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ABSTRACT

We study single-view 3D portrait creation, specifically producing a full-head 3D
portrait from a single headshot. This problem faces two challenges: 1) the 2D
image-based personalization methods lack comprehensive 3D awareness due to
the scarcity of multi-view 2D images or 3D assets in the training data, and 2) the
score distillation sampling optimization methods usually take hours to produce a
single 3D asset, making the process quite time-consuming. To overcome these
limitations, we propose Instax3D, a generative Gaussian Splatting model with a
video diffusion prior for rapid 3D portrait creation. We formulate the 3D portrait
creation problem as a “generation and construction” process. Specifically, In-
stax3D first synthesizes a consecutive video sequence using a finetuned video dif-
fusion model, capitalizing on inherent diversity and multi-view knowledge from
the massive video data. Subsequently, Instax3D reconstructs the 3D portrait with
a multi-view FLAME-based Gaussian splatting representation from the generated
video frames, structurally guided by an expressive 3D parametric model. Notably,
given a reference headshot image, Instax3D can generate a 3D portrait in just 10
minutes and render it at 40 FPS. This represents a 10× improvement over previ-
ous mainstream optimization-based methods, which can take between one to two
hours. Our project page: Instax3D Webpage.

1 INTRODUCTION

Single-view 3D portrait creation is designed to model a full-head 3D portrait from only one head-
shot. Creating 3D assets of human heads has been a long-standing problem in computer vision
and graphics. A wide range of downstream applications have emerged in various fields, including
immersive telepresence, digital human avatars, virtual and augmented reality, the gaming industry,
and movie production. Thanks to the successful advancements in generative models (Karras et al.,
2020; Rombach et al., 2021; Song et al., 2021b; Ho et al., 2022), recent developments in large-
scale diffusion models have paved the way for creating photorealistic and lifelike 3D content. These
breakthroughs greatly expanded the potential for 3D portrait generation. In practical applications,
an ideal generative model for 3D portrait creation should meet the following criteria: (1) Strong 3D
Prior and Geometry Awareness: The model should be capable of effectively conceptualizing 3D
geometry and reconstructing the appearance of a complete 3D head portrait from just a single refer-
ence photo. (2) Generalizability and Identity Preservation: It is essential for the generative model to
accurately capture and maintain the identity features, ensuring it adapts well to new characters. (3)
Rapid Training Capability: It would be preferable for the model training to take only a few minutes.

Early methods use 3D-GAN inversion (Bhattarai et al., 2024; Wu et al., 2023) to find the corre-
sponding latent code for the reference headshot photo. These methods (Bhattarai et al., 2024; Wu
et al., 2023) first train 3D-aware face generators (Chan et al., 2022a; Sun et al., 2023a) on that consist
of near-frontal face images, e.g., FFHQ (Karras et al., 2019) and CelebAHQ (Karras et al., 2018).
Then, the pivotal tuning inversion (PTI) (Roich et al., 2022) techniques are used to refine the latent
code and adjust the generator weights. Due to the scarcity and limited diversity of training images,
i.e., identities and poses, these methods often produce collapsed results under large pose variations
and struggles to scale to in-the-wild images.

Recently, diffusion models (Song et al., 2021b) have achieved superior performance in generating
portraits across 2D images and 3D shapes. Given a reference image, 2D portrait image genera-
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tion models (Liang et al., 2024; Ye et al., 2023; Wang et al., 2024) employ a pre-trained image
encoder (Radford et al., 2021) to project the face image into the feature space, and then integrate the
features into the denoising U-Net with the cross-attention mechanism. The image condition design
can preserve the identity of the reference image effectively. For 3D generation, optimization-based
methods (Qian et al., 2024; Tang et al., 2023; Sun et al., 2023b; Xu et al., 2023) utilize score distil-
lation sampling (SDS) (Poole et al., 2022) to produce 3D assets by distilling the image-conditioned
2D diffusion prior into 3D representation. However, these methods have notable drawbacks. The 2D
image-based personalization methods (known as 2D-lifting) typically rely on single-view 2D image
diffusion models (Rombach et al., 2021), which do not incorporate 3D spatial awareness or infor-
mation from multiple perspectives. Consequently, these human portrait generation methods (Chang
et al., 2023; Xu et al., 2024; Liang et al., 2024; Ye et al., 2023; Wang et al., 2024) are limited to
frontal views with small pose variations. SDS-based methods (Qian et al., 2024; Wang & Shi, 2023)
often require hours to optimize a single 3D asset and struggle with identity preservation, making it
fail to satisfy the requirements for practical applications. This highlights the increasing demand for
more advanced solutions capable of generating full-head identity-preserving 3D portraits within a
short time.

To address these limitations, we propose Instax3D, a generative Gaussian Splatting model with video
diffusion prior for fast 3D portrait creation. Different from techniques (Qian et al., 2024) utilizing
2D diffusion models (Rombach et al., 2021) as supervision, we build Instax3D upon the video dif-
fusion model trained on massive videos, and thus can inherently learn a generalizable 3D prior. In
particular, we formulate the 3D portrait creation problem as a “generation and construction” process.
We finetune a video diffusion model (Voleti et al., 2024) to imagine and hallucinate the shape and
appearance of a human full-head from only one reference photograph. (1) In the generation stage,
Instax3D deploy the fine-tuned video diffusion model to synthesize a consecutive multi-view video
sequence, leveraging the generalization and multi-view consistency from the generative video prior.
(2) In the construction stage, we directly reconstruct the corresponding 3D portrait from the video
frames. Specifically, we design an efficient 3D representation by incorporating 3D Gaussian Splat-
ting (Kerbl et al., 2023) with the expressive 3D morphable face model FLAME (Li et al., 2017). The
former enables Instax3D to reduce optimization time to just a few minutes and enhance the render-
ing speed, while the latter allows further acceleration of the training process by fully harnessing the
rich geometry priors as explicit structural guidance.

In summary, the contributions of this paper are three-fold:

1. We introduce Instax3D, a generative framework that produces photorealistic and identity-
preserving 3D portraits from a single-view photograph within a few minutes.

2. We propose a novel solution to 3D portrait generation, which formulates the problem as a
“generation and construction” process, harnessing multi-view knowledge from video dif-
fusion priors and the rapid convergence capability of Gaussian splatting representation.

3. We conduct quantitative and qualitative evaluations of Instax3D, demonstrating its superi-
ority over previous state-of-the-art methods.

2 RELATED WORK AND PRELIMINARIES

2.1 RELATED WORKS

Image-guided 3D Content Generation. The successful advancement in diffusion models brings
the dawn of possibilities for 3D generation. Recent works have explored ways to integrate diffu-
sion models into image-guided 3D content generation. One straightforward approach involves first
estimating coarse geometric properties, such as depth and normals, from generated 2D images, and
then fine-tuning the 2D diffusion model for novel view generation using the subject-driven technique
DreamBooth (Ruiz et al., 2023). Given a reference image, Magic123 (Qian et al., 2024) initially con-
structs a coarse geometry with neural radiance fields, and then deploys a differentiable and memory-
efficient rasterizer to optimize a high-resolution mesh with detailed features. HiFi-123 (Yu et al.,
2023) incorporates a novel view enhancement along with a reference-guided state distillation loss.
Some methods embrace a 2D-lifting paradigm by leveraging an image caption model to generate a
text prompt from the given image and performing score distillation sampling (SDS) (Poole et al.,
2022) for 3D generation. Tang et al. (2023) consider the reference image as the ground truth of the
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frontal view and leverage the diffusion prior from other views. Recently, some researchers have also
explored the fast reconstruction implementation in a feed-forward manner. Long et al. (2024) intro-
duce a cross-domain diffusion model that can produce multi-view RGB images and normal images
simultaneously. The proposed multi-view cross-domain attention mechanism of Wonder3D (Long
et al., 2024) facilitates cross-view and cross-modalities information exchange and allows for high-
quality geometry generation. Hong et al. (2024) introduce LRM, a scalable encoder-decoder trans-
former framework for 3D object generation from the input image. Wang & Shi (2023) extend
MVDream (Shi et al., 2024) to an image-conditioned multi-view diffusion model that takes image-
prompt as input. After passing the CLIP encoding to both local and global controllers (Wang & Shi,
2023), the output image features are then inserted into cross-attention layers to guide the 3D gen-
eration. Despite the efficiency and fast reconstruction speed, these methods are restricted to some
simple objects due to the sparse input views and insufficient cross-view consistency.

Portraits Generation. Creating photo-realistic human portraits from user commands such as text
descriptions, target poses, and reference images plays an important role in real-world applica-
tions. Early approaches (Zhu et al., 2017; Siarohin et al., 2019; Yang et al., 2021) adopt varia-
tional autoencoder (VAE) (Goodfellow et al., 2020) or conditioned generative adversarial networks
(GAN) (Goodfellow et al., 2020) to guide the image synthesis. Liang et al. (2024) propose to use
both a fine local and a coarse global encoder to project the reference photograph to an aligned iden-
tity feature into the latent space. To achieve fine-grained control for the human head, Liang et al.
(2024) introduce the facial prior obtained from a 3D Face reconstruction module as conditional guid-
ance. Ye et al. (2023) design a lightweight adapter that contains an image decoder and a decoupled
cross-attention module. By replacing the CLIP image embedding with face ID embedding extracted
from a face recognition model, IP-adapter (Ye et al., 2023) can generalize to face portrait generation
with LoRA (Hu et al., 2022) fine-tuning technique to improve the face ID consistency. Imposing
semantic and spatial conditions with an IdentityNet module, InstantID (Wang et al., 2024) achieves
impressive results in personalized image synthesis while maintaining face fidelity. However, all the
above methods are limited to small viewpoint variation scenarios, making it hard to create full-head
360◦ free-view portrait generation.

2.2 PRELIMINARIES

3D Gaussian Splating. In the heart of 3D Gaussian Splatting (Kerbl et al., 2023) is a real-time
radiance field (Mildenhall et al., 2020) reconstruction process that utilizes an efficient and expressive
point-based explicit representation and a fast differentiable rasterizer for 3D Gaussians. The former
is a differentiable volumetric representation that can be rasterized by projecting to 2D image space
with standard α-blending, while the latter supports fast anisotropic splatting when combined with
a visibility-ordering rendering algorithm, thus achieving real-time rendering and accelerating the
optimization process.

3D Gaussian Splatting (Kerbl et al., 2023) model the scene with a dense set of anisotropic Gaussian
kernels: {Gi} = {µi, αi,Σi, ci}, where Gi is the i-th kernel, µi ∈ R3 is the center position, αi ∈ R
is the opacity, Σi is the anisotropic 3D covariance matrix, and ci ∈ R3 is the color represented by
spherical harmonics for view-dependent appearance. In the world space, the Gaussian splats are
defined with mean µi and covariance Σi :

Gi(x) = e−
1
2 (x−µi)

TΣ−1
i (x−µi), (1)

where x is the coordinate of the queried point, and the covariance matrix Σi is factorized into
a diagonal scaling matrix Si and an orthogonal rotation matrix R to guarantee the semi-definite
property:

Σi = RiSiS
T
i R

T
i . (2)

When rendering, 3D Gaussian splats Gi can be easily projected onto the 2D image plane as 2D
Gaussians G2D

i . The 2D covariance matrix Σ2D
i corresponding to G2D

i is calculated with:

Σ′
i = JV ΣiV

TJT , Σ2D
i = Σ′

i[: 2, : 2], (3)

where V is the world-to-camera matrix, Σi is the 3D covariance matrix, and J is the Jacobian
by approximating the affine of the projective transformation. The 2D splats G2D

i with standard
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α-blending for fast rendering:

c(x) =

N∑
i=1

ciαiG
2D
i (x)

i−1∏
j=1

(1− αjG
2D
j (x)), (4)

where N denotes the number of the sorted of 3D Gaussians in this tile, ci is the spherical harmonics
coefficient, and αi is the opacity.

FLAME. FLAME (Li et al., 2017) model (Faces Learned with an Articulated Model) adapts the
Skinned Multi-Person Linear model (Loper et al., 2015) formulation to 3D human head scenarios.
FLAME (Li et al., 2017) is a statistical parametric human model that can represent a wide range of
face identity shapes, poses, and expressions. Given a set of parameter p = (β,θ,ψ) that includes
shape β ∈ R|β|, pose θ ∈ R3k+3(with k = 4 joints for jaw, neck, and eye gaze), and expression
ψ ∈ R|ψ|, FLAME defines a deformable template mesh M(β,θ,ψ) with 5023 vertices and 9976
faces. In this work, the FLAME (Li et al., 2017) mesh can provide a coarse geometric proxy for the
synthesized 3D portrait.

3 METHODOLOGY

Our goal is to generate a 3D full-head portrait from only one single-view heatshot image. To achieve
this, we propose Instax3D for efficient 3D Gaussian head creation, leveraging the video diffusion
model for multi-view generation and using structural prior of 3D head geometry template for con-
struction. Notably, with careful design, Instax3D can accelerate the 3D portrait creation time within
10 minutes while maintaining high-fidelity identity preservation ability.

3.1 OVERVIEW

We formulate the 3D portrait creation as a “generation and construction” process. The core idea is to
first use a finetuned video diffusion model to generate a set of consecutive multi-view video frames
from the reference image, and then construct the 3D head by distilling the underlying geometric
prior from the generated video. The pipeline of the proposed method is illustrated in Figure 1. In
Section 3.2, we first introduce how to adapt the video diffusion model to the 3D head scenarios for
multi-view portrait video generation. Then, in Section 3.3, we elaborate on how to construct the 3D
head with a FLAME-based Gaussian representation from the generated video frames.

3.2 GENERATION

We build the multi-view portrait generation module by adapting an image-to-video generator net-
work, i.e., Stable Video 3D (SV3D) (Voleti et al., 2024), to the human head scenarios. Stable Video
3D (SV3D) (Voleti et al., 2024) is an image-conditioned video diffusion model that supports gener-
ating orbital video with explicit camera control. Given a single-view reference image I ∈ R3×H×W

as the first frame, SV3D generate a multi-view video sequence S ∈ RK×3×H×W with the camera
pose trajectory π ∈ RK×2 = {(ei, ai)}Ki=1. Here K denotes the number of video frames, while ei
and ai are the specified elevation and azimuth angles. In our setting, we aim to generate consecutive
headshot video clips to provide sufficient multi-view supervision and cross-view consistency for the
3D construction stage. Therefore, we finetune the pre-trained SV3D (Voleti et al., 2024) model to
generate a specific type of 360-degree selfie video, where the character rotates the head in front of
the camera in a turn-table-like fashion.

Finetune Portrait Video Generator. The denoising U-Net is composed by the encoder, middle,
and decoder blocks, and each block contains multiple basic units at different resolutions. For each
unit, there is one residual block with 3D convolution layers, followed by a spatial transformer and a
temporal transformer block in a sequential manner. To capture the intricate appearance feature and
preserve the identity information, we deploy a dual-way paradigm to merge the image feature of
the reference portrait into the denoising UNet. As shown in the Figure 1 (a), the reference image I
is projected to two kinds of features with a pre-trained frozen SVD (Blattmann et al., 2023a) VAE
encoder and a CLIP (Radford et al., 2021) encoder, yielding a VAE embedding yvae and a CLIP
feature yvae respectively. Given the original latent noise zt at the denoising timestep t, the VAE
embedding yvae is directly injected into the latent space via concatenation: z′t = [zt, yvae]. The
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Figure 1: The overview of Instax3D. (a) In the generation stage, Instax3D extend a single-view
image to a set of consecutive multi-view video frames with a finetuned video diffusion model. (b) In
the construction stage, Instax3D constructs the 3D portrait with Gaussian splitting representation. To
facilitate the reconstruction process, we adopt several effective strategies, like multi-view FLAME-
based initialization, residual gaussian derivation, and absolute gradient strategy.

updated input latent z′t is then passed into the first 3D convolution residual block of the U-Net, re-
sulting in a good initialization for both intra- and inter-frame the space and time dimensions. Then
a spatial transformer layer is employed to model the spatial-structured relationship by treating the
video latent sequence as a batch of independent image features, while the subsequent temporal trans-
former block performs temporal fixing with a self-attention sub-layer along the temporal dimension.
Suppose z′′ is the input feature of a transformed layer, the clip feature yc is integrated into the trans-
former blocks as the image prompt. The cross-attention module attends from the clip feature yc to
the latent features z′′ , conditioning on both the spatial and temporal attention blocks:

Attention(Q,K, V, yc) = softmax(
QKT

√
d

) · V, (5)

where Q = WQ ·z′′, K = WK ·yc, V = WV ·yc are the query, key, and values matrices, respectively.
Lastly, the output features will become the input to the next residual or transformer block.

Camera Invariant Modulation. Existing works typically incorporate camera embeddings (Hong
et al., 2024; Chan et al., 2022b; Blattmann et al., 2023b) as a strong prior knowledge to guide the
generative model to produce similar results with the same condition. In practice, we find the camera-
aware condition can cause collapsed and distorted results in the novel views. In our 3D portrait
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creation setting, the camera parameters are estimated by the off-the-shelf 3D human detector. Due
to the domain gap of camera distribution between the training data and the testing data, even slight
perturbation caused by the inaccurate estimation of the camera parameters can lead to de-generated
results. Therefore, we introduce the camera-invariant modulation with zero camera embedding for
more robust generation results.

3.3 CONSTRUCTION

In the generation stage, we build the multi-view FLAME-based 3D Gaussian splitting construction
from the video sequence obtained from the generation stage.

Multi-view FLAME-fused Initialization. We supplement structural knowledge to get a good ini-
tialization to accelerate the training process and ease the 3D GS learning. Previous studies derive
the center of 3D Gaussian kernels as the point clouds by using either multi-view Structure-from-
Motion (SfM) points with COLMAP techniques (Snavely et al., 2006) or the predicted mesh from
the single-view reconstruction method (Garau et al., 2021; Daněček et al., 2022). However, the SFM
reconstruction method (Snavely et al., 2006) typically requires many input images with different
viewpoints to achieve reasonable results and has a higher requirement of the pixel correspondence
between the input images, while the single-view estimated result is inaccurate due to the 2D-to-3D
ambiguity. In this work, we combine two methods by estimating FLAME mesh from multiple views
and fusing them all to obtain a well-initialized result. Given the generated multi-view video sequence
S ∈ RK×3×H×W , we select 3 frames (including the reference image and two neighbor frames) and
use an off-the-shelf 3D face reconstruction model to extract the corresponding FLAME parameters
and then apply average pooling, resulting a fused FLAME mesh M(β0,θ0,ψ0) with 5023 vertices
and 9976 faces. We further follow HeadStudio (Zhou et al., 2024) to increase the number of 3D
Gaussian kernels for faster convergence. Specifically, we randomly sample 4 points on every face
of the mesh, comprising approximately 40,000 points. To keep the geometry in a decent human
head shape during optimization, we add the geometry constraint between the 3D portrait and the
template FLAME mesh by associating every 3D Gaussian with its initial located triangle, assuming
the optimized 3D Gaussian clusters do not undergo severe displacement from the geometry prior.

Residual Gaussian Derivation. During training, we follow the common practice of head
avatar (Shao et al., 2024; Hu et al., 2024) to optimize the Gaussian splats with a residual scheme
based on the FLAME model. Specifically, we formulate the 3D portrait Gaussian as a combination
of a FLAME-embedded triangular Gaussians and a residual Gaussian term as the offset. Instead of
learning the Gaussian parameters from scratch directly, we derive the properties of triangular Gaus-
sian from the template mesh deformed by a set of FLAME parameters (β,θ,ψ) via linear blend
skinning process (Lewis et al., 2023). Given the flame mesh M(β,θ,ψ), each triangular face can
be transformed as a Gaussian kernel Gtri with {µtri, Rtri, stri} where µtri is the centroid of the
triangle (the average position of three vertices), Rtri is the rotation matrix of the triangle, and stri is
scaling matrix with scale factor as the average length of the base and height. During rendering, the
i-th Gaussian kernel Gi can be derived based on the transformed triangle Gaussian Gtri and residual
Gaussian term parameterized by {∆µi,∆Ri,∆si} as follows:

µi = striRtri∆µi + µtri, ri = Rtri∆Ri, si = stri∆ri, (6)

where µi, ri, and si are the mean, rotation matrix, and scaling factor, respectively.

Absolute Gradient Strategy. To improve the performance of the novel view synthesis and over-
come the over-blur problem, we adopt an absolute gradient sum strategy (Ye et al., 2024; Yu et al.,
2024) to solve the gradient collision problem in densification. The original 3D GS calculates the
positional gradient ∂L

∂µ2D
i

to guide the densification:

∂L

∂µ2D
i

=

∑
j

∂Lj

∂µ2D
i,x

,
∑
j

∂Lj

∂µ2D
i,y

 , (7)

where µ2D
i = (µ2D

i,x , µ
2D
i,y ) is the center of projected 2D Gaussian, and j indicates the j-th pixel con-

tributed to the projected 2D Gaussian. It is worth noting that the sub-gradients use opposite signs to
indicate different directions in the x and y axes. Consequently, the overall positional gradient mag-
nitude ∂L

∂µ2D
i

can be suppressed if the sub-gradients with opposite signs negate each other. To resist
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the gradient collision issue, Instax3D accumulates the absolute value of every pixel sub-gradients
with:

∂L′

∂µ2D
i

=

∑
j

∣∣∣∣∣ ∂Lj

∂µ2D
i,x

∣∣∣∣∣ ,∑
j

∣∣∣∣∣ ∂Lj

∂µ2D
i,y

∣∣∣∣∣
 . (8)

The absolute sum can aggregate each pixel’s contribution by aggregating the magnitudes of sub-
gradients in x and y dimensions.

4 EXPERIMENTS AND RESULTS

Datasets. To finetune the video diffusion module, we construct a dataset of 3D full-head videos. Due
to the scarcity of the real-human 3D head scan dataset, we utilize a pre-trained 3D-ware generator
Panohead (An et al., 2023) to produce 1, 000 synthetic turn-around videos. For every training video,
we randomly draw a Gaussian noise to generate a tri-grid representation, and then render it into
video frames from views with a fixed elevation and K = 21 evenly distributed horizontal angles.
During training, we pick one frontal view as the image condition and the first frame of the generated
video.

Runtime. The process of generating a 3D portrait using Instax3D necessitates 10 minutes on a
single NVIDIA V100 GPU. This initial step of the turn-around video generation process can be
completed in approximately 1 minute. The multi-view FLAME-fused initialization process takes
around 3 minutes. The final and most computationally intensive step that reconstructs a 3D portrait
consumes about 6 minutes.

Evaluation Metrics. We evaluate the effectiveness of the proposed Instax3D from these aspects:
identity preservation, multi-view consistency, and shape and pose accuracy. For identity preser-
vation, We use two pre-trained face recognition networks, i.e., Arcface (Deng et al., 2019a) and
Facenet (Schroff et al., 2015), to extract the facial identity feature from the image, and then calcu-
late consistency metric between the rendered images and reference image. For the multi-view con-
sistency, we use the average of CLIP (Radford et al., 2021) and DINO (Caron et al., 2021) scores
through appearance similarity across the different views. Specifically, we adopt the open-sourced
clip-vit-large-patch141 model and DeiT-S based DINO 2 as the feature extractors. To evaluate the
correctness of generated 2D poses, we calculate the Percentage of Correct Keypoint (PCK) metric.
To compute PCK, we use a face key point detection model, i.e., MTCNN3, to detect the facial key
points on the synthesized images. Then, we calculate the percentage of detected key points with the
ground-truth keypoint map projected from the 3D FLAME model. We further compute the mean
squared error (MSE) of the shape and pose parameters between the ground truth and the generated
3D portraits. Here we leverage a 3D face detection model DECA (Feng et al., 2021) to estimate the
3D shape and pose code.

Comparison Baselines. We compare our Instax3D with different kinds of methods: SDS-
based (Poole et al., 2022) optimized methods (Qian et al., 2024; Yu et al., 2023), large reconstruction
models (Hong et al., 2024; Tang et al., 2024), and image prompt adapter models (Ye et al., 2023;
Wang et al., 2024). Here we choose several representative baselines including Magic123 (Qian
et al., 2024), ImageDream (Wang & Shi, 2023), Wonder3D (Long et al., 2024), LRM (Hong et al.,
2024), IP-Adapter (Ye et al., 2023) and CapHuman (Liang et al., 2024). Following previous prac-
tices, we conduct experiments on 512× 512 resolutions for a fair comparison. For Magic123 (Qian
et al., 2024), we optimize with Stable Diffusion v1.5 pipeline with ControlNetMediaPipeFace4 as
the 2D diffusion prior and Zero-1-to-3 (Liu et al., 2023) as the 3D prior. In Wonder3D (Long et al.,
2024), we first generate consistent multi-view normal maps and color images from 6 views, and then
perform mesh extraction with Instant-NSR (Guo, 2022). To adapt IP-Adapter (Ye et al., 2023) to
multi-view scenarios, we incorporate the Realistic Vision Lora module5 with a ControlNet model,
i.e., ControlNetMediaPipeFace6, to achieve the control over the human facial poses and expressions.
1https://huggingface.co/openai/clip-vit-large-patch14
2https://github.com/facebookresearch/dino.git
3https://github.com/timesler/facenet-pytorch
4https://huggingface.co/CrucibleAI/ControlNetMediaPipeFace
5https://huggingface.co/collections/SG161222
6https://huggingface.co/CrucibleAI/ControlNetMediaPipeFace
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Table 1: Quantitative comparison. We compare Instax3D with several baseline methods. (1) SDS-
based optimized method: Magic123 (Qian et al., 2024) and ImageDream (Wang & Shi, 2023) (2)
Large reconstruction model methods: LRM (Hong et al., 2024) and LGM (Tang et al., 2024) (3)
Image prompt methods: Wonder3D (Long et al., 2024), IP-Adapter Ye et al. (2023), and Caphu-
man (Liang et al., 2024). Here we use MVC and IPA to represent the multi-view consistency and
identity preservation ability, respectively. PCK denotes the percentage of correct keypoint. We mark
out best , second best , and third best metrics of single-view 3D protraits generation methods.

Method Publication MVC ↑ IPA ↑ PCK ↑ Shape ↓ Pose ↓
SDS-based optimized methods

Magic123 ICLR 2024 0.567 0.268 60.7 0.251 0.078
ImageDream Arxiv 0.704 0.720 69.4 0.329 0.065

Large reconstruction model methods
LRM ICLR 2024 0.542 0.318 70.2 0.468 0.075
LGM ECCV 2024 0.569 0.356 71.5 0.380 0.046

Image adapter methods
Wonder3D CVPR 2024 0.738 0.582 77.4 0.147 0.053
IP-Adapter Arxiv 0.837 0.771 73.7 0.437 0.041
CapHuman CVPR 2024 0.717 0.748 87.4 0.232 0.038
Instax3D 0.905 0.741 95.4 0.133 0.027

For Caphuman (Liang et al., 2024), we render the 3D Parametric Face Model Flame (Li et al., 2017)
into the normal images as head conditions to achieve fine-grained head control. For LRM (Hong
et al., 2024), we adopt the OpenLRM7 implementation (He & Wang, 2023), and render the human
head with a fixed camera intrinsics and extrinsics.

4.1 EXPERIMENTAL RESULTS

Quantitative Evaluations. We further show the evaluation results in Table 1. According to the
framework, these methods can be categorized into SDS-based (Poole et al., 2022) optimized meth-
ods (Qian et al., 2024; Yu et al., 2023), large reconstruction models (Hong et al., 2024; Tang et al.,
2024), and image prompt adapter models (Ye et al., 2023; Wang et al., 2024). We compare these
methods from these aspects: multi-view consistency, identity preservation ability, shape correctness
and pose controllability. Our approach outperforms all other methods in all the metrics. We observe
the SDS-based optimized methods struggle to maintain the multi-view consistency and have a low
score in the PCK metric (percentage of correct key points). The image adapter methods achieve
relatively high scores in the identity preservation metric but sacrifice the pose controllability (PCK)
for better identity preservation. The large reconstruction model methods suffer from bad multi-view
consistency. Benefiting from the inherent multi-view knowledge from the video diffusion module,
Instax3D demonstrates strong abilities in maintaining strong multi-view consistency across different
viewpoints. The high IPA score proves the combination of VAE and CLIP (Radford et al., 2021)
encoders can capture image features effectively. In terms of the metrics of 3D shape and pose, our
method also surpasses all other methods, which can be attributed to the FLAME-based initialization
and residual Gaussian design.

Qualitative Comparison. Given reference images and target poses, we present a qualitative com-
parison against several competitive baselines by visualizing the rendered novel view results of the
generated 3D portraits. As shown in Figure 2, we can make the following observations. Firstly, IP-
Adapter (Ye et al., 2023), Wonder3D (Long et al., 2024), and Caphuman (Liang et al., 2024) exhibit
the typical Janus problem when synthesizing back-view image (generating the front face image in
the back-view). LGM (Tang et al., 2024) and LRM (Hong et al., 2024) fail to learn a reasonable
3D shape and suffer from the blurry and “cloud-like” artifacts in the back of the head. 2D-lifting
techniques such as Magic123 (Qian et al., 2024) and Wonder3D (Long et al., 2024) produce a flat
human head. The “plate-like” effect can be attributed to the lack of 3D-awareness and multi-view
knowledge, because 2D diffusion models only provide single-view supervision. Secondly, for iden-

7https://github.com/3DTopia/OpenLRM
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Figure 2: Qualitative comparisons with six baselines. Compared with other methods, Instax3D
generates 3D portraits with various head poses while capturing fine-grained identity details. For
video comparison, please refer to project page.

tity preservation, we find that the IP-Adapter (Ye et al., 2023) can only preserve part content of the
facial region while changing other details such as the color of lips and hair. Caphuman (Liang et al.,
2024) produce novel view results with cartoon-like visuals with vibrant colors, and add extra cloth-
ing. Thirdly, we observe that the IP-adapter (Ye et al., 2023) fails to control the head pose precisely
when synthesizing the non-frontal pose images (see the 2-rd row of the Figure 2). Caphuman (Liang
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Table 2: User study. We conduct user studies to assess the generation quality quantitatively. We
also report the time cost for one 3D portrait and the frame-per-second (FPS) for rendering.

Method Publication Quality ↑ Alignment ↑ Time ↓ FPS ↑
GAN inversion methods

Portrait3D SIGGRAPH 2024 3.4 3.0 ∼1.5 hours ∼ 3
Image adapter methods

Wonder3D CVPR 2024 3.1 2.6 ∼5 minutes ∼ 50
SDS-based optimized methods

Magic123 ICLR 2024 2.1 3.5 ∼ 1 hour ∼ 20
ImageDream Arxiv 2.9 2.3 ∼ 2 hours ∼ 5

Large reconstruction model methods
LRM ICLR 2024 3.2 3.4 ∼ 5 seconds ∼ 70
LGM ECCV 2024 3.6 4.0 ∼ 5 seconds ∼ 60

Instax3D 3.9 4.2 ∼ 10 minutes ∼ 40

et al., 2024) can generate side-profile images but suffers from incorrect results in the back view of
the head. In comparison with 2D-lifting techniques (Qian et al., 2024; Ye et al., 2023; Long et al.,
2024; Liang et al., 2024), our Instax3D generates 3D portraits with better 3D awareness and multi-
view consistency, benefit from the video diffusion prior. Besides, thanks to its explicit geometry
prior and the 3D head modeling, Instax3D also outperforms the large reconstruction models with
better 3D shapes.

User Study. We further conduct user studies to assess the generation quality of Instax3D by com-
paring against four image-to-3D methods. We pick 10 human images to create corresponding 3D
portraits, which were then rendered into turn-around videos for visualization. For each reference
image, we generate the rendered videos via different methods and collect feedback from volunteers
regarding image quality and alignment with the reference image. We get 200 responses from 20 par-
ticipants in total. From Table 2, we observe that Instax3D obtains superior preference over all other
methods. We also add the time cost required for generating a 3D portrait. The proposed method can
create a trade-off between time cost and overall quality.

Abaltion Studies We further conduct ablation studies to explore the impact of different designs.
Please refer to the Appendix for the experimental results.

5 CONCLUSION

This work presents Instax3D, a fast 3D portrait creation solution for generating 3D full-head Gaus-
sians from a reference image within 10 minutes. The 3D portrait creation problem is divided into
“generation and construction” process. In the generation stage, Instax3D deploys a fine-tuned
image-to-video generation model to imagine the novel view results of the given single-view im-
age, harnessing the inherent multi-view consistency and strong 3D awareness of the video diffusion
model. The double encoder design, i.e., CLIP and VAE, can extract the fine-grained details effec-
tively, ensuring the strong identity preservation ability. In the construction stage, we construct the
3D portrait with a multi-view FLAME-based 3D Gaussian splitting representation, harnessing both
the fast converging abilities of 3D Gaussian Splatting and the geometric guidance of the expres-
sive FLAME model. Experimental results demonstrate that the proposed method can make a great
trade-off between the time cost and the overall quality.

Limitations and future work. One limitation is that it lacks the character animation ability to
deform the generated 3D portraits to novel poses and shapes. In this paper, we mainly focus on the
scenarios of a static human character. To adapt Instax3D to the animatable portrait scenarios, one
possible way is to integrate a pose guider into the video diffusion model to drive the movements of
the character (Tian et al., 2024; Xu et al., 2024). Another limitation is that the total process still costs
several minutes for every 3D asset. In the future, we plan to explore the feed-forward inference-only
methods with large 3D generation models.
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Ethics Statement. Our 3D portrait creation method Instax3D is built upon a video generation model.
Therefore, our model inherits both the capabilities and limitations of these foundational diffusion
models, and thus might introduce several ethical considerations. Our approach could potentially
be misused to generate inappropriate content such as fake portrait creation. Therefore, we believe
that any images or models produced using the proposed method should undergo a thorough review
and be clearly labeled as synthetic. We are dedicated to ensuring that our work complies with legal
standards, especially regarding intellectual property, data privacy, and the ethical implications of
video generation technologies.

Reproducibility Statement. Our Instax3D is built publicly available codebases, i.e., generative-
models8, gaussian-splatting9, and AbsGS10. We also include the data pre-processing details, imple-
mentation details in Section 4 and Appendix, and to facilitate reproducing Instax3D.
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In the appendix, we first provide more implementation details in Section A. Second, we conduct the
ablation studies in Section B. Finally, we show more visualization results in Section C. Please refer
to our project page for video results.

A IMPLEMENTATION DETAILS

A.1 TRAINING PROTOCOL

In this work, we use SV3D (Voleti et al., 2024) as the video diffusion model. To facilitate the train-
ing process, we preprocess the video data by using the VAE encoder from Stable Video Diffusion
(SVD) (Blattmann et al., 2023a) to encode the input image as a video latent. During training, we
freeze the Clip encoder and fine-tune the U-Net block with the learning rate 1×10−5 for 4000 steps.
We use AdamW optimizer Loshchilov & Hutter (2019) with β1 = 0.9, β2 = 0.999, and the batch
size of 1 for fine-tuning. During inference, we adopt DDIM sampler (Song et al., 2021a) using tri-
angular classifier-free guidance. We finetune the video diffusion model on a Nvidia A40 GPU with
46GB memory.

In the construction stage, we employ Deep3DFaceReconstruction (Deng et al., 2019b) and Facev-
erse (Wang et al., 2022) to estimate the camera pose and the gaze direction, respectively, and then
regress the FLAME parameter (Li et al., 2017) with an off-the-shelf face detector DECA (Feng
et al., 2021). During the 3D Gaussian optimization process, all 21 video frames generated from the
fine-tuned video diffusion model are used to reconstruct the 3D human portraits. We use Adam opti-
mizer Kingma & Ba (2015) with β1 = 0.9, β2 = 0.999 for optimization. We optimize the Gaussian
Splatting representation for 20,000 iterations, applying an exponential decay to the learning rate for
splat positions until it reaches 0.01× the initial value at the final iteration. We perform adaptive den-
sity control with absolute gradient sum strategy (Ye et al., 2024; Yu et al., 2024) every 1,000 steps,
and the gradient threshold for densification is set as 0.0002.

A.2 DATASETS

In the evaluation part, we conduct quantitative comparison experiments on a subset from a large-
scale in-the-wild human face dataset, i.e., Flickr-Faces-HQ (FFHQ)11 (Karras et al., 2019) dataset.
FFHQ is known for its various styles and extensive diversity, encompassing a wide range of ethnic-
ities, ages, and image backgrounds, along with substantial variations in facial attributes and acces-
sories such as hats, eyeglasses, and earrings. Specifically, we pick 100 portrait images to conduct
quantitative comparison experiments and ablation studies.

B ABLATION STUDIES

FLAME guidance. Instax3D adopts a FLAME-guided residual learning scheme to form the final
full-head portrait on top of the triangular Gaussians derived from the coarse FLAME head mesh. To
investigate the effectiveness of the Flame guidance, we compare our method’s performance when
reconstructing the 3D portrait with and without Flame prior. Here we report the shape and pose
accuracy by computing the MSE in 10−2 of shape and parameters between the reference and the
generated images. When removing the FLAME guidance, the shape error increases from 0.133 to
0.245, while the pose accuracy increases from 0.027 to 0.049. The results suggest that FLAME
guidance is essential to preserve the 3D properties of the reconstructed portraits, i.e., 3D shape and
head pose.

Camera Modulation. We further conduct experiments to explore different camera modulations,
i.e., camera-aware and camera-invariant conditions. As shown in the left part of Figure. 3, we
observe Instax3D can generate distorted and collapsed results in the novel views when using camera
embedding as the conditions (camera-aware modulation). The generation results is very sensitive to
the sensitive to the camera parameters, e.g., intrinsics and extrinsics, elevation and azimuth angles.
We conjecture that the camera embeddings serve as a strong prior in the denoising process, and thus
are likely to guide the video diffusion model to produce averaged results with the same condition.
Besides, there is a significant gap in camera distribution between the training data and the testing
11https://github.com/NVlabs/ffhq-dataset
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reference referencecamera invariant wo abs grad w abs gradcamera aware

(a) Camera Modulation (b) Absolute Gradient Strategy

Figure 3: Abatlion on different model designs.

data. Any slight perturbation caused by the inaccurate estimation of the camera parameters can lead
to de-generated results. In comparison, we find that using the camera-invariant conditions (zero
embedding) leads to more robust results.

Absolute gradient strategy. To assess the efficacy absolute gradient strategy, we compare the
performance of our Instax3D when optimized with the default adaptive density control and the
absolute gradient strategy. The qualitative comparison is shown in the right part of Figure 3. We
observe the default densification strategy fails to identify the well-optimized and over-blur regions.
In contrast, the absolute gradient strategy can mitigate the over-blurred issue and produce a clearer
appearance for the created 3D portrait.

C ADDITIONAL RESULTS

Please refer to our project page for video results.
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