
Published as a conference paper at ICLR 2024

SUM-PRODUCT-SET NETWORKS: DEEP TRACTABLE
MODELS FOR TREE-STRUCTURED GRAPHS

Milan Papež, Martin Rektoris, Václav Šmı́dl & Tomáš Pevný
Artificial Intelligence Center, Czech Technical University
{papezmil,rektomar,smidlva1,pevnytom}@fel.cvut.cz

ABSTRACT

Daily internet communication relies heavily on tree-structured graphs, embodied
by popular data formats such as XML and JSON. However, many recent gener-
ative (probabilistic) models utilize neural networks to learn a probability distri-
bution over undirected cyclic graphs. This assumption of a generic graph struc-
ture brings various computational challenges, and, more importantly, the presence
of non-linearities in neural networks does not permit tractable probabilistic in-
ference. We address these problems by proposing sum-product-set networks, an
extension of probabilistic circuits from unstructured tensor data to tree-structured
graph data. To this end, we use random finite sets to reflect a variable number of
nodes and edges in the graph and to allow for exact and efficient inference. We
demonstrate that our tractable model performs comparably to various intractable
models based on neural networks.

1 INTRODUCTION

One of the essential paradigm shifts in artificial intelligence and machine learning over the last years
has been the transition from probabilistic models over fixed-size unstructured data (tensors) to prob-
abilistic models over variable-size structured data (graphs) (Bronstein et al., 2017; Wu et al., 2021).
Tree-structured data are a specific type of generic graph-structured data that describe real or abstract
objects (vertices) and their hierarchical relations (edges). These data structures appear in many sci-
entific domains, including cheminformatics (Bianucci et al., 2000), physics (Kahn et al., 2022), and
natural language processing (Ma et al., 2018). They are used by humans in data-collecting mecha-
nisms to organize knowledge into various machine-generated formats, such as JSON (Pezoa et al.,
2016), XML (Tekli et al., 2016) and YAML (Ben-Kiki et al., 2009) to mention a few. Designing a
probabilistic model for these tree-structured file formats is one of the key motivations of this paper.

The development of models for tree-structured data has been thoroughly, but almost exclusively,
pursued in the NLP domain (Tai et al., 2015; Zhou et al., 2016; Cheng et al., 2018; Ma et al., 2018).
Unfortunately, these models rely solely on variants of neural networks (NNs), are non-generative,
and lack clear probabilistic interpretation. There has also recently been growing interest in designing
generative models for general graph-structured data (Simonovsky & Komodakis, 2018; De Cao &
Kipf, 2018; You et al., 2018; Jo et al., 2022; Luo et al., 2021). However, the underlying principle
of these generic models is to perform the message passing over a neighborhood of each node in
the graph, meaning that they visit many of the nodes several times. Directly applying them to the
trees and not adapting them to respect the parent-child ancestry of the trees would incur unnecessary
computational costs. Additionally, these models assume that the features are assigned to each node
and all have the same dimension. More importantly, they preclude tractable probabilistic inference,
necessitating approximate techniques to answer even the most basic queries.

In sensitive applications (e.g., healthcare, finance, and cybersecurity), there is an increasing legal
concern about providing non-approximate and fast decision-making. Probabilistic circuits (PCs)
(Vergari et al., 2020) are tractable probabilistic (generative) models that guarantee to answer a large
family of complex probabilistic queries (Vergari et al., 2021) exactly and efficiently. For instance,
the marginal queries form the fundamental part of many more advanced queries. Their practicality
lies in allowing us to consistently address various tasks, including dealing with missing data (Peharz
et al., 2020) and explaining anomalous samples (Lüdtke et al., 2023). This paper is interested in

1

Published as a conference paper at ICLR 2024

{
"ind1": 1, "lumo": -1.246, "inda": 0, "logp": 4.23, "atoms": [
{
"element": "c",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 7, "atom": 22},
{"element": "h", "charge": 0.142, "bond": 1, "atom": 3}

],
"charge": -0.117,

"atom": 22
},
.
.
.

{
"element": "h",
"bonds": [
{"element": "c", "charge": -0.117, "bond": 1, "atom": 22}
],

"charge": 0.142,
"atom": 3

}
]

}

△

x x x x ▽

△ △

x ▽ x x x ▽ x x

△ △ △

x x x x x x x x x x x x

. . .

Figure 1: Tree-structured graphs. Left: an example of a molecule from the Mutagenesis dataset (Debnath
et al., 1991) encoded in the JSON format. Right: the corresponding, tree-structured graph, T (Definition 1),
describing relations between the atoms and their properties, and its schema (dashed line), S (Definition 2).
Here, △ is the heterogeneous node (green), ▽ is the homogeneous node (orange), and x is the leaf node (blue).

a specific sub-type of PCs—sum-product networks (SPNs)—which represent a probability density
over fixed-size unstructured data (Poon & Domingos, 2011).

To our knowledge, no SPN is designed to represent a probability distribution over a variable-size,
tree-structured graph. Here, it is essential to note that an SPN is also a graph. To distinguish between
the two graphs, we refer to the former as the data graph and the latter as the computational graph.
Similarly, to distinguish between the vertices of these two graphs, we refer to vertices of the data
graph and computational graph as data nodes and computational units, respectively. We propose a
new SPN (i.e., a new type of PCs) by seeing the data graph as a recursive hierarchy of sets, where
each parent data node is a set of its child data nodes. Unlike the aforementioned models for the
undirected cyclic graphs, our model respects the parent-child direction when processing the data
graph. We use the theory of random finite sets (Nguyen, 2006) to induce a probability distribution
over repeating data subgraphs, i.e., sets with identical properties. This allows us to extend the
computational graph with an original computational unit, a set unit. Our model provides an efficient
sampling of new data graphs and exact marginal inference over selected data nodes, which allows
us to deal with missing parts of the JSON files. It also permits the data nodes to have heterogeneous
features, where each node can represent data of different dimensions and modalities.

In summary, this paper offers the following contributions:

• We propose sum-product-set networks (SPSNs), extending the predominant focus of PCs from
unstructured tensor data to tree-structured graph data (Section 3).

• We show that SPSNs respecting the standard structural constraints of PCs are tractable under mild
assumptions on the set unit (Section 3.1).

• We investigate the exchangeability of SPSNs, concluding that SPSNs are permutation invariant
under the reordering of the arguments in the set units and input units (if the input units admit some
form of exchangeability) and that the invariance propagates through SPSNs fundamentally based
on the structural constraints (Section 3.2).

• We show that SPSNs deliver competitive performance to intractable models relying on much more
densely connected and highly nonlinear NNs, which are unequipped to provide exact answers to
probabilistic queries (Section 5).

2 TREE-STRUCTURED DATA

A single instance of tree-structured, heterogeneous data is given by an attributed data graph, T . In
contrast to a fixed-size, unstructured, random variable, x = (x1, . . . , xn) ∈ X ⊆ Rn, this graph
forms a hierarchy of random-size sets.

Definition 1. (Data graph). T := (V,E,X) is an attributed, tree-structured graph, where V is a
set of vertices, E is a set of edges, and X is a set of attributes (features). V := (L,H,O) splits into
three subsets of data nodes: leaf nodes, L, heterogeneous nodes, H , and homogeneous nodes, O.
Let ch(v) and pa(v) denote the set of child and parent nodes of v ∈ V , respectively. All elements
of ch(v) are of an identical type if v ∈ O, and some or all elements of ch(v) are of a different type

2

Published as a conference paper at ICLR 2024

(a) Schema

△

x x x x ▽

△

x ▽ x x

△

x x x x

(b) SPSN

SPSN block

SPSN block

SPSN block

(c) SPSN block

. . .

+ . . . +

× . . . × . . .

+ + + +

× . . . × . . . × . . . × . . .

p {·} p p p {·} p p

p p

. . .

Figure 2: Sum-product-set networks. (a) The schema (Definition 2) from the example in Figure 1. (b) The
SPSN network comprises SPSN blocks that correspondingly model the heterogeneous nodes depicted in (a).
(c) The SPSN block embodies the computational (sub)graph, G, (Definition 3), where +, ×, {·} and p are the
sum unit, product unit, set unit and input unit of G, respectively. The elements of the heterogeneous node in (a)
are modeled by the corresponding parts of G in (c), as displayed in green, orange, and blue.

if v ∈ H . We assume that only the leaf nodes are attributed by xv ∈ Xv ⊆ Rnv , with possibly
different space and its dimension for each v ∈ L.

Definition 2. (Schema). Let T be a tree-structured, heterogeneous data graph (Definition 1). Then,
a subtree, S, which results from T by following all children of each v ∈ H and only one child of
each v ∈ O—such that it allows us to reach the deepest level of T—is referred to as the schema1.

We model each heterogeneous node, Tv := (Tw1 , . . . , Twm) ∈ Tv , v ∈ H , as a finite set. It
is an ordered set of features or other sets, Tw ∈ Tw, where the elements are random but their
number, m ∈ N0, is fixed. For v ∈ H , Tv is the Cartesian product space composed of the spaces
corresponding to the elements of Tv . Importantly, we propose to model each homogeneous node,
Tv := {Tw1

, . . . , Twm
} ∈ Tv , v ∈ O, as a finite random set (RFS), i.e., a simple, finite point

process (Van Lieshout, 2000; Daley et al., 2003; Nguyen, 2006; Mahler, 2007). This is an unordered
set of distinct features or other sets, such that not only the individual elements, Tw ∈ Tw, are
random, but also their number, m ∈ N0, is random. For v ∈ O, Tv := F(Tw) is the hyperspace
of all finite subsets of some underlying space Tw (which is common to all elements). We refer
to Section B for more details on RFSs. The leaf node, Tv := xv = (x1 . . . , xm) ∈ Tv , v ∈
L, contains a feature vector (i.e., it is also a finite set). For v ∈ L, Tv is usually a subspace of
Rmv . We show an example of a single instance of tree-structured data in Figure 1, where T =
(x, x, x, x, {(x, {(x, x, x, x), (x, x, x, x)}, x, x), . . . , (x, {(x, x, x, x)}, x, x)}). The whole tree T
lives in a hybrid space T , i.e., a product space composed of continuous spaces, discrete spaces, and
hyperspaces of other RFSs. Each T is thus a hierarchy of several RFSs. Indeed, such constructions
are possible and are used to define “random cluster processes” (Mahler, 2001; Mahler & MN, 2002).

It follows from Definition 1 and Definition 2 that, for heterogeneous nodes, v ∈ H , each child
subtree, Tw, has a different schema for all w ∈ ch(v); whereas for homogeneous nodes, v ∈ O,
each child, Tw, has the same schema for all w ∈ ch(v). This further implies that T can be defined
recursively by a subtree, Tv := [Tw1

. . . , Twm
], rooted at v ∈ V , where the parentheses [·] instantiate

into {·} for homogeneous nodes, and into (·) for heterogeneous nodes, to distinguish if the number
of elements is random or not. Note also that the number of elements in homogeneous nodes, v ∈ O,
differs for each instance of T , while it remains the same for all heterogeneous nodes, v ∈ H .

Problem definition. Our objective is to learn a probability density over tree-structured graphs (Def-
inition 1), p(T), given a collection of observed graphs {T1, . . . , Tm}, where each Ti contains a
different number of vertices and edges but follows the same schema.

1Recall that one the key motivations of this paper is to design a probabilistic model for the tree-structured
file formats (Section 1). The intuition behind Definition 2 follows from the schema of the JSON files (Pezoa
et al., 2016). We do not consider the schema used in the relational databases.

3

Published as a conference paper at ICLR 2024

3 SUM-PRODUCT-SET NETWORKS

A sum-product-set network (SPSN) is a probability density over a tree-structured graph, p(T). This
differs from the conventional SPN (Poon & Domingos, 2011), which is a probability density over the
unstructured vector data, p(x). For a short introduction to SPNs, see Section A in the supplementary
material. We define an SPSN by a parameterized computational graph, G, and a scope function, ψ.
Definition 3. (Computational graph). G := (V, E , θ) is a parameterized, directed, acyclic graph,
where V is a set of vertices, E is set of edges, and θ ∈ Θ are parameters. V := (S,P,B, I) contains
four subsets of computational units: sum units, S, product units, P, set units, B, and input units, I.
The sum units and product units have multiple children; however, as detailed later, the set unit has
only two children, ch(u) := (a, b), u ∈ B. θ contains parameters of sum units, i.e., non-negative
and normalized weights, (wu,c)c∈ch(u), wu,c ≥ 0,

∑
c∈ch(u) wu,c = 1, u ∈ S, and parameters of

input units which are specific to possibly different densities.
Definition 4. (Scope function). The mapping ψu : V → F(T)—from the set of units to the power
set of T ∈ T—outputs a subset of T for each u ∈ V and is referred to as the scope function. If u is
the root unit, then ψu = T . If u is a sum unit, product unit, or set unit, then ψu =

⋃
c∈ch(u) ψc.

Each unit of the computational graph (Definition 3), u ∈ V , induces a probability density over a
given (subset of) node(s) of the data graph (Definition 1), v ∈ V . The functionality of this density,
pu(Tv), depends on the type of the computational unit.

The sum unit computes the mixture density, pu(Tv) =
∑

c∈ch(u) wu,cpc(Tv), u ∈ S, v ∈ (L,H),
where wu,c is the weight connecting the sum unit with a child unit. The product unit computes
the factored density, pu(Tv) =

∏
c∈ch(u) pc(ψc), u ∈ P, v ∈ (L,H). It introduces conditional

independence among the scopes of its children, ψc, establishing unweighted connections between
this unit and its child units. The input unit computes a user-defined probability density, pu(xv),
u ∈ I, v ∈ L. It is defined over a subset xv of Tv := xv , corresponding to the scope, ψu, which can
be univariate or multivariate (Peharz et al., 2015).

The newly introduced set unit computes a probability density of an RFS,

pu(Tv) = p(m)cmm!p(Tw1
, . . . , Twm

), (1)

u ∈ B, v ∈ O, where p(m) is the cardinality distribution, and p(Tw1 , . . . , Twm) is the feature
density (conditioned on m). These are the two children of the set unit (Definition 3), spanning
computational subgraphs on their own (Figure 2). The proportionality factor, m! =

∏m
i=1 i, comes

from the symmetry of p(Tw1
, . . . , Twm

). It reflects the fact that p(Tw1
, . . . , Twm

) is permutation
invariant, i.e., it gives the same value to all m! possible permutations of {Tw1

, . . . , Twm
}. Recall

from Section 2 that Tv ∈ F(Tw), where Tw is the underlying space of the RFS. c is a constant
with units of hyper-volume of Tw, which ensures that (1) is unit-less by canceling out the units
of p(Tw1

, . . . , Twm
) with the units of cm. This mechanism is important when computing integrals

with (1). Section B provides more details on the subject of integrating functions of RFSs. Note that,
contrary to the other units, the set unit is defined only for the homogeneous node, v ∈ O.
Assumption 1. (Requirements on the set unit). We make the following requirements on the proba-
bility density of the set unit: (a) each element of Tv := {Tw1

, . . . , Twm
} resides in the same space,

i.e., Tw ∈ Tw, for all w ∈ ch(v); (b) the realizations {Tw1
, . . . , Twm

} are distinct; (c) the cardi-
nality distribution p(m) = 0 for a sufficiently large m; and (d) the elements {Tw1

, . . . , Twm
} are

independent and identically distributed (i.i.d.).

Assumptions 1(a-c) are the standard assumptions on RFSs (Section B). Assumption 1(d) reduces
the feature density in (1) to the product of m densities over the identical scope, p(Tw1

, . . . , Twm
) =∏m

i=i p(Twi
) (i.e., not the disjoint scope and, therefore, it is not the product unit), where each p(Twi

)
is indexed by the same set of parameters. Consequently, the feature density treats {Twi

}mi=i as i.i.d.
instances, aggregating them by the product of densities. Note that, if Assumption 1(d) holds, and
p(m) is the Poisson distribution, then (1) is the Poisson point process (Grimmett & Stirzaker, 2001).
We provide more comments on Assumption 1(d), including a possible way to relax it, in Remark 2.

Constructing SPSNs. We illustrate the design of SPSNs in Figure 2. The construction begins with
extracting the schema of the data graph (Figure 2(a) which corresponds to the example of T in Fig-
ure 1). Then, starting from the top of the schema, we create an SPSN block for each heterogeneous

4

Published as a conference paper at ICLR 2024

node (Figure 2(b)). The SPSN block (Figure 2(c)) alters many layers of sum units and product units
(green). Every time there is a product layer, the heterogeneous node, Tv := (Tw1

, . . . , Twm
), is

split into two (or multiple depending on the number of children of the product units) parts, Tv1 and
Tv2 . This process is repeated recursively until Tv1 and Tv2 are either singletons or subsets that result
from a user-defined limit on the maximum number of product layers in the block. Each of these
subsets or singletons is then modeled by the input unit (blue). Importantly, this reduction always has
to separate all homogeneous nodes out of the heterogeneous node, Tv , as single elements modeled
by the set unit (orange). Note that the sum units create duplicate parts of the computational graph
(children have an identical scope), which we leave out in our illustration for simplicity (the dashed
line). The consequence is that there will be multiple set units. We gather all edges leading from the
feature density of these set units and connect them to the block (Figure 2(b)) modeling the subse-
quent heterogeneous node in the schema (Figure 2(a)). We provide a detailed algorithm to construct
SPSNs in Section E, along with a simple example without the block structures (Figure 4).

Hyper-parameters. The key hyper-parameter is the number of layers of the SPSN block, nl. We
consider that a single SPSN layer comprises one sum layer and one product layer. The other hyper-
parameters are the number of children of all sum units, ns, and product units, np, which are common
across all layers (nl = 2, ns = 2, and np = 2 in Figure 2(c)).

3.1 TRACTABILITY

Tractability is the cornerstone of PCs. A PC is tractable if it performs probabilistic inference exactly
and efficiently (Choi et al., 2020; Vergari et al., 2021). In other words, the probabilistic queries are
answered without approximation (or heuristics) and in time, which is polynomial in the number of
edges of the computational graph. Various standard probabilistic queries (e.g., moments, marginal
queries, and conditional queries) can be defined in terms of the following integral:

ν(f) =

∫
f(T)p(T)ν(dT), (2)

where f : T → R is a function that allow us to formulate probabilistic queries, and ν is a reference
measure on T (Section 2). The composite nature of T imposes a rather complex structure on ν. It
contains measures specifically tailored for RFSs, which makes the integration different compared to
the standard Lebesgue measure (see Section B and Section D.2 for details).

Structural constraints. If (2) admits an algebraically closed-form solution, then SPSNs are
tractable. This is what we demonstrate in this section. To this end, both p and f have to satisfy
certain restrictions on their structure, which we present in Definition 5 and Definition 6.
Definition 5. (Structural constraints on p). We consider the following constraints on G. Smooth-
ness: children of any sum unit have the same scopes, i.e., each u ∈ S satisfies ∀a, b ∈ ch(u) : ψa =
ψb. Decomposability: children of any product unit have pairwise disjoint scopes, i.e., each u ∈ P
satisfies ∀a, b ∈ ch(u) : ψa ∩ ψb = ∅.

The SPSNs inherit the standard structural constraints used in PCs (Shen et al., 2016; Vergari et al.,
2021). The set unit does not violate these constraints since the cardinality distribution and the feature
density are computational subgraphs given by the SPSN units (Definition 3).
Definition 6. (Structural constrains on f .) Let f(T) :=

∏
u∈L fu(ψu) be a factorization of f , where

(ψu)u∈L are pairwise disjoint scopes that are unique among all the input units.

Note that the scopes of all input units, (ψu)u∈I, form a multiset since there are usually repeating
scopes among all u ∈ I. These repetitions result from the presence of sum units in the computational
graph, as they have children with identical scopes (Definition 5). The collection (ψu)u∈L, on the
other hand, contains no repeating elements, i.e., L ⊆ I, are the input units with a unique scope. We
obtain this set if we follow only a single child of each sum unit when traversing the computational
graph from the root to the inputs (as in the induced tree (Zhao et al., 2016; Trapp et al., 2019)).

Definition 6 allows us to target an arbitrary part of the data graph, T , which is spanned from a given
data node, v ∈ V , (Definition 1). That is, we can define T := T−v ∪ Tv , where Tv is composed of
the subsets of T that are reachable from v, and T−v is the complement. Consider f(T) := 1A(T),
where the indicator function 1A(T) := 1 if T ∈ A, for a measurable subset A ⊆ T , or 1A(T) := 0
otherwise. Now, let A := E−v × Av , where E−v ∈ T−v is an evidence assignment (a specific

5

Published as a conference paper at ICLR 2024

realization) corresponding to T−v , and Av ⊆ Tv is a measurable subset corresponding to Tv . Then,
the integral (2) yields the marginal query P (E−v, Av). This query is useful if there is a (subset of)
node(s) with missing values, e.g., a leaf node, v ∈ L, which we demonstrate in Section 5.
Proposition 1. (Tractability of SPSNs). Let p(T) be an SPSN satisfying Assumption 1 and Defini-
tion 5, and let f(T) be a function satisfying Definition 6. Then, the integral (2) is tractable and can
be computed recursively as follows:

Iu =


∑∞

k=0 p(k)
∏k

i=1 Ii, for u ∈ B,∑
c∈ch(u) wu,cIc, for u ∈ S,∏
c∈ch(u) Ic, for u ∈ P,∫
fu(ψu)pu(ψu)νu(dψu), for u ∈ I,

where the measure νu(dψu) instantiates itself either as the Lebesgue measure or the counting mea-
sure, depending on the specific form of the scope ψu.

Proof. See Section D.2 in the supplementary material.

Proposition 1 starts the integration by finding a closed-form solution for the integrals w.r.t. the input
units, u ∈ I. The results, Iu, are then recursively propagated in the feed-forward pass through the
computational graph and are simply aggregated based on the rules characteristic to the sum, product,
and set unit. Specifically, the integration passes through the set unit similarly to the sum and product
units. It computes an algebraically closed-form solution consisting of a weighted sum of products
of integrals passed from the feature density (i.e., a tractable sub-SPSN). Note that the integration
reduces to the one used in the conventional SPNs if there are no set units, see Proposition 5.

The infinite sum in the aggregation rule of the set unit (u ∈ B) in Proposition 1 might give an
impression that SPSNs are intractable. However, recall from Assumption 1 that p(k) = 0 for a
sufficiently large k (consider, e.g., the Poisson distribution), and the infinite sum therefore becomes
a finite one (Remark 1). This is commonly the case in practice since p(k) is learned from collections
of graphs with a finite number of edges.

3.2 EXCHANGEBILITY

The study of probabilistic symmetries has attracted increased attention in the neural network liter-
ature (Bloem-Reddy & Teh, 2020). On the other hand, the exchangeability of PCs has been inves-
tigated marginally. The relational SPNs (Nath & Domingos, 2015) and the exchangeability-aware
SPNs (Lüdtke et al., 2022) are, to the best of our knowledge, the only examples of PCs introducing
exchangeable computational units. However, none of them answers the fundamental question about
exchangeability: Under what constraints is it possible to permute the arguments of a PC?

To define the notion of finite full exchangeability of a probability density (see Section C for details),
we use the finite symmetric group of a set of n elements, Sn. This is a set of all n! permutations of
[n] := (1, . . . , n), and, any of its members, π ∈ Sn, exchanges the elements of an n-dimensional
vector, x := (x1, . . . , xn), in the following way: π · x = (xπ(1), . . . , xπ(n)).

Definition 7. (Full exchangeability). The probability density p is fully exchangeable iff p(x) =
p(π · x) for all π ∈ Sn . We say that x is fully exchangeable if p(x) is.

The full exchangeability (complete probabilistic symmetry) is sometimes unrealistic in practical
applications. The relaxed notion of finite partial exchangeability (de Finetti, 1937; Aldous, 1981;
Diaconis & Freedman, 1984; Diaconis, 1988a;b) admits the existence of several different and related
groups where full exchangeability applies within each group but not across the groups.

To describe the partial exchangeability, we rely on the product ofm finite symmetric groups, Snm
:=

Sn1
×· · ·×Snm

, where nm := (n1, . . . , nm). Any member, π ∈ Snm
, permutes each ofm elements

in the collection, X := (x1, . . . ,xm), individually as follows: π ·X = (π1 · x1, . . . , πm · xm).
Definition 8. (Partial exchangeability). The probability density p is partially exchangeable iff
p(X) = p(π ·X) for all π ∈ Snm

. We say that X is partially exchangeable if p(X) is.

Definition 8 allows us to study the exchangeability of probabilistic models in situations where they
follow structural limitations that prevent the direct use of full exchangeability. SPSNs respecting

6

Published as a conference paper at ICLR 2024

Assumption 1 and Definition 5 have a constrained computational graph, which imposes limitations
on their input-output behavior. Therefore, it does not apply that exchanging any two nodes in the
data graph, T , has no impact on the value of p(T). We present Proposition 3 to describe under what
restrictions the data nodes can be exchanged, how the permutations propagate through the computa-
tional graph, and in what sense the exchangeability affects the different types of computational units.
Proposition 2. (Structurally constrained permutations.) Consider a PC satisfying Definition 5.
Then, qa ∈ Q is a permutation operator which targets a specific computational unit, a ∈ V , and
propagates through the computational graph G—from the root to the inputs—in the following way:

pu(qa · ψu) =


∑

c∈ch(u) wu,cpc(qa · ψu), for a ̸= u and u ∈ S,∏
v∈cha(u)

pv(qv · ψv)
∏

c∈cha(u)
pc(ψc), for a ̸= u and u ∈ P,

pu(π · ψu), for a = u and u /∈ {S,P},

where cha(u) and cha(u) are children of u that are and are not the ancestors of a, respectively. Con-
sequently, Q is a group that results from the structural restrictions on the computational graph G.

Proof. See Section C.1.

Proposition 2 shows that qa propagates through each sum unit to all its children, passes through
each product unit only to those children that are the ancestors of a, and instantiates itself to the
permutation, π, when reaching the targeted unit, a. This recursive mechanism allows us to formulate
the exchangeability of SPSNs in Proposition 3.
Proposition 3. (Exchangeability of SPSNs). Let p(T) be an SPSN satisfying Assumption 1 and
Definition 5. Let IE ∈ I be a subset of input units that are exchangeable in the sense of Definition 7
or Definition 8. Then, the SPSN is partially exchangeable, p(qa · T) = p(T), for each a ∈ {IE,B}.

Proof. See Section C.2.

Proposition 3 states that changing the order of the arguments corresponding to exchangeable input
units and set units does not influence the resulting value of p(T), i.e., the SPSNs are invariant under
the reordering of the elements in the scopes of these units. There must be at least one input unit that
is multivariate and exchangeable in the sense of Definition 7 or Definition 8 to satisfy exchangebil-
ity w.r.t. IE; otherwise, SPSNs are exchangeable only w.r.t. B. This implies that T can always be
exchanged w.r.t. the homogeneous nodes and only the leaf nodes admitting exchangeability. The
heterogeneous nodes are not exchangeable. Full exchangeability is possible only when there are no
product units, and the input units are fully exchangeable. The presence of product units thus al-
ways imposes partial exchangeability. The structural constraints of SPSNs impose a specific type of
probabilistic symmetry. In other words, an SPSN can be seen as a probabilistic symmetry structure
invariant under the action of a group, Q, resulting from the connections in the computational graph.

4 RELATED WORK

Non-probabilistic models (NPMs). Graph neural networks (GNNs) have become a powerful ap-
proach for non-probabilistic representation learning on graphs. Variants of GNNs range from their
original formulation (Gori et al., 2005; Scarselli et al., 2008) to GCN (Kipf & Welling, 2017), MPNN
(Gilmer et al., 2017), GAT (Veličković et al., 2018) and GraphSAGE (Hamilton et al., 2017), among
others. They encode undirected cyclic graphs into a low-dimensional representation by aggregating
and sharing features from neighboring nodes. However, they waste computational resources by re-
peatedly visiting the nodes when applied to structurally constrained graphs. This led to GNNs for
directed acyclic graphs (Thost & Chen, 2021), and for trees, which traverse the graph bottom-up (or
up-bottom) and update the nodes only via their children. Examples of tree-GNNs are RNN (Socher
et al., 2011; Shuai et al., 2016), Tree-LSTM (Tai et al., 2015) and TreeNet (Cheng et al., 2018).

Intractable probabilistic models (IPMs). Extending deep generative models from unstructured
to graph-structured data has recently gained significant attention. Variational autoencoders learn a
probability distribution over graphs, p(G), by training an encoder and a decoder to map between
space of graphs and continuous latent space (Kipf & Welling, 2016; Simonovsky & Komodakis,
2018; Grover et al., 2019). Generative adversarial networks learn p(G) by training (i) a generator to
map from latent space to space of graphs and (ii) a discriminator to distinguish whether the graphs

7

Published as a conference paper at ICLR 2024

Table 1: Graph classification. The test accuracy (higher is better) for the MLP, GRU, LSTM, HMIL, and SPSN
networks. It is displayed for the best model in the grid search, which was selected based on the validation
accuracy. The results are averaged over 5 runs with different initial conditions. The accuracy is shown with
its standard deviation. The average rank is computed as the standard competition (“1224”) ranking (Demšar,
2006) on each dataset (lower is better).

dataset MLP GRU LSTM HMIL SPSN
chess 0.41±0.03 0.41±0.05 0.34±0.04 0.39±0.02 0.39±0.03

citeseer 0.69±0.02 0.74±0.01 0.74±0.02 0.75±0.01 0.75±0.01
cora 0.75±0.03 0.86±0.01 0.84±0.01 0.85±0.00 0.86±0.01

genes 0.99±0.01 1.00±0.01 0.98±0.01 1.00±0.01 0.95±0.01
hepatitis 0.86±0.02 0.88±0.01 0.87±0.03 0.88±0.02 0.88±0.02

mutagenesis 0.84±0.02 0.83±0.02 0.82±0.04 0.83±0.00 0.84±0.02
uwcse 0.84±0.02 0.87±0.03 0.85±0.02 0.86±0.03 0.84±0.02
webkp 0.77±0.02 0.82±0.01 0.81±0.02 0.82±0.01 0.81±0.02

rank 3.62 1.62 3.88 1.62 2.38

are synthetic or real (De Cao & Kipf, 2018; Bojchevski et al., 2018). Flow models use the change
of variables formula to transform a base distribution on latent space to a distribution on space of
graphs, p(G), via an invertible mapping (Liu et al., 2019; Luo et al., 2021). Autoregressive models
learn p(G) by using the chain rule of probability to decompose the graph, G, into a sequence of
subgraphs, constructing G node by node (You et al., 2018; Liao et al., 2019). Diffusion models
learn p(G) by noising and denoising trajectories of graphs based on forward and backward diffusion
processes, respectively (Jo et al., 2022; Huang et al., 2022; Vignac et al., 2022). NMPs are used in
all these generative models, so computing probabilistic (e.g., marginal) queries is intractable.

Tractable probabilistic models (TPMs). There has yet to be a substantial interest in probabilistic
models facilitating tractable inference for graph-structured data. Graph-structured SPNs (Zheng
et al., 2018) decompose cyclic graphs into subgraphs that are isomorphic to a pre-specified set of
possibly cyclic templates, designing the conventional SPN for each of them. The sum unit and
a layer of the product units aggregate the roots of these SPNs. Graph-induced SPNs (Errica &
Niepert, 2023) also decompose cyclic graphs, constructing a collection of trees based on a user-
specified neighborhood. The SPNs are not designed for the trees but only for the feature vectors in
the nodes. The aggregation is performed by conditioning the sum units at upper levels of the tree
by the posterior probabilities at the lower levels. Relational SPNs (RSPNs) (Nath & Domingos,
2015) are TPMs for relational data (a particular form of cyclic graphs). Our set unit is similar
to the exchangeable distribution template of the RSPNs. The key difference is that SPSNs model
cardinality. The RSPNs do not provide this feature, making them unable to generate new graphs.
The mixture densities over finite random sets are most related to SPSNs (Phung & Vo, 2014; Tran
et al., 2016; Vo et al., 2018). They can be seen as the sum unit with children given by the set
units. These shallow models are designed only for sets. SPSNs generalize them to deep models
for hierarchies of sets, achieving higher expressivity by stacking the computational units. SPNs
are also used to introduce correlations into graph variational autoencoders (Xia et al., 2023), which
are intractable models. Logical circuits can be used to induce probability distributions over discrete
objects via knowledge compilation (Chavira & Darwiche, 2008; Ahmed et al., 2022). However, they
assume fixed-size inputs, making them applicable only to fixed-size graphs, such as grids.

5 EXPERIMENTS

We illustrate the performance and properties of the algebraically tractable SPSN models compared
to various intractable, NN-based models. In this context, we would like to investigate their perfor-
mance in the discriminative learning regime and their robustness to missing values. We provide the
implementation of SPSNs at https://github.com/aicenter/SumProductSet.jl.

Models. To establish the baseline with the intractable models, we choose variants of recurrent NNs
(RNNs) for tree-structured data. Though these models are typically used in the NLP domain (Section
1), they are, too, applicable to the tree-structured data in Definition 1. These tree-RNNs differ in
the type of cell. We consider the simple multi-layer perceptron (MLP) cell, the gated recurrent unit
(GRU) cell (Zhou et al., 2016), and the long-short term memory (LSTM) cell (Tai et al., 2015). The
key assumption of these models is that they consider each leaf node to have the same dimension.
This requirement does not hold in Definition 1. Therefore, for all these NN-based models, we add a

8

https://github.com/aicenter/SumProductSet.jl

Published as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

chess

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

citeseer

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

cora

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

genes

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

hepatitis

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

mutagenesis

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

uw cse

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

webkp

MLP
GRU
LSTM
HMIL
SPSN

Figure 3: Missing values. The test accuracy (higher is better) versus the fraction of missing values for the MLP,
GRU, LSTM, HMIL, and SPSN networks. It is displayed for the best model, which was selected based on the
validation accuracy. The results are averaged over five runs with different initial conditions.

single dense layer with the linear activation function in front of each leaf node, v ∈ L, to make the
input dimension the same. As another competitor, we use the hierarchical multiple-instance learning
(HMIL) network (Pevný & Somol, 2016), which is also tailored for the tree-structured data.

Settings. We convert eight publicly available datasets from the CTU relational repository (Motl &
Schulte, 2015) into the JSON format (Pezoa et al., 2016). The dictionary nodes, list nodes, and
atomic nodes of the JSON format directly correspond to the heterogeneous nodes, homogeneous
nodes, and leaf nodes of the tree-structured data, respectively (Definition 1, Figure 2). We present the
rest of the settings in Section F, including the schemata of the datasets. All models and experiments
are implemented in Julia, using JSONGrinder.jl and Mill.jl (Mandlı́k et al., 2022).

Graph classification. Table 1 shows the test accuracy of classifying the tree-structured graphs. The
HMIL and GRU networks deliver the best performance, while the SPSN falls slightly behind. If we
look closely at the individual lines, we can see that the SPSN is often very similar to (or the same
as) the HMIL and GRU networks. We consider these results unexpectedly good, given that the (NN-
based) MLP, GRU, LSTM, and HMIL architectures are denser than the sparse SPSN architecture.

Missing values. We consider an experiment where we select the best model in the grid search
based on the validation data (as in Table 1) and evaluate its accuracy on the test data containing a
fraction of randomly-placed missing values. Figure 3 demonstrates that the SPSN either outperforms
or is similar to the NNs. Most notably, for cora and webkp, the SPSN keeps its classification
performance longer compared to the NN models, showing increased robustness to missing values.
This experiment applies Proposition 1 to perform marginal inference on the leaf nodes, v ∈ L, that
contain missing values. The marginalization is efficient, taking only one pass through the network.
Note that the randomness in placing the missing values can lead to situations where all children of
the heterogeneous node are missing, allowing us to marginalize the whole heterogeneous node.

6 CONCLUSION

We have leveraged the theory of finite random sets to develop a new class of deep learning models—
sum-product-set networks (SPSNs)—that represent a probability density over tree-structured graphs.
The key advantage of SPSNs is their tractability, which enables exact and efficient inference over
specific parts of the data graph. To achieve tractability, SPSNs have to adhere to the structural con-
straints that are commonly found in other PCs. Consequently, the computational graph of SPSNs
has much less connections compared to the computational graph of highly interconnected and non-
linear NNs. Notwithstanding this, SPSNs perform comparably to the NNs in the graph classification
task, sacrificing only a small amount of performance to retain their tractable properties. Our findings
reveal that the tractable and simple inference of SPSNs has also enabled us to achieve results that are
comparable to the NNs regarding the robustness to missing values. In future work, we plan to en-
hance the connectivity within the SPSN block by vectorizing the computational units. We anticipate
that this modification will close the small performance gap to the NN models.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The authors acknowledge the support of the GAČR grant no. GA22-32620S and the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

REFERENCES

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Seman-
tic probabilistic layers for neuro-symbolic learning. Advances in Neural Information Processing
Systems, 35:29944–29959, 2022.

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML ain’t markup language (YAML™) version
1.1. Working Draft 2008, 5:11, 2009.

Anna Maria Bianucci, Alessio Micheli, Alessandro Sperduti, and Antonina Starita. Application of
cascade correlation networks for structures to chemistry. Applied Intelligence, 12:117–147, 2000.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
The Journal of Machine Learning Research, 21(1):3535–3595, 2020.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. NetGAN:
Generating graphs via random walks. In International conference on machine learning, pp. 610–
619. PMLR, 2018.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Arti-
ficial Intelligence, 172(6-7):772–799, 2008.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang. TreeNet: Learning sentence representa-
tions with unconstrained tree structure. In IJCAI, pp. 4005–4011, 2018.

Y Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models. UCLA. URL: http://starai. cs. ucla. edu/papers/ProbCirc20.
pdf, 2020.

Daryl J Daley, David Vere-Jones, et al. An introduction to the theory of point processes: volume I:
elementary theory and methods. Springer, 2003.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7:1–30, 2006.

Federico Errica and Mathias Niepert. Tractable probabilistic graph representation learning with
graph-induced sum-product networks. arXiv preprint arXiv:2305.10544, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

10

Published as a conference paper at ICLR 2024

Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford university
press, 2001.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pp. 2434–2444. PMLR, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, 2017.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP: Generative diffusion
processes for permutation invariant graph generation. arXiv preprint arXiv:2212.01842, 2022.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
pp. 10362–10383. PMLR, 2022.

James Kahn, Ilias Tsaklidis, Oskar Taubert, Lea Reuter, Giulio Dujany, Tobias Boeckh, Arthur
Thaller, Pablo Goldenzweig, Florian Bernlochner, Achim Streit, et al. Learning tree structures
from leaves for particle decay reconstruction. Machine Learning: Science and Technology, 3(3):
035012, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations (ICLR), 2017.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L Hamilton, David Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
pp. 4255–4265, 2019.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
pp. 13578–13588, 2019.

Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Outlying aspect mining via sum-
product networks. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
27–38. Springer, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021.

Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Exchangeability-aware sum-product
networks. In Proceedings of the Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22, pp. 4864–4870. International Joint Conferences on Artificial Intelligence
Organization, 2022.

Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured recursive
neural networks. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1980–1989, 2018.

Ronald P Mahler and LOCKHEED MARTIN TACTICAL DEFENSE SYSTEMS-EAGAN
ST PAUL MN. Information-theoretic information fusion. 2002.

Ronald PS Mahler. Detecting, tracking, and classifying group targets: A unified approach. In Signal
Processing, Sensor Fusion, and Target Recognition X, volume 4380, pp. 217–228. Spie, 2001.

Ronald PS Mahler. Statistical multisource-multitarget information fusion, volume 685. Artech
House Norwood, MA, USA, 2007.

Šimon Mandlı́k, Matěj Račinský, Viliam Lisý, and Tomáš Pevný. Jsongrinder.jl: Automated dif-
ferentiable neural architecture for embedding arbitrary JSON data. Journal of Machine Learning
Research, 23(298):1–5, 2022.

11

Published as a conference paper at ICLR 2024

Jan Motl and Oliver Schulte. The CTU Prague relational learning repository. arXiv preprint
arXiv:1511.03086, 2015.

Aniruddh Nath and Pedro Domingos. Learning relational sum-product networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Hung T Nguyen. An introduction to random sets. Chapman and Hall/CRC, 2006.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical prop-
erties of sum-product networks. In 18th International Conference on Artificial Intelligence and
Statistics, pp. 744–752. PMLR, 2015.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effec-
tive approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344.
PMLR, 2020.

Tomáš Pevný and Petr Somol. Discriminative models for multi-instance problems with tree struc-
ture. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security, pp. 83–91,
2016.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martı́n Ugarte, and Domagoj Vrgoč. Foundations
of JSON schema. In Proceedings of the 25th international conference on World Wide Web, pp.
263–273, 2016.

Dinh Phung and Ba-Ngu Vo. A random finite set model for data clustering. In 17th International
Conference on Information Fusion (FUSION), pp. 1–8. IEEE, 2014.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690.
IEEE, 2011.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of prob-
abilistic models. Advances in Neural Information Processing Systems, 29, 2016.

Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. DAG-recurrent neural networks for scene
labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3620–3629, 2016.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and natural
language with recursive neural networks. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 129–136, 2011.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566, 2015.

Joe Tekli, Nathalie Charbel, and Richard Chbeir. Building semantic trees from XML documents.
Journal of Web Semantics, 37:1–24, 2016.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In 9th International Confer-
ence on Learning Representations (ICLR), 2021.

Nhat-Quang Tran, Ba-Ngu Vo, Dinh Phung, and Ba-Tuong Vo. Clustering for point pattern data. In
2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3174–3179. IEEE, 2016.

12

Published as a conference paper at ICLR 2024

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. Advances in neural information processing systems, 32, 2019.

MNM Van Lieshout. Markov point processes and their applications. World Scientific, 2000.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy Van den Broeck. Probabilistic circuits:
Representations, inference, learning and applications. In Tutorial at the The 34th AAAI Confer-
ence on Artificial Intelligence, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A composi-
tional atlas of tractable circuit operations: From simple transformations to complex information-
theoretic queries. arXiv preprint arXiv:2102.06137, 2021.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. DiGress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Ba-Ngu Vo, Nhan Dam, Dinh Phung, Quang N Tran, and Ba-Tuong Vo. Model-based learning for
point pattern data. Pattern Recognition, 84:136–151, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2021.

Riting Xia, Yan Zhang, Chunxu Zhang, Xueyan Liu, and Bo Yang. Multi-head variational graph
autoencoder constrained by sum-product networks. In Proceedings of the ACM Web Conference
2023, pp. 641–650, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018.

Han Zhao, Pascal Poupart, and Geoff Gordon. A unified approach for learning the parameters of
sum-product networks. In Proceedings of the 30th Advances in Neural Information Processing
Systems, pp. 433–441, 2016.

Kaiyu Zheng, Andrzej Pronobis, and Rajesh Rao. Learning graph-structured sum-product networks
for probabilistic semantic maps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Yao Zhou, Cong Liu, and Yan Pan. Modelling sentence pairs with tree-structured attentive encoder.
In Proceedings of COLING 2016, the 26th International Conference on Computational Linguis-
tics: Technical Papers, pp. 2912–2922, 2016.

13

Published as a conference paper at ICLR 2024

A PROBABILISTIC CIRCUITS

A probabilistic circuit (PC) is a deep learning model representing a joint probability density, p(x),
over a fixed-size, unstructured, random variable, x = (x1, . . . , xn) ∈ X ⊂ Rn. The key feature of a
PC is that—under certain regularity assumptions—it permits exact and efficient inference scenarios.
We define a PC by a parameterized computational graph, G, and a scope function, ψ.
Definition 9. (Computational graph). G := (V, E , θ) is a parameterized, directed, acyclic graph,
where V is a set of vertices, E is set of edges, and θ ∈ Θ are parameters. V := (S,P, I) contains
three different subsets of computational units: sum units, S, product units, P, and input units, I. Let
ch(u) and pa(u) denote the set of child and parent units of u ∈ V , respectively. If pa(u) = ∅, then
u is the root unit. If ch(u) = ∅, then u is a input unit. We consider that V contains only a single
root unit, and each product unit has only a single parent. The parameters θ := (θs, θl) are divided
into (i) parameters of all sum units, θu = (wu,c)c∈ch(u), which contain non-negative and locally
normalized weights (Peharz et al., 2015), wu,c ≥ 0,

∑
c∈ch(u) wu,c = 1; and (ii) parameters of all

input units, θl, which are specific to a given family of densities, with possibly a different density for
each u ∈ I.
Definition 10. (Scope function). The mapping ψu : V → F(x)—from the set of units to the power
set of x—outputs a subset of x ∈ X for each u ∈ V and is referred to as the scope function. If u is
the root unit, then ψu = x. If u is a sum unit or a product unit, then ψu =

⋃
c∈ch(u) ψc.

PCs are an instance of neural networks (Vergari et al., 2019; Peharz et al., 2020), where each compu-
tational unit is a probability density characterized by certain functionality. Input units are the input
of a PC. For each u ∈ I, they compute a (user-specified) probability density, pu(·), over a subset of
x given by the scope, ψu, which can be univariate or multivariate (Peharz et al., 2015). Sum units
are mixture densities that compute the weighted sum over its children, pu(·) =

∑
c∈ch(u) wu,cpc(·),

where wu,c (Definition 9) weights the connection between the sum unit and a child unit. Product
units are factored densities that compute the product of its children, pu(ψu) =

∏
c∈ch(u) pc(ψc), es-

tablishing an unweighted connection between u and c and introducing the conditional independence
among the scopes of its children, ψc. It is commonly the case that (layers of) sum units interleave
(layers of) product units. The computations then proceed recursively through G until reaching the
root unit—the output of a PC.

PCs are generally intractable. They instantiate themselves into specific circuits—and thus permit
tractability of specific inference scenarios—by imposing various constraints on G, examples include
smoothness, decomposability, structured decomposability, determinism, consistency (Chan & Dar-
wiche, 2006; Poon & Domingos, 2011; Shen et al., 2016). In this work, we use only the first two of
these constraints, as summarized in Definition 5.

A PC satisfying Definition 5 can be seen as a polynomial composed of input units (Darwiche, 2003).
This construction guarantees that any single-dimensional integral interchanges with a sum unit and
impacts only a single child of a product unit (Peharz et al., 2015). The integration is then propagated
down to the input units, where it can be computed under a closed-form solution (for a tractable form
of u ∈ I). The key practical consequence lies in that various inference tasks—such as integrals
of p(x) over (xa, . . . , xb) ⊂ x—are tractable and can be computed in time which is linear in the
circuit size (i.e., the cardinality of V). p(x) is guaranteed to be normalized if Definition 5 holds and
input units are from the exponential family (Barndorff-Nielsen, 1978). PCs that fulfill Definition 5
are commonly referred to as sum-product networks.

B RANDOM FINITE SETS

Random Finite Sets. A random finite set (RFS), X := {x1, . . . ,xm}, is a random variable taking
values in F(X), the hyperspace of all finite (closed) subsets of some underlying space, X . The
randomness of this mathematical object originates from all the elements in the set, xi ∈ X , and also
from the cardinality of this set, m := |X|, i.e., the number of the elements is itself random. This
is the key difference to the standard fixed-size vector, x = (x1, . . . , xm), where xi’s are stochastic
but m is deterministic. The example realizations of an RFS are X = ∅ (empty set), X = {x1}
(singleton), X = {x1,x2} (tuple), etc. They are points in the hyperspace, X ∈ F(X), and each
of them is a finite subset of X . The elements of an RFS, x1, . . . ,xm, are assumed distinct (non-

14

Published as a conference paper at ICLR 2024

repeated) and unordered. An RFS is then equivalent to a simple point process (Van Lieshout, 2000;
Daley et al., 2003; Nguyen, 2006; Mahler, 2007).

A more formal definition of an RFS is as follows. Let Ω be a sample space, σ(Ω) be a sigma
algebra of events on Ω, and P be a probability measure on the measurable space (Ω, σ(Ω)), i.e.,
P(Ω) = 1. Let X be a locally compact, Hausdorff, separable metric space (e.g., X ⊆ Rn), F(X)
be the hyperspace of all finite subsets of X , σ(F) be a sigma algebra of events on F(X), and µ be
a dominating (reference) measure on the measurable space (F(X), σ(F)), which we specify later
on. Now consider the probability space and the measure space (Ω, σ(Ω),P) and (F(X), σ(F), µ),
respectively. Then, an RFS is a measurable mapping2

X : Ω→ F(X). (3)

To have the ability to build probabilistic models of the RFS (3), we need tools that characterize
its statistical behavior. These tools include a probability distribution, a probability density, and a
suitable reference measure to perform the integration. The hyperspace F(X) does not inherit the
standard Euclidean topology, but the Mathéron “hit-or-miss” topology (Mathéron, 1974), which
implies that some of these tools are built differently compared to those designed purely for X .
However, as demonstrated in this section, we can work with them in a way consistent with the
conventional probabilistic calculus.

Probability distribution. The probability law of the RFS (3) is characterized by its probability
distribution,

P (A) := P(X−1(A)) = P({ω ∈ Ω|X(ω) ∈ A}), (4)
for any Borel-measurable subset A ∈ σ(F).
Reference measure. A measure λ on the measurable space (X , σ(X)) is a countably-additive func-
tion λ : σ(X) → [0,∞]. It generalizes the notions of length, area, and volume to the subsets of X ,
which typically involves physical dimensions expressed in the units of X . However, not all mea-
sures have units, e.g., the probability measure is unitless. When working with an RFS, one cannot
simply use a conventional measure on (X , σ(X)), but it is necessary to extend it to (F(X), σ(F)).
We aim to show how to extend the Lebesgue measure on (X , σ(X)) to a measure on (F(X), σ(F)).
Let λ(S) be the Lebesgue measure on (X , σ(X)), for any Borel-measurable subset S ∈ σ(X), and
let λi(S′) be the extension of the Lebesgue measure to the Cartesian-product, measurable space
(X i, σ(X i)), for any subset S′ ∈ σ(X i). Furthermore, consider a mapping χ : ⊎i≥0X i → F(X)
from vectors of i elements to sets of i elements given by χ(x1, . . . ,xi) = {x1, . . . ,xi}, where ⊎
denotes disjoint union. The mapping χ is measurable (Goodman et al., 1997; Van Lieshout, 2000),
and, therefore, χ−1(A) is a measurable subset of ⊎i≥0X i for any subset A ∈ σ(F). Consequently,
the reference measure on the measurable space (F(X), σ(F))—which is commonly adopted in the
theory of finite point processes—is defined as follows:

µ(A) =

∞∑
i=0

λi(χ−1(A) ∩ X i)

cii!
, (5)

where χ−1(A) ∩ X i ∈ σ(X i) restricts χ−1(A) into ith Cartesian product of X , respecting the
convention X 0 := ∅. Consider that the unit of measurement in X is ι, then the unit of measurement
of λi is ιi. This is why (5) contains the constant c whose unit of measurement is ι. Without this
constant, each term in (5) would have different units of measurement, and the infinite sum would be
undefined. The measure (5) is therefore unitless.

Say that the units of p(x1) are cm−1, and the units of p(x1,x2) are cm−2, then it holds that p(x1) >
p(x1,x2), see (Vo et al., 2018) for an illustrative example. c thus prevents the incompatibility
between the probabilities of two sets with different cardinalities.

Integral. The integral of a unitless function f : F(X)→ R over a subset A ∈ σ(F) with respect to
the measure µ is (Geyer, 1999; Mahler, 2007)∫

A

f(X)µ(dX) =

∞∑
i=0

1

cii!

∫
χ−1(A)∩X i

f({x1, . . . ,xi})λi(dx1, . . . , dxi). (6)

2Note the difference to the standard random variable X : Ω → X defined directly on the measure space
(X , σ(X), µ), where X is typically equipped with the standard Euclidean topology.

15

Published as a conference paper at ICLR 2024

Remark 1. (Tractable integration.) The analytical tractability of (6) depends on whether the in-
tegral of f({x1, . . . ,xi}) w.r.t. λi allows us to find a closed-form solution and whether the infinite
sum becomes a finite one. These requirements are satisfied by designing f based on a suitable family
of functions and ensuring that f({x1, . . . ,xi}) = 0 for a sufficiently large i (Goodman et al., 1997).

Probability density. The probability density function is the central tool in probabilistic modeling. It
is obtained from the Radon-Nikodým theorem (Billingsley, 1995). Its definition states that for two
σ-finite measures µ1 and µ2 on the same measurable space (F(X), σ(F)) there exists an almost
everywhere unique function f : F(X) → [0,∞) such that µ2(A) =

∫
A
g(X)µ1(dX) if and only

if µ2 << µ1, i.e., µ2 is absolutely continuous w.r.t. µ1, or, in other words, µ1(A) = 0 implies
µ2(A) = 0 for any subset A ∈ σ(F). The function f = dµ2

dµ1
is then referred to as the density

function or the Radon-Nikodým derivative of µ2 w.r.t. µ1. This allows us to define the probability
density function of an RFS as the Radon-Nikodým derivative of the probability measure (4) w.r.t.
the reference measure (5),

p(X) =
dP

dµ
(X), (7)

establishing the relation between the two measures as follows: P (A) =
∫
A
p(X)µ(dX). The

probability density function (7) has no units of measurement since the probability distribution (4) is
unitless and the reference measure (5) is also unitless. This contrasts the standard probability density
function defined on X , which gives probabilities per unit of X .

Exchangeability of RFSs. In point process theory (Daley et al., 2003), the probability density of
an RFS (finite point process) is often constructed based on an mth-order, non-probabilistic measure,
defined on the measurable space (Xm, σ(Xm)), as follows:

Jm(A1, . . . , Am) = p(m)
∑
perm

Pm(Ai1 , . . . , Aim), (8)

for any Ai ∈ σ(X). Here, p(m) is the cardinality distribution, which determines the total number
of elements in the RFS; Pm is the joint distribution on (Xm, σ(Xm)), describing the positions of
the elements in the RFS conditionally on m;

∑
perm denotes the summation over all m! possible

permutations of i1, . . . , im. The measure (8) is exchangeable (permutation invariant), i.e., it gives
the same value to all permutations of A1, . . . , Am. Following this prescription in its full generality
would be computationally very expensive, as it requires m! evaluations of Pm. Fortunately, we
assume that the elements of the RFS follow no specific order, and that we can make a symmetric
version of Pm as follows: P sym

m (·) = 1
m!

∑
perm Pm(·), which is simply an equally weighted mixture

over all possible permutations. Consequently, after substituting for
∑

perm Pm in (8), we obtain a
fully exchangeable—yet computationally more convenient—Janossy measure,

Jm(A1, . . . , Am) = p(m)m!P sym
m (A1, . . . , Am). (9)

If (9) is absolutely continuous w.r.t. the reference measure λm, then there exists the Janossy density,

jm(x1, . . . ,xm) = p(m)m!psym
m (x1, . . . ,xm). (10)

Note that (9) and (10) are not a probability measure and a probability density, respec-
tively. Indeed, it holds that Jm(Xm) =

∫
jm(x1, . . . ,xm)λm(dx1, . . . , dxm) ̸= 1. How-

ever, they are favored for their reduced combinatorial nature and easy interpretability, i.e.,
1
m!jm(x1, . . . ,xm)λm(dx1, . . . , dxm) is the probability of finding exactly one element in each of
the m distinct infinitesimal regions. To ensure that (10) is the probability density (7) of an RFS,
X—which is taken w.r.t. the reference measure (5)—it has to hold that

p({x1, . . . ,xm}) = cmjm(x1, . . . ,xm). (11)

Independent and identically distributed clusters. The feature (joint) density, psym
m , in (10) allows

us to model the dependencies among the elements of the RFS, X . In certain applications, it is more
suitable (or simplifying) to assume that the elements, x1, . . . ,xm, are independent and identically
distributed (i.i.d.). The feature density then reads psym

m (x1, . . . ,xm) :=
∏m

i=1 p(xi), where p is
a probability density on X indexed by the same parameters for all i ∈ {1, . . . ,m}. Note that the
assumption of independent elements, but, more importantly, the assumption of identically distributed

16

Published as a conference paper at ICLR 2024

elements (the same parameters for all i ∈ {1, . . . ,m}), ensures the symmetry of the feature density
under all permutations of the elements. The density (11) then becomes

p({x1, . . . ,xm}) = cmp(m)m!

n∏
i=1

p(xi), (12)

which is commonly referred to as the i.i.d. cluster model. In the special case, where the cardinality
distribution p(m) is the Poisson distribution, (12) represents the Poisson point process (Grimmett &
Stirzaker, 2001).

Remark 2. (Independence assumption.) Assumption 1(d) is a simple way to ensure the exchange-
ability of the set unit. However, it comes at the cost of not capturing the correlations among
{Twi}mi=i. Despite this fact, we show in Section 5 that the SPSNs deliver solid performance and
are very competitive to the NNs. To relax Assumption 1(d), one would need to impose the exchange-
ability in a different way. For example, a fully general approach would be to use the mixture over
m! permutations of {Twi}mi=i, as indicated by (8). Since this would be computationally intensive,
it is preferable to introduce only approximate exchangeability, which means that one would need to
reduce the number of permutations. Albeit such an approach can limit the exchangeability of the set
unit to some degree, it does not sacrifice the tractability as long as the components of this mixture
form of the feature density are tractable sub-SPSNs.

C EXCHANGEABILITY

Probabilistic symmetries. Probabilistic symmetry—the most fundamental one of which is ex-
changeability—is a long-standing subject in the probability literature (Zabell, 2005). The notion of
probabilistic symmetry is useful for constructing probabilistic models of exchangeable data struc-
tures, including graphs, partitions, and arrays (Orbanz & Roy, 2014). Infinite exchangeability is re-
lated to the conditionally i.i.d. sequences of random variables via the de Finetti’s theorem (de Finetti,
1929; 1937). It states that an infinite sequence of random variables x1, x2, . . . is exchangeable if and
only if (iff) there exists a measure λ on Θ, such that p(x1, . . . , xn) =

∫ ∏n
i=1 pθ(xi)λ(dθ). Conse-

quently, conditionally i.i.d. sequences of random variables are exchangeable. The converse of this
assertion is true in the infinite case, n→∞. Finite exchangeability does not satisfy the converse as-
sertion. It defines that for an extendable finite sequence3, x1, . . . , xn, the de Finetti’s representation
holds only approximately, i.e., there is a bounded error between the finite and infinite representations
(Diaconis, 1977; Diaconis & Freedman, 1980). We are not interested in finite exchangeability from
the perspective of its asymptotic properties. However, we use it to investigate whether a probabilistic
model is structurally invariant under the action of a compact group operating on its input, which is
considered non-extendable.

Exchangeability of PCs. As discussed in Section 3.2, the study (and application) of exchangeability
in (to) PCs has attracted limited attention. The exchangeability-aware SPNs (Lüdtke et al., 2022)
use the mixtures of exchangeable variable models (Niepert & Domingos, 2014; Niepert & Van den
Broeck, 2014) as the input units, proposing a structure-learning algorithm that learns the structure
by statistically testing the exchangeability within groups of random variables. The relational SPNs
(Nath & Domingos, 2015) introduce the exchangeable distribution templates, which are similar in
certain aspects to SPSNs. However, though these approaches adopt exchangeable components, none
of them investigates how the exchangeability propagates through a PC. Therefore, we characterize
the exchangeability of PCs in Proposition 4.

Proposition 4. (Exchangeability of PCs). Let p(x) be a PC satisfying Definition 5 and let IE ∈ I be
a subset of input units that are exchangeable in the sense of Definition 7 or Definition 8. Then, the
PC is partially exchangeable, p(qa · x) = p(x), for each a ∈ IE.

Proof. The result follows from the recursive application of Proposition 2.

Proposition 4 says that PCs satisfying Definition 5 preserve the exchangeability of their input units.
It holds only when there is at least one input unit that is multivariate and exchangeable in the sense

3This means that the sequence x1, . . . , xn is a part of the longer sequence, x1, . . . , xm, m > n, with the
same statistical properties.

17

Published as a conference paper at ICLR 2024

of Definition 7 or Definition 8. Note that the ordering of the scopes (blocks) in the product units
remains fixed in the computational graph, i.e., the scopes representing the children of the product
units are not exchangeable (only the variables in them).

An alternative way to prove Proposition 4 would be to convert a PC to its mixture representation
(Zhao et al., 2016; Trapp et al., 2019). This converted model is a mixture of products of the in-
put units, for which the partial exchangeability can be proven in a way similar to the mixtures of
exchangeable variable models (Niepert & Domingos, 2014; Niepert & Van den Broeck, 2014).

C.1 PROOF OF PROPOSITION 2

Sum units. The exchangeability of the sum unit follows from the smoothness assumption (Defini-
tion 5). The fact that the scope of all children of any sum unit is identical ensures that any permuta-
tion (Definition 8), π ∈ Snm , propagates through the sum unit, pu(π · ψu) =

∑
c∈ch(u) wu,cpc(π ·

ψu), u ∈ S. In other words, the probability density of the sum unit is partially (or fully) exchange-
able, pu(π ·ψu) = pu(ψu), if and only if the probability densities of all its children are partially (or
fully) exchangeable, pc(π · ψu) = pc(ψu), for all c ∈ ch(u). If we replace π by qa, the operator
targeting a specific computational unit, we come to the same conclusion.

Product units. The exchangeability of the product unit is based on the decomposability assumption
(Definition 5). The consequence of that the scopes of all children of any product unit are pairwise
disjoint is that no matter the type of exchangeability of the child units, the product unit is always
only partially exchangeable under the partition of the scopes of its children, pu(π · ψu) = pu(π1 ·
ψc1 , . . . , πm ·ψcm) =

∏
c∈ch(u) pc(πc ·ψc), for all π ∈ Snm

and u ∈ P. Therefore, we can say that
the product unit, pu(π · ψu) = pu(ψu), preserves the exchangeability of its children.

The product group Snm
can be designed such that some of its elements can be an identity group,

Sni
:= Ini

. In this case, there exists an identity operator, ei, which does not permute the entries of
x := (x1, . . . , xni

), i.e., we have ei · x = (x1, . . . , xni
). Consequently, π ∈ Snm

permutes only
some of m elements in the collection, X := (x1, . . . ,xm), e.g., as follows: π ·X = (π1 · x1, e2 ·
x2, . . . , πm · xm). This allows us to target the permutations only to certain children of the product
unit pu(π·ψu) =

∏
v∈ch(u) pv(πv ·ψv)

∏
c∈ch(u) pc(ψc), where ch(u) are the children targeted with

permutations, and ch(u) are the children that are supposed to stay intact. If we consider replacing π
by qa, then this principle reveals how to propagate qa only to those children of the product unit that
are the ancestors of a. For example, we can have: qa · ψu = (qv1 · ψv1 , ev2 · ψv2 , . . . , qvm · ψvm).

Input units. The input units are user-specified probability densities, pu(ψu), for each u ∈ I.
The exchangeability of any input unit thus depends on the choice of its density, which can be
fully exchangeable (Definition 7), pu(ψu) = pu(π · ψu), or partially exchangeable (Definition 8),
pu(ψu) = pu(π · ψu). This also implies that qa = π if a = u. The leaf units terminate the
propagation through the computational graph.

C.2 PROOF OF PROPOSITION 3

The result follows from the recursive application of Proposition 2 and the fact that the set unit is fully
exchangeable by design (Section B). That is, for any homogeneous node, Tv := {Tw1

, . . . , Twm
}, it

holds that pu(π · Tv) = pu(Tv) where v ∈ O, u ∈ B, and π ∈ Sm.

D TRACTABILITY

The primary purpose of training (learning the parameters of) probabilistic models is to prepare
them to answer intricate information-theoretic queries (questions) about events influenced by un-
certainty (e.g., computing the probability of some quantities of interest, expectation, entropy). This
procedure—referred to as probabilistic inference—often requires calculating integrals of, or w.r.t.,
the joint probability density representing the model. Many recent probabilistic models deployed in
machine learning and artificial intelligence rely on neural networks. The integrals in these mod-
els do not admit a closed-form solution, and the inference procedure is, therefore, intractable. To
answer even the basic queries with these intractable probabilistic models, we are forced to resort
to numerical approximations. The inference procedure is then computationally less efficient, more

18

Published as a conference paper at ICLR 2024

complex, and brings more uncertainty into the answers. Tractable probabilistic models, on the other
hand, provide a closed-form solution to the integrals involved in the inference procedure and thus
answer our queries faithfully to the joint probability density without relying on approximations or
heuristics. The inference procedure is then less complicated and computationally more efficient.

Tractability of PCs. PCs have become a canonical part of tractable probabilistic modeling. They
can answer a range of probabilistic queries exactly, i.e., without involving any approximation, and
efficiently, i.e., in time which is polynomial in the number of edges of their computational graph.
The range of admissible probabilistic queries varies depending on the types of structural constraints
satisfied by the computational graph (Choi et al., 2020).

We recall only some standard probabilistic queries that are feasible under the usual structural con-
straints of Definition 5 and can collectively be expressed in terms of the following integral:

λ(f) =

∫
f(x)p(x)λ(dx). (13)

We refer the reader to (Choi et al., 2020; Vergari et al., 2021) for more complex and compositional
probabilistic queries.

Even when a PC, p(x), satisfies Definition 5, it does not directly mean that (13) admits a closed-form
solution. For this to be the case, the function f(x) has to satisfy certain properties.
Definition 11. (Tractable function for PCs.) Let f : X → R be a measurable function which
factorizes as f(x) :=

∏
u∈L fu(ψu), where L ⊆ I is the subset of input units with unique and

presumably multivariate scopes such that x =
⋃

u∈L ψu. Under this factorization, it follows from
the properties of the scope function (Definition 10) that fu(ψu) :=

∏
c∈ch(u) fc(ψc) for each u ∈ P.

To show how to define various probabilistic queries in terms of the integral (13), we provide exam-
ples of f . If f(x) := 1A(x), where 1A is the indicator function, and A := A1 × · · · × Am, then
(13) yields P (A), the probability of A. Given A := e1 × e2 × · · · × Am−1 × Am, where ei are
evidence assignments, Ai are measurable subsets of X , and m = |L|, we obtain the marginal query
P (e1, e2, . . . , Am−1, Am), which can easily be used to build a conditional query of interest. The
full evidence query is obtained for A := e1 × · · · × em. To compute the first-order moment of any
u ∈ L, we define fu(ψu) := ψu and fa(ψa) := 1 for a ∈ L/(n).
Proposition 5. (Tractability of PCs). Let p(x) be a PC satisfying Definition 5 and let f(x) be a
function satisfying Definition 11. Then, the integral (13) is tractable and can be computed recur-
sively as follows:

Iu =


∑

c∈ch(u) wu,cIc, for u ∈ S,∏
c∈ch(u) Ic, for u ∈ P,∫
fu(ψu)pu(ψu)λu(dψu), for u ∈ I,

where the measure λu(dψu) is defined on the space Ψu, which corresponds to the scope ψu, and
instantiates itself for all u ∈ V into either the Lebesgue measure or the counting measure.

Proof. See Section D.1.

Proposition 5 states that, to compute the integral (13), we have to first compute the resulting values,
Iu, of the integrals for each input unit, u ∈ I. Then, Iu is recursively propagated in the feed-forward
manner (from the inputs to the root) throughout the computational graph and updated by the sum
and product units.

D.1 PROOF OF PROPOSITION 5

We aim to demonstrate that the integral (13) is tractable. We show this in a recursive manner,
considering how the integral propagates through each computational unit of p(x).

Before we start, let us remind Definition 11, which shows that f(x) :=
∏

i∈L fi(ψi). Consid-
ering Definition 5 is satisfied; then, based on Definition 10, the partial factorization fu(ψu) :=∏

i∈Lu
fi(ψi) can be extracted from f(x) for any u ∈ (S,P). Here, Lu ⊆ L contains only the input

19

Published as a conference paper at ICLR 2024

units that are reachable from u and have a unique scope. The partial factorization, fu(ψu), leads to
the definition of the following intermediate integral:

λu(fu) =

∫
fu(ψu)pu(ψu)λu(dψu), (14)

which acts on a given computational unit u. In (14), pu(ψu) is the probability density of u, and λu
is the reference measure on the measurable space (Ψu, σ(Ψu)). We will see that the proof consists
of seeking an algebraic closure (recursion) for the functional form of the integral (14).

Input units. The existence of a closed-form solution of the integral (14) for u ∈ I is ensured if pu(ψu)
is selected from a family of tractable probability densities (e.g., the exponential family (Barndorff-
Nielsen, 1978)) and fu(ψu) is an algebraically simple function that does not prevent the solution to
be found. The solution, therefore, depends purely on our choice. We use Iu to denote a concrete
value of the integral.

Sum units. Consider that the smoothness assumption (Definition 5) is satisfied. Then, after substi-
tuting the probability density of the sum unit for pu(ψu) into (14), and exchanging the integration
and summation utilizing the Fubini’s theorem (Weir, 1973), we obtain∫

fu(ψu)pu(ψu)λu(dψu) =
∑

c∈ch(u)

wu,c

∫
fu(ψu)pc(ψu)λu(dψu),

where u ∈ S. The smoothness assumption (Definition 5) states that the children of the sum unit
have an identical scope. It implies that the integration affects each child of the sum unit in the
same way. Consequently, the integral w.r.t. pu can be solved if the integrals w.r.t. pc can be solved
for all c ∈ ch(u). In other words, the sum unit is tractable if all its children (i.e., other sub-PCs)
are tractable. The tractability of the sum unit thus propagates from its children. We can see that
the functional form of the l.h.s. integral is the same as the functional form of the r.h.s. integrals
representing the children of the sum unit. Therefore, we can replace these functional prescriptions
with concrete realizations Iu (l.h.s.) and Ic (r.h.s.). The sum unit then propagates already realized
values of these integrals and multiplies them by the weights.

Product units. Assume that the decomposability assumption (Definition 5) holds. Then, af-
ter substituting the probability density of the product unit for pu(ψu) into (14), and factoriz-
ing the function fu(ψu) in accordance with the pairwise disjoint scopes of the product unit, i.e.,
fu(ψu) :=

∏
c∈ch(u) fc(ψc), we have∫

fu(ψu)pu(ψu)λu(dψu) =

∫ ∏
c∈ch(u)

fc(ψc)
∏

c∈ch(u)

pc(ψc)λc(dψc)

=
∏

c∈ch(u)

∫
fc(ψc)pc(ψc)λc(dψc),

where u ∈ P. The decomposability assumption (Definition 5) says that children of the product unit
have independent scopes. The consequence is that the integral reduces to the product of simpler
integrals. The integral w.r.t. pu is tractable if the integrals of all its children pc are tractable for all
c ∈ ch(n), i.e., the tractability of the product unit propagates from its children. Similarly as before,
the functional forms of the l.h.s. integral of the product unit and the r.h.s. integrals of its children are
the same, which allows us to replace them with concrete realizations Iu (l.h.s.) and Ic (r.h.s.).

If the tractability holds for each unit u ∈ {S,P, I} in the computational graph, then a PC is tractable
and (13) admits a closed-form solution.

D.2 PROOF OF PROPOSITION 1

Our goal is to show that the integral (2) can be computed recursively under a closed-form solution.
To this end, we proceed analogously as in the proof of Proposition 5. Recall from Definition 6 that
f(T) :=

∏
i∈L fi(ψi), and if Definition 5 and Assumption 1 hold, then it follows from the properties

of Definition 4 that the partial factorization fu(ψu) :=
∏

i∈Lu
fi(ψi) can be extracted from f(T) for

any u ∈ {S,P,B}, where Lu ⊆ L is the set of the input units that can be reached from u and have

20

Published as a conference paper at ICLR 2024

the unique scope. Similarly as before, the existence of fu(ψu) allows us to define the intermediate
integral, which acts on a given computational unit u, as follows:

νu(fu) =

∫
fu(ψu)pu(ψu)νu(dψu), (15)

where pu(ψu) is the probability density of u, and νu is the reference measure on the measurable
space (Ψu, σ(Ψu)). Ψu can take various forms depending on whether the scope ψu is the homoge-
neous node, (a part of) the heterogeneous node or the leaf node. If ψu is the homogeneous node, then
Ψu is the hyperspace of all finite subsets of some underlying space, Ψ, which characterizes the fea-
ture density of the set unit. If ψu is the heterogeneous node, then Ψu is the Cartesian product space
composed of, e.g., continuous spaces, discrete spaces, but also hyperspaces defining other RFSs. If
ψu is the leaf node, then Ψu can be the Cartesian product of continuous and (or) discrete spaces. For
this reason, the reference measure νu instantiates itself depending on a given computational unit, u,
and can take various forms based on the space, Ψu.

In the case ψu is a (subset of) leaf node(s), the proof is carried out in the same way as for Proposi-
tion 5. This is also true when ψu is a (subset of) heterogeneous node(s). The difference is that λu in
(14) is replaced by a more general measure νu. This leaves us to prove only the last case where ψu

is a homogeneous node.

Set units. Consider the scope of the set unit, ψu, u ∈ B, is an RFS taking values in Ψu :=
F(Ψw), the hyperspace of all finite subsets of some underlying space, Ψw. That is, we have
ψu = {ψw1 . . . , ψwk

}, where ψwi ∈ Ψw are k distinct instances of the identical scope of the feature
density of the set unit u. Furthermore, let νu be the unitless reference measure (5) on (Ψu, σ(Ψu)),
associated to the set unit, pu(ψu), and let νw be the reference measure on (Ψw, σ(Ψw)), correspond-
ing to the feature density, p(ψwi). Now, from the properties of f , we have fu(ψu) =

∏k
i=1 fi(ψwi),

and, after substituting this function, along with the density of the set unit (1), into (15), we obtain∫
fu(ψu)pu(ψu)νu(dψu)

=

∞∑
k=0

1

ckk!

∫
Ψk

w

fu({ψw1
, . . . , ψwk

})pu({ψw1
, . . . , ψwk

})νkw(dψw1
, . . . , dψwk

)

=

∞∑
k=0

1

ckk!

∫
Ψk

w

k∏
i=1

fi(ψwi
)ckk!p(k)

k∏
i=1

p(ψwi
)νw(dψwi

)

=

∞∑
k=0

p(k)

k∏
i=1

∫
Ψw

fi(ψwi
)p(ψwi

)νw(dψwi
)

=

∞∑
k=0

p(k)

k∏
i=1

∫
fi(ψwi)p(ψwi)νw(dψwi),

where Ψk
w := Ψw × · · · ×Ψw. Once again, we can see that the functional form of the l.h.s. integral

is the same as that of the r.h.s. integrals, allowing us to replace them with Iu and Ii.

E IMPLEMENTATION

There are multiple ways to implement SPSNs. However, the construction of the computational
graph always has to follow from the properties of computational units (Definition 3) and respect the
structural constraints (Definition 5). We provide more details on the layer-wise implementation in-
troduced in Section 3. However, before that, we first present an intuitive description of constructing
SPSNs in a node-wise manner.

E.1 NODE-WISE APPROACH

Let us consider the example in Figure 4. The left part (Figure 4(a)) shows the data graph (Defini-
tion 1) and its schema (Definition 2) highlighted by the dashed line. We can see that the schema is
in fact a simplified graph that excludes the structurally identical children of the homogeneous nodes

21

Published as a conference paper at ICLR 2024

(a) Data graph

△

▽ △

△ △ ▽ △

▽ x ▽ x x x x x

x x x x

. . .

. . .

.

(b) Computational graph

+

×

{·} +

p + ×

× × {·} +

{·} p {·} p p + × ×

p + p + p p + p p p

p p p p p p

Figure 4: Sum-product-set networks. (a) The tree-structured, heterogeneous, data graph, T , (Definition 1), and
the schema (dashed line), S, (Definition 2). Here, △ is the heterogeneous node, ▽ is the homogeneous node,
and x denotes the leaf node of T . (b) The computational graph, G, of an SPSN (Definition 3) designed based on
S, where +, ×, {·} and p are the sum unit, product unit, set unit and leaf unit of G, respectively. The subtrees
of T in (a) are modeled by the corresponding parts of G in (b), as displayed in green, orange, and blue. The
dashed arrow in (b) (the second child in the top sum units) represents the same sub-network as in the first child.
In this example, we consider nl = 1, ns = 2, and np = 2.

and keeps only the child that allows us to reach the deepest level of the tree. The construction of
an SPSN follows from the schema. We start at the root heterogeneous node. Any heterogeneous
node can be modeled by possibly many alterations of sum units and product unis. It is possible to
recursively split the heterogeneous node as long as it still contains enough elements since, every
time we apply the product unit, we split the heterogeneous node into two parts (or more depending
on np). The right part (Figure 4(b)) displays that the root heterogeneous node is modeled by only a
single sum unit whose children are two product units (the right one is indicated by the dashed arrow,
which we hide for simplicity). This is due to the fact that the root heterogeneous node contains only
two children and the product unit separated the children into two singletons: homogeneous node
and heterogeneous node depicted in the left and right child of the root heterogeneous node of the
data graph. The homogeneous node can be modeled only by the set units; therefore, we add a set
unit into the first child of the aforementioned product unit. The heterogeneous node has again only
two children, which means that we will model it in the same way as the root one, i.e., by using a
single sum unit with a product unit in each of its children. Now, if we go back to the homogeneous
node, then we can see that, in the schema, its child is another heterogeneous node with two children.
Therefore, we repeat the same process as before. Since one of the children of this heterogeneous
node is the leaf node, we place an input unit into the computational graph. This continues until we
traverse all parts of the schema, extending the computational graph in the process.

E.2 LAYER-WISE APPROACH

The node-wise approach is a simple mechanism to construct SPSNs. Nonetheless, it is often compu-
tationally inefficient for the implementation with modern automatic differentiation tools. The reason
for this lies in that these tools have to produce their own computational diagram (graph) from the
computational graph of the SPSN. Therefore, we provide a layer-wise approach to construct SPSNs,
simplifying the underlying differentiation mechanisms.

Algorithm 1 contains the procedure spsn network(ψ, nc, nl, ns, np) which constructs an SPSN
based on the following inputs: ψ is the scope of the root unit (which we set to the schema when
applying the procedure), nc is the number of root units of the network (we set nc > 1 when using
the network for classification), and nl, ns, and np are the number of layers, children in the sum
units, and children of the product units, respectively, which are common to all blocks in the network.
This imposes a regular structure on the network and makes it suitable to the layer-wise ordering of
the computational units. The resulting computational graph is consequently more efficient for the
implementation with the automatic differentiation tools and also more convenient for parallelization
on the contemporary computational hardware.

The key procedure is spsn block, which recursively constructs the computational graph of an SPSN
in the block-by-block manner as depicted in Figure 2. We first create an empty block (line 1). Then,

22

Published as a conference paper at ICLR 2024

we continue by creating layers of scope functions in scope layers (line 2). We provide more
details on this procedure below. For each layer of these scopes, we add (via ←) two layers of
computational units into the block. (i) The layer of sum units, slayer, where the first argument is
the number of children of each sum unit and the second argument is the number of sum units. (ii)
The layer of product units, player, where the meaning of the arguments is the same as with slayer.
We repeat this until nl = 1. Then, we add the layer of input units, ilayer. This layer assigns an
input unit to each scope in l based on its type. That is, if the scope represents the leaf nodes, then
it checks the type of data (floats, integers, strings) and creates appropriate probability density. If the
scope is the homogeneous node, then it creates the set unit. The feature densities of all set units
in this input layer are not connected to any other part of the computational graph at this moment.
The procedure then proceeds by gathering all these unconnected scopes via scope set units. All
these steps are now repeated by calling spsn block again (line 14). Every iteration, spsn block
returns the network that was created to this moment, N , and the scopes of the unplugged set units
that are provided to the next iteration. The network that has been generated so far, N , is connected
to the unplugged scopes of the set units in the current block B by using connect.

Algorithm 2 presents the scope layers procedure. It starts by assigning the input set of scopes ψ
into L, a structure holding all layers of scopes, creating the first layer of scopes. The next layer is
made by the scope slayer and scope player procedures. scope slayer uses repeat to make
ns copies of each element in ψ, to reflect the fact that the children of the sum unit have the identical
scope. Similarly, scope player splits each element in ψ into np parts, to reflect the fact that the
children of the product unit have disjoint scopes. This process is repeated until we either (i) reach
maximum allowable number of layers or (ii) there is a scope in ψ represented by a singleton. The
latter is realized by minimum length, which first evaluates the number of elements in each scope
of ψ and then finds their minimum.

The block size. The regular structure of the SPSN block allows us to find a closed-form solution for
its size in terms of the number of computational units containing parameters. The number of sum
units is given by Ks = |ψ|

∑nl−1
l=0 (nsnp)

l, where |ψ| is the cardinality of the input set of scopes
in spsn block. The number of input units is Ki = |ψ|(nsnp)l. While Ks can directly be used to
compute the number of parameters in all sum units, Ki serves only to complete an intuition about
the size of each block. To obtain a concrete number of parameters in the input layer, we need to
count the parameters in each of its units due to the differences in the data types.

23

Published as a conference paper at ICLR 2024

Algorithm 1 Construct the SPSN network
procedure spsn network(ψ, nc, nl, ns, np)

1: ψ = repeat(ψ, nc)
2: N, = spsn block(ψ, nl, ns, np)
3: return N

procedure spsn block(ψ, nl, ns, np)

1: B = ∅
2: L = scope layers(ψ, nl, ns, np)
3: for all l ∈ L do
4: k = length(l)
5: if nl > 1 then
6: B ← slayer(ns, k)
7: B ← player(np, k ∗ ns)
8: else
9: B ← ilayer(l)

10: ψ = scope set units(l)
11: end if
12: nl = nl − 1
13: end for
14: N,ψ = spsn block(ψ, nl, ns, np)
15: N = connect(N,B)
16: return N,ψ

Algorithm 2 Procedures
procedure scope layers(ψ, nl, ns, np)

1: L = (ψ)
2: while true do
3: ψ = scope slayer(ψ, ns)
4: ψ = scope player(ψ, np)
5: L← ψ
6: if minimum lenght(ψ) is 1 or nl is 1 then
7: break
8: else
9: nl = nl − 1

10: end if
11: end while
12: return L
procedure scope slayer(ψ, ns)

1: ψ̄ = ∅
2: for all s ∈ ψ do
3: ψ̄ ← repeat(s, ns)
4: end for
5: return ψ̄

procedure scope player(ψ, np)

1: ψ̄ = ∅
2: for all s ∈ ψ do
3: ψ̄ ← split(s, np)
4: end for
5: return ψ

F EXPERIMENTAL SETTINGS

The leaf nodes, v ∈ L, contain different data types, including reals, integers, and strings. We use the
default feature extractor from JSONGrinder.jl (v2.3.2) to pre-process these data. We perform
the grid search over the hyper-parameters of the models mentioned in Section 5. For the MLP, GRU,
and LSTM networks, we set the dimension of the hidden state(s) and the output in {10, 20, 30, 40}.
For the HMIL network, we use the default settings of the model builder from Mill.jl (v2.8.1),
only changing the number of hidden units of all the inner layers in {10, 20, 30, 40}. We add a single
dense layer with the linear activation function to adapt the outputs of these networks to the number of
classes in the datasets. For the SPSN networks, we choose the Poisson distribution as the cardinality
distribution and the following hyper-parameters: nl ∈ {1, 2, 3}, ns ∈ {2, 3, . . . , 10}, and np := 2.
We use the ADAM optimizer (Kingma & Ba, 2014) with fixing 10 samples in the minibatch and
varying the step-size in {0.1, 0.01, 0.001}. The datasets are randomly split into 64%, 16%, and 20%
for training, validation, and testing, respectively.

We performed the experiments on a computational cluster equipped with 116 CPUs (Intel Xeon
Scalable Gold 6146). The jobs to perform the grid search over the admissible range of hyper-
parameters were scheduled by SLURM 23.02.2. We limited each job to a single core and 8GB of
memory. The computational time was restricted to one day, but all jobs were finished under that
limit (ranging approximately between 2-18 hours per dataset).

G DATASETS

The CTU Prague relational learning repository (Motl & Schulte, 2015) is a rich source of structured
data. These data form a directed graph where the nodes are tables and edges are the foreign keys.
Some of these datasets are already in the form of threes; however, there are also graphs containing
cycles. As a part of the preprocessing, we decompose these cyclic graphs to tree graphs by selecting
a node and then reaching to the neighborhood nodes in the one-hop distance.

24

Published as a conference paper at ICLR 2024

Table 2 shows the two main attributes of the datasets under study: the number of instances (i.e.,
the number of tree-structured graphs) and the number of classes of these instances. A detailed
description of these datasets, additional attributes, and accompanying references are accessible at
https://relational.fit.cvut.cz/.

Figure 1 shows a single instance of the tree-structured graph data in the JSON format (Pezoa et al.,
2016), and Figure 5 illustrates the corresponding schema (Definition 2 of the main paper). As can be
seen (and as also mentioned in the main paper), the leaf nodes contain different data types: integers,
floats, and strings. In Figures 6-12, we provide the schemata of the remaining datasets in Table 2.

Table 2: Datasets. The number of instances (trees) and the number of classes of the datasets under study. nO ,
nH , and nL are the numbers of homogeneous nodes, heterogeneous nodes, and leaf nodes, respectively, in the
whole dataset. n̄O , n̄H , and n̄L show the corresponding average number of nodes per tree. The last column is
the size of the dataset in MiBs. For comparison, the full training MNIST dataset has around 45 MiBs.

dataset # of instances (trees) # of classes nO nH nL n̄O n̄H n̄L size [MiB]
mutagenesis 188 2 5081 15567 57375 27 83 305 3.3

genes 862 15 3544 17941 125712 4 21 146 7.7
cora 2708 7 16274 13566 247663 6 5 91 9.3

citeseer 3312 6 16071 12759 411929 5 4 124 14.4
webkp 877 5 4970 4093 396890 6 5 453 13.2
chess 295 3 10325 590 53593 35 2 182 1.8

uw cse 278 4 782 782 3128 3 3 11 0.170
hepatitis 500 2 1500 7008 65039 3 14 130 2.3

REFERENCES

David J Aldous. Representations for partially exchangeable arrays of random variables. Journal of
Multivariate Analysis, 11(4):581–598, 1981.

Ole Barndorff-Nielsen. Information and exponential families: In statistical theory. John Wiley &
Sons, 1978.

P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics. Wiley, 1995.

Hei Chan and Adnan Darwiche. On the robustness of most probable explanations. In Proceedings
of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, pp. 63–71, 2006.

Y Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models. UCLA. URL: http://starai. cs. ucla. edu/papers/ProbCirc20.
pdf, 2020.

Daryl J Daley, David Vere-Jones, et al. An introduction to the theory of point processes: volume I:
elementary theory and methods. Springer, 2003.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

Bruno de Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Inter-
nazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pp. 179–190, 1929.

Bruno de Finetti. Foresight: Its logical laws, its subjective sources. In Breakthroughs in Statistics:
Foundations and Basic Theory, pp. 134–174. Springer, 1937.

Persi Diaconis. Finite forms of de Finetti’s theorem on exchangeability. Synthese, 36:271–281,
1977.

Persi Diaconis. Recent progress on de finetti’s notions of exchangeability. Bayesian statistics, 3
(111-125):13–14, 1988a.

Persi Diaconis. Sufficiency as statistical symmetry. In Proceedings of the AMS Centennial Sympo-
sium, pp. 15–26, 1988b.

Persi Diaconis and David Freedman. Finite exchangeable sequences. The Annals of Probability, pp.
745–764, 1980.

25

https://relational.fit.cvut.cz/

Published as a conference paper at ICLR 2024

Persi Diaconis and David Freedman. Partial exchangeability and sufficiency. Statistics: Applications
and new directions, pp. 205–236, 1984.

Charles J Geyer. Likelihood inference for spatial point processes: Likelihood and computation. In
Stochastic Geometry: Likelihood and Computation, pp. 141–172. Chapman and Hall/CRC, 1999.

IR Goodman, RP Mahler, and Hung T Nguyen. Mathematics of Data Fusion, volume 37. Springer
Science & Business Media, 1997.

Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford university
press, 2001.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Exchangeability-aware sum-product
networks. In Proceedings of the Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22, pp. 4864–4870. International Joint Conferences on Artificial Intelligence
Organization, 2022.

Ronald PS Mahler. Statistical multisource-multitarget information fusion, volume 685. Artech
House Norwood, MA, USA, 2007.

G. Mathéron. Random Sets and Integral Geometry. Wiley Series in Probability and Mathematical
Statistics. Wiley, 1974.

Jan Motl and Oliver Schulte. The CTU Prague relational learning repository. arXiv preprint
arXiv:1511.03086, 2015.

Aniruddh Nath and Pedro Domingos. Learning relational sum-product networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Hung T Nguyen. An introduction to random sets. Chapman and Hall/CRC, 2006.

Mathias Niepert and Pedro Domingos. Exchangeable variable models. In International Conference
on Machine Learning, pp. 271–279. PMLR, 2014.

Mathias Niepert and Guy Van den Broeck. Tractability through exchangeability: A new perspective
on efficient probabilistic inference. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 28, 2014.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable random
structures. IEEE transactions on pattern analysis and machine intelligence, 37(2):437–461, 2014.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical prop-
erties of sum-product networks. In 18th International Conference on Artificial Intelligence and
Statistics, pp. 744–752. PMLR, 2015.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning, pp.
7563–7574. PMLR, 2020.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martı́n Ugarte, and Domagoj Vrgoč. Foundations
of JSON schema. In Proceedings of the 25th international conference on World Wide Web, pp.
263–273, 2016.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690.
IEEE, 2011.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of prob-
abilistic models. Advances in Neural Information Processing Systems, 29, 2016.

26

Published as a conference paper at ICLR 2024

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. Advances in neural information processing systems, 32, 2019.

MNM Van Lieshout. Markov point processes and their applications. World Scientific, 2000.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-
product networks. Machine Learning, 108(4):551–573, 2019.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A composi-
tional atlas of tractable circuit operations: From simple transformations to complex information-
theoretic queries. arXiv preprint arXiv:2102.06137, 2021.

Ba-Ngu Vo, Nhan Dam, Dinh Phung, Quang N Tran, and Ba-Tuong Vo. Model-based learning for
point pattern data. Pattern Recognition, 84:136–151, 2018.

Alan J Weir. Lebesgue Integration and Measure, volume 1. Cambridge University Press, 1973.

Sandy L Zabell. Symmetry and its discontents: Essays on the history of inductive probability.
Cambridge University Press, 2005.

Han Zhao, Pascal Poupart, and Geoff Gordon. A unified approach for learning the parameters of
sum-product networks. In Proceedings of the 30th Advances in Neural Information Processing
Systems, pp. 433–441, 2016.

[Dict] # n_inst = 188
lumo: [Float64] # n_unique = 177, n_inst = 188
inda: [Int64] # n_unique = 2, n_inst = 188
logp: [Float64,Int64] # n_unique = 107, n_inst = 188
ind1: [Int64] # n_unique = 2, n_inst = 188
atoms: [List] # n_inst = 188

[Dict] # n_inst = 4893
element: [String] # n_unique = 7, n_inst = 4893

bonds: [List] # n_inst = 4893
[Dict] # n_inst = 10486

element: [String] # n_unique = 7, n_inst = 10486
type_bond: [Int64] # n_unique 6, n_inst = 10486
type_atom: [Int64] # n_unique = 36, n_inst = 10486

charge: [Float64] # n_unique = 444, n_inst = 10486
type_atom: [Int64] # n_unique = 36, n_inst = 4893

charge: [Float64] # n_unique = 444, n_inst = 4893

Figure 5: Schema. The schema of the mutagenesis dataset.

27

Published as a conference paper at ICLR 2024

[Dict] # n_inst = 862
interactions: [List] # n_inst = 862

[Dict] # n_inst = 1820
type: [String] # n_unique = 3, n_inst = 1820

expression_Corr: [Float64,Int64] # n_unique = 817, n_inst = 1820
records: [List] # n_inst = 1820

[Dict] # n_inst = 10913
localization: [String]

n_unique = 13, n_inst = 10913
complex: [String]
n_unique = 44, n_inst = 10913

chromosome: [Int64]
n_unique = 17, n_inst = 10913
function: [String]
n_unique = 13, n_inst = 10913

essential: [String]
n_unique = 4, n_inst = 10913
class: [String]

n_unique = 22, n_inst = 10913
phenotype: [String]
n_unique = 13, n_inst = 10913
motif: [String]

n_unique = 183, n_inst = 10913
records: [List] # n_inst = 862

[Dict] # n_inst = 4346
localization: [String] # n_unique = 15, n_inst = 4346

complex: [String] # n_unique = 52, n_inst = 4346
chromosome: [Int64] # n_unique = 17, n_inst = 4346

function: [String] # n_unique = 13, n_inst = 4346
essential: [String] # n_unique = 4, n_inst = 4346

class: [String] # n_unique = 24, n_inst = 4346
phenotype: [String] # n_unique = 13, n_inst = 4346

motif: [String] # n_unique = 236, n_inst = 4346

Figure 6: The schema of the genes dataset.

[Dict] # n_inst = 2708
citing: [List] # n_inst = 2708

[Dict] # n_inst = 10858
word_cited_id: [List] # n_inst = 10858

[String] # n_unique = 1432, n_inst = 198447
word_cited_id: [List] # n_inst = 2708

[String] # n_unique = 1432, n_inst = 49216

Figure 7: The schema of the cora dataset.

[Dict] # n_inst = 3312
citing: [List] # n_inst = 3312

[Dict] # n_inst = 9447
word_cited_id: [List] # n_inst = 9447

[String] # n_unique = 3703, n_inst = 306764
word_cited_id: [List] # n_inst = 3312

[String] # n_unique = 3703, n_inst = 105165

Figure 8: The schema of the citeseer dataset.

[Dict] # n_inst = 877
citing: [List] # n_inst = 877

[Dict] # n_inst = 3216
word_cited_id: [List] # n_inst = 3216

[String] # n_unique = 1703, n_inst = 317525
word_cited_id: [List] # n_inst = 877

[String] # n_unique = 1703, n_inst = 79365

Figure 9: The schema of the webkp dataset.

28

Published as a conference paper at ICLR 2024

[Dict] # n_inst = 278
person: [Dict] # n_inst = 278

hasPosition: [String] # n_unique = 5, n_inst = 278
student: [String] # n_unique = 2, n_inst = 278

professor: [String] # n_unique = 2, n_inst = 278
id: [Int64] # n_unique = 278, n_inst = 278

yearsInProgram: [String] # n_unique = 12, n_inst = 278
courses: [List] # n_inst = 278

[String] # n_unique = 3, n_inst = 189
interactions: [List] # n_inst = 278

[Dict] # n_inst = 226
hasPosition: [String] # n_unique = 5, n_inst = 226

student: [String] # n_unique = 2, n_inst = 226
professor: [String] # n_unique = 2, n_inst = 226

id: [Int64] # n_unique = 130, n_inst = 226
yearsInProgram: [String] # n_unique = 12, n_inst = 226

courses: [List] # n_inst = 226
[String] # n_unique = 3, n_inst = 419

Figure 10: The schema of the the uw_cse dataset.

[Dict] # n_inst = 500
sex: [String] # n_unique = 2, n_inst = 500
age: [String] # n_unique = 7, n_inst = 500
inf: [List] # n_inst = 500

[Dict] # n_inst = 196
dur: [String] # n_unique = 5, n_inst = 196

bio: [List] # n_inst = 500
[Dict] # n_inst = 621

activity: [String] # n_unique = 5, n_inst = 621
fibros: [String] # n_unique = 5, n_inst = 621

indis: [List] # n_inst = 500
[Dict] # n_inst = 5691

dbil: [String] # n_unique = 2, n_inst = 5691
tcho: [String] # n_unique = 4, n_inst = 5691
gpt: [String] # n_unique = 4, n_inst = 5691
alb: [String] # n_unique = 2, n_inst = 5691
tp: [String] # n_unique = 4, n_inst = 5691

ttt: [String] # n_unique = 6, n_inst = 5691
got: [String] # n_unique = 5, n_inst = 5691
che: [String] # n_unique = 10, n_inst = 5691

in_id: [Int64] # n_unique = 5691, n_inst = 5691
ztt: [String] # n_unique = 6, n_inst = 5691
tbil: [String] # n_unique = 2, n_inst = 5691

Figure 11: The schema of the hepatitis dataset.

29

Published as a conference paper at ICLR 2024

[Dict] # n_inst = 295
w3: [List] # n_inst = 295

[Int64] # n_unique = 16, n_inst = 793
w7: [List] # n_inst = 295

[Int64] # n_unique = 23, n_inst = 866
b5: [List] # n_inst = 295

[Int64] # n_unique = 23, n_inst = 836
b2: [List] # n_inst = 295

[Int64] # n_unique = 15, n_inst = 678
white: [List] # n_inst = 295

[Int64] # n_unique = 54, n_inst = 4855
w6: [List] # n_inst = 295

[Int64] # n_unique = 23, n_inst = 857
w4: [List] # n_inst = 295

[Int64] # n_unique = 22, n_inst = 839
b8: [List] # n_inst = 295

[Int64] # n_unique = 24, n_inst = 860
event: [List] # n_inst = 295

[Int64] # n_unique = 18, n_inst = 6195
b9: [List] # n_inst = 295

[Int64] # n_unique = 25, n_inst = 897
whiteElo: [Int64] # n_unique = 88, n_inst = 295

event_date: [String] # n_unique = 2, n_inst = 295
b1: [List] # n_inst = 295

[Int64] # n_unique = 8, n_inst = 681
w1: [List] # n_inst = 295

[Int64] # n_unique = 8, n_inst = 620
b6: [List] # n_inst = 295

[Int64] # n_unique = 23, n_inst = 828
site: [List] # n_inst = 295

[Int64] # n_unique = 9, n_inst = 2655
w5: [List] # n_inst = 295

[Int64] # n_unique = 23, n_inst = 830
ECO: [List] # n_inst = 295

[Int64] # n_unique = 15, n_inst = 885
b10: [List] # n_inst = 295

[Int64] # n_unique = 25, n_inst = 878
opening_id: [Int64] # n_unique = 75, n_inst = 295
openings: [List] # n_inst = 295

[Dict] # n_inst = 295
w3: [List] # n_inst = 295

[Int64] # n_unique = 15, n_inst = 701
b2: [List] # n_inst = 295

[Int64] # n_unique = 16, n_inst = 635
w4: [List] # n_inst = 295

[Int64] # n_unique = 17, n_inst = 650
w1: [List] # n_inst = 295

[Int64] # n_unique = 8, n_inst = 620
variation: [List] # n_inst = 295

[Int64] # n_unique = 56, n_inst = 8835
b1: [List] # n_inst = 295

[Int64] # n_unique = 9, n_inst = 713
opening_id: [Int64] # n_unique = 75, n_inst = 295

name: [List] # n_inst = 295
[Int64] # n_unique = 43, n_inst = 4653

b3: [List] # n_inst = 295
[Int64] # n_unique = 17, n_inst = 719

b4: [List] # n_inst = 295
[Int64] # n_unique = 19, n_inst = 619

w2: [List] # n_inst = 295
[Int64] # n_unique = 14, n_inst = 682

code: [List] # n_inst = 295
[Int64] # n_unique = 1, n_inst = 295

w8: [List] # n_inst = 295
[Int64] # n_unique = 25, n_inst = 899

b3: [List] # n_inst = 295
[Int64] # n_unique = 18, n_inst = 805

opening: [List] # n_inst = 295
[Int64] # n_unique = 44, n_inst = 4574

round: [List] # n_inst = 295
[Int64] # n_unique = 11, n_inst = 1149

black: [List] # n_inst = 295
[Int64] # n_unique = 55, n_inst = 4854

w2: [List] # n_inst = 295
[Int64] # n_unique = 12, n_inst = 724

w10: [List] # n_inst = 295
[Int64] # n_unique = 24, n_inst = 888

b4: [List] # n_inst = 295
[Int64] # n_unique = 20, n_inst = 862

b7: [List] # n_inst = 295
[Int64] # n_unique = 23, n_inst = 853

BlackElo: [Int64] # n_unique = 89, n_inst = 295
game_id: [Int64] # n_unique = 295, n_inst = 295

w9: [List] # n_inst = 295
[Int64] # n_unique = 24, n_inst = 890

Figure 12: The schema of the chess dataset.
30

	Introduction
	Tree-Structured Data
	Sum-Product-Set Networks
	Tractability
	Exchangebility

	Related Work
	Experiments
	Conclusion
	Probabilistic Circuits
	Random Finite Sets
	Exchangeability
	Proof of [prop:constrained-permutations]Proposition 2
	Proof of [prop:spsn-exchangeability]Proposition 3

	Tractability
	Proof of [prop:pcs-tractability]Proposition 5
	Proof of [prop:spsn-tractability]Proposition 1

	Implementation
	Node-wise approach
	Layer-wise approach

	Experimental Settings
	Datasets

