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ABSTRACT

Analyzing long-term behaviors in high-dimensional nonlinear dynamical systems
remains a significant challenge. The Koopman operator framework has emerged
as a powerful tool to address this issue by providing a globally linear perspec-
tive on nonlinear dynamics. However, existing methods for approximating the
Koopman operator and its spectral components, particularly in large-scale sys-
tems, often lack robust theoretical guarantees. Residual Dynamic Mode Decom-
position (ResDMD) introduces a spectral residual measure to assess the conver-
gence of the estimated Koopman spectrum, which helps filter out spurious spec-
tral components. Nevertheless, it depends on pre-computed spectra, thereby in-
heriting their inaccuracies. To overcome its limitations, we introduce the Neural
Network-ResDMD (NN-ResDMD), a method that directly estimates Koopman
spectral components by minimizing the spectral residual. By leveraging neural
networks, NN-ResDMD automatically identifies the optimal basis functions of
the Koopman invariant subspace, eliminating the need for manual selection and
improving the reliability of the analysis. Experiments on physical and biological
systems demonstrate that NN-ResDMD significantly improves both accuracy and
scalability, making it an effective tool for analyzing complex dynamical systems.

1 INTRODUCTION

In the study of complex dynamical systems, a critical challenge lies in accurately extracting and
analyzing long-term behavior in high-dimensional nonlinear systems. Various data-driven methods
(Brunton & Kutz, [2019; |Schetzen, 20065 [Wiggins, 2003} [Slotine & Li, [1991; |[Lan & Mezic} 2013}
Mezic, [2005) have been developed to address this challenge, with the Koopman operator (Koopman,
1931; [Koopman & Neumann, [1932)) framework emerging as a powerful tool due to its ability to
globally linearize nonlinear systems. Unlike local linearization methods (Hartman, [1960;|Grobman)
1959), which approximate dynamics near fixed points, the Koopman operator transforms the entire
system into a linear form within an infinite-dimensional space, which allows the use of spectral
analysis techniques to study complex dynamics.

Despite its promise, practical computational challenges arise from the infinite-dimensional nature
of the Koopman operator. Numerical methods such as Extended Dynamic Mode Decomposition
(EDMD) (Williams et al., |2015) have been developed to approximate the Koopman operator using a
finite set of observables, making it possible to extract dynamic modes from data. However, EDMD
lacks theoretical guarantees of convergence and may fail to capture the full Koopman spectrum
accurately, particularly in large-scale, complex systems.

To address these limitations, the Residual Dynamic Mode Decomposition (ResDMD) method (Col-
brook & Townsend, |[2024) was introduced, which offers convergence guarantees by using a spectral
residual measure that quantifies the extent to which the estimated Koopman spectrum converges to
the true spectrum of the system. By assessing the convergence, ResDMD can eliminate spurious
spectral components—those that do not correspond to the true dynamics of the system—thereby
enhancing the reliability and robustness of the spectral estimation. However, ResDMD primarily
serves as a filtering tool for precomputed spectra rather than providing a direct and more accurate
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approximation of Koopman spectra. Consequently, it lacks the capacity to independently refine the
spectral estimation.

In this paper, we propose Neural Network-ResDMD (NN-ResDMD), which overcomes this limi-
tation by providing a method to directly compute Koopman eigenpairs by minimizing the spectral
residual. Additionally, NN-ResDMD employs neural networks to automatically select basis func-
tions, eliminating the need for manual intervention, a common challenge in EDMD-based methods.
Through experiments on both toy models and real-world high-dimensional systems, we demonstrate
that NN-ResDMD significantly improves accuracy and scalability, making it a practical and effective
tool for analyzing complex dynamical systems.

2 PRELIMINARY ON KOOPMAN OPERATOR

Consider a discrete-time dynamical system (2, i) governed by a map F :  — €2, where Q C R?
is the state space, and p is a probability measure. The evolution of the system is described by:

Tpy1 = F(zy), keZt.
The Koopman operator K acts on observables g € L?(€, 1) as:
Kg=goPF.

Although F' is nonlinear, the Koopman operator X is linear, enabling spectral analysis of the system
in the infinite-dimension function space.

A key aspect of modern Koopman operator theory is Koopman Mode Decomposition (KMD)
(Mezicl [2005), which represents system dynamics through its spectral components, i.e. the eigen-
values, Koopman modes, and eigenfunctions. The discrete spectrum is particularly important for
insights into long-term behavior, such as periodicity and stability. Our analysis emphasizes these
spectral components derived from KMD. Specifically, we seek eigenpairs ()\;, ¢;), where \; are
eigenvalues and ¢; are the corresponding Koopman eigenfunctions.

One of the most prominent numerical methods to approximate the Koopman operator and its
spectral components is the Extended Dynamic Mode Decomposition (EDMD) method, intro-
duced by [Williams et al.| (2015). In EDMD, a set of observables (dictionary or basis func-
tions) ¥ = [¢1,...,¥N,] is selected, and the span of these observables defines the subspace
Vg = span{z/)i}fi . Snapshots of the system’s state are then collected, and the method constructs
a finite-dimensional approximation of the Koopman operator by solving a least-squares problem that
relates the snapshots of observables. This enables the computation of eigenvalues, eigenfunctions,
and Koopman modes. Note that while common choices of dictionary functions are polynomials,
Fourier basis, RBF functions, etc., the optimal choice of basis functions is usually unknown a priori
and depends heavily on the specific dynamical system.

Given independent and identically distributed data snapshots {(z;,y;)}", with y; = F(z;), two
matrices ¥ x and Uy are formed by evaluating the dictionary on the data snapshots:

Yi(r1) oo Yng(T1) Vi(yr) o N (1)
L N PO P I

EDMD computes the Koopman matrix approximation as K = \I/J;(\I/y, where \IIE( is the pseudo-
inverse of ¥ x. The eigenvalues of K provide approximations of the Koopman operator’s spectrum,
and the Koopman eigenfunctions ¢; are approximated as ¢; = Wv;, where v; € CNx is the i-th
eigenvector of K.

3 KOOPMAN OPERATOR LEARNING

While EDMD effectively approximates the Koopman operator, it still suffers from issues like spec-
tral pollution. As the dictionary size increases, spurious eigenvalues can accumulate, leading to an
inaccurate or over-saturated spectrum that misrepresents the system’s true dynamics. This makes
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it difficult to distinguish between meaningful dynamic modes and noise, ultimately reducing the
accuracy of the analysis. To address these limitations, Residual Dynamic Mode Decomposition
(ResDMD) (Colbrook & Townsend, 2024) filters out spurious eigenvalues by assessing their spec-
tral residuals. However, ResDMD relies on precomputed eigenpairs, inheriting inaccuracies from
methods like EDMD without directly improving the initial spectral estimation.

In contrast, we introduce the Neural Network-ResDMD (NN-ResDMD), a new method that provides
a theoretically convergent way to approximate the Koopman operator and its spectral components by
minimizing a ResDMD-specific loss function. Additionally, NN-ResDMD optimizes the dictionary
functions for the Koopman invariant subspace using a Feedforward Neural Network (FNN), which
eliminates the need for manual design of basis functions.

3.1 RESDMD REVIEW

Now, suppose we have obtained an eigenpair (), ¢) of K from EDMD or other methods (Colbrook,
2023b; Baddoo et al.|[2021; |Alford-Lago et al.|[2022; Schmid, |2010; |Tu et al., 2014} L1 et al., 2017}
Takeishi et al., 2017a;|Lusch et al.,[2017; [Takeishi et al., 2017bj | Yeung et al., 2019; Otto & Rowley),
2019; |Azencot et al.| [2020; (Wu & Noé, 2020; Iwata & Kawaharal, 2020) where A € C and the
eigenfunction ¢ is expanded in terms of dictionary functions, i.e., ¢ = ¥v = Zf\g Viv; € Vg
for some v € CV&, where v; represents weights of the span. Without loss of generality, we consider
¢ has been normalized, i.e., ||¢||2 = 1. The accuracy of this eigenpair approximation in the ResDMD
framework can be measured by computing its squared relative residual using the dictionary in the
following way:

_ Jo|Ke(z) — Ap(x)dp()

\, $)2 =
res( @) o 16 Pa(o)
Nk
= Z ¥ [(Kti, Kaby) e — AMWi, Kaby) e — MK, 103) 0 + I (05,050 ] 05, (3.1
ig=1

where 7;, A denote the complex conjugate of v;, \.

This squared relative residual in (3.1)) is the theoretical value that measures the distance between
¢ and the eigenspace associated with A, especially under the assumption that A is in the discrete
spectrum of K. To approximate this residual in practice, we apply the Galerkin approximation
(Boyd, 2013), which states that as the number of data points m increases, the following limits hold:

N .

n}gnoo m [\IjquX}ij = (Vi, V) us
R S

W}E,noo m [OX Uyl = (¥i, Kbj)p, (3.2)
R S .

Jim = (W5 Wy ]y = (K, K = (5, KKY5)

where * denotes complex conjugate. Using this approximation, the squared relative residual from
(3.1) is approximated as follows (see[A.T|for more details):

— 1 _
res(\, ¢)? == —v* [U5 Ty — AT Ty)" — AT5 Ty + AT Tx] v. (3.3)
m
where (3.3), denoted as 7es(\, ¢)?, represents the approximation of the theoretical value in (3.1).

By definition in (3.1)), this residual quantifies the deviation from satisfying the spectral property,
effectively measuring how far the estimated eigenpair deviates from the true spectrum. In practice,
can be calculated for all precomputed eigenpairs, and those with residuals below a certain
threshold are retained. However, the key limitation is that while the residuals offer a way to filter
and select valid eigenpairs, they do not provide a more accurate method for estimating the eigenpairs
themselves.

3.2 NEURAL NETWORK-RESDMD

General framework In this section, we present the Neural Network-ResDMD (NN-ResDMD)
framework, designed to compute the eigenpairs of the Koopman operator directly using ResDMD-
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based spectral residuals, as illustrated in Figure [T] The method first determines the optimal dictio-
nary functions by minimizing the total residual J = va’(l res(\;, ¢;)%, over all computed eigen-
pairs {(\;, ;) } . The spectral residual directly impacts the finite-dimensional projection of the
Koopman operator and our method minimizes this residual to ensure the learned basis functions
adequately capture the Koopman dynamics. This approach allows the construction of the Koopman
operator matrix K without relylng on external methods or post-processing. Equatlon 5)) enables
NN-ResDMD to compute eigenpairs directly, improving accuracy compared to ResDMD which
relies on filtering precomputed results from other methods.

In this framework, neural networks parameterize the dictionary functions W(z;6), where 6 repre-
sents the network parameters. This dynamic approach adapts the dictionary functions, better captur-
ing the system’s complex dynamics. By iteratively minimizing the total residual J, the framework
produces a more accurate approximation of the Koopman operator. Unlike traditional methods like
EDMD, which require manual selection of dictionary functions, the neural network-driven approach
introduces greater flexibility and adaptability in representing system behavior.

Initialize © for ¥
Neural

Network

Look for an optimal basis representation

= {1, P }
for subspace Vy,, C 2(¢) which minimize

Construct Koopman matrix K with ¥ o

and compute its eigenpairs {\;, v; }f\i“l
Update ¥
l with ©

Solve ® = argming Jx (©)

N
total residual Jx = Zr/?s()xi, a)

i=1

Figure 1: (Left) The classical ResDMD and (Right) the Neural Networks based ResDMD methods

From Residual to NN This section explains how neural networks are integrated into the ResDMD
framework. In ResDMD, the squared relative residual approximation (3.3) measures how well a
computed eigenpair fits the dataset. If the Koopman matrix K is well-approximated by the projected
Koopman operator Ky, , the total residual J should approach zero as more data is provided. Thus,

J can be used as a loss function, and the optimal Koopman matrix K is obtained by minimizing:
Nk
J = res(\i, ¢i)° (3.4)

which is equivalent to minimization the following (See[A.2]for more details):
1
J=—|[(Oy — UxK)V|F (3.5)

where V' is a matrix in which each column is an eigenvector v; of Koopman matrix K. Thus, with

a fixed dictionary function W, the explicit form for the optimal Koopman matrix K can be directly
computed as

K=G'A (3.6)
where G = LWl Uy, A= L5 Uy
Remark. Typically a regularization term is needed to enhance stability. Here we add a small
perturbation, i.e., K = (G + oI) ' A for some small number o > 0.

As shown in (3.6), NN-ResDMD provides an explicit expression for K given the optimal dictionary
function ¥, allowing for the direct computation of Koopman eigenpairs. The optimization problem
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in Equation@is to minimize the error along the eigen-basis, in contrast to the optimization problem
[|¥y — T x K% for EDMD, thereby yielding different optimal ¥ compared to EDMD. Additionally,
it automatically optimizes basis functions using neural networks, removing the need for manual
selection. Since NN-ResDMD is based on the ResDMD framework, it also retains the theoretical
convergence guarantees that EDMD lacks.

In NN-ResDMD, neural networks parameterize the dictionary functions W(x;6) to minimize the
total residual J(0), as defined in (3.4). The feedforward neural network generates the dictionary
functions based on data snapshots, and the total residual is given by:

1
J(0) = — |2y (0) = Ux (0)K(0))V (6)]7 3.7
where K (6) and V() depend on . The Koopman matrix K (6) is computed as:
K(0) = G(O)TA(H) (3.8)
with G(0) = LU (0)*¥x(0) and A(F) = LU (6)* Ty (0).

The algorithm alternates between updating K (6) via least squares and optimizing 6 using gradient
descent until J(6) converges, yielding the approximated Koopman spectrum and optimized dictio-
nary functions.

Computing Algorithm In our neural networks implementation, we include some non-trainable ba-
sis outputs to enhance the dictionary functions. Specifically, we add a vector of ones and the coordi-
nates of the state space as non-trainable basis in the output layer, which help avoid trivial solutions,
i.e., J = 0 for some initial . For the network architecture, we use the hyperbolic tangent (tanh)
function as the activation function for the hidden layers. In terms of optimization, we employ the
Adam optimizer for updating the network parameters. Adam is particularly well-suited for this task
due to its ability to adapt the learning rate for each parameter, which can lead to faster convergence
in the alternating optimization process between the network parameters and the Koopman matrix.
The computing steps are illustrated in the following Algorithm [T}

Algorithm 1: NN-ResDMD
Input: Dataset X, Y, number of observables N, learning step d, regularization parameter o,
loss function threshold € > 0.

Initialize 6, thus initializing ¥ (6) and K (6) ;

while J(6) > e do
Update § = 6 — 6V J(0) ;
Compute G(0) = ZW5 Uy, A(f) = L U4 Uy,
Update K (0) = (G(6) 4+ o)t A(6) ;
Compute eigenvector matrix V() ;

Solve eigenpairs {(\;, ¢; = ¥v;)} N5 of K(6) ;

Output: Eigenpairs {(\;, ;) } Y% and K (6).

If the continuous spectrum of the Koopman operator is of interest, following the ResDMD paper’s
idea, we can scan candidate spectrum values within a grid in the complex plane using the residuals.
Specifically, we compute 7; = min,, ¢, 7es(z;, ¥(0)v;), where 7; is the minimum residual for a
grid point z; € C. The approximated whole spectrum containing the continuous spectrum is then
given by {z; : 7; < €}.

While the practical advantages of NN-ResDMD are demonstrated through experiments, it’s also
worth noting that the method has theoretical underpinnings (Haykin, 2009; Weinan et al., 2019) that
support its convergence properties. A brief discussion on the convergence aspects of NN-ResDMD,
leveraging existing results from approximation theory in Barron spaces, is provided in Appendix
[A.3] This discussion offers insights into how the neural network component of NN-ResDMD con-
tributes to its effectiveness in approximating complex dynamical systems.
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4  APPLICATION IN PHYSICAL AND BIOLOGICAL SYSTEMS

In this chapter, we present three examples that demonstrate the effectiveness of the NN-ResDMD
method. In each example, we focus on estimating the three key quantities of the Koopman
Mode Decomposition (KMD): eigenvalues, eigenfunctions and Koopman modes. In the first (low-
dimensional) example on the classical pendulum system, we will show that our method requires sig-
nificantly fewer dictionary observables compared to a similar example in (Colbrook & Townsend,
2024, Section 4.3.1, Section 6.3) when computing the spectrum of the Koopman operator and
performs better in approximating continuous spectra. In the second (high-dimensional) example
on turbulence, we will show that our method can detect acoustic vibrations and distinguish the
pressure field by computing the Koopman modes. In the third (real-world) example on a high-
dimensional neural system, we compare our method with three other popular methods in the data-
driven Koopman analysis field: Hankel-DMD (Arbabi & Mezicl [2017), EDMD with Radial Basis
Function (RBF) basis, and kernelized-ResDMD (Kernel ResDMD) (Colbrook & Townsend, 2024)),
and demonstrate the superiority of our method in identifying and clustering latent dynamic struc-
tures. These examples illustrate how our method performs in various systems, and provides a com-
prehensive evaluation of its capabilities.

4.1 PENDULUM

The pendulum system is a measure-preserving system due to its Hamiltonian nature, which theoret-
ically implies that the whole spectrum should lie on the unit circle. Then we choose it as an example
system with continuous spectrum. For its dynamical behaviors, if the initial position of the pendu-
lum is sufficiently far from the peak and the initial angular speed is sufficiently small, the pendulum
will oscillate; otherwise, the pendulum will pass the peak and rotate. In other words, this complex
system exhibits two types of dynamical behaviors: rotation and oscillation. Here we simulate two
cases with different numbers of initial points. We choose 90 and 240 initial points uniformly in the
domain [—7, 7|per % [—15,15]. Each point evolves 1000 steps with a step size of 0.5. Thus, the
total data size in each set is approximately 9 x 10 and 2.4 x 103, respectively.

As we can see in Figure |2} we only need Nx = 300 observables to calculate the whole spectrum
approximation, which is significantly fewer than the number (nearly 1000) of observables required
in (Colbrook & Townsend, [2024, Section 4.3.1) given the same data size. Moreover, even when the
data size is largely increased, as seen in Figure[3] the number of necessary observables (Nx = 350)
remains relatively small, demonstrating the robustness of efficient observables over different data
sizes.

As shown in Figure[d] we compare our method to four approaches: EDMD, EDMD with Dictionary
Learning (EDMD-DL), Hankel-DMD, and ResDMD, on the dataset with 90 initial points to compute
the Koopman matrix and its corresponding spectral information. The first three methods (EDMD
(Williams et al., [2015), EDMD-DL (Li et al., [2017)), and Hankel-DMD are limited to computing
eigenvalues associated with the point spectrum. In these experiments, both EDMD and ResDMD
use the hyperbolic cross approximation with Hermite functions up to order 15 and Fourier functions
up to order 20. Hankel-DMD uses a time delay of 150. Although Hankel-DMD yields accurate
eigenvalues, it suffers from spectral pollution and requires careful tuning of the time delay parameter.
With 300 basis functions, ResDMD is still unable to fully capture the whole spectrum, i.e., the unit
circle, due to the insufficient number of basis functions. In the original ResDMD work, 964 basis
functions using a hyperbolic cross approximation of order 100 were required to adequately cover
the spectrum with a dataset of the same size (Colbrook & Townsend, 2024, Section 4.3.1). This
comparison demonstrates that NN-ResDMD, even with only 300 basis functions, outperforms all
four classical methods in terms of capturing the complete spectrum with greater accuracy and fewer
basis functions.

4.2 TURBULENCE

Variants of DMD algorithms (Colbrook, [2023a; [Tu et al.,|2014; Williams et al.,|2015; Rowley et al.,
2009) have shown strong results in fluid dynamics. In (Colbrook & Townsend| 2024, Section 6.3), it
is demonstrated that Kernel ResDMD can capture key spatial patterns and detect acoustic vibrations
but requires careful selection of kernel functions.
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Figure 2: The four plots depict the spectrum of the Koopman operator, constructed using varying
dictionary size N of 25, 50, 100, and 300. Each plot utilizes 90 initial points to illustrate the impact
of increasing the dictionary size on approximating the spectrum of the Koopman operator.

N.K =50 NK =150 N_K =250 s NK =350

NN-ResDMD: N = 50 NN-ResDMD: Nx = 150 NN-ResDMD: Nx = 250 NN-ResDMD: Nx = 350

Figure 3: Same example as Figure@but with larger data size. Each plot utilizes 240 initial points to
illustrate the impact of increasing the dictionary size on approximating the spectrum of the Koopman

operator.

ResDMD: N K= 300

EDMD: N K= 300 EDMD.DL: N K= 300 Hankel.DMD: N_K= 300

EDMD: Ng = 300 EDMD-DL: Nx = 300 Hankel-DMD: N = 300 ResDMD: N = 300

Figure 4: Comparison with classical methods. The four plots above represent the spectral informa-
tion obtained from a 300 x 300 Koopman matrix, calculated using four different methods: EDMD,
EDMD with Dictionary Learning (EDMD-DL), Hankel-DMD, and ResDMD. Each plot illustrates
the eigenvalue spectrum of the Koopman operator, highlighting the differences in results produced
by these methods.

Our method, NN-ResDMD, bypasses this by using neural networks to train observables and compute
Koopman modes. Using the dataset from (Colbrook & Townsend, 2024, Section 6.3), we apply
truncated Singular Value Decomposition (SVD), select 300 observables, compute Koopman modes,
and project them back into the original state space.

In Figure[] the first Koopman mode estimated by NN-ResDMD, which corresponds to the constant
eigenfunction, has the smallest residual value and successfully highlights a clear global spatial sep-
aration that aligns with patterns observed in the original pressure field. The small residual values
in the figures associated with the Koopman modes confirm the estimation accuracy. This advantage
allows the first Koopman mode to directly distinguish spatial features that are present in the true
pressure field, which makes it a powerful tool for the interpretation of complex fluid dynamics data.
Subsequent Koopman modes also reveal strong acoustic waves that are critical in various aeronau-
tical engineering fields. In contrast, Kernel ResDMD with a generic normalized Gaussian kernel
function, as shown in the original work, is unable to produce a Koopman mode similar to the first
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Koopman mode from NN-ResDMD that clearly distinguishes the pressure field. For comparison,
we also plot four Koopman modes computed by Hankel-DMD with a time delay of 5, corresponding
to the four smallest residual values, which similarly do not reveal the pressure field patterns as in
NN-ResDMD. These results are presented in Appendix Figure[7]

2D Scatter Plot of Pressure Field Koopman Mode 1 (Residual: 2.18e-08) Koopman Mode 6 (Residual: 4.09e-02) Koopman Mode 7 (Residual: 4.87e-02)
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Figure 5: The plots illustrate turbulence detection with Koopman modes computed by 300 observ-
ables. The first plot shows a 2D scatter plot of the pressure field, while the other plots display various
Koopman modes, each labeled with corresponding residuals.

4.3 IDENTIFICATION OF NEURAL DYNAMICS IN MICE VISUAL CORTEX

Since NN-ResDMD directly minimizes the residuals based on eigenfunctions, its estimated evo-
Iution of eigenfunctions over time should ideally capture latent dynamics. To evaluate how ef-
fectively NN-ResDMD reveals latent temporal dynamics in real data, we apply it to a dataset of
high-dimensional neural signals and demonstrate its advantages over a series of classical methods:
the Hankel-DMD, EDMD (combined with RBF basis) and Kernel ResDMD. These methods are
selected as representative approaches for handling high-dimensional data.

The dataset is part of the open dataset on mice available for the competition ’Sensorium 2023’
(Turishcheva et al., |2023;2024). During the experiments, mice are required to look at natural videos
while the neural signals are calcium imaging recordings in mice’s primary visual cortex reflecting the
activities of thousands of neurons. Here, we focus on a simple task of state partition of neural signals.
Specifically, in each tested mouse, six video stimuli were repeatedly shown, creating ideal conditions
for defining brain states. The experiment assumes that neural activity during repeated trials with
the same stimuli reflects the same underlying dynamic system, allowing Koopman decomposition
methods to be tested for reliably uncovering and separating these brain states.

The dataset consists of neural recordings from five mice, each exposed to 6 video stimuli, repeated
9-10 times for a total of around 60 trials. Each recording captures the activity of over 7,000 neurons,
with each 10-second video sampled at 50 Hz, resulting in 300 data points per trial.

We applied NN-ResDMD and three classical Koopman decomposition methods (Hankel-DMD,
EDMD with RBF basis and Kernel ResDMD) to these datasets, utilizing varying implementations
and Koopman subspace dimensions. For NN-ResDMD, we trained dictionaries using all snapshots
from each mouse to avoid overfitting, reducing the data to 300 dimensions via SVD and selecting
501 eigenfunctions. The decomposed eigenfunctions are shown in Figure[GA(top), with markers in-
dicating ground truth stimulus-based state separations. For Hankel-DMD, we built a Hankel matrix
with a delay of 50, producing 50 eigenfunctions per trial. In the EDMD with RBF basis approach,
we employed the SVD-truncated 300 basis and 1000 RBF basis functions, resulting in 1301 eigen-
functions as temporal features. For Kernel ResDMD, we chose normalized Gaussians as kernel
functions. Based on |Colbrook et al.|(2023)), the dimension of the Koopman invariant subspace was
set to the number of temporal snapshots (i.e. 299 eigenfunctions). See Appendix for imple-
mentation details of these methods. These eigenfunctions, plotted in Figure [6]A(bottom), Appendix
Figure [OJA and Appendix Figure[TOJA, are compared against the ground truth trial identities.

The Koopman eigenfunctions represent dynamical features corresponding to the video stimuli. To
evaluate their effectiveness, we assess how well eigenfunctions of the same stimuli cluster together,
distinguishing them from other states. If the eigenfunctions capture the key dynamics related to
the stimuli, those from trials with the same video should be separable from others. This turns the
problem into a clustering task based on the separability of eigenfunctions across different stimuli.

We use Multi-dimensional Scaling (MDS) to visualize how these eigenfunction-based features clus-
ter according to ground truth states. MDS reduces data dimensionality based on similarities, making
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Figure 6: NN-ResDMD outperforms Hankel-DMD in identifying latent dynamic structures in neu-
ral signals with a dictionary basis of size 501. (A) (Top) 500 Koopman eigenfunctions estimated
by NN-ResDMD in 6 states characterized by 6 different video stimuli in an example mouse. Eigen-
functions in each trial of each state contain 300 data points (10s with a sampling rate of 5S0Hz.
(Bottom) 50 Koopman eigenfunctions approximated by Hankel-DMD. In line with the dimension
of the Hankel matrix, each eigenfunction is 50 points long. (B) 2-D representation of Koopman
eigenfunctions for each trial of all tested mice, calculated by NN-ResDMD and reduced by Multidi-
mensional Scaling (MDS). Trials of the same state are well-clustered. (C) Same as (B) but calculated
with Hankel-DMD. No clear separation of states can be seen from the reduced representation. (D)
2D representation of Koopman eigenfunctions estimated using EDMD with RBF basis for each trial
in the first mouse, shown as an example. See Appendix Figure [9] for the full results. (E) Same as
(D) but estimated by Kernel ResDMD for the first mouse. See Appendix Figure [10|for full results.
(F) Davies-Bouldin Indices (DBIs) as a metric to evaluate the clustering quality for the two reduced
representations learned by four methods (NN-ResDMD, Hankel-DMD, EDMD+RBEF, and Kernel
ResDMD) across five mice. Lower DBI values in the case of NN-ResDMD suggest better clustering
compared to other classical methods.

it ideal for visualizing clustering performance. While UMAP and t-SNE are alternative methods,
we show MDS results in 2D space (Figure |6B-E), with similar results for UMAP and t-SNE in the
supplementary materials (Appendix Figure[8| Appendix Figure[9C,D and Appendix Figure [IOC,D).
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The 2D MDS visualization reveals clear separation of features for all 5 mice using NN-ResDMD
(Figure [6B), whereas no other method shows clear clustering (Figure [6C-E, Appendix Figure OB,
Appendix Figure[TOB). To quantify this clustering, we calculate the Davies-Bouldin index (DBI), a
measure of clustering quality that assesses how compact and well-separated the clusters are. A lower
DBI indicates more compact clusters that are farther apart from each other, which corresponds to
better clustering. The DBI is significantly lower for NN-ResDMD (Figure [6F), suggesting that it
captures the latent dynamic structure more effectively than all three other methods. Similar cluster-
ing patterns are confirmed with UMAP and t-SNE (Appendix Figure[TT).

5 CONCLUSION AND FUTURE WORK

Koopman spectral components (eigenpairs) are fundamental to understanding unknown dynamical
systems, as they reveal the intrinsic patterns and structures underlying complex temporal behavior
by providing a linear framework for analyzing nonlinear dynamics. In this paper, we introduced
NN-ResDMD, a method for effectively estimating of these eigenpairs based on minimizing spectral
residuals, which overcomes ResDMD’s limitation by eliminating the need to filter pre-computed
results. The use of neural networks to learn these eigenpairs offers a significant advantage in cap-
turing such patterns automatically, thus enhancing adaptability and reducing the need for manual
intervention in basis selection. This flexibility is particularly beneficial for high-dimensional sys-
tems where traditional approaches may struggle to uncover the underlying dynamics effectively. In
this line, our experiments clearly demonstrate that NN-ResDMD significantly outperforms classical
methods—including EDMD, Hankel-DMD, ResDMD and their variants—in uncovering the critical
spatiotemporal characteristics of nonlinear dynamics.

Koopman eigenpairs provide unique perspectives into the interpretation of nonlinear dynamical
mechanisms, and feedforward neural networks (FNNs) represent an initial step in learning spec-
tral properties directly from data. Future work could focus on refining neural network architectures
to enhance the accuracy and efficiency of Koopman eigenpair estimation. One promising direction
is the incorporation of Physics-Informed Neural Networks (PINNs) and Physics-Informed Neural
Operators (PINOs), which integrate physical laws directly into the learning process. This integra-
tion will ensure that the resulting Koopman eigenfunctions align with known physical constraint,
avoid overfitting and faciliatates generalization. Indeed, the integration of PINNs and PINOs with
the Koopman framework has the potential to serve as a powerful bridge between data-driven and
model-driven approaches, offering enhanced insights into complex systems and enabling more ro-
bust temporal evolution predictions.
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A APPENDIX

A.1 CALCULATION STEPS FOR[3.3]

Here we are going to show how squared relative residual implies (3.I) and then implies (3.3).
Consider ¢ = ®v = S"V% v, with [|¢[|2 = 1, then
Jo IKé(2) — Ap()[*dp(z)
Jo l¢(2)2du(z)

- /Q K () — A()Pdu(z)
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Remark. the inner product above is defined as (f, g fQ frgdu(x)
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A.2 DETAILS FOR DERIVING ([3.5)

Ny
J = res(hi, i)’
=1
K
1 * * * * 3\ * 24Ty *
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Next, by matrix calculus with denominator layout convention, we try to find minimal of J:
dJ dtr(J) . .
0= K= di (since J is a scalar)
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where tr() is trace of a matrix and G = V5 Uy, A = U WUy L = U Uy,
Since eigenvector v; is not a zero vector, v;v; is not a zero matrix. So

—2A+2GK =0= K = GTA.
Remark. To solve & tr (vi K*GKv;), we simply rewrite it as

Atr (ViK*GKv;) = 4% tr (Kv;)*G(KV;))
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A.3 DiscusSION ON CONVERGENCE

To understand how neural networks enhance NN-ResDMD, it is important to introduce Barron space
(Pinkus, [1999; |Cybenkol |1989; [Haykin, 2009} Barronl [1993)). Barron space characterizes functions
efficiently approximated by two-layer neural networks, which is central to NN-ResDMD. By lever-
aging networks that approximate functions within this space, NN-ResDMD can flexibly optimize the
dictionary functions for Koopman operator approximation, making it highly effective for complex,
high-dimensional systems.

A function f belongs to Barron space B if it can be represented as:

f(z) = / a0 (wTx)p(da, dw),

where o is the activation function, w is a weight vector, a is a coefficient, and p is a probability
distribution. The complexity of f is measured by the Barron norm || f|| 5:

Il = int ([ lallhptdadw)) .

where P is the set of distributions for which f can be represented. This framework provides a basis
for analyzing approximation errors in neural networks.

The following theorem (E et al.,|2020) discusses the approximation capabilities of two-layer neural
networks within this context, establishing a foundation for the subsequent analysis.

Theorem A.1 (Direct Approximation Theorem, L2-version). Forany f € Bandr € N, there exists
a two-layer neural network f, with r neurons {(a;, w;)} such that

If1ls
T

This result implies that the approximation error decreases at a rate of 1/4/r as the number of neurons
r increases, with the constant || f||z reflecting the complexity of the function f within the Barron
space.

If = frll2 S

Now, consider a Barron space B which is dense in L?({), 1) and a projected Koopman operator
Kny @ By, — L*(Q,p) where By,, C B is a Nx-dimensional subspace spanned by some

dictionary ¥ = {@ZJZ}ZJ\LKl According to Theorem we can have a well-trained dictionary that
almost spans By, i.e., given € > 0, we can always obtain a dictionary ¥, = {Ufm}fi 5 such that

N
SONE s — i]l3 < e
A.4 SOURCE CODE

For reproducibility, the source code will be available at the following anonymous URL:
https://anonymous.4open.science/r/ICLR-7305-PROJ. A full version of the codebase will be re-
leased upon acceptance of the paper.

A.5 KOOPMAN MODES COMPUTED BY HANKEL-DMD

Here we present the Koopman modes computed by Hankel-DMD for comparison with the NN-
ResDMD results. As shown in Figure [/ despite having small residuals, these modes fail to clearly
capture the fundamental pressure field structure that was successfully identified by NN-ResDMD’s
first Koopman mode (see Figure [5). This comparison demonstrates the superior ability of NN-
ResDMD to extract physically meaningful patterns from complex fluid systems.

A.6 PRACTICAL DETAILS FOR NEURAL DATA ANALYSIS
A.6.1 DATASET DETAILS AND EXPERIMENTAL SETUP

The dataset utilized in this study is part of the open dataset provided for the ’Sensorium 2023’
competition (Turishcheva et al.,2023)). The dataset consists of calcium imaging recordings from the
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Figure 7: The plots illustrate turbulence detection using the four Koopman modes computed by
Hankel-DMD, which are ranked with their corresponding residuals from the smallest.

primary visual cortex of mice. During the experiments, the mice were presented with natural video
stimuli while the activity of thousands of neurons was recorded. The objective of the competition
is to predict large-scale neuronal population activity in response to different frames of the stimulus
videos, based on the hypothesis that population dynamics in the primary visual cortex, driven by
visual stimuli, encode significant information about the dynamics of the videos (Basole et al., 2003;
Onat et al.| [2011; [Hénaff et al., 2021]).

A.6.2 TASK DEFINITION AND RATIONALE

In contrast to the competition’s prediction objective, our study focuses on the task of state par-
titioning of neural signals. While prediction remains feasible, we aim to demonstrate that state
partitioning is sufficient to highlight the superiority of NN-ResDMD over a series of other methods
in uncovering the latent dynamics of the system. Specifically, in each experiment, a set of six video
stimuli was repeatedly presented to each mouse, creating ideal conditions for defining brain states.
The recording setup remained consistent for each mouse, ensuring that the neural activities could
be interpreted as originating from the same dynamical system, with the primary variable being the
input stimulus.

We hypothesize that during repeated trials with identical visual stimuli, the underlying dynamics of
the neural system remain consistent. Consequently, the recurrence of the same brain state is expected
during these trials. This provides a reliable basis for testing the efficacy of Koopman decomposition
methods in uncovering latent dynamics and distinguishing these states.

A.6.3 DATASET STRUCTURE AND DIMENSIONALITY

The dataset includes neural recordings from five mice, with each mouse responding to six distinct
video stimuli, presented in 9-10 repeated trials (resulting in approximately 60 trials in total). Each
trial involves recordings of over 7000 neurons. The duration of each video stimulus is 10 seconds,
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with a sampling rate of 50 Hz, yielding 300 data points (299 snapshots) per trial. Thus, the data to
be analyzed consists of a high-dimensional time series with 7000+ observables per snapshot.

A.6.4 IMPLEMENTATIONS OF NN-RESDMD AND OTHER CLASSICAL METHODS

We compare here four methods: the proposed NN-ResDMD and three classical Koopman decom-
position methods for high-dimensional systems: the Hankel-DMD, the EDMD with RBF basis, and
the Kernel ResDMD. We applied them to the 5 datasets, although with slightly different implemen-
tations and different dimensions of approximated Koopman invariance subspace.

For NN-ResDMD, we train the dictionaries with all the snapshots recorded in each mouse such that
the total snapshot number is the product of the snapshot number in one trial and the number of all tri-
als. This is to avoid overfitting with the small snapshot numbers within a trial. The high-dimensional
data is first reduced to 300 dimensions with Singular Value Decomposition. The dimension of the
Koopman subspace is chosen to be 601, consisting of 300 trained bases and 301 pre-chosen ones
(constant and the first-degree polynomials of the SVD-ed 300 dimensions). The first 501 eigenfunc-
tions sorted by the modulus of eigenvalues are selected to avoid spurious eigenvalues estimation
due to noise. One can find the decomposed eigenfunctions in Figure [6JA(top), with a marker of the
ground truth state separations based on stimulus identity.

For Hankel-DMD, the Koopman eigenfunctions were approximated using the eigenvectors of the
Hankel matrix. Specifically, the Hankel matrix was formed as in Equation 53 from |Arbabi & Mezic
(2017), using all the observables from one trial of each mouse with a delay of 50. Consequently, the
snapshot size became 249 times the observable number, and the resulting number of eigenfunctions
was 50, each with a length of 50. The Hankel-DMD eigenfunctions for each trial of data are shown
in Figure[GA (bottom), alongside the ground truth trial identities for comparison.

For EDMD with RBF basis, the high-dimensional dataset is first reduced to 300 dimensions with
SVD. Then RBF basis is calculated with 1000 RBF functions. The choice of the basis number is
decided based on classical experiments of using RBF basis to estimate the Koopman operator of
Duffing systems (Li et al., 2017).

For Kernel ResDMD, as it is a variant of Kernel EDMD (Kevrekidis et al.,[2016), the dimension of
the Koopman invariant subspace should corresponds to the sample number (in time). Given the data
size to be 300, we have 299 snapshots, resulting in 299 Koopman bases. The detailed calculated
is performed for each trial with the program provided in the original ResDMD paper (Colbrook
et al., 2023} (Colbrook & Townsend, |2024). We chose the kernel function as the commonly-used
normalized Gaussian function in the calculation.

The Koopman eigenfunctions from both NN-ResDMD and other methods represent dynamical fea-
tures corresponding to one of the six video stimuli. To evaluate how well the eigenfunctions capture
the latent dynamics, we assess the similarity of the features for trials with the same stimulus and
their dissimilarity from those corresponding to different stimuli. Effectively, this makes the prob-
lem a clustering task, where the separability of the Koopman eigenfunctions reflects how well they
capture the key dynamic components related to the stimuli.

A.6.5 VISUALIZATION AND CLUSTERING PERFORMANCE

To visualize the clustering of high-dimensional Koopman eigenfunctions, we perform dimension-
ality reduction using Multi-dimensional Scaling (MDS). MDS is particularly useful for visualizing
high-dimensional data by preserving pairwise similarities (Kruskall [1964) (here we use correlation
as a measure of similarities). While UMAP (Mclnnes et al., [2018)) and t-SNE (Van der Maaten &
Hinton, [2008)) are alternative visualization methods, with different emphasis on global-local rela-
tionships, we primarily use MDS in this study and provide UMAP and t-SNE results in the supple-
mentary materials (see Appendix Figure [§A, B, Appendix Figure[9[C, D and Appendix Figure [I0[C,
D). UMAP in implementation is still correlation-based. For t-SNE estimation we use the perplexity
of 15, as a value for optimal separation.

By applying MDS, the high-dimensional eigenfunction-based features are reduced to a low-
dimensional space. For illustration, we present the results of reducing the feature space to two
dimensions (Figure [6B-E). The NN-ResDMD reduced features for the six types of trials (corre-
sponding to the six video stimuli) are well-separated for all five mice (Figure [6B). In contrast, the
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Hankel-DMD features show no clear clustering structure (Figure [[C). Similarly, the features pro-
duced by EDMD with an RBF basis and Kernel ResDMD do not show clear separability (Figure[6]D-
E, Appendix Figure [OB-D, Appendix Figure[I0B-D).

A, 1 2 3 4 5 8
7 I [ | I [
4 Mouse-1,NN-ResDMD Mouse-ZJ\I_N-ResDMD MOuss'-a. NN-ResDMD Mouse-4, NN-ResDMD Mouse-5, NN-ResDMD
2 “oe 2] e 12 R . .
3l et 10 %
o 2 < ~ 0 e, ™~ . o -1 L
£ £ “ EM €018 £l 0050
o L . a ° [} a [a] s, et
0gs,, © -2 -15 . 6 DA
XX °°, 31 %
-16 % 4 .
2 4 L o
-10 5 5 10 5 0 2 4 6 -10 -5 0
Dim. 1 Dim. 1 Dim. 1 Dim. 1 Dim. 1
Hankel DMD Hankel DMD Hankel DMD Hankel DMD Hankel DMD
12 0 6 8
L] ¢ .
. ¢ 1 e 0 ‘ ¢ -2 ‘e . . . ¢ o * ’
o Of e Mo * TS e o R A e G e T .
! " . .
§ . . .- E . L . E -4 . E . - . . E . . : [}
Dol s Boftfe e el B o0 Lt By 04 Oaf 5 cLT L
: . 8 6 "o " °
. [ ] - «
4 oo ® -8 0 2
6 -4 -4 2 0 0 5 -4 2 0 -6 4
Dim. 1 Dim. 1 Dim. 1 Dim. 1 Dim. 1
B
00 Mouse-1,NN-ResDMD Mouse-2,NN-ResDMD Mouse-3, NN-ResDMéZ{)0 Mouse-4, NN-ResDMg)00 Mouse-5, NN-ResDMD
200 500
100 :: ° 100 0 -.- 200 .
o~ 0 .-l N . ™~ se 02 o N - e 180 R
g .: '-'-'-. g 0 o -‘-‘-' g 0 %" -:-'. g ‘ -l-':‘ : -..-
. ‘
100 . > 00 --_"_ H 200 gu Sl
200 .
3 2000 -500 -400 10
200 0 200 4100 0 100 200 200 0 200 400 0 200 100 0 100 20
H Dliml'l.j.iMD H Dkiml'[1)MD H [%imI'I?)MD H Dliml'SMD il
anke anke anke anke
200 500 . 100 400 s00, Hankel DMD
. L L4 * -- . .'
100 LAY ® . -_' e 50 " . 200 . .,
o o o~ . . e ™ oo . ™ N
L ] () . . 0 . . ° Ld L] L] ° A . . L]
£ 0 A £ £ Op°e, .o E ee% *,E O . .
[=} tre. e B ¢ Lt =} TR S LR e tee
o
100 R . 50 R ! Cett o' o .
* .
N .
200 -500 -100 - -200 -500 :
200 0 200 -500 0 500 -100 0 100 -200 0 200 -500 0 500
Dim. 1 Dim. 1 Dim. 1 Dim. 1 Dim. 1

Figure 8: State Partition performance of eigenfunctions for NN-ResDMD and Hankel-DMD in 2D
space visualized with UMAP (A) and t-SNE (B).

A.6.6 CLUSTERING QUALITY METRICS

We further quantified the clustering quality by calculating the Davies-Bouldin Index (DBI) for both
Koopman decomposition methods across all mice (Figure [GF). The DBI is designed to assess the
compactness of clusters and the separability between them. A lower DBI indicates better cluster-
ing performance. NN-ResDMD features yield significantly lower DBI scores compared to other
methods, confirming that NN-ResDMD produces more clearly defined clusters corresponding to the
ground truth trials. Similar clustering results are observed with UMAP and t-SNE (see Appendix
Figure [TT)), further supporting the superior performance of NN-ResDMD in capturing the latent
dynamic structure compared to the other classical methods.
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Figure 9: Full results of EDMD with RBF basis. (A) 1301 Koopman eigenfunctions estimated by
EDMD with RBF basis in 6 states characterized by 6 different video stimuli in an example mouse.
Eigenfunctions in each trial of each state contain 300 data points (10s with a sampling rate of S0Hz).
(B) 2-D representation of Koopman eigenfunctions for each trial of all tested mice, calculated by
EDMD with RBF basis and reduced by Multidimensional Scaling (MDS). No clear separation of
states can be seen from the reduced representation. (C) Same as (B) but visualized with UMAP.
No clear separation of states can be seen from the reduced representation. (D) Same as (C) but
visualized with t-SNE. No clear separation of states can be seen from the reduced representation.
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Figure 10: Same as Figure Elbut estimated with Kernel ResDMD, with 299 basis of the Koopman
subspace, thus 299 eigenfunctions.
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Figure 11: Davies-Bouldin Indices evaluating the clustering performance of dynamical components
learned by four methods (NN-ResDMD, Hankel DMD, EDMD+RBF, and Kernel ResDMD) across

five mice. Comparisons are shown using UMAP (A) and t-SNE (B).
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