 256, 1024] 25 → 60 [0, 10, 15] → 25 3
38–40 3 10 [64, 256, 1024] 10 → 60 —
41–52 3 10 [64, 256, 1024, 4096] — [0, 10, 15] → 25
53–58 3 10 [64, 256, 1024, 4096] 25 → 60 [10, 15] → 25
59–61 3 20 [64, 256, 1024] 20 → 60 —
62–73 3 20 [64, 256, 1024, 4096] — [0, 10, 15] → 25
74–79 3 20 [64, 256, 1024] 25 → 50 [10, 15] → 25
80–82 3 20 [64, 256, 1024] 30 → 60 —
83–94 3 30 [64, 256, 1024, 4096] — [0, 10, 15] → 25
95–100 3 30 [64, 256, 1024] 25 → 40 [10, 15] → 25
101–103 3 40 [64, 256, 1024] 30 → 50 —
104–111 3 40 [64, 256, 1024, 4096] — [10, 15] → 25
112–114 3 50 [64, 256, 1024] 30 → 40 —
115–118 3 50 [64, 256, 1024, 4096] — 10 → 20
119 3 60 — — —

Table 4: Summary of training mask configurations. In each batch all behavior traces for the
whole 2 seconds were either given as input or predicted. For each batch 4096 neurons were randomly
sampled from N neurons per mouse and last second (30 responses) for 3072 neurons of these 4096
the activity was predicted.

D.4.2 Nested scaling dataset construction

The nested dataset was constructed such that for the 7 mice we conducted evaluation on - 3 mice
we had repeated sessions, such that the number of repeats grew proportionally to the dataset growth,
and 4 other mice had a single session. As session-per-mice distribution is highly skewed, the other
sessions were samples randomly.

D.5 Distribution of sessions per mouse
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Figure S4: Distribution of 316 sessions across 69 mice. More than 100 sessions come from first
10 mice.
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E Neurophysiological experiments

Model evaluation was performed on neurophysiological data from Sensorium 2022 ((Willeke et al.,
2022), Mouse 1 and 2, evaluation animals for Sensorium and Sensorium Plus tracks) and Sensorium
2023 ((Turishcheva et al., 2024), all animals). Model training was performed on historical data,
including data from MICrONS Consortium (2025), Wang et al. (2025), Ding et al. (2025b), Ding
et al. (2025a), Fahey et al. (2019), Willeke et al. (2022),Turishcheva et al. (2024), but also included
data not previously published.

All procedures were approved by the Institutional Animal Care and Use Committee of Baylor Col-
lege of Medicine. Seventy-eight mice (Mus musculus, 32 females, 46 males, P50–155 on day of
first scan) expressing GCaMP6s in excitatory neurons via Slc17a7-Cre and Ai162 transgenic lines
(recommended and generously shared by Hongkui Zeng at Allen Institute for Brain Science; Jack-
son Labs stock 023527 and 031562, respectively) were anesthetized and a 4 mm craniotomy was
made over the visual cortex of the right hemisphere as described previously (Reimer et al., 2014;
Froudarakis et al., 2014). In two of the seventy-six animals, GCaMP6s was additionally expressed in
inhibitory neurons via DLX5-CreER (Jackson Labs stock 010705), following treatment with tamox-
ifen (orogastric gavage of tamoxifen (Sigma Aldritch T5648) dissolved in corn oil (Sigma Aldritch
C8267) at 15 mg/mL, 200 mg/kg body weight, two doses two days apart, second dose >= 13 days
before the first included scan).

Mice were head-mounted above a cylindrical treadmill and calcium imaging was performed us-
ing Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm and a large field of view mesoscope
(Sofroniew et al., 2016) equipped with a custom objective (excitation NA 0.6, collection NA 1.0,
21mm focal length). Laser power after the objective was increased exponentially as a function of
depth from the surface according to:

P = P0 × e(z/Lz) (1)

Here P is the laser power used at target depth z, P0 is the power used at the surface (typically not
exceeding 25mW), and Lz is the depth constant (160-220 μm). The greatest laser output of ca.
112mW was used at approximately 400-500 μm from the surface.

The craniotomywindowwas leveled with regards to the objective with six degrees of freedom. Pixel-
wise responses from an ROI spanning the cortical window (1.7-4 mm diameter FOV, >0.2 px/μm,
superficial cortex, >2.47Hz) to drifting bar stimuli were used to generate a sign map for delineating
visual areas (Garrett et al., 2014). In some but not all cases where the imaging field of view spanned
multiple areas, area boundaries on the sign map were manually annotated. Imaging FOV of varying
dimensions were targeted to lie within the boundaries of visual cortex, andmay span between primary
visual cortex and surrounding higher visual areas depending on the scan design.

Scan dimensions typically fell into one of three categories. Local field of view scans contained
multiple imaging planes at different depths (10-13 planes, most commonly with 5 μm z spacing but
ranging between 3 and 45 μm z spacing), with each plane spanning 600-630× 600-630 μm (240-252
× 240-252 pixels, 0.4 px/μm resolution ), acquired most commonly at 7.98 Hz (range 4.34-8.31 Hz).
Large field of view scans contained single imaging planes at a single depth, with each plane scanning
1.5 - 3 mm diameter (0.33 - 0.4 px/um resolution), acquired at between 6.5 - 12.4 Hz. In between
are scans containing multiple imaging planes at different depths (2-5 planes, with variable interplane
spacing between 5 and 150 μm), with each plane spanning approximately 0.8-1.2 mm diameter (0.4-
0.6 px/μm resolution), acquired at between 6.3 and 9.6 Hz. Scans with multiple planes, especially
at high sampling densities (ex. 5 μm z spacing), have a high likelihood of multiple segmented traces
emerging frommultiple planes intersectingwith the soma of a single neuron in a single scan. Multiple
scans were also often collected from the same animal, and as a result single biological neurons may
be recorded across multiple scans.

Movie of the animal’s eye and face was captured throughout the experiment. A hot mirror (Thorlabs
FM02) positioned between the animal’s left eye and the stimulus monitor was used to reflect an IR
image onto a camera (Genie Nano C1920M, Teledyne Dalsa) without obscuring the visual stimulus.
The position of the mirror and camera were manually calibrated per session and focused on the pupil.
Field of view was manually cropped for each session to contain the left eye in its entirety, although
across different experiments the field of view may have additionally contained more or less of the
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face, centered or not centered on the eye, or characterized the pupil at different resolutions. Video
was captured at ca. 20Hz. Frame times were time stamped in the behavioral clock for alignment
to the stimulus and scan frame times. Video was compressed using Labview’s MJPEG codec with
quality constant of 600 and stored in an AVI file.

Light diffusing from the laser during scanning through the pupil was used to capture pupil diameter
and eye movements. A DeepLabCut model (Mathis et al., 2018) was trained as previously described
(Turishcheva et al., 2024) on 17 manually labeled samples from 11 animals to label each frame of
the compressed eye video (intraframe only H.264 compression, CRF:17) with 8 eyelid points and 8
pupil points at cardinal and intercardinal positions. Pupil points with likelihood >0.9 were fit with
the smallest enclosing circle, and the radius and center of this circle was extracted. Frames with < 3
pupil points with likelihood >0.9, or producing a circle fit with outlier > 5.5 standard deviations from
the mean in any of the three parameters (center x, center y, radius) were discarded. Gaps in behavior
were replaced by linear interpolations over the whole session, if there were more than 2 frames with
gaps, then the video is removed.

The mouse was head-restrained during imaging but could walk on a treadmill. Rostro-caudal tread-
mill movement was measured using a rotary optical encoder (Accu-Coder 15T-01SF-2000NV1ROC-
F03-S1) with a resolution of 8000 pulses per revolution, and was recorded at approx. 50-100 Hz in
order to extract locomotion velocity.

Visual stimuli were presented with Psychtoolbox 3 in MATLAB (Brainard & Vision, 1997; Kleiner
et al., 2007; Pelli, 1997) to the left eye with a 31.8 × 56.5 cm (height × width) monitor (ASUS
PB258Q) with a resolution of 1080×1920 pixels positioned 15 cm away from the eye. When the
monitor is centered on and perpendicular to the surface of the eye at the closest point, this corre-
sponds to a visual angle of 3.8 °/cm at the nearest point and 0.7 °/cm at the most remote corner of the
monitor. As the craniotomy coverslip placement during surgery and the resulting mouse position-
ing relative to the objective is optimized for imaging quality and stability, uncontrolled variance in
animal skull position relative to the washer used for head-mounting was compensated with tailored
monitor positioning on a six dimensional monitor arm. The pitch of the monitor was kept in the
vertical position for all animals, while the roll was visually matched to the roll of the animal’s head
beneath the headbar by the experimenter. In order to optimize the translational monitor position for
centered visual cortex stimulation with respect to the imaging field of view, we used a dot stimulus
with a bright background (maximum pixel intensity) and a single dark square dot (minimum pixel
intensity). Dot locations were randomly ordered from a grid tiling a portion of the screen, either a 10
× 10 grid tiling a central square (approx. 90° width and height, 10 repeats per location, 200-300 ms
presentation at each location), or a 5 × 8 grid tiling the majority of the monitor (approx. 93° height
and 119° width, 20 repeats per location, 200 ms presentation at each location). The final monitor
position for each animal was chosen in order to center the population receptive field of the scan field
ROI on the monitor, with the yaw of the monitor visually matched to be perpendicular to and 15 cm
from the nearest surface of the eye at that position.

A photodiode (TAOS TSL253) was sealed to the top left corner of the monitor, and the voltage was
recorded at 10 kHz and timestamped on the behavior clock (MasterClock PCIe-OSC-HSO-2 card).
Simultaneous measurement with a luminance meter (LS-100 Konica Minolta) perpendicular to and
targeting the center of themonitor was used to generate a lookup table for linear interpolation between
photodiode voltage and monitor luminance in cd/m² for 16 equidistant values from 0-255, and one
baseline value with the monitor unpowered.

At the beginning of each experimental session, we collected photodiode voltage for 52 full-screen
pixel values from 0 to 255 for one second trials. The mean photodiode voltage for each trial Vpd was
fit as a function of the pixel intensity Vin:

Vpd = B +A× V γ
in (2)

in order to estimate the γ value of the monitor (≈ 1.50 − 1.76). All stimuli were shown with no γ
correction.

During the stimulus presentation, sequence information was encoded in a 3 level signal according to
the binary encoding of the flip number assigned in-order. This signal underwent a sine convolution,
allowing for local peak detection to recover the binary signal. A linear fit was applied to the trial
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timestamps in the behavioral and stimulus clocks, and the offset of that fit was applied to the data to
align the two clocks, allowing linear interpolation between them. The mean photodiode voltage of
the sequence encoding signal at pixel values 0 and 255 was used to estimate the luminance range of
the monitor during the stimulus, with typical maximum values of approx. 10-12 cd/m².
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