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ABSTRACT

Offline Multi-agent Reinforcement Learning (MARL) is valuable in scenarios
where online interaction is impractical or risky. While independent learning in
MARL offers flexibility and scalability, accurately assigning credit to individual
agents in offline settings poses challenges due to partial observability and emergent
behavior. Directly transferring the online credit assignment method to offline
settings results in suboptimal outcomes due to the absence of real-time feedback
and intricate agent interactions. Our approach, MACCA, characterizing the gen-
erative process as a Dynamic Bayesian Network, captures relationships between
environmental variables, states, actions, and rewards. Estimating this model on
offline data, MACCA can learn each agent’s contribution by analyzing the causal
relationship of their individual rewards, ensuring accurate and interpretable credit
assignment. Additionally, the modularity of our approach allows it to seamlessly
integrate with various offline MARL methods. Theoretically, we proved that under
the setting of the offline dataset, the underlying causal structure and the function
for generating the individual rewards of agents are identifiable, which laid the foun-
dation for the correctness of our modeling. Experimentally, we tested MACCA in
three environments, including discrete and continuous action settings. The results
show that MACCA outperforms SOTA methods and improves performance upon
their backbones.

1 INTRODUCTION

Offline Reinforcement learning (RL) has gained significant popularity in recent years. It can be
particularly valuable in situations where online interaction is impractical or infeasible, such as the
high cost of data collection or the potential danger involved (Jiang & Lu, 2021; Meng et al., 2021;
Zhang et al., 2023). Working along this line, Multi-agent Reinforcement Learning (MARL) further
extends its applicability to variable domains, such as autonomous driving (Shi et al., 2021; Florbäck
et al., 2016; Codevilla et al., 2018), robotics coordination (Zhang & Ouyang, 2012; Chiddarwar &
Babu, 2011), and resource allocation (Tesauro et al., 2007; 2006). The independent learning paradigm
in MARL is appealing due to its flexibility and scalability, making it a promising approach to solving
complex problems in dynamic environments (de Witt et al., 2020; Lyu et al., 2021).

While independent learning in MARL has its merits, it will significantly hinder algorithm efficiency
when the offline dataset only includes team rewards. This presents a credit assignment problem,
aiming to assign credit to the individual agents within the partial observability and emergent behavior.
Credit assignment in online MARL is underpinned by well-established methods, but applying these
to the offline realm reveals distinct challenges. For instance, COMA (Foerster et al., 2018), an
on-policy learning method, cannot be directly applied in offline settings. It is intrinsically designed
for continuous policy adjustments based on real-time interactions with the environment, allowing
credit assignments that present the ongoing policy of the agent. In offline MARL, agents are reliant
on static, pre-collected datasets, often spanning a variety of behavior policies and actions across
different time periods. This diversity in data distributions increases the difficulty of assigning credits,
given that the nuances of agent contributions are lost in the plethora of policies. Conversely, while
off-policy algorithms like SQDDPG (Wang et al., 2020) and SHAQ (Wang et al., 2022a) can be
implemented in offline environments, they often fall short in performance. These methods, even if
off-policy, were primarily conceived for online scenarios where continuous feedback aids in refining
credit assignments. When restricted to static offline data in offline MARL, they miss out on the
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essential dynamism and agility needed to accurately understand the intricate interplay within the
dataset. Moreover, those methods relying on the Shapley value, while theoretically robust, face
inherent challenges in offline settings. Computing the Shapley value demands consideration of
every potential agent coalition, which is computationally taxing and necessitates approximations for
practicality. In offline MARL, such approximations can lead to imprecise credit assignments due
to a loss in precision, potential data inconsistencies from the static nature of past interactions, and
scalability issues, especially when numerous agents operate in intricate environments.

Figure 1: The graphic representation of the causal
structure within the MACCA framework. The
nodes and edges represent the causal relationships
among various environmental variables, i.e., differ-
ent dimensions of these variables for each agent
within the team reward Multi-agent MDP context.
These dimensions include the different dimensions
of the state si··· ,t, action ai··· ,t, individual reward rit
for agent i, and the team rewardRt. The individual
reward rit (shown with blue filling) is unobservable,
and the aggregation of rit equals Rt.

In this paper, we propose a new framework,
namely Multi-Agent Causal Credit Assignment
(MACCA), to address credit assignment in an
offline MARL setting. MACCA equates the im-
portance of the credit assignment and how the
agent makes the contribution by causal mod-
eling. MACCA first models the generation of
individual rewards and team reward from the
causal perspective, and construct a graphical
representation (as shown in Figure 1) over the
involved environment variables, including all the
dimensions of states and actions of all agents,
the individual rewards and the team rewards.
Our method treats team reward as the causal ef-
fect of all the individual rewards and provides a
way to recover the underlying parametric model,
supported by the theoretical evidence of identi-
fiability. In this way, MACCA offers the ability
to distinguish the credit of each agent and gain
insights into how their states and actions con-
tribute to the individual rewards and further to
the team reward. This is achieved through a learned parameterized generative model that decomposes
the team reward into individual rewards. The causal structure within the generative process further en-
hances our understanding by providing insights into the specific contributions of each agent. With the
support of theoretical identifiability, we identify the unknown causal structure and individual reward
function in such a causal generative process. Additionally, our method offers a clear explanation for
actions and states leading to individual rewards, promoting policy optimization and invariance. This
clarity enhances agent behavior comprehension and aids in refining policies. The inherent modularity
of MACCA ensures its compatibility with a range of policy learning methods, positioning it as a
versatile and promising MARL solution for various real-world contexts.

We summarize the main contributions of this paper as follows. First, we reformulate team reward
decomposition by introducing a Dynamic Bayesian Network (DBN) to describe the causal relationship
among states, actions, individual rewards, and team reward. We provide theoretical evidence of
identifiability to learn the causal structure and function within the generation of individual rewards
and team rewards. Second, our proposed method can recover the parameterized underlying generative
process. Lastly, the empirical results on both discrete and continuous action settings, all three
environments, demonstrate that MACCA outperforms current state-of-the-art methods in solving the
credit assignment problem caused by team rewards.

2 RELATED WORK

In this section, we review the close-related topics, i.e., Offline MARL and Multi-agent Credit
Assignment and Causal Reinforcement Learning.

Offline MARL. Recent research (Pan et al., 2022; Kostrikov et al., 2021; Jiang & Lu, 2021) efforts
have delved into offline MARL, identified and addressed some of the issues inherited from offline
single-agent RL (Agarwal et al., 2020; Yu et al., 2020). For instance, ICQ (Kostrikov et al., 2021)
focuses on the vulnerability of multi-agent systems to extrapolation errors, while MABCQ (Jiang
& Lu, 2021) examines the problem of mismatched transition distributions in fully decentralized
offline MARL. However, these studies all assume using a global state and evaluate the action of
the agents relying on the team rewards. In contrast, our work MACCA deviates by emphasizing
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partially observable settings within offline MARL, which represents a more realistic scenario. Other
approaches (Meng et al., 2021; Tseng et al., 2022) have a long term progress in online fine-tuning for
offline MARL training but have not taken into account the learning slowdown caused by credits of
agents to the entire team. For the learning framework, the two most popular recent paradigms are
Centralized Training with Decentralized Execution (CTDE) and Independent Learning (IL). Recent
research (de Witt et al., 2020; Lyu et al., 2021) shows the benefits of decentralized paradigms, which
lead to more robust performance compared to a centralized value function. In this paper, we use IL as
the training paradigm, which not only brings better performance but also increases the scalability
of our method. In summary, existing methods have overlooked the exploration of state and action
spaces within offline multi-agent datasets, whereas our aim is to bridge this gap.

Multi-agent Credit Assignment is the study to decompose the team reward to each individual agent
in the cooperative multi-agent environments (Chang et al., 2003). Recent work (Sunehag et al., 2017;
Foerster et al., 2018; Wang et al., 2020; Rashid et al., 2020; Yang et al., 2020; Li et al., 2021) focus
on value function decompose under online MARL manner. For instance, COMA (Foerster et al.,
2018) is a representative method that uses a centralized critic to estimate the counterfactual advantage
of an agent action, which is an on-policy algorithm. This means it requires the corresponding data
distribution and samples consistent with the current policy for updates. However, in an offline setting,
agents are limited to previously collected data and can’t interact with the environment. This data,
often from varying behavioral policies, might not align with the current policy. Therefore, the COMA
cannot be directly extended to the offline setting without changing its on-policy features (Levine
et al., 2020). In online off-policy settings, state-of-the-art credit assignment algorithms such as SHAQ
(Wang et al., 2022a) and SQDDPG (Wang et al., 2020) utilize an agent’s approximate Shapley value
for credit assignment. In our experiments section, we conduct a comparative analysis with these
methods, and the results for MACCA demonstrate superior performance. Note that we focus on
explicitly decomposing the team reward into individual rewards in an offline setting under the casual
structure we learned, and these decomposed rewards will be used to reconstruct the offline prioritized
dataset and further the policy learning phase.

Causal Reinforcement Learning. Plenty of work explores solving diverse RL problems with causal
structure. Most conduct research on the transfer ability of RL agents. For instance, Huang et al. (2021)
learns factored representation and an individual change factor for different domains, and Feng et al.
(2022) extends it to cope with non-stationary changes. More recently, Wang et al. (2022b); Pitis et al.
(2022) remove unnecessary dependencies between states and actions variables in the causal dynamics
model to improve the generalizing capability in the unseen state, Hu et al. (2023) using causal
structure to discover the dependencies between actions and terms of the reward function in order to
exploit these dependencies in a policy learning procedure that reduces gradient variance. Also, causal
modeling is introduced to multi-agent task (Grimbly et al., 2021; Jaques et al., 2019), model-based
RL (Zhang & Bareinboim, 2016), imitation learning (Zhang et al., 2020) and so on. However, most
of the previous work does not consider the offline manner and check out the contribution of which
dimension of joint state and reward to the individual reward. Compared with the previous work, we
investigate the causes for the generation of individual rewards from team rewards in order to help the
decentralized policy learning.

3 PRELIMINARIES

In this section, we review the widely-used MARL training framework, the Decentralized Partially
Observable Markov Decision Process, and briefly introduce Offline MARL.

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a widely
used model for coordination among multiple agents, and it is defined by a tuple M =
⟨N,S,A,P,R,O,Ω, γ⟩. In this tuple, N represents the number of agents, S and A denote the
state and action spaces, respectively. The state transition function P : S ×A → [0, 1] specifies the
probability of transitioning to a new state given the current state and action. Each agent receives the
team reward Rt at time step t based on the team reward functionR : S ×A → R and an individual
observation oi from the observation function O(s, i) : S × A → Ω, where Ω denotes the joint
observation space. The objective for each agent is to find an optimal policy π∗ that maximizes the
team discounted return, which is denoted as π∗ = argmaxπ E[

∑∞
t=0

∑N
i γ

tR(st,at)], where γ
represents the discount factor. The Dec-POMDP model is flexible and can be used in a wide range of
multi-agent scenarios, making it a popular choice for coordination among multiple agents.
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Offline MARL. Under offline setting, we consider a MARL scenario where agents sample from
a fixed dataset D = {sit, oit, ait, Rt, sit

′
, oit

′}. This dataset is generated from the behavior policy πb
without any interaction with the environments, meaning that the dataset is pre-collected offline. Here,
sit, o

i
t and ait represent the state, observation and action of agent i at time t, while Rt is the team

reward received at time t, and sit
′, oit

′ represents the next state and observation of agent i.

4 OFFLINE MARL WITH CAUSAL CREDIT ASSIGNMENT

Credit assignment plays a crucial role in facilitating the effective learning of policies in offline
cooperative scenarios. In this section, we begin with presenting the underlying generative process
within the offline MARL scenario, which serves as the foundation of our methods. Then, we show
how to recover the underlying generative process and perform policy learning with the assigned
individual rewards.

In our method as shown in figure.2, there are two main components, including causal model ψm
and policy model ψπ. The overall objective contains two parts, Lm for model estimation and Jπ for
offline policy learning. Therefore, we minimize the following loss term,

LMACCA = Lm + Jπ, (1)

where Jπ depends on the applied offline RL algorithms (JCQR
π , JOMAR

π or J ICQ
π in this paper.)

4.1 UNDERLYING GENERATIVE PROCESS IN MARL

As a foundation of our method, we introduce a Dynamic Bayesian Network (DBN) (Murphy, 2002)
to characterize the underlying generative process, leading to a natural interpretation of the explicit
contribution of each dimension of state and action towards the individual rewards.

We denote the G as the DBN to represent the causal structure between the states, actions, individual
rewards, and team reward as shown in Figure 1, which is constructed over a finite number of random
variables as (si1,t, · · · , sidis,t, a

i
1,t, · · · , aidia,t, r

i
t, Rt)

N,T
i,t=1, where the dis and dia correspond to the

dimensions of the state and action of agent i respectively. Rt is the observed team reward at time
step t. rit is the unobserved individual reward at time step t. T is the maximum episode length of the
environment. Then, the underlying generative process is denoted as,{

rit = f(ci,s→r ⊙ st, c
i,a→r ⊙ at, i, ϵi,t)

Rt =
∑

(r1t , · · · rNt )
(2)

where, the st = {s11,t, ..., s1d1s,t, ..., s
N
1,t...., s

N
dNs ,t
} and at = {a11,t, ..., a1d1a,t, ..., a

N
1,t...., a

N
dNa ,t
} is the

joint state and action of all agents at time step t. Define Ds and Da as the numbers of dimensions of
joint state and joint action, where Ds =

∑N
i=1 d

i
s and Da =

∑N
i=1 d

i
a. The ⊙ is the element-wise

product, the f is the unknown non-linear individual reward function, and the ϵr,i,t is the i.i.d noise.
The masks ci,s→r ∈ {0, 1}Ds and ci,a→r ∈ {0, 1}Da are vectors and can be dynamic or static
depending on the specific requirements from learning phase, in which control if a specific dimension
of the state s and action a impact the individual reward rit, separately. Define cj,s→r(k) as the k-th
element in the vector cj,s→r. For instance, if there is an edge from the k-th dimension of s to the
agent j’s individual reward rjt in G, then the cj,s→r(k) is 1.

Proposition 1 (Identifiability of Causal Structure and Individual Reward Function). Suppose the
joint state st, joint action at, team reward Rt are observable while the individual rit for each agent
are unobserved, and they are from the Dec-POMDP, as described in Eq. 2. Then under the Markov
condition and faithfulness assumption (refer to Appendix A), given the current time step’s team
reward Rt, all the masks ci,s→r, ci,a→r, as well as the function f are identifiable.

The proposition 1 demonstrates that we can identify causal representations from the joint action
and state, which serve as the causal parents of the individual reward function we want to fit. This
allows us to determine which agent should be responsible for which dimension and thus generate the
corresponding individual reward function for each agent. The objective for each agent changes to
maximize the sum of individual rewards over an infinite horizon. The proof is in Appendix B.
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Figure 2: This figure illustrates the workflow of the proposed MACCA structure. The offline data
generation process begins on the left side, where data is recorded from the environment. MACCA
then constructs a causal model consisting of a DBN represented in grey and an individual reward
predictor depicted in blue. The DBN is used to sample scales from each agent, denoted as ci,·→· and
highlighted in green. Meanwhile, the individual reward predictor takes the joint state, action, and
these masks as input to generate the individual reward estimate r̂it. During the policy learning phase,
each agent utilizes their observation and individual reward estimate as inputs, which are then passed
through their respective policy network to generate the next-state actions.

4.2 CAUSAL MODEL LEARNING

In this section, we delve into identifying the unknown causal structure and reward function within the
graph G. This is achieved using the causal structure predictor ψg , and the individual reward predictor
ψr. The set ψg = {ψs→r

g , ψa→r
g } is to learn the causal structure. Specifically, ψs→r

g and ψi,a→r
g are

employed to predict the presence of edges of the mask ci,s→r ∈ {0, 1}d
s

and ci,a→r ∈ {0, 1}d
a

,
respectively, as described in Eq. 2. Where,

ĉi,s→r
t = ψs→r

g (st,at, i), ĉ
i,a→r
t = ψa→r

g (st,at, i). (3)

Here, ĉi,s→r
t and ĉi,a→r

t are the predicted masks for agent i at timestep t, consider the inherent
complexity of the multi-agent scenario, such as the high dimensionality and the dynamic nature of the
causal relationships that can evolve over time, we adopt ψs→r

g and ψa→r
g to generate mask estimation

at each time step t, within the joint state and joint action and agent id as the input. This dynamic
mask adaptation facilitates more accurate causal modeling. To further validate this estimation, we
have conducted ablation experiments at section 5.3.

ψr is used for approximating the function f , and is constructed by stacked fully-connection layers. To
recover the underlying generative process, i.e., to optimize ψr, we minimize the following objective,

Lm = Est,at,Rt∼D[Rt −
∑N
i=1 ψr(ĉ

i,s→r
t , ĉi,a→r

t , st,at, i)]
2 + Lreg. (4)

The Lreg serves as an L1 regularization, akin to the purpose delineated in Zhang & Spirtes (2011). Its
primary objective is to clear redundant features during training, reduce the number of features that
a given depends on, and use the coefficients of other features completely set to zero, which fosters
model interpretability and mitigates the risk of overfitting. And it defines as,

Lreg = λ1
∑N
i=1 ∥ĉ

i,s→r
t ∥1 + λ2

∑N
i=1 ∥ĉ

i,a→r
t ∥1. (5)

where, λ(·) are hyper-parameters. For more details, please refer to Appendix D.

4.3 POLICY LEARNING WITH ASSIGNED INDIVIDUAL REWARDS.

For policy learning, we use the redistributed individual rewards r̃it to replace the observed team
reward Rt. Then, we carry out the policy optimizing over the offline dataset D.

Individual Rewards Assignment. We first assign individual rewards for each agent’s state-action-
id tuple ⟨st,at, i⟩ in the samples used for policy learning. During such an inference phase of
individual rewards predictor, we first utilize a hyper-parameter, h, as a threshold to determine the
existence of the inference phase. Then the values of ĉi,s→r

t and ĉi,a→r
t are set to be zero while their

L1-norms are less than h. Then, we assign the individual reward for each agent as,

r̂it = ψr(st,at, ĉ
i,s→r
t , ĉi,a→r

t , i). (6)
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Table 1: Average Normalized Score of MPE and MA-MuJoCo task with Team Reward
OMAR I-CQL MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

Exp(CN) 44.7 ± 46.6 33.6 ± 22.9 45.0 ± 23.1 85.4 ± 8.1 111.7 ± 4.3 90.4 ± 5.1
Exp(PP) 99.9 ± 14.2 63.4 ± 38.6 87.0 ± 12.3 94.9 ± 27.9 111.0 ± 21.5 114.4 ± 25.1
Exp(WORLD) 98.7 ± 18.7 54.4 ± 17.3 43.2 ± 15.7 89.3 ± 14.8 107.4 ± 11.0 93.2 ± 12.0
Exp(MA-MuJoCo) 110.6 ± 5.5 66.4 ± 36.0 77.3 ± 29.4 81.4 ± 24.9 113.2 ± 4.9 87.4 ± 9.0
Med(CN) 49.6 ± 14.9 19.7 ± 8.7 30.8 ± 7.3 45.0 ± 8.8 67.9 ± 16.9 70.3± 10.4
Med(PP) 57.4 ± 13.9 50.0 ± 15.6 59.4 ± 11.1 61.1 ± 27.1 87.1 ± 12.2 77.4 ± 10.5
Med(WORLD) 33.4 ± 12.8 25.7 ± 21.3 35.6 ± 6.0 54.7 ± 11.0 63.6 ± 8.7 55.1 ± 3.5
Med(MA-MuJoCo) 64.2 ± 9.8 48.6 ± 21.1 55.7 ± 10.0 50.3 ± 17.9 66.9 ± 10.5 60.0 ± 11.1
Med-R(CN) 26.8 ± 15.2 10.8 ± 7.7 22.4 ± 9.3 15.9 ± 11.2 33.2 ± 12.6 28.6 ± 5.6
Med-R(PP) 56.3 ± 16.6 18.3 ± 9.5 44.2 ± 4.5 32.5 ± 15.1 69.0 ± 19.3 64.3 ± 7.8
Med-R(WORLD) 28.9 ± 17.2 4.5 ± 10.1 10.7 ± 2.8 34.8 ± 16.7 50.9 ± 14.2 39.9 ± 13.4
Med-R(MA-MuJoCo) 48.9 ± 10.4 33.3 ± 16.1 30.8 ± 19.2 35.8 ± 15.4 51.9 ± 4.5 47.2 ± 3.0
Rand(CN) 22.9 ± 10.4 12.4 ± 9.1 6.0 ± 3.1 22.2 ± 4.6 32.8 ± 9.5 28.13 ± 4.6
Rand(PP) 12.0 ± 5.2 5.5 ± 2.8 15.6 ± 3.4 14.7 ± 6.7 20.9 ± 8.3 30.3 ± 5.4
Rand(WORLD) 6.2 ± 6.7 0.1 ± 4.5 0.6 ± 2.4 8.7 ± 3.3 15.8 ± 6.1 10.1 ± 6.6
Rand(MA-MuJoCo) 7.6 ± 0.6 6.4 ± 0.2 3.4 ± 0.2 10.4 ± 0.9 20.2 ± 2.7 13.4 ± 3.5

Offline Policy Learning. The process of individual reward assignment is flexible and is able
to be inserted into any policy training algorithm. We now describe three practical offline MARL
methods, MACCA-CQL, MACCA-OMAR and MACCA-ICQ. In all those methods, they use Q-
Value to guide policy learning, for each agent who estimates the Qi(oi, ai) = Eπ[

∑∞
t=0 γ

tRt] with
the Bellman backup operator, we then replace the team reward by learned individual reward r̂it as
Q̂i(oi, ai) = Eπ[

∑∞
t=0 γ

tr̂it], then in the policy improvement step, MACCA-CQL trains actors by
minimizing:

JCQL
π = ED[(Q̂

i(oi, ai)− yi)2] + αED[log
∑
ai

exp(Q̂i(oi, ai))− Eai∼π̂i
β
[Q̂i(oi, ai)]], (7)

where, yi = r̂it+γmink=1,2 Q̄
i,k(oi

′
, π̄i(oi

′
)) from (Fujimoto et al., 2018) to minimize the temporal

difference error, Q̄i represents the target Q̂ for the agent i, α is the regularization coefficient, π̂βi is
the empirical behavior policy of agent i in the dataset. Similarly, MACCA-OMAR updates actors by
minimizing:

JOMAR
π = −ED[(1− τ)Q̂i(oi, πi(oi))− τ(πi(oi)− âi)2], (8)

where âi is the action provided by the zeroth-order optimizer and τ ∈ [0, 1] denotes the coefficient.
For the MACCA-ICQ, it updates actors by minimizing:

J ICQ
π = ED[L

τ
2(r̂(s, a) + γQ̄i(oi

′
, ai

′
)− Q̂i(oi, ai))], (9)

where Lτ2 is the squared loss based on expectile regression and the γ is the discount factor, which
determines the present value of future rewards. As MACCA uses individual reward to replace
the team reward, we do not directly decompose value function, unlike the prior offline MARL
methods (Foerster et al., 2018; Wang et al., 2020; 2022a), thus we do not require fitting an additional
advantage value or Q-value estimator, simplifying our method.

5 EXPERIMENTS

Based on the above, our methods include MACCA-OMAR, MACCA-CQL and MACCA-ICQ.
For baselines, we compare with both CTDE and independent learning paradigm methods, including
I-CQL (Yang et al., 2021): conservative Q-learning in independent paradigm, OMAR (Pan et al.,
2022): based on I-CQL, but learning better coordination actions among agents using zeroth-order
optimization, MA-ICQ (Kumar et al., 2020): Implicit constraint Q-learning within CTDE paradigm,
SHAQ (Wang et al., 2022a) and SQDDPG (Wang et al., 2020): variants of credit assignment method
using Shapley value, which are the SOTA on the online multi-agent RL, SHAQ-CQL: In pursuit of a
more fair comparison, we integrated CQL with SHAQ, which adopts the architectural framework of
SHAQ while using CQL in the estimations of agents’ Q-values and the target Q-values, QMIX-CQL:
conservative Q-learning within CTDE paradigm, following QMIX structure to calculate theQtot using
a mixing layer, which is similar to the MA-ICQ framework. We evaluate those performance in three
environments: Multi-agent Particle Environments (MPE) (Lowe et al., 2017), Multi-agent MuJoCo
(MA-MuJoCo) (Peng et al., 2021) and StarCraft Micromanagement Challenges (SMAC) (Samvelyan
et al., 2019). Through these comparative evaluations, we want to highlight the relative effectiveness
and superiority of the MACCA approach. Furthermore, we conduct three ablations to investigate
the interpretability and efficiency of our method. For detailed information about the environments,
please refer to Appendix C.
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Table 2: Averaged win rate of MACCA-based algorithms and baselines in StarCraft II tasks
Map Dataset I-CQL OMAR MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

2s3z
(Easy)

Expert 0.70±0.09 0.86±0.08 0.80±0.01 0.88±0.07 0.99±0.05 0.95±0.01
Medium 0.20±0.03 0.17±0.01 0.16±0.07 0.27±0.02 0.55±0.03 0.51±0.03

Medium-Replay 0.11±0.07 0.35±0.08 0.31±0.04 0.25±0.03 0.53±0.01 0.59±0.04

5m vs 6m
(Hard)

Expert 0.02±0.02 0.44±0.04 0.38±0.05 0.63±0.02 0.73±0.04 0.88±0.01
Medium 0.01±0.00 0.14±0.02 0.11±0.04 0.19±0.01 0.20±0.04 0.15±0.02

Medium-Replay 0.12±0.01 0.09±0.04 0.18±0.04 0.15±0.02 0.14±0.01 0.28±0.01

6h vs 8z
(Super Hard)

Expert 0.00±0.00 0.18±0.08 0.04±0.01 0.59±0.01 0.75±0.07 0.60±0.03
Medium 0.01±0.01 0.12±0.06 0.01±0.01 0.17±0.00 0.20±0.02 0.22±0.04

Medium-Replay 0.03±0.02 0.01±0.01 0.07±0.04 0.14±0.02 0.22±0.01 0.25±0.05
MMM2

(Super Hard)
Expert 0.08±0.03 0.10±0.01 0.11±0.01 0.60±0.01 0.69±0.01 0.71±0.03

Medium 0.02±0.01 0.12±0.02 0.08±0.04 0.25±0.07 0.50±0.06 0.59±0.04

5.1 GENERAL IMPLEMENTATION

Offline Dataset. Following the approach outlined in (Fu et al., 2020; Pan et al., 2022), we classify
the offline datasets in all environments into four types: Random, generated by random initialization.
Medium-Reply, collected from the replay buffer until the policy reaches medium performance.
Medium and Expert, collected from partially trained to moderately performing policies and fully
trained policies, respectively. The difference between our setup and (Pan et al., 2022) is that we hide
individual rewards during training and store the sum of these individual rewards in the dataset as
the team reward. By creating these different datasets, we aim to explore how different data qualities
affect algorithms. For MPE and MA-MuJoCo, we adopt the normalized score as a metric to assess
performance. The normalized score is calculated by 100× (S−Srandom)/(Sexpert−Srandom) following
the (Fu et al., 2020), where the S, Srandom, Sexpert are the evaluation return from the current policy,
random set behavior policy, expert set behavior policy respectively.

5.2 MAIN RESULTS

Multi-agent Particle Environment (MPE). We evaluate our method in three distinct environ-
ments: Cooperative Navigation (CN), Prey-and-Predator (PP), and Simple-World (WORLD). In
the CN environment, three agents aim to reach targets. Observations include position, velocity, and
displacements to targets and other agents. Actions are continuous in x and y. Rewards are based on
distance to targets, with collision penalties. In the PP environment, three predators chase a random
prey. Their state includes position, velocity, and relative displacements. Rewards are based on
distance to the prey, with bonuses for captures. The WORLD environment has four allies chasing
two faster adversaries. As depicted in Table 1, It can be seen that in all maps and different datasets of
MPE, MACCA-based shows better performance than the current state-of-the-art technology. And
comparing them with their backbone algorithms respectively, they have improved.

Multi-agent MuJoCo (MA-MuJoCo). MA-MuJoCo is a widely-used environment for complex
continuous control multi-agent. We consider among them the Half-Cheetah task. In this task, two
agents control different parts of the robot joints, and these agents need to cooperate to make the robot
move forward by coordinating their movements. The average normalized score for this task across 3
seeds over 1 million time steps, as shown in Table 1. Compared to the baseline, the MACCA-based
method outperforms the baseline by approximating expert-level behavior. Consistent competitive
performance on Medium, Medium Replay, and random datasets demonstrates their adaptability to
different levels of performance and data quality. This success can be attributed to utilizing individual
rewards and providing detailed feedback on each agent’s actions. By leveraging the task’s inherent
structure and each agent’s specific credit, MACCA achieved higher overall performance levels.

StarCraft Micromanagement Challenges (SMAC). In order to show the performance in the scale
scene, we specially selected maps with a large number of agents. To illustrate, the map 2s3z needs to
control 5 agents, including 2 Stalkers and 3 Zealots, the map 6h vs 8z needs to control 6 Hydralisks
against 8 Zealots, and map MMM2 have 1 Medivac, 2 Marauders and 7 Marines. All experiments will
run 3 random seeds and the win rate was recorded, and the corresponding standard was calculated.
Table 2 shows the result. For most of the tasks, the MACCA-based method shows state-of-the-art
performance compared to their baseline algorithms.

Also, we considered testing off-policy algorithms in the offline setting. To this end, we introduced
several baselines in SMAC for comparison with MACCA, as shown in Table 3. The table above
shows the results of the added baselines compared to SMAC tasks. It becomes evident that the online
off-policy credit assignment algorithms, when extended directly to the offline setting, consistently un-
derperform. Our empirical findings underscore that while SHAQ-CQL indeed exhibits advancements
QMIX-CQL, our MACCA-CQL clinches the SOTA performance across all tasks.
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5.3 ABLATION STUDIES

The impact of learned causal structure. We varied the value of λ1 in Eq.5 to control the sparsity
of the learned causal structure. Table 4 presents the average cumulative reward and the sparsity of
the causal structure during the training process in the MPE-CN environment. The sparsity of the
causal structure ĉi,s→r

t , is calculated as Ssr =
∑N
i=1

1
dis

∑dis
k=1 s

i,s→r
k , where si,s→r

k represent is the
value bigger than the threshold h. The results indicate that as λ1 increases from 0 to 0.5, the causal
structure becomes more sparse (sparsity Ssr decreases), resulting in less policy improvement. This
can be attributed to the fact that MACCA may not have enough states to predict individual rewards,
leading to misguided policy learning accurately. Conversely, setting a relatively low λ1 may result
in a denser structure that incorporates redundant dimensions, hindering policy learning. Therefore,
achieving a reasonable causal structure for the reward function can improve both the convergence
speed and the performance of policy training. We also provide the ablation for λ2, please refer to
Appendix.D.3

Table 5: Average normalized scores for ground
truth individual reward comparison in MPE-CN

OMAR MACCA-OMAR
With GT 114.9 ± 2.4 113.7 ± 2.3
Without GT 43.7 ± 46.6 111.7 ± 4.3

Ground Truth Individual Reward. In the
MPE CN expert dataset, we investigate the in-
fluence of ground truth individual rewards on
agent policy updates. Two scenarios are com-
pared: agents update policies using ground truth
individual rewards (GT), and agents primarily
rely on team rewards (without GT). Notably, OMAR with GT directly employs individual rewards
for policy updates, while MACCA-OMAR with GT utilizes individual rewards as a supervisory
signal, replacing team rewards in Eq. 4. The results, presented in Table 5, demonstrate that MACCA-
OMAR with GT achieves similar performance to OMAR with GT. Although MACCA-OMAR with
GT exhibits slightly slower convergence and performance due to the learning of unbiased causal
structures and individual reward functions, it overcomes this drawback by incorporating individual
rewards as supervisory signals, mitigating the bias associated with relying solely on team rewards.
More Importantly, MACCA-OMAR effectively addresses the challenge of exclusive team reward
reliance by attaining a more comprehensive understanding of individual credits through the causal
structure and individual reward function. These findings demonstrate that while MACCA-OMAR’s
performance is slightly lower than that of OMAR under GT, it offers the advantage of mitigating the
bias caused by relying solely on team rewards.

Table 6: Average win rate in SMAC 5m vs 6m
map, expert dataset.

OMAR
Backbone 0.44 ± 0.04
MACCA (FCG) 0.38 ± 0.02
MACCA (FG w. h clipping) 0.50 ± 0.01
MACCA (DG w.o h clipping) 0.66 ± 0.01
MACCA (DG w. h clipping) 0.73 ± 0.04

Different Causal Graph Setting. To investigate
how various causal graph settings affect the algo-
rithm’s performance, we performed an ablation
study using the expert data set from the SMAC
5m vs 6m map. According to the Table 6, here
the FCG stands for using fully connected causal
graph as the mask (ĉi,·→r

t (k) = 1), the FG is to
learn a fixed graph without time variants (ĉi,·→r,
without timestep), DCG is to learn a dynamic
causal graph (ĉi,·→r

t ). The h clipping means using hyper-parameter threshold h to filter the causal
mask. Utilizing a fully connected causal graph (FCG) indicates that all states and actions directly
influence the reward, resulting in suboptimal performance. This indicates an inability in the current
setting to differentiate the individual contributions of agents to the collective reward. While the
performance of learning a mask without time variants (FG) shows a marginal improvement over
the baseline, the enhancement remains minimal. This can be attributed to the inherent challenges
in directly learning a comprehensive multi-agent causal graph, especially given the intricacies of

Table 3: Compare with online off-policy credit assignment baselines in SMAC
Map Dataset SHAQ SQDDPG SHAQ-CQL QMIX-CQL ICQL MACCA-CQL

2s3z Expert 0.10±0.03 0.05±0.01 0.79±0.03 0.73±0.02 0.70±0.09 0.88±0.07
Medium 0.05±0.03 0.07±0.01 0.24±0.01 0.22±0.03 0.20±0.03 0.27±0.02

5m vs 6m Expert 0.02±0.01 0.00±0.00 0.10±0.03 0.03±0.01 0.02±0.02 0.63±0.02
Medium 0.00±0.00 0.00±0.00 0.06±0.01 0.01±0.01 0.01±0.00 0.19±0.01

6h vs 8z Expert 0.00±0.00 0.00±0.00 0.02±0.01 0.00±0.00 0.00±0.00 0.59±0.01
Medium 0.00±0.00 0.00±0.00 0.04±0.02 0.00±0.00 0.01±0.01 0.17±0.00
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Table 4: The mean and the standard variance of average normalized score, sparsity rate Ssr of ĉi,s→r
t

with diverse λ1 at different time step t in MPE-CN.
λ1 / t 1e4 3e4 5e4 1e5 2e5

0 -2.43 ± 8.01(0.98) -14.87± 7.71(0.90) -12.356± 5.83(0.81) 9.842± 18.89(0.77) 69.04 ± 19.69(0.72)
0.007 -7.88±5.36(0.94) 13.26±27.14(0.47) 60.18±26.14(0.28) 99.78± 19.50(0.15) 111.65± 4.28(0.13)
0.05 -3.66±12.14(0.90) 3.93±42.06(0.34) 10.04± 45.97(0.17) 23.61± 44.18(0.11) 75.81± 34.48(0.10)
0.5 -12.20±3.87(0.87) -16.19±5.53(0.24) -8.84± 7.16(0.11) 16.40± 21.04(0.07) 59.23± 35.29(0.01)

the environment. Similarly, the efficacy of a learned causal graph without threshold clipping (i.e.,
w.o h clipping) is slightly superior to the baseline but doesn’t match the performance of DG with
h clipping. In real-world implementations and when working with finite datasets, the model often
finds it challenging to ensure edge weights converge precisely to zero. Even when sparsity loss and
normalization are introduced, threshold clipping remains indispensable. Such an approach aligns
with established practices in causal structure discovery with continuous optimization, as evidenced
by (Zheng et al., 2018; Ng et al., 2020).
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Figure 3: The figure visualizes the causal structure, showing the probability of causal edges from
blue (high probability) to yellow (low probability). (a) represents the causal structure ĉi,s→r

t between
the state of all agents (18 dimensions for each agent, 54 dimensions for joint state ) and the individual
reward (1 dimension for each agent). (b) represents the causal structure ĉi,a→r

t between the action of
each agent (2 dimensions for each agent, six dimensions for joint action) and the individual reward (1
dimension for each agent).

Visualization of Causal Structure. In Figure D.3, we present visualizations of two significant
causal structures within the CN environment of MPE. To facilitate the observation of the causal
structure learning process, we initialize S2R as a normalized random number close to 1 and A2R as a
normalized random number close to 0. As time progresses, we observe that the causal structure ĉi,s→r

t
transitions its focus from considering all dimensions of the agent state to primarily emphasizing the
4th to 10th dimensions of each agent. By analyzing the state output of the environment, we determine
that each agent’s state comprises 18 dimensions. Specifically, dimensions 0-4 represent the agent’s
velocity and position on the x and y axes, dimensions 4-9 capture the distance between the agent
and three distinct landmarks on the x and y axes, dimensions 10-13 reflect the distances between the
agent and other agents and dimensions 14-17 are related to communication, although not applicable
in this experiment and thus considered as irrelevant. Variables 4-9 and 10-13 are intuitively linked
to individual rewards, aligning with the convergence direction of MACCA. Regarding the causal
structure ĉi,a→r

t , as each agent’s actions involve continuous motion without extraneous variables, it
converges to relevant states that contribute to individual credits for the team reward. The experimental
results demonstrate that MACCA exhibits rapid convergence, facilitating the learning of interpretable
causal structures within short time steps. Therefore, our findings support the interpretability of the
causal structure and its ability to provide a clear understanding of the relationships between variables.

6 CONCLUSION

In conclusion, MACCA emerges as a valuable solution to the credit assignment problem in offline
Multi-agent Reinforcement Learning (MARL), providing an interpretable and modular framework
for capturing the intricate interactions within multi-agent systems. By leveraging the inherent causal
structure of the system, MACCA allows us to disentangle and identify the specific credits of individual
agents to team rewards. This enables us to accurately assign credit and update policies accordingly,
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leading to enhanced performance compared to different baseline methods. The MACCA framework
empowers researchers and practitioners to gain deeper insights into the dynamics of multi-agent
systems, facilitating the understanding of the causal factors that drive cooperative behavior and
ultimately advancing the capabilities of MARL in a variety of real-world applications.

7 REPRODUCIBILITY STATEMENT

To promote transparent and accountable research practices, we have prioritized the reproducibility
of our method. All experiments conducted in this study adhere to controlled conditions and well-
known environments and datasets, with detailed descriptions of the experimental settings available
in Section 5 and Appendix C. The implementation specifics for all the baseline methods and our
proposed MACCA are thoroughly outlined in Section 4 and Appendix D.
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Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based counterfac-
tual data augmentation. Advances in Neural Information Processing Systems, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

11



Under review as a conference paper at ICLR 2024

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for autonomous
driving with safety and exploration enhancement. arXiv preprint arXiv:2110.07067, 2021.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. A hybrid reinforcement
learning approach to autonomic resource allocation. In 2006 IEEE International Conference on
Autonomic Computing, pp. 65–73. IEEE, 2006.

Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. On the use of hybrid
reinforcement learning for autonomic resource allocation. Cluster Computing, 10:287–299, 2007.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent
reinforcement learning with knowledge distillation. Advances in Neural Information Processing
Systems, 35:226–237, 2022.

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Shapley q-value: A local reward
approach to solve global reward games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7285–7292, 2020.

Jianhong Wang, Yuan Zhang, Yunjie Gu, and Tae-Kyun Kim. Shaq: Incorporating shapley value
theory into multi-agent q-learning. Advances in Neural Information Processing Systems, 35:
5941–5954, 2022a.

Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone. Causal dynamics learning for task-
independent state abstraction. International Conference on Machine Learning, pp. 23151–23180,
2022b.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discover-
ing generalizable multi-agent coordination skills from multi-task offline data. In The Eleventh
International Conference on Learning Representations, 2023.

Jiji Zhang and Peter Spirtes. Intervention, determinism, and the causal minimality condition. Synthese,
182(3):335–347, 2011.

Junzhe Zhang and Elias Bareinboim. Markov decision processes with unobserved confounders: A
causal approach. Technical report, Technical report, Technical Report R-23, Purdue AI Lab, 2016.

Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
confounders. Advances in Neural Information Processing Systems, 33:12263–12274, 2020.

Tie Zhang and Fan Ouyang. Offline motion planning and simulation of two-robot welding coordina-
tion. Frontiers of Mechanical Engineering, 7(1):81–92, 2012.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

12



Under review as a conference paper at ICLR 2024

A MARKOV AND FAITHFULNESS ASSUMPTIONS

A directed acyclic graph (DAG), G = (V ,E), can be deployed to represent a graphical criterion
carrying out a set of conditions on the paths, where V and E denote the set of nodes and the set of
directed edges, separately.

Definition 1. (d-separation (Pearl, 2000)). A set of nodes Z ⊆ V blocks the path p if and only
if (1) p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in Z,
or (2) p contains a collider i→ m← j such that the middle node m is not in Z and such that no
descendant of m is in Z. Let X , Y and Z be disjunct sets of nodes. If and only if the set Z blocks
all paths from one node in X to one node in Y , Z is considered to d-separate X from Y , denoting
as (X ⊥d Y | Z).

Definition 2. (Global Markov Condition (Spirtes et al., 2000; Pearl, 2000)). If, for any partition
(X,Y ,Z), X is d-separated from Y given Z, i.e. X ⊥d Y | Z. Then the distribution P over V
satisfies the global Markov condition on graph G, and can be factorizes as, P (X,Y | Z) = P (X |
Z)P (Y | Z). That is, X is conditionally independent of Y given Z, writing as X ⊥⊥ Y | Z.

Definition 3. (Faithfulness Assumption (Spirtes et al., 2000; Pearl, 2000)). The variables, which are
not entailed by the Markov Condition, are not independent of each other.

Under the above assumptions, we can apply d-separation as a criterion to understand the conditional
independencies from a given DAG G. That is, for any disjoint subset of nodes X,Y ,Z ⊆ V ,
(X ⊥⊥ Y | Z) and X ⊥d Y | Z are the necessary and sufficient condition of each other.

B PROOF OF IDENTIFIABILITY

Proposition 1 (Individual Reward Function Identifiability). Suppose the joint state st, joint action
at, team reward Rt are observable while the individual rit for each agent are unobserved, and they
are from the Dec-POMDP, as described in Eq. 2. Then, under the Markov condition and faithfulness
assumption, given the current time step’s team reward Rt, all the masks cs→r,i, ca→r,i, as well as
the function f are identifiable.

Assumption We assume that, ϵi,t in Eq. 2 are i.i.d additive noise. From the weight-space view of
Gaussian Process (Williams & Rasmussen, 2006) and equation.6, equivalently, the causal models for
rit can be represented as follows,

rit = f(ci,s→r
t ⊙ st, c

i,a→r
t ⊙ at, i) + ϵr,t =Wf

Tϕr(st,at, i) + ϵi,t (A1)

where ∀i ∈ [1, N ], and ϕr denote basis function sets.

As st = {s11,t, ..., s1d1s,t, ..., s
N
1,t...., s

N
dNs ,t
} and at = {a11,t, ..., a1d1a,t, ..., a

N
1,t...., a

N
dNa ,t
}. We denote

the variable set in the system by V = {V0, ...,VT }, where Vt = st ∪ at ∪ Rt, and the variables
form a Bayesian network G. Following AdaRL (Huang et al., 2021), there are possible edges only
from sik,t ∈ st to rit, and from aij,t ∈ at to rit in G, where k, j are dimension index in [1, ..., dNs ] and
[1, ..., dNa ] respectively. In particular, the rit are unobserved, while Rt =

∑N
i=1 r

i
t is observed. Thus,

there are deterministic edges from each rit to Rt.

Proof We aim to prove that, given the team rewardRt, and the ci,s→r, ci,a→r and rit are identifiable.
Following the above assumption, we can rewrite the Eq.2 to the following,

Rt =

N∑
i=1

rit

=

N∑
i=1

[
Wf

Tϕr(st,at, i) + ϵi,t
]

=Wf
T

N∑
i=1

ϕr(st,at, i) +

N∑
i=1

ϵi,t.

(A2)
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For simplicity, we replace the components in Eq. A2 by,

Φr,t =
N∑
i=1

ϕr(st,at, i),

Er,t =
N∑
i=1

ϵi,t.

(A3)

Consequently, we derive the following equation,

Rt =Wf
TΦr,t(Xt) + Er,t, (A4)

where Xt := [st,at, i]
N
i=1 representing the concatenation of the covariates st , at and i, from i = 1

to N .

Then we can obtain a closed-form solution ofWf
T in Eq. A4 by modelling the dependencies between

the covariates Xt and response variables Rt. One classical approach to finding such a solution
involves minimizing the quadratic cost and incorporating a weight-decay regularizer to prevent
overfitting. Specifically, we define the cost function as,

C(Wf ) =
1

2

∑
Xt,Rt∼D

(Rt −Wf
TΦr,t(Xt))

2 +
1

2
λ∥Wf∥2. (A5)

where Xt and long-term returns Rt, which are sampled from the offline dataset D. λ is the weight-
decay regularization parameter. To find the closed-form solution, we differentiate the cost function
with respect to Wf and set the derivative to zero:

∂C(Wf )

∂Wf
→ 0. (A6)

Solving Eq.A6 will yield the closed-form solution for Wf , as

Wf = (λId +Φr,tΦr,t
T )−1Φr,tRt = Φr,t(Φr,t

TΦr,t + λIn)
−1Rt (A7)

Therefore, Wf , which indicates the causal structure and strength of the edge, can be identified
from the observed data. In summary, given team reward Rt, the binary masks, ci,s→r, ci,a→r and
individual rit are identifiable.

Considering the Markov condition and faithfulness assumption, we can conclude that for any pair
of variables Vk, Vj ∈ V , Vk and Vj are not adjacent in the causal graph G if and only if they are
conditionally independent given some subset of {Vl | l ̸= k, l ̸= j}. Additionally, since there are no
instantaneous causal relationships and the direction of causality can be determined if an edge exists,
the binary structural masks ci,s→r and ci,a→r defined over the set V are identifiable with conditional
independence relationships (Huang et al., 2022). Consequently, the functions f in Equation 2 are
also identifiable.

C ENVIRONMENTS SETTING

We adopt the open-source implementations for the multi-agent particle environment (Lowe et al.,
2017)1 and the Multi-agent MuJoCo (Peng et al., 2021)2. The tasks in the multi-agent particle
environments are illustrated in Figures A1(a)-(c), while Figure A1(d) depicts the MA-MuJoCo half-
cheetah task. The Cooperative Navigation (CN) task involves 3 agents and 3 landmarks, requiring
agents to cooperate in covering the landmarks without collisions. In the Predator-Prey (PP) task, 3
predators collaborate to capture prey that is faster than them. Finally, the WORLD task features 4
slower cooperating agents attempting to catch 2 faster adversaries, with the adversaries aiming to
consume food while avoiding capture. The MA-MuJoCo half-cheetah task depicted in Figure A1(d)
involves a cooperative scenario where multiple agents coordinate their actions to control a half-cheetah
robot. The objective is to achieve a desired gait pattern and maintain stability while navigating the
environment.

1https://github.com/openai/multiagent-particle-envs
2https://github.com/schroederdewitt/multiagent mujoco
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Figure A1: Visualization of different environment in the experiments, (a)-(c): Multi-agent Particle
Environments (MPE), (d): Multi-agent MuJoCo (MA-MuJoCo), (e)-(f): StarCraft Micromanagement
Challenges (SMAC)

Datasets. During training, we utilize the team reward as input, while for evaluation purposes, we
compare the performance with the ground truth individual reward. As a result, the expert and random
scores for the Cooperative Navigation, Predator-Prey, World, and Half-Cheetah tasks are as follows:
Cooperative Navigation - expert: 516.526, random: 160.042; Predator-Prey - expert: 90.637, random:
-2.569; World - expert: 34.661, random: -8.734; Half-Cheetah - expert: 3568.8, random: -284.0.

D IMPLEMENTATIONS

Policy Training
Agent 1 Agent i Agent N

Individual
Reward

Predictor 

Environemnts

` Agent NAgent iAgent 1
Agent NAgent iAgent 1

Agent NAgent iAgent 1

Figure A2: This figure illustrates the workflow of the proposed MACCA structure. The offline data
generation process begins on the left side, where data is recorded from the environment, including
actions ait, states sit and observations oit of each agent, as well as the team reward Rt provided by the
environment. MACCA then constructs a causal model consisting of a DBN represented in grey and
an individual reward predictor depicted in blue. The DBN is used to sample scales from each agent,
denoted as ci,·→· and highlighted in green. Meanwhile, the individual reward predictor takes the
joint state, action, and these masks as input to generate the individual reward estimate r̂it. During the
policy learning phase, each agent utilizes their observation and individual reward estimate as inputs,
which are then passed through their respective policy network ϕi to generate the next-state actions.
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D.1 ALGORITHM

Algorithm 1 MACCA: Multi-Agent Causal Credit Assignment
1: for training step t = 1 to T do
2: Sample trajectories from D, save in minibatch B
3: for agent i = 1 to N do
4: Update the team reward Rt to r̂it in B (Eq. 6)
5: Optimize ψm: ψm ← ψm − α∇ψm

Lm (Eq. 4)
6: end for
7: Update policy π with minibatch B (Eq. 7, Eq. 8 or Eq. 9)
8: Reset B ← ∅
9: end for

D.2 MODEL STRUCTURE

The parametric generative model ψm used in MACCA consists of two parts: ψg and ψr. The
function of ψg is to predict the causal structure, which determines the relationships between the
environment variables. The role of ψr is to generate individual rewards based on the joint state and
action information. This prediction is achieved through a network architecture that includes three
fully-connected layers with an output size of 256, followed by an output layer with a single output.
Each hidden layer is activated using the rectified linear unit (ReLU) activation function.

During the training process, the generative model is optimized to learn the causal structure and
generate individual rewards that align with the observed team rewards. The model parameters are
updated using Adam, to minimize the discrepancy between the predicted sum of individual rewards
and the team rewards. The training process involves iteratively adjusting the parameters to improve
the accuracy of the predictions.

For a more detailed overview of the training process, including the specific loss functions and
optimization algorithms used, please refer to Fig A2. The figure provides a step-by-step illustration
of the training pipeline, helping to visualize the flow of information and the interactions between
different components of the generative model.

Table A1: The Common Hyper-parameters.
hyperparameters value hyperparameters value

steps per update 100 optimizer Adam
batch size 1024 learning rate 3× 10−4

hidden layer dim 64 γ 0.95
evaluation interval 1000 evaluation episodes 10

Table A2: Hyper-parameters for OMAR, CQL and MACCA
OMAR τ CQL α MACCA λ1 MACCA λ2 MACCA rlr MACCA h

Expert 0.9 5.0 7e-3 7e-3 5e-2 0.1
Medium 0.7 0.5 5e-3 5e-3 5e-2 0.1

Medium-Replay 0.7 1.0 5e-3 7e-3 5e-2 0.1
Random 0.99 1.0 1e-7 1e-3 5e-2 0.1

D.3 HYPER-PARAMETERS

The neural network used in training is initialized from scratch and optimized using the Adam optimizer
with a learning rate of 3× 10−4. The policy learning process involves varying initial learning rates
based on the specific algorithm, while the hyperparameters for policy learning, including a discount
factor of 0.95, are consistent across all tasks.
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The training procedure differs across tasks. For MPE, the training duration ranges from 20,000 to
60,000 iterations, with longer training for behavior policies that perform poorly. The number of steps
per update is set to 100. In MA-MuJoCo, training comprises 1 million time steps, and the number of
steps per update is reduced to 10.

During each training iteration, trajectories are sampled from the offline data, and the generated
individual reward is replaced with the team reward for policy updates. The training of ψcau is
performed concurrently with ψrew. Validation is conducted after each epoch, and the average metrics
are computed using 5 random seeds for reliable evaluation.

The hyperparameters specific to training MACCA models can be found in Table A2. All experiments
were conducted on a high-performance computing (HPC) system featuring 128 Intel Xeon processors
running at 2.2 GHz, 5 TB of memory, and an Nvidia A100 PCIE-40G GPU. This computational
setup ensures efficient processing and reliable performance throughout the experiments.

E ADDITIONAL RESULT

E.1 ABLATION FOR λ2

We have conducted ablation experiments on λ2 and show the results in the table.A3

Table A3: The mean and the standard variance of average normalized score, sparsity rate Sar of
ĉi,a→r
t with diverse λ2 at different time step t in MPE-CN.
λ2 / t 1e4 5e4 1e5 2e5

0 17.4 ± 15.2(0.98) 93.1 ± 6.4 (1.0) 105 ± 3.5 (1.0) 107.7 ± 10.2 (1.0)
0.007 19.9 ± 12.4 (0.8 90.2 ± 7.1 (1.0) 108.8 ± 4.0 (1.0) 111.7 ± 4.3(1.0)
0.5 13.3 ± 11.1 (0.68) 100.5 ± 14.0 (0.84) 102.9 ± 16.4 (0.87) 108.4 ± 6.4 (0.98)
5.0 2.3 ± 9.8 (0.0) -1.3 ± 25.4 (0.34) 70.4 ± 18.0 (0.62) 100.1 ± 7.4 (0.75)

This table shows the mean and the standard variance of the average normalized score with diverse
λ2 in the MPE-CN task. The value in brackets is the sparsity rate Sar of ĉi,a→r

t , whose definition
can be found in Section 5.3. For all values of λ2, the sparsity rate Sar consistently begins from zero.
Over time, there is a discernible increase in Sar, and the convergence speed slows down with the
increase of λ2. This pattern intimates that higher λ2 values engender a more measured modulation
in the causal impact exerted by actions on individual rewards. Furthermore, despite the variation in
λ2 values, the average normalized scores across different λ2 settings eventually converge towards a
similar level.

E.2 MACCA IN ONLINE TEST

To prove the versatility and efficacy of the MACCA framework in various settings, we have recently
applied it to the online environment of the SMAC in combination with Independent Q-Learning (IQL).
This new integration, referred to as MACCA-IQL, was specifically designed to harness the strengths
of MACCA in credit assignment and the robustness of IQL in an online context. Our experiments,
which provide a comparative analysis against Multi-Agent Proximal Policy Optimization (MAPPO)
in the SMAC 3m and MMM2 environment, demonstrate the effectiveness of this approach.

To elucidate our choice of combining MACCA with an off-policy algorithm like IQL, rather than an
on-policy method, it is crucial to consider the distinct advantages offered by off-policy learning in our
context. Off-policy algorithms, such as IQL , allow for more efficient utilization of past experiences,
enabling learning from a broader range of data and reducing the dependency on current policy
performance. This is particularly beneficial in causal modelling in complex multi-agent settings
where the diversity of experiences can enhance learning efficiency. Thus, our decision to integrate
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MACCA with an off-policy approach was driven by the goal of maximizing learning efficiency and
stability in the challenging context of online multi-agent reinforcement learning.

Figure A3: The win rate for MACCA-IQL compared with MAPPO in the SMAC online setting in
3m (easy) and MMM2 (Super-Hard).

According to the figure. D.3. The adaptability and potential of MACCA-IQL in enhancing policy
learning in the domain of online setting is demonstrated. It is worth noting that in 3m due to the
simple map and the small number of three agents, the improvement is limited, while in MMM2 with
more agents, a more obvious improvement is achieved.
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