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Abstract. Large Language Models (LLMs) have demonstrated re-
markable performance across various natural language processing
(NLP) tasks. However, their deployment is challenging due to the
substantial computational resources required. Power-of-two (PoT)
quantization is a general tool to counteract this difficulty. Albeit pre-
vious works on PoT quantization can be efficiently dequantized on
CPUs using fixed-point addition, it showed less effectiveness on GPUs.
The reason is entanglement of the sign bit and sequential bit manipula-
tions needed for dequantization. We propose a novel POT quantization
framework for LLM weights that (i) outperforms state-of-the-art ac-
curacy in extremely low-precision number formats, and (ii) enables
faster inference through more efficient dequantization. To maintain
the accuracy of the quantized model, we introduce a two-step post-
training algorithm: (i) initialize the quantization scales with a robust
starting point, and (ii) refine these scales using a minimal calibration
set. The performance of our PoT post-training algorithm surpasses
the current state-of-the-art in integer quantization, particularly at low
precisions such as 2- and 3-bit formats. Our PoT quantization acceler-
ates the dequantization step required for the floating point inference
and leads to 3.67× speed up on a NVIDIA V100, and 1.63× on a
NVIDIA RTX 4090, compared to uniform integer dequantization.

1 Introduction
Large Language Models (LLMs) have demonstrated remarkable ca-
pabilities across a wide range of natural language processing (NLP)
tasks, including text generation, summarization, and question answer-
ing [3, 29, 21, 26]. However, deploying them remains challenging
due to their memory and computation requirements, posing obstacles
when using them in the real world. Quantization has emerged as an
effective strategy to reduce these costs by converting full-precision
weights into lower-bit representations, e.g. INT8 and INT4, reducing
memory usage and accelerating computation. However, aggressive
quantization can lead to accuracy degradation, especially in generation
tasks, and despite weights being stored in low-bit formats, inference
typically involves dequantizing them back to FP16 for general matrix
multiplication (GEMM), introducing latency and limiting speed-ups.

Post-training quantization (PTQ)[15, 17, 9, 16, 20, 6], methods
offer a practical trade-off: they compress pretrained models without
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requiring full retraining and are compatible with small calibration sets.
While existing PTQ approaches have achieved strong performance in
the 3–4 bit regime, maintaining accuracy at greater quantization levels
(e.g., 2-bit) remains difficult. Additionally, standard dequantization
pipelines often rely on costly mixed-precision operations, further
slowing inference. As LLMs scale further, extreme quantization —
such as 2-bit or even binary weights — becomes increasingly desirable
for edge device deployment and low-latency applications. Achieving
this level of compression without compromising model quality or
inference speed requires new approaches to quantization and hardware
efficiency.

Power-of-Two (PoT) quantization offers a promising direction. By
constraining weights to signed powers of two, it enables multipli-
cations to be replaced with simple shift-and-add operations, lead-
ing to substantial speed gains. Originally explored in computer vi-
sion [27, 19, 13], PoT quantization aligns well with the bell-shaped
distributions and exponential tails typically found in trained weight
matrices. This structure makes PoT not only hardware-efficient but
also statistically well-suited for deep models. However, when ap-
plied to LLMs, existing methods fail to retain accuracy due to coarse
rounding and lack of effective post-training calibration. Moreover,
naive dequantization can be inefficient on modern GPUs due to bit-
level dependencies and sign-bit entanglement. Existing attempts to
apply power-of-two quantization to LLMs have resulted in significant
accuracy degradation, especially at extreme bit-widths (Table 2).

In this work, we propose a novel post-training quantization frame-
work for LLMs using power-of-two values. Our method achieves
both high accuracy in the low-bit regime and fast, hardware-friendly
inference. We highlight our main contributions as follows:

• We introduce a two-stage post-training algorithm that combines
robust scale initialization with lightweight calibration tailored to
the PoT structure.

• We demonstrate our method consistently outperforms strong PTQ
baselines at 2 and 3-bit precision across standard benchmarks.

• We develop a GPU-optimized dequantization kernel that lever-
ages bitwise parallelism, resulting in up to 3.67× speed-up on an
NVIDIA V100 and 1.63× on a RTX 4090 compared to standard
integer dequantization.

Our results highlight power-of-two quantization as a scalable and
efficient solution for high-performance LLM deployment under strin-



Figure 1: Left: Density distribution of the first weight matrix in LLaMA-7B, exemplifying the bell-shaped or exponential decay commonly
observed in LLM weight distributions. Middle: Quantization levels for power-of-two (PoT) quantization, showing finer resolution near zero,
aligning well with the distribution’s high-density region. Right: Quantization levels for uniform quantization, which allocate levels evenly and
poorly capture the dense region near zero.

gent hardware constraints.

2 Background
2.1 Quantization Methods for LLMs

Recent advances in LLM quantization primarily fall into two cate-
gories: weight-only, which reduces the bit-width of weights while
keeping activations in higher precision, and weight-activation, where
both components are compressed. Weight-only quantization is partic-
ularly attractive for auto-regressive generation as it directly reduces
the memory/bandwidth cost during inference while keeping the model
forward computation simple and stable.

Several post-training quantization (PTQ) methods have been pro-
posed to enable low-bit inference without retraining. LLM.int8 [5]
performs 8-bit quantization with a dedicated outlier channel retained
in higher precision. SmoothQuant [25] applies a per-channel scaling
between weights and activations to mitigate outlier effects, and Outlier
Suppression [24] takes a similar approach by explicitly isolating and
handling activation outliers.

Focusing on weight-only PTQ, GPTQ [9] proposes a one-shot
calibration method based on second-order optimization, achieving
strong performance down to 3-bit quantization. AWQ [16] improves
robustness via mixed-precision quantization that selectively preserves
salient weights in higher precision. OmniQuant [20] introduces block-
wise learnable clipping bounds to reduce quantization error, while
SqueezeLLM [10] explores non-uniform quantization using k-means
clustering. QuIP [4] refines GPTQ’s optimization and extends sup-
port to 2-bit quantization with improved calibration. SpQR [7] and
OWQ [11] further push compression limits by mixing high and low-
bit representations based on importance scores.

While these methods enable impressive accuracy at 3-bit and 4-
bit regimes, they face challenges at extreme low bit-widths (e.g., 2-
bit), where discretization artifacts become more prominent. Moreover,
many mixed-precision designs introduce dequantization inefficiencies,
as multipliers still need to convert integer values to FP16 for matrix
multiplication kernels.

In what follows, we turn to power-of-two quantization, which of-
fers a promising direction for reducing both quantization error and
dequantization overhead.

2.2 PoT Quantization

PoT quantization restricts each weight value to a signed power of
two, such as ± 2-2, ± 2-1, ± 20, forming a logarithmically spaced set
of quantization levels. Unlike uniform quantization, which allocates

evenly spaced intervals, PoT uses a geometric progression that offers
both statistical and computational advantages.

(1) Statistical alignment with weight distributions. As shown
in Figure 1 (left), weights in LLMs typically follow bell-shaped or
exponentially decaying distributions. The geometric structure of PoT
levels aligns more naturally with these distributions—especially in
low-magnitude regions—resulting in better approximation under lim-
ited bit-widths. In contrast, uniform quantization over-allocates levels
to large values and poorly captures the dense region near zero.

(2) Hardware-efficient dequantization. PoT quantization enables
fast dequantization through shift and add operations. Each quantized
weight is reconstructed as ± 2E ·S, where S is a per-group scaling
factor. Since 2E can be implemented using bit shifts, PoT dequanti-
zation is particularly efficient for matrix multiplication on modern
GPUs.

Despite these attractive properties, directly applying existing post-
training quantization (PTQ) methods [28, 14, 8, 12, 13] to PoT often
results in severe accuracy degradation. Most prior techniques are de-
signed for uniform quantization and do not adapt well to the coarse,
non-linear nature of PoT levels. The primary challenge lies in properly
determining scaling factors that map weights into the limited expo-
nent range, especially under aggressive bit constraints like 2-bit or
3-bit. Improper scaling leads to large quantization errors that existing
activation-based calibration cannot resolve.

These limitations highlight the need for a dedicated PoT quantiza-
tion framework that explicitly accounts for the structural properties of
LLMs and the discrete nature of power-of-two representations. In the
following sections, we present such a framework based on principled
scale initialization and lightweight calibration.

3 Two-Step Power-of-Two Post-Training
Quantization

3.1 Preliminaries

We focus on weight-only quantization for transformer-based LLMs
using Power-of-Two (PoT) representations. Let W(l) ∈ Rd×d denote
the weight matrix at layer l, where each element W(l)

ij is quantized
independently. PoT quantization represents each weight as a signed
power-of-two value scaled by a learnable factor:

W̃
(l)
ij = S

(l)
ij ·P

(l)
ij · 2

E
(l)
ij , (1)

where

• S
(l)
ij ∈ R+ is the scale shared within a quantization group;
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Figure 2: The two step algorithm. DASI (Section 3.2): The scale is adjusted by aligning the weight matrices (left). DDFT (Section 3.3):
Activations are aligned using minimal calibration data (right).

• P
(l)
ij ∈ {−1,+1} is the sign bit, defined as P(l)

ij = sign(W
(l)
ij );

• E
(l)
ij ∈ N0 is the quantized exponent, computed as:

E
(l)
ij = clamp

(
round

(
log2

(∣∣∣W(l)
ij

∣∣∣ /S(l)
ij

))
, 0, qmax

)
, (2)

where qmax = 2n−1 − 1 for n-bit quantization, and the clamp
operation limits a value to a specified interval; specifically for real
values x, a, and b

clamp(x, a, b) = min(max(x, a), b). (3)

We can write (1) in the matrix form:

W̃(l) = S(l) ◦P(l) ◦ 2E
(l)

, (4)

where ◦ denotes Hadamard (element-wise) multiplication, and all
variables retain their element-wise definitions over the matrix.

To reduce memory and computational costs, we apply group-wise
quantization: each column of W(l) is divided into fixed-size groups
(e.g., 64 or 128 rows), and all weights within a group share the same
scale S

(l)
ij . This is enforced by:

S
(l)
ij = S

(l)
kj , if ⌊i/G⌋ = ⌊k/G⌋ , (5)

where G is the group size.
This representation forms the foundation of our quantization frame-

work. In the following sections, we describe how to initialize and
calibrate the scale factors S(l), enabling accurate and efficient PoT
quantization for large language models.

3.2 Step 1: Data-Agnostic Scale Initialization (DASI)

POT quantization introduces distinct challenges due to its logarithmic
and discrete structure. In this stage, we initialize group-wise scaling
factors purely from weights, without relying on activation data. This
scale initialization is crucial for ensuring quantization robustness
under low-bit settings.

Motivation: Sensitivity and Non-Smooth Error Surface. PoT
quantization results in a highly non-smooth loss landscape, owing to
discrete exponent rounding. As illustrated in Figure 3 (middle), small
variations in scale lead to abrupt shifts in exponent values, producing

Algorithm 1 Parallel Data-Agnostic Scale Initialization (Step 1)

1: for each weight group Wgroup in parallel do

2: s0 ←
max |Wgroup|
2qmax − 1

▷ Initialize base scale

3: B ← {0.01 · i | i = 1, . . . , 200} ▷ Set candidate multipliers
4: Qmin

1 ←∞ ▷ Initialize minimum error
5: for each b ∈ B do
6: sb ← s0 · b ▷ Compute candidate scale
7: E(b)← clamp (round (log2 (|Wgroup| /sb)) , 0, qmax)

8: W̃group(b)← sb · sign(Wgroup) ◦ 2E(b)

9: Q1(b)←
∥∥∥Wgroup − W̃group(b)

∥∥∥2
2

10: if Q1(b) < Qmin
1 then

11: Qmin
1 ← Q1(b)

12: b∗ ← b
13: end if
14: end for
15: s∗ ← s0 · b∗ ▷ Optimal scale for this group
16: Store s∗ into the corresponding position in S(l)

17: end for
18: return S(l)

sharp error transitions—unlike uniform quantization, which exhibits
a smoother loss surface. Furthermore, Figure 3 (right) shows that
optimal scales often diverge from the naive initialization (b = 1).
These properties make gradient-based optimization unreliable and
motivate a grid search strategy.

Group Definition. We adopt group-wise quantization, where each
column of W(l) ∈ RRdout×din is partitioned into disjoint groups of
size G. Each group contains a contiguous subvector of weights from
the same column. Denote such a group as Wgroup ∈ RG. All elements
in a group share the same scaling factor.

Quantization Objective. Given a candidate scale s = s0 · b, we
compute the quantized exponent for each element in the group:

Egroup(b) = clamp

(
round

(
log2

(
|Wgroup|
s0 · b

))
, 0, qmax

)
, (6)

where qmax = 2n−1 − 1 is the maximum exponent level for n-bit
quantization, and scalars s0 and b are defined later. We then define
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Figure 3: (Left) Loss in O/W Step 1. (Middle) Loss curve of 3-bit PoT quantization shows non-smooth transitions. (Right) Histogram of
selected scaling multipliers b∗ — many deviate from the naive choice b = 1.
the dequantized group reconstruction:

W̃group(b) = s0 · b ·Pgroup ◦ 2Egroup(b), (7)

where Pgroup = sign(Wgroup).
The goal is to minimize the mean squared error (MSE) between the

original and reconstructed weights:

Q1(b) =
∥∥Wgroup − W̃group(b)

∥∥2
2
, (8)

and select the optimal scale multiplier:

b∗ = argmin
b∈B

Q1(b), s∗ = s0 · b∗, (9)

where B is a set of scaling multipliers defined later.

Initial Scale Estimation. We initialize a base scale s0 to align the
largest magnitude in the group with the top PoT level:

s0 =
max |Wgroup|
2qmax − 1

. (10)

Grid Search Procedure. We evaluate a discrete set of scaling
multipliers B = {0.01 · i | i = 1, . . . , 200}, and compute Q1(b) for
each. The best multiplier b∗ and corresponding scale s∗ are retained.
This procedure is repeated for every group independently, and the
resulting group-wise scales are aggregated into the full matrix S(l).

Parallelization. Each weight group is quantized independently,
allowing Step 1 to be fully parallelized across GPU threads. This
parallelism enables efficient scale initialization even for large models.
The procedure is summarized in Algorithm 1, which performs a grid
search to minimize reconstruction error per group. A visual overview
of Step 1 is shown in the left panel of Figure 2, where weight matrices
are aligned through scale adjustment without any data dependency.

3.3 Step 2: Data-Dependent Fine-Tuning (DDFT) for
Layer-Wise Quantization Reconstruction

Following the data-agnostic scale initialization in Step 1 (Section 3.2),
we introduce a lightweight fine-tuning stage to further refine the
group-wise scaling factors S(l). This step uses a small calibration
set to improve the alignment between the outputs of the quantized
and original models. A visual overview of this procedure is shown
in the right panel of Figure 2, where activations are aligned using
data-dependent scale adjustments. Importantly, this is achieved by
learning a low-dimensional residual parameter Γ, thereby maintaining
low training cost and avoiding full model retraining.

Motivation. Despite accurate weight reconstruction, the initial
scales derived in Step 1 do not directly guarantee output-level consis-
tency due to nonlinear interactions between quantized weights and
activation patterns. Fine-tuning with calibration data can mitigate this
mismatch. Our method adjusts only the scaling factors via a learnable
residual, offering a highly efficient yet effective quantization-aware
calibration.

Optimization Objective. Let X ∈ RB×T×d be the input hidden
states, where B is the batch size, T the sequence length, and d the
hidden dimension. Define the output of the l-th transformer block as:

F (l)(W(l),X) = MLP(l)
(
X+Attn(l)(X)

)
, (11)

Attn(l)(X) = softmax
(
Q(l)K(l)⊤/

√
d
)
V(l), (12)

MLP(l)(X) = σ
(
XW

(l)
1

)
W

(l)
2 , (13)

where Q(l) = XW
(l)
Q , K(l) = XW

(l)
K , and V(l) = XW

(l)
V are the

projected queries, keys, and values. σ(·) denotes a nonlinear activation
such as GELU.

This formulation also supports grouped-query attention (GQA) [1],
where queries are projected in more heads than keys and values; our
quantization pipeline remains compatible since scale adjustment is
performed independently per group.

The optimization loss is formulated as:

min
Γ

Q2(Γ) =
∥∥∥F (l)(W(l),X)−F (l)(W̃(l)(Γ),X)

∥∥∥2
F
+
λ

2
∥Γ∥2F ,

(14)
where W̃(l)(Γ) is the reconstructed quantized weight matrix parame-
terized by the learnable residual Γ, and λ controls the strength of the
regularization term. The shared scale structure within each quantiza-
tion group follows Equation (5).

Learnable Scale Adjustment. We define a refined group-wise scale

Ŝ
(l)
ij (Γ) = S

(l)
ij · (1 + Γij), (15)

where Γij is initialized to 0 and optimized with gradient-based meth-
ods. The dequantization follows:

E
(l)
ij (Γ) = clamp

(
round

(
log2

(
|W(l)

ij |
Ŝ
(l)
ij (Γ)

))
, 0, qmax

)
, (16)

W̃
(l)
ij (Γ) = Ŝ

(l)
ij (Γ) ·Pij · 2E

(l)
ij (Γ). (17)

Gradient Approximation via STE. The rounding operation in
Equation (16) is non-differentiable. We apply the Straight-Through
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Figure 4: Multiplication between FP16 scale and power-of-two weights for a 3-bit example implemented through efficient bit manipulation and
fixed-point integer addition to speed up power of two dequantization.

Estimator (STE) [2]:

∂E
(l)
ij

∂Ŝ
(l)
ij

≈ ∂

∂Ŝ
(l)
ij

log2

(
|W(l)

ij |
Ŝ
(l)
ij

)
. (18)

This allows us to back-propagate through the quantization process
using the smooth surrogate.

Efficiency. This optimization introduces only one learnable scalar
per weight group, and fine-tuning requires only a few epochs on
a small calibration set. It is compatible with both SGD and Adam
optimizers and scales well to large models without modifying the
original model architecture or performing any full-rank retraining.

Procedure. The training procedure is summarized in Algorithm 2.

Algorithm 2 Fine-Tuning the Learnable Parameter Γ for Scaling
Factors

1: Initialize: Γ← 0
2: Set Parameters: Learning rate η, weight decay λ, epochs N
3: for epoch = 1 to N do
4: for each calibration batch X do
5: Compute original output:Horig ← F (l)(W(l),X)
6: Update scales: Ŝ(l) ← S(l) ◦ (11⊤ + Γ)
7: Quantize exponent:
8: E(l) ← clamp(round(log2(|W(l)|/Ŝ(l))), 0, qmax)

9: Dequantize: W̃(l) ← Ŝ(l) ◦P ◦ 2E
(l)

10: Compute quantized output:Hquant ← F (l)(W̃(l),X)
11: Compute loss: Q2 ← ∥Horig −Hquant∥2F + λ

2
∥Γ∥2F

12: Update Γ via gradient descent
13: end for
14: end for
15: Return: Refined scale matrix Ŝ(l) = S(l) ◦ (11⊤ + Γ)

In Line 8, all operations on matrices are carried out elementwise.

4 Efficient Dequantization for PoT Quantized
Weights

In our proposed quantization framework, we adopt a PoT dequantiza-
tion scheme to enable fast and hardware-friendly inference. Unlike tra-
ditional uniform quantization that requires floating-point operations,

PoT quantization reconstructs weights using bit-shift and integer arith-
metic, which are significantly more efficient on modern hardware.
This section presents both a conceptual comparison and the detailed
implementation of our optimized PoT dequantization method.

4.1 Power-of-Two vs. Uniform Quantization

Conventional uniform quantization reconstructs the original weight
tensor W̃(l) as follows:

W̃(l) = (W̃
(l)
Q + Z) ◦ S, (19)

where W̃
(l)
Q are the quantized values, Z is the zero-point offset, and

S is the per-group scaling factor. This approach requires floating-
point multiplication and addition during inference, which may incur
significant computational latency.

In contrast, PoT quantization reconstructs weights using:

W̃(l) = S(l) ◦ W̃(l)
Q , (20)

W̃
(l)
Q = (−1)S ◦ 2E, (21)

where S(l) is a learnable scaling factor and W̃
(l)
Q encodes each quan-

tized weight using a sign bit (S) and an exponent value (E). This
encoding allows us to efficiently multiply quantized weights with
activations by simply adjusting exponent values, without requiring
explicit multiplication.

Each FP16 value x consists of three parts: the sign bit S, the expo-
nent bits E, and the mantissa bits M:

x =

Sign︷︸︸︷
S

Exponent︷ ︸︸ ︷
E1, . . . ,E5

Mantissa︷ ︸︸ ︷
M1, . . . ,M10 .

The full FP16 value is computed as:

x = (−1)S × 2E−15 × 1.M. (22)

Multiplying an FP16 activation x with a PoT quantized weight
w, represented as (−1)S

′+S × 2E+E′−15 × 1.M, is computationally
efficient due to the exponent additivity property.



4.2 PoT Dequantization: Bit Manipulation and Integer
Addition

To reconstruct dequantized weights in FP16 format, we design a
two-stage dequantization pipeline leveraging:

1. Bit Manipulation: Efficiently assembling the signed exponent
value from the PoT quantized format.

(a) Extract the Exponent Bits: Given a 3-bit quantized weight wQ =
S0E1E2, we isolate the exponent portion using an AND mask
000011, yielding 0000E1E2.

(b) Combine Sign and Exponent: We right-shift the quantized bits
by three positions and use an AND operation with 100000 to
extract the sign bit. We then use a bitwise OR to combine the
sign and exponent into the signed representation S00000E1E2.

2. Fixed-Point Integer Addition: Efficiently assembling the signed
exponent value from the PoT quantized format.
The result is right-shifted by 10 bits to match FP16 exponent align-
ment and then added to the precomputed FP16 scale s, yielding the
final dequantized FP16 weight. This step is carried out in parallel
across all quantized values and avoids floating-point operations
entirely.

These steps constitute a lightweight, parallelizable pipeline that en-
ables high-throughput inference in GEMM-heavy LLM workloads.
Table 1: WikiText-2 perplexity of quantized LLaMA models. Baselines
use uniform quantization; PoT uses power-of-two.

Bits Model Size RTN GPTQ AWQ OMNI PoTPTQ

3.25
LLaMA

7B 7.01 6.55 6.46 6.16 6.12
13B 5.88 5.62 5.51 5.46 5.42
30B 4.87 4.80 4.63 4.58 4.50

Llama2
7B 6.66 6.29 6.24 6.21 6.03

13B 5.51 5.42 5.32 5.28 5.24

2.25
LLaMA

7B 1.90×103 44.01 2.6×105 9.77 9.79
13B 7.81×102 15.6 2.8×105 7.93 7.96
30B 68.04 10.92 2.4×105 7.13 7.01

Llama2
7B 4.20×103 36.77 2.2×105 11.23 11.03
13B 122.08 28.14 1.2×105 8.33 8.29

5 Experiments and Results
We evaluate POTPTQ, our proposed two-step Power-of-Two (PoT)
quantization framework, for weight-only post-training quantization
(PTQ) of large language models. Experiments are conducted on
LLaMA [22] and Llama2 [23] models with 7B, 13B, and 30B param-
eters. The method targets ultra-low precision quantization at 2 and
3-bit levels. All quantization and calibration procedures are performed
on a single Tesla V100 GPU (32GB), while kernel benchmarks are
additionally run on an RTX 4090 to assess inference efficiency.

5.1 Experimental Setup

Step 1 (Data-Agnostic Initialization): A grid search over the interval
[0, 2] with step size 0.01 is performed for each quantization group
(group size = 128) to identify the optimal initial scale. Step 2 (Data-
Dependent Fine-Tuning): Using 128 randomly sampled 2048-token
sequences from WikiText-2 [18], we apply light fine-tuning. The
learning rate is set to 1 × 10-3, with weight decay 1 × 10-1. Fine-
tuning is run for 10 epochs (3-bit) and 40 epochs (2-bit).

5.2 Perplexity Evaluation

Table 1 presents perplexity results on WikiText-2 across multiple
LLaMA model sizes. POTPTQ consistently achieves lower perplexity
than existing PTQ methods, including RTN [6], GPTQ [9], AWQ [16],
and OmniQuant [20], demonstrating its effectiveness for ultra-low-bit
quantization.

To evaluate whether existing PTQ methods can directly adopt PoT
quantization, we adapt RTN, GPTQ, AWQ, and OmniQuant to oper-
ate under power-of-two constraints and report their results in Table 2.
These naïvely adapted methods suffer notable degradation in perplex-
ity, confirming that uniform-to-PoT substitution without proper scale
handling leads to suboptimal outcomes. In contrast, POTPTQ explic-
itly optimizes scales for PoT representation, yielding significantly
better results.
Table 2: Perplexity of baseline PTQ methods adapted to PoT format
versus our PoT method. Naive adaptations degrade performance; our
method preserves accuracy.

Avg Bits Model Size AWQ_POT GPTQ_POT OMNI_POT PoTPTQ

3.125
LLaMA

7B 6.52 8.27 × 104 6.37 6.25
13B 5.61 5.85 × 104 5.60 5.50
30B 4.72 2.61 × 104 4.75 4.58

Llama2 7B 6.49 NaN 6.46 6.22
13B 5.43 6.41 × 104 5.45 5.34

2.125
LLaMA

7B 2.69 × 105 2.92 × 105 888 10.86
13B 2.80 × 105 1.83 × 105 487 8.54
30B 2.39 × 105 1.44 × 105 297 7.47

Llama2 7B 2.24 × 105 2.78 × 105 3730 12.80
13B 1.27 × 105 1.03 × 105 812 9.18

5.3 Harness Evaluation

Given that POTPTQ clearly surpasses RTN, GPTQ, and AWQ, and
performs competitively with OmniQuant in terms of perplexity, we
conduct a downstream evaluation using the Open LLM Leaderboard
harness. This benchmark includes a range of QA and reasoning tasks
beyond language modeling.

Table 3 compares POTPTQ and OmniQuant. Our method matches
or outperforms OmniQuant on most tasks and achieves higher average
performance, indicating that it preserves not only token-level mod-
eling but also broader functional capabilities required in real-world
deployments.

5.4 Ablation Study

To isolate the contributions of each step in our pipeline, we conduct
an ablation study using 2-bit quantization on LLaMA-7B and LLaMA-
13B. As shown in Table 4, Step 1 alone (data-agnostic initialization)
achieves reasonable performance, indicating the efficacy of our scale
grid search. Applying Step 2 (fine-tuning) without Step 1, however, re-
sults in inferior performance, likely due to poor initial scale estimates.
The best performance is consistently achieved by combining both
steps, confirming their complementary effects: Step 1 provides robust
initialization, and Step 2 refines the solution with minimal calibration
data.

5.5 Fine-Tuning Efficiency and Quantization Time

To evaluate the effectiveness of Step 2, we track the epoch-wise
perplexity and loss on WikiText-2 using the 13B LLaMA model. As
shown in Table 5, both perplexity and loss decrease consistently over



Table 3: Harness evaluation on six tasks comparing PoT and OmniQuant under 3.25-bit and 2.25-bit settings. Bold indicates better performance.

Model Method Avg Bits = 3.25 Avg Bits = 2.25

arc-c arc-e boolq hs piqa wg Avg arc-c arc-e boolq hs piqa wg Avg

LLaMA 7B Omni 35.6 64.8 71.1 53.9 77.2 64.5 61.2 26.7 52.1 62.2 40.7 67.2 55.5 50.7
PoT 35.8 64.1 70.9 54.3 77.5 65.2 61.3 28.1 50.1 64.4 40.1 67.9 57.3 51.3

LLaMA 13B Omni 39.8 72.7 67.0 56.8 77.2 68.7 63.7 31.3 60.1 63.1 46.1 72.0 61.8 55.7
PoT 40.7 71.8 65.6 57.0 78.8 70.3 64.0 30.1 59.5 66.1 45.6 70.3 62.7 55.7

LLaMA 30B Omni 46.0 74.1 71.2 61.3 79.6 74.1 67.7 32.4 65.6 66.1 49.9 72.3 62.9 58.2
PoT 47.2 73.7 71.6 60.8 80.1 75.0 68.1 33.8 64.9 66.8 50.2 73.1 62.5 58.5

Llama2 7B Omni 37.3 67.6 71.2 54.5 76.5 65.7 62.1 26.0 45.0 61.2 39.4 64.5 54.4 48.4
PoT 38.1 66.3 72.0 55.2 76.3 66.6 62.4 25.8 52.1 63.8 40.3 65.2 54.2 50.2

Llama2 13B Omni 41.9 72.3 69.9 57.8 78.0 67.7 64.6 30.0 57.0 63.7 44.5 68.0 53.1 52.7
PoT 42.5 70.7 70.1 58.0 79.2 68.3 64.8 29.4 56.9 68.2 43.4 68.8 56.9 53.9

10 epochs with only 128 calibration sequences. This highlights the
efficiency of our fine-tuning process, which requires minimal data
while achieving steady improvement. By the 10th epoch, the 2-bit
model achieves a perplexity of 12.90 and loss of 7.89, demonstrating
that our output-level alignment objective (Eq. 14) leads to significantly
improved model fidelity.

In terms of wall-clock performance, we evaluate the total quan-
tization time required to complete both stages of our framework:
Step 1 (data-agnostic grid search for scale initialization) and Step 2
(data-dependent scale refinement via lightweight fine-tuning). All
experiments are conducted on a single NVIDIA Tesla V100 GPU
with 32GB of memory.

For LLaMA-7B, the complete quantization pipeline takes approxi-
mately 0.71 hours (∼43 minutes). This includes exhaustive scale grid
search across weight groups and 10 epochs of fine-tuning using a
small calibration set.

Notably, the entire quantization pipeline—spanning initialization,
calibration, and weight reconstruction—can be executed within a few
hours on commodity hardware, without any need for multi-GPU paral-
lelism or model retraining. This makes our framework highly suitable
for real-world deployments where turnaround time and hardware
constraints are critical considerations.

5.6 Dequantization Speed

To measure inference-time efficiency, we benchmark our custom PoT
dequantization kernel on both Tesla V100 and RTX 4090 GPUs. As
detailed in Section 4.2, the kernel uses integer arithmetic to reconstruct
weights efficiently from PoT encodings. Table 6 shows that our kernel
achieves a 3.66× speedup on V100 and a 1.48× speedup on 4090,
compared to standard FP16 dequantization. These results demonstrate
that PoT quantization is not only accurate, but also highly efficient for
hardware-accelerated inference.

5.7 Summary

POTPTQ delivers state-of-the-art performance for ultra-low-bit
weight-only quantization in LLMs. It outperforms existing PTQ
baselines under both uniform and PoT formats, generalizes well
across datasets, and preserves downstream task capabilities. Further-
more, the approach is scalable, calibration-efficient, and inference-
friendly—making it a strong candidate for deployment in real-world,
resource-constrained environments.

Table 4: Ablation study on the effect of each quantization step for
LLaMA models. Step 1 denotes scale initialization; Step 2 denotes
calibration-based fine-tuning.

Model Step 1 (Init) Step 2 (Tuning) Perplexity

LLaMA 7B

✗ ✗ 408,838.25
✓ ✗ 20,135.70
✗ ✓ 51.87
✓ ✓ 9.79

LLaMA 13B

✗ ✗ 40,328.34
✓ ✗ 8,267.57
✗ ✓ 103.45
✓ ✓ 7.96

Table 5: Epoch-wise perplexity and loss on WikiText-2 with LLaMA-
13B using PoT quantization. Our output-aligned fine-tuning objective
consistently reduces perplexity with only 128 calibration samples.

Epoch 3-bit PPL 3-bit Loss 2-bit PPL 2-bit Loss

1 6.85 6.21 1.01×106 25.75
2 5.93 3.86 3209.49 20.45
3 5.70 3.02 239.27 17.13
4 5.59 2.54 94.25 15.39
5 5.54 2.27 49.95 13.50
6 5.51 2.13 31.46 11.99
7 5.49 2.04 23.30 10.55
8 5.48 1.97 18.27 9.60
9 5.48 1.93 15.31 8.65

10 5.48 1.90 12.90 7.89

Table 6: Dequantization Efficiency: GPU Warp Cycles. Our PoT kernel
achieves significantly lower warp latency across architectures.

GPU Architecture Uniform (FP16) PoT (Ours)

Tesla V100 Volta 110 30 (3.67× faster)
RTX 4090 Ada Lovelace 98 60 (1.63× faster)

6 Conclusion
We presented a novel post-training quantization framework that lever-
ages power-of-two (PoT) representations to enable efficient and
hardware-friendly inference. Our method introduces a two-stage algo-
rithm consisting of data-agnostic scale initialization and data-driven



fine-tuning, effectively addressing the accuracy limitations commonly
observed in traditional PoT quantization schemes.

Through comprehensive experiments on LLaMA models at 2-bit
and 3-bit precision, we demonstrate that our approach consistently
outperforms existing PTQ methods in both perplexity and real-world
deployment scenarios. In addition to its strong accuracy, our frame-
work supports parallelizable grid search and lightweight calibration,
making it practical for deployment on standard hardware without
requiring retraining or large calibration datasets.

Furthermore, our optimized integer-only dequantization kernel sig-
nificantly accelerates inference, achieving up to 3.67× speedup on
NVIDIA V100 and 1.63× on RTX 4090 compared to traditional
FP16-based methods. These results highlight the potential of PoT
quantization as a scalable and effective solution for low-latency LLM
deployment.
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