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Abstract

Recent advancements in mixed-modal generative have opened new avenues for
developing unified biomedical assistants capable of analyzing biomedical images,
answering complex questions about them, and generating multimodal patient
reports. However, existing datasets face challenges such as small sizes, limited
coverage of biomedical tasks and domains, and a reliance on narrow sources. To
address these gaps, we present MEDMAX, a large-scale multimodal biomedical
instruction-tuning dataset for mixed-modal foundation models. With 1.47 million
instances, MEDMAX encompasses a diverse range of tasks, including interleaved
image-text generation, biomedical image captioning and generation, visual chat,
and report understanding. These tasks span knowledge across diverse biomedical
domains, including radiology and histopathology, grounded in medical papers and
YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model
on the MEDMAX dataset, achieving significant performance improvements: a
26% gain over the Chameleon model and an 18.3% improvement over GPT-4o
across 12 downstream biomedical visual question-answering tasks. Finally, we
introduce a unified evaluation suite for biomedical tasks to guide the development
of mixed-modal biomedical AI assistants.
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Figure 1: Average performance
of multimodal models on twelve
VQA tasks. Our MEDMAX
instruction-tuned mixed-modal foun-
dation model outperforms both open
multimodal models (Chameleon,
LLaVA-Med-v1.5, and Huatuo) and
closed multimodal models (GPT-4o,
GPT-4o-mini). This underscores
the effectiveness of the MEDMAX
dataset in training capable multi-
modal biomedical assistants.

∗ Equal Contribution (alphabetical order).

39th Conference on Neural Information Processing Systems (NeurIPS 2025). Track on Datasets and Benchmarks.

https://mint-medmax.github.io/


VQA Visual Chat

Report Generation

Image Captioning

Image GenerationMultimodal Generation

What can be observed in
this image?
 A: Meniscal abnormality 
 B: Bone fracture
 C: Ligament tear
 D: Cartilage erosion

 A: Meniscal abnormality

Examine this medical image and
document your observations in a
standard clinical report format.

EXAMINATION: CHEST (PORTABLE AP) 
INDICATION: huge sacral ulcer now pre-op for bone
biopsy
IMPRESSION: The lung volumes are normal. Mild
elevation of the left hemidiaphragm. No pleural
effusions. No pneumonia, no pulmonary edema.

a) Clinical Interpretation
Glomus tumors are characterized by their unique
cellular arrangement, where each tumor cell is ...

b) Visual Context <image>
Imagine the basement membrane as a fine net or a
thin sheet enveloping each cell, similar to how a
plastic wrap would cover individual items. This
structural feature can aid pathologists ...

c) Key Components
The recognition of this feature is clinically
significant because ...

Can you explain what makes glomus tumors unique in their cellular structure? Generate a CT image of the abdomen
highlighting a large, irregular,
homogenous lesion approximately 9
cm in size, originating from the
lesser curvature of the stomach.
Ensure the lesion is well-defined and
distinct from the surrounding gastric
tissue, providing a clear view of the
stomach and the abnormal growth
for detailed assessment.

What is the arrow
pointing to?

The arrow in the chest X-
ray is pointing to an ill-
defined opacity in the right
lower zone of the lung.

Provide a brief overview of
what is shown in the image.

FINAL REPORT

<image>

Desmoplastic reaction around
the implantation site is one of
the six points to remember

Figure 2: Examples of diverse multimodal biomedical tasks covered in the MEDMAX dataset. The model
inputs (yellow boxes) and corresponding outputs (red boxes) illustrate various task types: multimodal generation
with interleaved text and images, medical report generation, text-to-image generation, visual question answering,
medical image analysis through visual chat, and image captioning task. Note that report-conditioned image
generation, which falls under report understanding, is not shown here.

1 Introduction

Recently, there has been rapid advancement in the development of mixed-modal foundation models
that can perceive and generate data from multiple modalities such as GPT-4o [18], Gemini-Pro [12],
Chameleon [37], and Transfusion [71]. During pretraining, these models are exposed to internet-scale
data that equips them with the knowledge to perform real-world tasks involving multiple modalities
within a unified architecture (e.g., image captioning and image generation). Their native multimodal
capabilities have unlocked new opportunities to tackle challenging biomedical tasks, including
analyzing patient scans for accurate diagnosis and generating multimodal medical reports [1, 55, 14].

However, existing mixed-modal foundation models struggle to perform well on vision-language
biomedical data due to significant distribution shifts from the more commonly occurring natural data
found on the internet (e.g., everyday objects and scenes). In this context, instruction tuning [56, 33, 24]
offers a promising approach to understanding novel user intents and unlocking new capabilities for
developing advanced biomedical assistants. But, there is a lack of large-scale multimodal biomedical
instruction-tuning datasets, which are crucial for enabling mixed-modal models to reason and solve
complex biomedical tasks across diverse domains.

Traditional biomedical VQA datasets like VQA-RAD [25], SLAKE [31], and PathVQA [15] provide
essential domain knowledge but are limited in scale (typically only thousands of instances). Other
efforts, such as LLaVA-Med [33], collect biomedical vision-language alignment data and synthetic
instruction-tuning datasets to support image-conditioned queries. However, their reliance on figures
and plots over true biomedical images limits data quality. PubMedVision [66] advances synthetic
biomedical data curation using multimodal foundation models [40], yet its scope is confined to
medical research papers, despite evidence of rich biomedical knowledge in YouTube videos [47]
and clinical reports [21]. Beyond conversation, native multimodal models can support patient
report visualization, enabling applications like annotated dataset creation [8] and disease progression
modeling [14]. However, no existing instruction-tuning dataset supports unified training for such
diverse biomedical capabilities.

To address these challenges, we propose MEDMAX, a dataset designed to develop a biomedical
mixed-modal foundation model. It comprises a total of 1.47M instances spanning a wide range of
biomedical tasks and domains. Specifically, MEDMAX includes tasks such as biomedical image
captioning, image generation, visual question answering (VQA), visual chatting, report understanding,
and multimodal (interleaved text-image) content generation. Moreover, the dataset encompasses
diverse biomedical domains, including radiology and histopathology. A key component of MEDMAX
is a newly curated dataset for generating interleaved image-text content (MEDMAX-INSTRUCT),
which paves the way for enhanced clinical understanding and support for complex medical decision-
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Figure 3: We present the data-sources used
to curate task-specific data in the MED-
MAX collection.
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Figure 4: We source the data from biomedical
sources that cover several domains (e.g., radiol-
ogy) and knowledge bases (e.g., research papers,
YouTube).

making. Additionally, MEDMAX aims to equip mixed-modal models with a diverse skill set by
integrating various high-quality multimodal datasets, including VQA datasets, instruction-following
datasets, alignment datasets, and medical reports.

Subsequently, we fine-tune a mixed-modal foundation model, Chameleon [37, 10], on the MEDMAX
dataset. The dataset comprises a total of 1.7B multimodal discrete tokens for instruction tuning. In
our experiments, the MEDMAX-fine-tuned model outperforms the base Chameleon and GPT-4o [18]
by 26% and 18.3% percentage points, respectively, when averaged across a set of 12 downstream
VQA evaluation tasks (Figure 1). Given the general lack of support for biomedical evaluation, we
provide a comprehensive evaluation suite encompassing diverse tasks to enable unified and efficient
assessments. Thus, we conduct extensive experiments on diverse tasks that mixed-modal models
excel in, including biomedical image captioning, image generation, visual chatting, and multimodal
generation. Overall, our work establishes a strong foundation for high-quality instruction tuning data
creation, model fine-tuning, and robust evaluation of next-generation mixed-modal models.

2 Background

Mixed-modal foundation models are generative models capable of reasoning over sequences of
interleaved multimodal content (e.g., image, text) [37, 71]. We focus on the autoregressive se-
quence modeling objective, as used in Chameleon [37], Unified-IO [34], and Emu-3 [54], for its
simplicity and effectiveness. These models represent multimodal sequences x = (x1, x2, . . . , xn),
where text is tokenized using BPE and images are encoded as discrete tokens (e.g., 1024 VQ-
GAN tokens in Chameleon [13]). Given a dataset D, the autoregressive pretraining objective
is maxθ Ex∼D [

∑n
k=1 logPθ(xk|x1:k−1)] . With large-scale multimodal data, these models learn

diverse capabilities for tasks like image generation and captioning. To align them as assistants,
instruction tuning is applied using paired multimodal sequences (x, y), where x is the instruction and
y the response—each possibly containing text, images, or both. For example, in VQA, x includes
an image and question, and y is the answer. The instruction tuning objective over a dataset DI is
maxθ E(x,y)∼DI [

∑n
k=1 logP (yk|y1:k−1, x)] .

3 MEDMAX

We aim to solve diverse biomedical tasks across various domains and modalities using a unified,
natively multimodal model. Thus, we present MEDMAX, an instruction tuning data designed training
mixed-modal foundation models for the biomedical applications. Specifically, the dataset construction
involves: (a) designing a new instruction-tuning data that allows interleaved image-text outputs (§3.1),
and curating various data sources to endow diverse skills into the model (§3.2).
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3.1 MEDMAX-INSTRUCT

With the rise of mixed-modal foundation models, generating interleaved image-text content is now
possible. This capability enables novel applications like advanced diagnostics (e.g., visualizing
treatment effects on biomedical markers), generating multimodal patient reports, and enhancing
medical training with multimodal content. However, no instruction-tuning datasets exist for training
mixed-modal assistants in this area. Therefore, we introduce MEDMAX-INSTRUCT, a multimodal
generation instruction-tuning dataset for biomedical mixed-modal assistants created in multi-stages:

Sourcing image-text data (Stage 1): First, we collect diverse biomedical image-caption pairs from
the PMC-OA [30] and Quilt-1M [19] datasets. Then we curate the PMC-OA to keep high-quality
paired data, which reduces the size of the of the PMC-OA (val split) from 166K to 73K instances
(Appendix D.2). In addition, we randomly choose 50K instances from Quilt data. In total, we have
123K image-text data which will be further filtered to ensure high-quality.

Caption Filtering (Stage 2): Then, our goal is to filter the captions that do not contain semantic
details about the biomedical image like anatomical details, condition characteristics, observable
features and diagnostic relevance. To this end, we filter the captions that GPT-4o-mini [41] finds
to be of low quality. Following this, we are left with 88K instances, leading to the removal of 25%
captions. We present the prompt used for assessing the caption quality in Appendix Table 5.

Caption-conditioned generation (Stage 3): Here, we prompt GPT-4o to generate single-turn mul-
timodal conversation conditioned on the captions. We choose GPT-4o as it achieves state-of-the-art
performance on text-only medical datasets [39]. Specifically, we ask the LLM to output an image
placeholder (‘<image>’) which is then replaced with the ground-truth image from the image-caption
pair during training. We present our data generation template in Appendix Table 6. 1 Finally, we
have 88K instances consisting novel query (grounded in text) and multimodal response (interleaved
text-image) for the biomedical applications. We present an example in Figure 2.

3.2 Dataset Curation for Diverse Skills

Furthermore, we carefully curate diverse medical datasets to address a wide range of tasks using a
unified, native multimodal foundation model, as described below:

Visual question answering (VQA): We include biomedical visual questions that involve answer-
ing close-ended questions (yes/no), open-ended questions, and multiple-choice questions. Prior work,
such as LLaVA-series [32, 27], has incorporated general-purpose VQA benchmarks into its training
mix to enhance the model capabilities. In addition to the diversity in the domains and question styles,
the biomedical VQA datasets are also a rich source of expert-annotated data (e.g., clinician-driven
annotations). Hence, we combine the training sets of popular VQA datasets including VQA-RAD
[25], SLAKE [31], PathVQA [15], and PMC-VQA [68]. To teach the model about 20+ anatomical
regions, we split the OmnimedVQA [17] into a training (81K) and testing set (1K), and add the
training split into our mix. In total, we have 284K VQA instances in MEDMAX.

Image captioning and generation: Interpreting biomedical images is essential for accurate diag-
nosis and disease monitoring [43], while image generation aids in creating high-quality annotated
datasets [8]. To support both, we curate LLaVA-Med-PMC, a 37K subset of PMC-15M [67] from
LLaVA-Med [28], filtered to exclude non-biomedical figures using BioMedCLIPScore [67] (Ap-
pendix D.1). We also include 83K filtered image-caption pairs from PMC-OA [30] (Appendix D.2),
and a 100K subset of histopathology data from Quilt-1M [19], collected from YouTube. Addition-
ally, we incorporate the synthetically generated PubMedVision-VQA dataset [66] (Appendix D.3).
Altogether, we curate 320K instances—160K for image captioning and 160K for image generation.

Visual chat: Here, we curate a diverse set of queries related to biomedical images that are relevant
to practitioners across various biomedical domains and sources. Concretely, we collect 76K publicly-
available instances from LLaVA-Med-instruct-120K [28] data. To further enrich our data with diverse
instructions, we include synthetically-generated PubMedVision-IT [66] dataset. Originally, this data

1In total, we spent $500 to collect GPT-4o responses using the API.
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consists 647K instances, but we filter instances with multiple images in the context that left us with
504K instances. Finally, we include 107K conversations from the Quilt-Instruct [47] to diversify our
dataset with knowledge from the histopathology Youtube videos. Overall, MEDMAX consists 686K
instances for visual chat scenarios.

Medical report understanding: The ability to perform detailed inspection of a patient’s imaging
data requires specialized training. Thus, it is vital to expose our model to the expert-written findings
(normal and abnormal anatomical cues) from the patient’s data. Hence, we collect chest radiographs
along with the medical reports in MIMIC-CXR [21]. We provide the details about its curation in
Appendix D.4. Finally, we have 92K instances consisting chest radiograph-report pairs. We purpose
half of the dataset for radiograph-conditioned report generation task, and the other half to generate
chest radiographs conditioned on the medical report. We provide the templates in Appendix G.

Analysis: Figure 2 showcases examples of the diverse skills covered in MEDMAX, while Figure 3
outlines the task-specific data sources. Appendix Table 2 summarizes the biomedical domains
and knowledge bases included, and Figure 4 breaks down domain, database, and dataset source
proportions. In total, MEDMAX includes 725K unique images and 947K unique words, reflecting rich
diversity across multiple quality axes—making it well-suited for instruction tuning of mixed-modal
foundation models. We provide more fine-grained data statistics in Appendix E.

4 Experimental Setup

We instruction-tune a mixed-modal foundation model on the MEDMAX (§4.1). Then, we present the
evaluation framework for robust assessment of our model and baselines (§4.2).

4.1 MEDMAX Mixed-Modal Model

In our work, we instruction-tune Anole-7B [10], an instantiation of the Chameleon-7B [37] mixed-
modal foundation model that can natively understand and generate multimodal content. We chose
Chameleon-7B as our backbone model primarily for its architectural simplicity and strong base model
performance, using a single autoregressive loss function unlike models, such as Transfusion [71] and
Monoformer [70], that require balancing multiple objectives (such as combined autoregressive and
diffusion losses). We use LoRA [16] for parameter-efficient finetuning of the model. Further, we
finetune the base model for 3 epochs on MEDMAX. We provide more details in Appendix J.

4.2 Evaluation

While there are several multimodal biomedical datasets, there is a general lack of a comprehensive
evaluation benchmark. To address this, we introduce a thorough evaluation suite to assess the
capabilities of native multimodal models across various tasks and domains.2

Biomedical VQA: We include the test set of VQA-RAD (radiology), SLAKE (semantic knowledge
over radiology), PathVQA (pathology), the entire QuiltVQA (histopathology). These datasets ask
closed-ended (yes/no) and open-ended questions that require one word, phrase or sentence answer.
Further, we include medical VQA with multiple-choice questions datasets such as test set of the
PMC-VQA (diverse biomedical domains), validation set of PathMMU (pathology) [50], ProbMed
(radiology) [61], and hidden split from the OmniMedVQA [17] dataset. Overall, we perform
evaluations on twelve VQA tasks across diverse biomedical domains, skills, and question formats.
We provide more evaluation details in Appendix H.1.

Biomedical image captioning and generation: We compare the ability of the MEDMAX model
and the base model to caption as well as generate biomedical images for diverse domains. In total, we
collect 1200 instances from the testing split of PMC-OA (400), MIMIC-CXR (400), and unseen split
of Quilt-1M (400) datasets. In particular, half of the dataset will be used for captioning evaluation
and the other half will be used for generation evaluation. Similar to [8], we extract the summary of
the findings (impressions) from the report data and treat them as the ground-truth captions for the

2The unified evaluation set is also made public available at https://huggingface.co/datasets/
mint-medmax/medmax_eval_data.
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Table 1: Performance of the MEDMAX model and baselines on the downstream VQA tasks. We find
that the MEDMAX mixed-modal model outperforms closed as well as open multimodal models on twelve
VQA datasets. This highlights that the model can generalize well to unseen instances and tasks ranging across
biomedical domains.

Model Chameleon
(7B)

LLaVA-Med
(v1.5-7B)

GPT-4o
(mini) GPT-4o HuatuoGPT

(Vision-7B)
MEDMAX

(7B)
Average 39.4 36.6 38.5 42.0 52.4 65.5
VQA-RAD (Closed) [25] 48.6 61.0 55.8 54.2 74.5 75.3
SLAKE (Closed) [31] 59.1 48.7 50.4 50.1 70.7 88.4
PathVQA (Closed) [15] 58.9 62.7 48.7 59.2 65.9 91.8
QuiltVQA (Closed) [47] 71.4 63.0 38.5 44.6 55.7 61.2
VQA-RAD (Open) [25] 32.0 23.0 13.0 17.6 19.0 46.5
SLAKE (Open) [31] 5.3 25.1 49.3 63.7 53.3 82.2
PathVQA (Open) [15] 18.0 6.2 7.3 9.1 6.0 40.6
QuiltVQA (Open)[47] 15.3 17.2 28.0 36.1 22.2 26.0
PMC-VQA [68] 31.0 18.9 39.6 40.8 51.6 49
OmniMedVQA [17] 45.7 28.7 45.1 40.9 75.6 99.5
PathMMU [50] 34.5 29.8 35.6 39.1 55.4 49.3
ProbMed[61] 52.8 58.5 50.6 48.3 78.7 75.8

associated chest radiographs from MIMIC-CXR. This will highlight the medical report understanding
and report-conditioned image generation capability of our model. Subsequently, we compute the
BioMedCLIPScore [67] to assess the closeness between the input image (caption) and predicted
caption (image). We present the details for model inference in Appendix I.2.

Biomedical Visual Chatbot: We use the visual chatbot evaluation from LLaVA-Med consisting
193 novel questions about 50 unseen biomedical images. Specifically, the questions belong to two
category: conversation and detailed description of the images. Subsequently, an LLM scores the
predicted answer and the GPT-4 written reference answer out of 10 conditioned on the question,
image caption and additional image context. Finally, we compute the average relative prediction
score as the ratio of the score for predicted answer and score for the reference answer.

Biomedical Multimodal Generation: We utilize 500 hidden instances of the MEDMAX-INSTRUCT
data for model evaluation. For a given text query, we prompt the base (or finetuned) model to
generate interleaved response. Subsequently, we compare the text content in the predicted multimodal
response with the reference text response using LLM (same as visual chat). In addition, we compare
the generated image with the reference image using the image-image similarity score from the
BioMedCLIP model. We present the evaluation templates and inference details in Appendix I.2.
Further, we conduct contamination analysis and find that there are no exact matches between image-
text pairs across these datasets. We provide the summary of the tasks in Appendix Table 13. We
also present the number of samples for each task in Appendix Table 14. Further, we compute and
highlight the distribution of diverse diagnostic procedures covered in the MEDMAX data in Appendix
Q.

5 Experiments

5.1 Main results

Biomedical VQA. We evaluate the finetuned MEDMAX model against several vision-language
models on a suite of biomedical VQA datasets. Baselines include open models—Chameleon-7B [37],
LLaVA-Med-v1.5 [33], and HuatuoGPT-Vision-7B [66]—as well as closed models: GPT-4o-mini
and GPT-4o. Our results (Table 1) show that MEDMAX outperforms Chameleon by 26.1 percentage
points in average VQA accuracy across 12 tasks, demonstrating effective instruction-tuning for
biomedical specialization. MEDMAX also achieves the best average performance among all baselines,
surpassing GPT-4o by 18.3 percentage points, establishing it as the most capable open or closed
multimodal model for biomedical VQA. We also report task-specific results.

MEDMAX achieves the highest accuracy on 7 out of 12 tasks. Notably, Chameleon-7B performs
best on QuiltVQA (Closed) but poorly on QuiltVQA (Open), suggesting a bias toward closed-ended
questions. MEDMAX attains 99.5% accuracy on the unseen OmniMedVQA split, indicating that the
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Figure 5: Performance on the multi-
modal generation task. Comparison be-
tween the performance of the MEDMAX
and Chameleon mixed-modal model on
the multimodal generation task. We find
that MEDMAX finetuning improves the
multimodal content generation capabili-
ties for the biomedical domain.
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Figure 6: Performance on the image captioning and image generation tasks. We find that MEDMAX model
consistency outperforms the base Chameleon mixed-modal model across diverse biomedical domains.

dataset is solvable with in-distribution exposure and that the model generalizes well across anatomical
regions. HuatuoGPT-Vision-7B leads on 3 tasks, likely due to its high-quality fine-tuning data
and the Qwen-2 [62], pretrained on 7T tokens, which enhances the model’s biomedical knowledge
and its ability to interpret diverse formatting styles. Moreover, we observe that MEDMAX model
improves performance by 10.7%, 15%, and 23% on the unseen QuiltVQA (Open), PathMMU,
and ProbMed datasets, respectively. This demonstrates its ability to generalize across novel tasks
through exposure to expert knowledge, question formats, and biomedical domains. Additionally,
MEDMAX is competitive with task-specific finetuning of LLaVA-Med on the VQA-RAD, SLAKE,
and PathVQA datasets (Appendix K). This suggests that practitioners can use the unified MEDMAX
model instead of maintaining separate task-specific LLaVA-Med models. Overall, these results
highlight the high quality of the MEDMAX dataset for finetuning mixed-modal foundation models in
biomedical applications.

Transfer to Text-only Medical QA. Despite being a multimodal instruction-tuning data, we test
the robustness of the MEDMAX model on text-only MedQA [20]. We find that the MEDMAX
outperforms LLaVA-Med-1.5 and Chameleon by 22.5% and 12.2%, respectively. This highlights
that high-quality multimodal instruction tuning enables transfer to text-only scenarios (Appendix M).

Biomedical Image Captioning and Generation. We compare the MEDMAX model and the base
model in their ability to interpret and generate biomedical images across diverse domains (Figure
6). Empirically, MEDMAX consistently outperforms the base model in both image captioning
and generation. Specifically, it surpasses Chameleon with relative gains of 28%, 33%, and 14%
in captioning on PMC-OA, Quilt, and MIMIC-CXR datasets, respectively. For image generation,
MEDMAX achieves relative gains of 100%, 14%, and 50% across the same datasets. Additional
captioning comparisons with other models are provided in Appendix L. These results highlight
MEDMAX ’s strong capability in biomedical image reasoning and generating biomedical visuals.

Biomedical Multimodal Generation. We evaluate the MEDMAX model’s ability to generate mul-
timodal (interleaved image-text) content (Figure 5). Empirically, MEDMAX outperforms Chameleon
with a 25.2% relative improvement in text quality and a 31.5% gain in synthesized image quality.
These results suggest that instruction tuning with MEDMAX effectively enhances mixed-modal mod-
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els’ multimodal generation capabilities in the biomedical domain. Overall, our findings establish a
foundation for further research on instruction-tuned multimodal generation in healthcare applications.

This microscopic image of cells
highlights their cytoskeletal structure. A
blue DAPI stain reveals bright white cell
nuclei. Within these nuclei, green
fluorescent phalloidin staining shows
actin filaments.

Please describe this picture.

The chest X-ray reveals opacification
in the right hemithorax, with an
enlarged and shifted heart, consistent
with a large pleural effusion causing
cardiac displacement.

Please describe this picture.

Image CaptioningVisual Chat

The staining technique used in
this image is hematoxylin and
eosin (H&E) stain.

What is the staining
technique used?

Are there both chest X-rays 
and CT scans in the image?

Yes, the figure includes a 
combination of chest X-ray images 
(left) and computed tomography 
(CT) scan images (right).

Figure 9: Qualitative examples. Positive (green) and negative (red) generations from the MEDMAX model for
visual chat and image captioning. We consulted with medical experts to ensure high-quality qualitative analysis.

Biomedical Visual Chat. We evaluate the ability of the MEDMAX model and baselines to answer
novel queries about biomedical images (Figure 7). The MEDMAX model achieves higher overall
LLM scores than Chameleon and LLaVA-Med-v1 by 34 and 10.2 percentage points, respectively,
highlighting the impact of instruction tuning on visual chat capabilities. Additionally, MEDMAX
performs competitively with the best-performing model, LLaVA-Med-v1.5, trailing by just 2.1
percentage points. Notably, LLaVA-Med-v1.5 excels on the conversation split, while HuatuoGPT-
Vision leads on the description split—likely due to their advanced language backbones, Mistral-v0.2-
Instruct and Qwen-2, which enhance query understanding and response generation. These findings
suggest that further progress in mixed-modal architectures can significantly improve biomedical
visual chat, especially when combined with MEDMAX training.

Qualitative Analysis. We focus on automatic evaluation due to its scalability across domains
(e.g., radiology, histopathology, anatomical regions) and tasks (e.g., VQA, visual chat, multimodal
generation, captioning), and its widespread use in training biomedical assistants [33, 8]. Nonetheless,
we conducted a preliminary qualitative evaluation with four medical practitioners averaging six
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Figure 10: Results for the data abla-
tion study. Finetuning the mixed-modal
model with an ablated version of the MED-
MAX data where the (a) VQA task in-
stances and (b) visual chat instances are
removed. The results highlight the useful-
ness of task-specific data in the mixture
for downstream performance.

years of experience. They reviewed MEDMAX-7B outputs across tasks and provided feedback
on its strengths and limitations. The Figure 9 presents some representative examples. Positive
cases highlight the model’s strong biomedical image understanding and ability to generate detailed
multimodal responses. Negative cases expose issues like image misinterpretation and meaningless
text artifacts. Additional examples are included in Appendix Figures 12 and 13. While large-scale
expert evaluation remains challenging and out of scope, the open release of our dataset and model
encourages community-driven feedback for future improvements.

6 Ablation Studies

In this section, our goal is to the study the role of different factors that can impact the downstream
performance during mixed-modal instruction tuning.

Data scaling. We investigate how the benefits of mixed-modal instruction tuning scale with dataset
size by finetuning the base model on 25%, 50%, and 75% subsets of MEDMAX. We then evaluate
the average performance across twelve VQA tasks, including the full dataset (Figure 8). Results show
a clear monotonic improvement in downstream performance as dataset size increases, underscoring
both the high quality of MEDMAX.

Impact of Specific Data Subsets. Given that MEDMAX comprises multiple tasks, we examine the
impact of specific task types on downstream performance. We construct two ablated subsets: (a) all
tasks except VQA, and (b) all tasks except visual chat. We focus on VQA due to the model’s strong
performance on it, and visual chat because it makes up the largest share of the dataset. The base
model is fine-tuned on each ablated subset, and results are shown in Figure 10. Figure 10a shows that
removing VQA tasks leads to a 23% drop in VQA performance, underscoring their importance in the
data mixture. Likewise, Figure 10b shows a 17% drop in visual chat performance when chat data is
excluded, highlighting its critical role. These results emphasize the value of diverse task inclusion
in MEDMAX to support broad generalization across biomedical applications. We also present the
results for ablating individual data sources in Appendix P.

Impact of Specialized Visual Encoder. We explore whether finetuning of the Chameleon’s VQ-
GAN encoder with biomedical images before instruction-tuning with MEDMAX leads to a better
downstream model. Hence, we first finetune the base VQGAN image encoder on biomedical images.
Subsequently, we select a random subset of 800K samples from the MEDMAX dataset and tokenize
the images using the newly fine-tuned visual encoder. Then, we fine-tune the multimodal model
using both the original subset and the re-tokenized subset under identical settings. We find that the
model finetuned with the new discrete visual tokens achieves an inferior average VQA performance
(61%) to the model finetuned with the original (base) visual tokens from the VQGAN (64.1%). This
suggests a distribution shift negatively impacts the instruction-tuning process. Further exploration of
specialized visual encoders for discrete multimodal models is left for future work.

7 Conclusion

We introduce MEDMAX, the first instruction-tuning dataset designed to enable interleaved multi-
modal generation (MEDMAX-INSTRUCT) for biomedical AI. In addition to MEDMAX-INSTRUCT,
MEDMAX supports tasks such as biomedical VQA, dialogue, captioning, generation, and report

9



understanding. Models tuned on MEDMAX demonstrate strong performance across these tasks, estab-
lishing a solid foundation for next-generation multimodal biomedical assistants. We emphasize that
the MEDMAX model is not a substitute for professional medical advice, especially in emergencies.
With ongoing community feedback and expert data collection, we aim to further improve the model’s
accuracy, safety, and clinical utility.
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A Related Work

Multimodal biomedical assistants. While early biomedical language models like ChatDoctor [29],
MedicalGPT [59], and HuatuoGPT [66] advanced text-only medical reasoning (often built upon
large language models such as LLaMA or Alpaca variants), they lacked multimodal capabilities for
integrating visual information. This limitation prompted the development of multimodal biomedical
models, ranging from encoder-only architectures like BiomedCLIP [67] to generative vision-language
models capable of producing medical explanations. For instance, Med-Flamingo [38] extended
OpenFlamingo [3] to a few-shot medical VQA paradigm via continued pre-training on curated image-
text pairs. MedVInT [68], based on a pre-trained vision-language model, leveraged the PMC-VQA
dataset to improve generative VQA. LLaVA-Med [28], built upon a LLaVA model [33], refined these
capabilities using filtered PubMed data and GPT-4 generated instructions. RadFM [57] broadened
image modalities to 2D and 3D radiology data. HuatuoGPT-Vision [9] adapts the LLaVA-v1.5 [32]
architecture with Qwen2-7B [4] backbone and employs PubMedVision for large-scale medical VQA.
Med-Gemini [51] integrated advanced multimodal and retrieval mechanisms on top of a Gemini model
to enhance long-context and medical image understanding. More recently, MedTrinity-25M [58]
proposed a benchmark of over 25 million image-ROI-description triplets that will be useful for
pretraining. While MEDMAX has a smaller scale instruction-tuning data, it prioritizes efficient
instruction-tuning through careful curation. While most existing approaches center on evaluation
tasks like VQA or text-based medical chats, MEDMAX pushes beyond the boundary by demonstrating
mixed-modal generation and interleaving text-image content to further enrich clinical comprehension.

Multimodal instruction tuning. Multimodal model training typically begins by aligning modal-
ities in a shared embedding space and then perform instruction tuning to enhance conversational
capabilities [7]. LLaVA [33] was among the first to utilize multimodal instruction-following data,
generated by GPT-4, to enable rich visual conversations. MiniGPT-4 [72] constructed instruction sets
by combining image-text datasets from Conceptual Caption [48], SBU [42], and LAION [45] with
handwritten instruction templates, while InstructBLIP [11] incorporated VQA datasets to enhance
visual reasoning. Multi-Instruct [60] further diversified the instruction set by incorporating 47 multi-
modal tasks. Beyond single images, MIMIC-IT [26], LAMM [63], and Macaw-LLM [35] introduced
3D, audio, and video scenarios for broader multimodal understanding. More recent datasets, such as
LLaVAR [69], augmented visual instruction tuning with OCR results and expanded capabilities to
handle text-rich images. High-quality instruction tuning data can be combined from multiple sources:
LLaVA-1.5 [32] improved upon LLaVA [33] by incorporating diverse academic instruction tuning
data, while LLaVA-OneVision [27] extended this approach by combining data across single-image,
multi-image, and video scenarios. In this work, MEDMAX integrates multiple medical image datasets
to create high-quality instruction tuning data that enables mixed-modal generation capabilities.

Mixed-modal foundation models. Mixed-Modal foundational models use a single neural network
to process inputs of multiple modalities. The training objectives of such models comes in different
flavors. Earliest works such as BEIT-3[52] make use of masked data modeling or contrastive learning
objective from self-supervised learning field. More recent works uses generative modeling objectives
instead. Among these, some work such as UniDiffuser [5] use a diffusion objective to learn a joint
distribution of image and text in latent space, and Transfusion [71] combines diffusion for images
with autoregressive modeling for text. Alternatively, models such as Unified-IO [34], Chamaleon [37],
Emu3 [54], CM3Leon [64], and Anole [10] formulate multi-modal learning as a general sequence
modeling problem over multi-modal tokens. This autoregressive discrete decoding approaches
facilitates generation of interleaved text-image sequences while maintaining architectural simplicity.
In this work, we leverage this architectural simplicity of autoregressive mixed-modal models to
effectively train MEDMAX, enabling comprehensive biomedical instruction tuning across diverse
tasks and modalities.

B Responsible Use Statement

MEDMAX contains synthetic content generated using large language models (LLMs) conditioned
on biomedical images and captions. This content is not clinically verified and must not be used for
diagnostic, therapeutic, or decision-support purposes. Any downstream use must involve rigorous
human oversight and should be limited to research contexts only.
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Input text Input image

Output textOutput image

Figure 11: A mixed-modal foundation model is capable of understanding text and image inputs and
can generate both textual and visual outputs through a unified architecture.

C Limitations

In this work, we focus on diverse multimodal biomedical skills, including VQA, multimodal gen-
eration, visual chat, image captioning, image generation, and report understanding. While these
skills cover a broad spectrum of tasks, there remain additional possibilities that could further enhance
biomedical applications. For instance, we do not address setups that involve understanding and
generating multiple images, which are critical for applications such as counterfactual biomedical
image generation [14] and reasoning from multiple images [65]. Achieving this capability presents
significant challenges, including the lack of openly available, large-scale, high-quality multi-image
biomedical datasets and the limited context length of the pretrained (base) Chameleon model. To
bridge this gap, more efficient methods for representing image data are required, rather than always
encoding all images as 1024 tokens, which occupy a substantial portion of the model’s context length.
We leave these explorations for future work.

Table 2: Additional information about diverse biomedical dataset sources. We highlight that MEDMAX
consists data across several biomedical domains and knowledge bases.

Data source Domain Knowledge Base
LLaVA-Med-PMC Diverse PubMed Central
PMC-OA Diverse PubMed Central
Quilt-1M Histopathology YouTube
LLaVA-Med-IT Diverse PubMed Central
PubMedVision-Alignment Diverse PubMed Central
PubMedVision-IT Diverse PubMed Central
Quilt-Instruct Histopathology YouTube
VQA-RAD Radiology MedPix [36]

SLAKE Radiology
MSD [2]

CXR-8 [53]
Chaos [23]

PathVQA Pathology PEIR Digital Library [22]
PMC-VQA Radiology PubMed Central [44]
OmniMedVQA Diverse Diverse
MIMIC-CXR Chest X-ray MIMIC-CXR [21]

D More Details on Data Curation

D.1 LLaVA-Med-PMC

We curated a dataset of 37.8K medical images filtered from an initial pool of 538K images, sourced
from the data released by LLaVA-Med [28], which originates from PMC-15M [67]. The initial dataset
contained a significant number of statistical figures, as the images were extracted from research
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articles. To filter these out and retain only the desired medical images, we utilized the pretrained
BiomedCLIP [67] model to classify images based on the taxonomy defined in PMC-15M.

Our focus was on retaining images from the classes “Magnetic Resonance,” “CT,” “X-Ray,” “ECG,”
“Light Microscopy,” “Dermatology,” and “Endoscopy,” which represent the primary topics used in
LLaVA-Med. To determine class-specific confidence thresholds, we manually labeled 80 images
and evaluated the model’s predictive confidence using ROC curves, identifying optimal thresholds
through Youden’s J statistic to balance sensitivity and specificity. Additionally, we applied a heuristic
to exclude images with high prediction scores for statistical figures within the top five predictions.
This filtering process resulted in a high-quality dataset of 37.8K images, focused on key medical
imaging modalities.

D.2 PMC-OA

Further, we utilize the PMC-OA data that also consists of image-caption data curated from Pub-
MedCentral research papers. Its notable features includes its accessibility (open-access), size (1M+
instances) and diversity of biomedical imaging data (e.g., ultrasound, fMRI, endoscope, PET). To
maintain one-to-one correspondence in the data, we filter instances where a caption was aligned with
multiple sub-images. Further, we filter small biomedical images that were less than 200 pixels in
width or height in this data.

D.3 PubMedVision

In many cases, the real image-caption has inherent data noise and formatting issues. Hence, we
include the synthetically-generated PubMedVision-AlignmentVQA [66] data which utilizes GPT-
4-Vision [40] to denoise and reformat noisy internet data for biomedicine. In particular, we filter
the original data (647K) to remove multiple image instances in this data to get 504K instances, and
randomly select a subset of 100K instances for the MEDMAX mix. While this dataset can be utilized
for image captioning (input image and question as context, and the answer as context), it could not
be utilized for image generation directly. To address this, we prompt GPT-4o-mini [18] to convert
the image descriptions in the PubMedVision-AlignmentVQA data into image generation prompts:
‘Convert the image description into an image generation prompt with AI’. We show an example in
Appendix Table 7.

D.4 MIMIC-CXR

We collect chest radiographs along with the medical reports in the MIMIC-CXR [21] data. Originally,
the dataset consisted of 377K instances. We filtered it to exclude reports discussing more than one
image, reducing the dataset to 102K instances. Subsequently, we subsampled the data to decrease the
proportion of ‘No findings’ reports [8] from 20% to 10%.

E Fine-grained Statistics

We present the number of samples for each task in Table 3. In addition, we present the number of
samples for each data source in Table 4.

Table 3: Number of Tasks (in thousands) for Each Category
Task Number (in K)
Visual Chat 686
Caption Generation 160
Image Generation 160
VQA 284
MM-Instruct 88
Report Understanding and Generation 92
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Table 4: Number of Samples (in thousands) for Each Data Source
Data Source Number (in K)
PubMedVision-IT 500
PubMedVision-Alignment 100
Llava-Med-IT 75
Quilt-1M 125
Llava-Med-PMC 40
PMC-OA 150
MIMIC-CXR 92
Quilt-Instruct 110
VQA-RAD 2
SLAKE 5
PathVQA 24
OmnimedVQA 100
PMCVQA 177

F MEDMAX-INSTRUCT Data Curation Prompts

We present the GPT prompt to filter the bad captions from the real image-caption data in Table 5.
Further, we provide the prompt for generating multimodal generation conversation using GPT in
Table 6.

Table 5: Prompt to assess the quality of the caption aligned with a biomedical image in the real
image-caption data.

Evaluate whether an image description provides substantive information by analyzing it against the
following criteria:
1. Specificity: Does it contain precise details rather than vague descriptions?
2. Context: Does it provide relevant background or situational information?
3. Technical Details: Are any specific measurements, conditions, or technical terms included?
4. Purpose: Would the information be useful for professional analysis, decision-making, or
documentation?

For medical descriptions specifically, consider:
- Anatomical details
- Condition characteristics
- Observable features
- Diagnostic relevance

Format your response as follows:
1. Analysis: Briefly explain why the description is or isn’t informative (2-3 sentences)
2. Conclusion: End with either "The answer is: Yes" or "The answer is: No"

Example:

Description: Juvenile polyp or retention polyp is present.
Output: The description identifies a specific medical condition (juvenile/retention polyp) and confirms
its presence, which is diagnostically relevant. While brief, this information is clinically useful for
medical assessment and treatment planning.
The answer is: Yes

Note: Evaluate only the information provided in the description without making assump-
tions about missing details.

Description: [CAPTION]
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Table 6: Prompt to generate multimodal generation conversation using the caption in the real
image-caption data.

## Task
Create natural, single-turn conversations that demonstrate how users might seek help understanding
biomedical data descriptions without access to actual images.

## Input Format
A brief, clinical description of biomedical data, focusing on: Measurements, Observed structures,
Technical parameters, and Relevant findings.

## Output Requirements

### 1. User Question
Generate a natural question that: Addresses specific medical findings or terminology, Avoids
references to images, figures, or descriptions, Reflects a general understanding level, and Focuses on
understanding clinical significance

Avoid phrases like: "In this image...", "Based on the description...", "According to the figure...", and
"Can you explain what I’m seeing..."

Use formats like: Ẅhat does it mean when the common bile duct is 15mm?", "Can you explain what
MRCP tells us about the pancreas?", "Is a dilated pancreatic duct concerning?"

### 2. AI Response
Structure the response with:

#### a) Clinical Interpretation: Begin with a clear, direct answer, Define medical terminology, Explain
normal vs. abnormal values, Discuss clinical implications, Use accessible language while maintaining
accuracy.

#### b) Visual Context: Insert ‘<image>’ placeholder where relevant, Reference anatomical
relationships, and Provide size comparisons to familiar objects when applicable.

#### c) Key Components: Diagnostic significance, Related conditions, Normal reference ranges, and
Potential next steps or considerations

### Style Guidelines

#### Language: Professional but accessible, Define technical terms, Use analogies when helpful, and
Maintain clinical accuracy

#### Tone: Informative, Objective, and Reassuring without minimizing concerns

#### Structure: Clear topic sentences, Logical flow, Concise paragraphs, and Supporting details

Input: [CAPTION]

G Data creation templates for captioning, generation, and report
understanding

Table 8 and Table 9 present complementary approaches to image captioning, with the former focusing
on concise, brief descriptions and the latter encouraging comprehensive, detailed analyses of image
content. Table 10 demonstrates various prompts for generating images from text descriptions, using
diverse language to ensure accurate visual representation of textual input. Table 11 showcases
prompts for medical report generation from diagnostic images, emphasizing structured radiological
reporting formats and professional clinical observations. Table 12 illustrates prompts for generating
medical images from clinical reports, focusing on accurate visualization of documented pathological
findings and diagnostic features.

19



Table 7: Converting the image description in the PubMedVision-AlignmentVQA to the image
generation prompt using LLM.

• Image description in the PubMedVision-AlignmentVQA: The image shows a chest radiograph in
the anteroposterior (AP) view. The heart, mediastinal structures, and trachea appear to be displaced to
the contralateral side, indicating dextrocardia, a condition where the heart is situated on the right side
of the chest rather than the normal left side. The lung fields appear relatively clear, with no obvious
abnormalities visible.

• Image generation prompt using LLM: Create an image of a chest radiograph in the anteroposterior
(AP) view. Display the heart, mediastinal structures, and trachea displaced to the opposite side,
illustrating the condition of dextrocardia, where the heart is located on the right side of the chest.
Ensure the lung fields appear relatively clear and show no obvious abnormalities.

Table 8: List of prompts examples for concise image captioning.

• Describe the image concisely: [IMAGE]

• Provide a brief description of the given image: [IMAGE]

• Offer a succinct explanation of the picture presented: [IMAGE]

• Summarize the visual content of the image: [IMAGE]

• Give a short and clear explanation of the subsequent image: [IMAGE]

• Share a concise interpretation of the image provided: [IMAGE]

• Present a compact description of the photo’s key features: [IMAGE]

• Relay a brief, clear account of the picture shown: [IMAGE]

• Render a clear and concise summary of the photo: [IMAGE]

• Write a terse but informative summary of the picture: [IMAGE]

H Evaluation Setup Details

H.1 Biomedical VQA

We include the test set of VQA-RAD (radiology), SLAKE (semantic knowledge over radiology),
PathVQA (pathology), the entire QuiltVQA (histopathology). These datasets ask closed-ended
(yes/no) and open-ended questions that require one word, phrase or sentence answer. Here, we
use exact match to assess the accuracy of the models on the closed-ended questions. However, the
evaluation on the open-ended questions is intrinsically harder due to the subjectivity of the answers.
To avoid such challenges, we utilize an LLM (GPT-4o-mini) that compares the predicted answer
against the ground-truth answer to decide where the model outputs are reliable or not. For each
open-ended question, it gives a score of 0 or 1. We provide the evaluation template in Appendix
Table 15. Additionally, we also include medical VQA with multiple-choice questions datasets such
as test set of the PMC-VQA (diverse biomedical domains), validation set of PathMMU (pathology)
[50], and ProbMed (radiology) [61] dataset. In addition, we assess the performance of an hidden split
of 1000 questions from the OmniMedVQA [17] dataset. Overall, we perform evaluations on twelve
VQA tasks across diverse biomedical domains, skills, and question formats.

H.2 Summary Table

We provide the summary of the tasks and metrics in Table 13.
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Table 9: List of prompts examples for detailed image captioning.

• Describe the following image in detail: [IMAGE]

• Provide a detailed description of the given image: [IMAGE]

• Give an elaborate explanation of the image you see: [IMAGE]

• Share a comprehensive rundown of the presented image: [IMAGE]

• Offer a thorough analysis of the image: [IMAGE]

• Explain the various aspects of the image before you: [IMAGE]

• Clarify the contents of the displayed image with great detail: [IMAGE]

• Characterize the image using a well-detailed description: [IMAGE]

• Break down the elements of the image in a detailed manner: [IMAGE]

• Walk through the important details of the image: [IMAGE]

Table 10: List of prompts examples for image generation from text descriptions.

• Generate a visual representation based on the following description: [CAPTION]

• Create a depiction that accurately illustrates this description: [CAPTION]

• Generate an accurate representation aligned with this description: [CAPTION]

• Create a detailed depiction that reflects the information in this description: [CAPTION]

• Produce a clear visual based on the provided description: [CAPTION]

• Design a representation that captures the essence of the following text: [CAPTION]

• Generate a graphic aligned with this description: [CAPTION]

• Create an image that visualizes the details in the following text: [CAPTION]

• Develop a visual based on the description provided: [CAPTION]

• Illustrate the scenario described in the following text: [CAPTION]

I Additional Evaluation Details

I.1 VQA Open-Ended Evaluation with LLM

Table 15 presents the template for evaluating the models on the open-ended questions of the VQA
datasets. Our prompt is motivated from the GPT evaluation prompt in https://github.com/
jinlHe/PeFoMed/tree/main.

I.2 Evaluation Templates and Generation Modes

We present the templates and generation modes for diverse tasks in our evaluation suite in Table
16. Following the approach used in Chameleon, we suppress the probability of visual tokens in the
output to zero, ensuring that only text content is generated for VQA tasks. Additionally, ‘image-gen’
indicates that the probabilities for the text tokens are suppressed to zero to ensure that the model
just generates an image in the response. Further, ‘any-gen’ highlights that the model is free to
generate multimodal content in the response. We perform greedy decoding in our experiments.
Across our experiments, we use greedy decoding (temperature = 0) to generate text content and set
the temperature to 0.7 for generating image content in the responses.

J Model and Finetuning Details

Chameleon [37] represents the raw images as discrete visual tokens using a VQGAN [13], and
the text data into discrete text tokens using BPE tokenizer [46]. Subsequently, each instance in
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Table 11: List of prompts for image-to-report generation.

• Generate a detailed medical report for this image following standard radiological reporting format.

• As a radiologist, provide a comprehensive medical report for this diagnostic image.

• Write a structured medical report describing all findings visible in this image.

• Examine this medical image and document your observations in a standard clinical report format.

• Create a detailed clinical report based on your analysis of this diagnostic image.

• Review this medical image and generate a complete radiological report including all relevant findings.

• Analyze this diagnostic image and provide a structured medical report with your observations.

• Acting as an experienced radiologist, document your interpretation of this image in a medical report.

• Evaluate this medical image and create a comprehensive clinical report detailing all findings.

• Provide a thorough radiological report based on your examination of this diagnostic image.

Table 12: List of prompts for report-to-image generation.

• Generate a medical image that accurately represents all findings described in this report.

• Create a diagnostic image that visualizes all the clinical observations mentioned in this report.

• Synthesize a medical image that corresponds to the findings detailed in this radiological report.

• Based on this clinical report, generate a medical image showing all described features and abnormali-
ties.

• Produce a diagnostic image that illustrates all the medical findings documented in this report.

• Create a medical image that faithfully represents the pathological findings described in this report.

• Generate a diagnostic image that matches all the clinical observations in this medical report.

• Visualize this medical report as a diagnostic image showing all mentioned findings and characteristics.

• Transform this radiological report into a corresponding medical image with all described features.

• Based on the clinical descriptions in this report, generate an accurate medical image representation.

the training dataset is represented as a sequence of discrete tokens, and the model is trained to
predict the next token based on the preceding tokens in the sequence, following an autoregressive
objective. The model consists of a vocabulary size of 65536 where 8192 are visual tokens apart
from beginning of image and end of image tokens. In addition, the vocabulary includes a reserved
token ‘<reserved08706>’ that separates the instruction (context) from the response (output) for
instruction-tuning. Post-tokenization, the entire MEDMAX data consists 1.7B tokens where 0.7B and
1B are visual and text tokens, respectively.

While the Chameleon-7B model weights are publicly available, they were safety-tuned and support
mixed-modal inputs and text-only output to be used for research purposes.3 To unlock the mixed-
modal output capabilities, Anole [10] selectively finetunes the output embeddings of the image
tokens using high-quality images from LAION [45]. This strategy does not interfere with the input
mixed-modal understanding and text-only output abilities of the original Chameleon model.

We fine-tune the Anole [10], an instantiation of Chameleon [37], on the MEDMAX dataset, which
consists of 1.47 million instances. Specifically, we employ low-rank adaptation (LoRA) [16] for
fine-tuning, using r = 16, α = 16, and dropout = 0.05. The target modules include the {query,
key, value, output, up, down, and gate} projection matrices. In total, this approach updates 40M
parameters during fine-tuning. We train the model for 3 epochs using a cosine learning rate schedule
(peak LR=1e-4 with a warmup ratio of 0.1) and a batch size of 8. The training is conducted on 8
Nvidia L40S GPUs (46GB GPU VRAM each).

3https://ai.meta.com/blog/meta-fair-research-new-releases/
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Table 13: Lists of tasks in the MEDMAX evaluation suite. We perform comprehensive evaluation
of the MEDMAX-finetuned mixed-modal model across diverse biomedical multimodal tasks. We
note that BioMedCLIP can be used to assess the similarity between two images, which is referred to
as Image-Image BioMedCLIPScore. We abbreviate visual question answering as VQA, multi-choice
questions as MCQ, exact matching as EM, and large language model as LLM.

Task Source Metric
Biomedical Visual Question Answering
VQA (Closed) VQA-RAD [25] Accuracy (EM)
VQA (Closed) SLAKE [31] Accuracy (EM)
VQA (Closed) PathVQA [15] Accuracy (EM)
VQA (Closed) Quilt-VQA [47] Accuracy (EM)
VQA (Open) VQA-RAD [25] Accuracy (LLM)
VQA (Open) SLAKE [31] Accuracy (LLM)
VQA (Open) PathVQA [15] Accuracy (LLM)
VQA (Open) Quilt-VQA [47] Accuracy (LLM)
VQA (MCQ) PMC-VQA [68] Accuracy (EM)
VQA (MCQ) OmniMedVQA [17] Accuracy (EM)
VQA (MCQ) PathMMU [50] Accuracy (EM)
VQA (MCQ) ProbMed [61] Accuracy (EM)
Biomedical Image Captioning and Generation
Image captioning PMC-OA [30] BioMedCLIPScore
Image generation PMC-OA [30] BioMedCLIPScore
Image captioning Quilt[19] BioMedCLIPScore
Image generation Quilt [19] BioMedCLIPScore
Image captioning MIMIC-CXR [21] BioMedCLIPScore
Image generation MIMIC-CXR [21] BioMedCLIPScore
Biomedical Visual Chatbot LLaVA-Med [28] LLM score

Biomedical Multimodal Generation (NEW) PMC-OA[30]
Quilt [19]

LLM score
Image-Image BioMedCLIPScore

Table 14: Number of examples for each Task and data source in the evaluation dataset.
Task Data Number of Examples
VQA (Closed-ended) VQA-RAD 251
VQA (Closed-ended) SLAKE 355
VQA (Closed-ended) PathVQA 1000
VQA (Open-ended) VQA-RAD 200
VQA (Open-ended) SLAKE 706
VQA (Open-ended) PathVQA 1000
VQA PMC-VQA 1000
VQA (Closed-ended) Quilt-VQA 343
VQA (Open-ended) Quilt-VQA 940
VQA Omnimed-VQA 1000
VQA PathMMMU 379
VQA ProbMed 1000
Image caption PMC-OA + Quilt + MIMIC 300
Image generation PMC-OA + Quilt + MIMIC 300
Chat LLaVA-Med 193
MMGen PMC-QA+Quilt 500
Total 9467

K Additional VQA Results

In Table 5.1, we compare various multimodal foundation models on VQA datasets. Our objective is to
evaluate the performance of the MEDMAX model against the task-specific fine-tuning of LLaVA Med
on diverse VQA datasets independently. The results for close-ended questions from the VQA-RAD,
SLAKE, and PathVQA datasets are presented in Table 17. We observe that MEDMAX outperforms
LLaVA Med finetuned on the VQA datasets for three epochs, achieving improvements of 8.8%
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Table 15: Template for evaluating the correctness of the predicted answer in comparison to the
ground-truth answer for the open-ended questions in the VQA datasets.

Given a question about an medical image, there is a correct answer to the question and an answer to be
determined. If the answer to be determined matches the correct answer or is a good enough answer to
the question, output 1; otherwise output 0. Evaluate the answer to be determined (1 or 0).

Question:
question about the medical image: [question]

Answers:
correct answer (ground truth): [true answer]
answer to be determined: [generated answer]

Task:
Given a question about an medical image, there is a correct answer to the question and an answer to be
determined. If the answer to be determined matches the correct answer or is a good enough answer to
the question, output 1; otherwise output 0. Evaluate the answer to be determined (1 or 0).

Output Format:
Correctness: [your judgment]

Table 16: Template and generation modes for the downstream evaluation of the MEDMAX
model.

Task Template Generation Mode
VQA-RAD (Open/Closed)
PathVQA (Open/Closed)
SLAKE (Open/Closed)

ProbMed

<image>[question] Text

QuiltVQA (Closed) <image>Answer the question based on this image and respond ’yes’ or ’no’.
[question] Text

QuiltVQA (Open) <image>Answer the question based on this image.
[question] Text

PMC-VQA
OmniMedVQA

PathMMU

<image>[question]
[choice A]
[choice B]
[choice C]
[choice D]

Text

Captioning <image>Please describe this picture. Text
Generation <caption> Image

Multimodal generation <question> Any
Visual chat (Conversation) <image>[question] Text
Visual chat (Description) <image>Analyze the image in a comprehensive and detailed manner. Text

on VQA-RAD, 24.2% on SLAKE, and 2.3% on PathVQA. Furthermore, we note that MEDMAX
performs better than LLaVA Med finetuned for 15 epochs on individual datasets for two out of
the three VQA datasets (SLAKE and PathVQA). These results highlight that a single MEDMAX
model checkpoint is not only highly capable but also more practical for users, eliminating the need to
maintain separate task-specific model checkpoints for popular VQA datasets.

In Table 5.1, MedMax has been finetuned on the training set of several datasets to provide expert-level
knowledge and teach VQA skills. However, datasets including PathMMU, ProbMed, and QuiltVQA
were entirely out-of-distribution. We compile the accuracy of the models on in-distribution and
out-of-distribution splits of the VQA datasets in Table 18. While OOD evaluation leads to a drop
in performance in MedMax, it performs the same or better than competing models for these tasks.
However, we see a significant improvement in the in-distribution tasks.
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Table 17: Comparison between MEDMAX model and the task-specific finetuned LLaVA Med
models on the closed-ended questions of VQA-RAD, SLAKE, and PathVQA datasets.

VQA-RAD (%) SLAKE (%) PathVQA (%)
LLaVA-Med-Finetuned (3 epochs) [28] 66.5 64.2 89.5
LLaVA-Med-Finetuned (15 epochs) [28] 84.2 (+17.7) 85.3 (+21.1) 91.2 (+1.7)
MEDMAX (Ours) 75.3 (+8.8) 88.4 (+24.2) 91.8 (+2.3)

Table 18: Comparison between the model performances on the in-distribution and out-
distribution split of the VQA datasets with respect to MEDMAX.

In-distribution Out-of-distribution
Chameleon 37.3 43.5
Llava-Med-v1.5 33.9 42.1
HuatuoGPT-Vision 52.1 53.0
MedMax (Ours) 71.6 53.0

L Additional Image Captioning Results

We compare the performance of the MEDMAX model with other relevant captioning models on the
image captioning task using BioCLIPMedScore. The results are presented in Table 20. We observe
that the average BioMedCLIPScore for our model is better LLaVA Med-v1.5 and at par with baselines
such as HuatuoGPT-Vision, GPT-4o-mini, and GPT-4o. Overall, this underscores the capability of
the MEDMAX model in training robust mixed-modal models that excel in diverse biomedical tasks.

M Transfer to Text-only Medical Benchmarks

Although MEDMAX is a multimodal instruction tuning dataset, we test our model on just a ‘text-only’
benchmark – MedQA-USMLE [20]. Specifically, we evaluate it on the test split of MedQA-USMLE.4
We present the results in Table 19. Interestingly, we find that MEDMAX outperforms LLaVA-med-1.5
and Chameleon by a huge margin without any task-specific finetuning. This highlights that diverse
and high-quality instruction tuning data can benefit transfer from multimodal (MM) to text too.

Table 19: Transfer learning evaluation (multimodal to text-only). We compare the model perfor-
mances on text-only biomedical evaluation dataset, MedQA-USMLE.

Model Score
Zero-shot Evaluation of Open Multimodal Models
LLaVA-Med-1.5 22.2
Chameleon 31.5
MedMax 43.7
Text-only Biomedical LLMs
BioMedLM [6] (Finetuned on MedQA) 54.7
MedPaLM2 [49] (Few-shot Prompting) 85.4

N Licenses

We present the licenses of the individual datasets used in the construction of MEDMAX in Table 21.

O Domains Information

We present the domains covered in the constituents of the MEDMAX dataset in Table 22.

4https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options
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Table 20: Comparison between MEDMAX model and other baselines on the biomedical image
captioning using BioMedCLIPScore.

Average PMC Quilt MIMIC-CXR
LLaVA-Med-v1.5 [28] 0.22 0.25 0.25 0.17
HuatuoGPT-Vision [66] 0.38 0.38 0.36 0.40
GPT-4o [18] 0.38 0.40 0.37 0.38
MedMax (Ours) 0.38 0.37 0.36 0.41

Table 21: Licenses for various medical vision datasets
Dataset License
PubMedVision Apache-2.0
VQA-RAD CC0-1.0
SLAKE CC-BY-4.0
PathVQA MIT
PMC-VQA CC BY-SA
PMC-OA Open Database License
Llava-Med Microsoft Research License
Quilt CC-BY-NC-ND-3.0
MIMIC-CXR PhysioNet Credentialed Health Data License 1.5.0

P Ablation Study Per Data Source

Here, we study the impact of diverse data sources in the MEDMAX data on the downstream perfor-
mance. Specifically, we train different medmax variants on a small subset of twelve individual data
sources and evaluate the models across diverse benchmarks – vqa, chat, captioning, and generation.
We present the results in Table 23.

The results highlight that: (a) the VQA-RAD and SLAKE datasets enable the strongest performance
on VQA tasks; (b) LLaVA-Med-IT, PubMedVision, and Quilt-Instruct achieve the best results on
visual chat; (c) PubMedVision performs best on captioning; and (d) PMC-OA shows the most
improvement on the generation task. In addition, we observe that individual data sources demonstrate
generalizability across tasks. For instance, training with VQA-RAD and SLAKE not only yields
strong performance on VQA but also on chat, captioning, and generation tasks—even though they
are primarily designed for VQA. This may be attributed to their expert-level annotations, which help
elicit stronger capabilities from the base model.

Further, we clarify that the evaluation scores are averaged across several sub-categories (e.g., the
captioning task includes PMC-OA, Quilt, and Reports). A more fine-grained analysis reveals that
Quilt-1M provides significant benefits on evaluation subsets that require histopathology knowledge.
For example, we present the breakdown in Table 24. We observe that the model trained solely on
Quilt-1M significantly outperforms the one trained only on MIMIC-CXR (reports) in both captioning
and generation tasks for the Quilt subset. While the average scores suggest that the MIMIC-CXR
model performs better overall. But, the results also highlight that Quilt-1M contributes meaningfully
to broader domain coverage in our MedMax dataset.

Q Distribution of diagnostic procedures

For each task, we prompted a GPT-4o to assign a label from a union of radiology modalities and
histopathology sub-specialties based on the text component of each sample. We computed per-task
label percentages and aggregated an overall distribution. We present the statistics for the train and
eval datasets in Table 25 and 26, respectively.

R Qualitative Examples

We present the qualitative examples in Figure 12 and Figure 13.
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Table 22: Evaluation Domains and Included Modalities
Constituent Dataset Domains Included
PathVQA Cardiovascular, Gastrointestinal, Genitourinary, Hematologic, Neuro-

logic, Respiratory etc.
QuiltVQA Bone, Breast, Cytology, Dermatology, Endocrine, Gastrointestinal, Gen-

itourinary, Gynecologic, Head and Neck, Hematology, Neurology, Pul-
monary, Renal, Soft Tissue

PMC-VQA Radiology, Pathology, Microscopy, Signals, Generic biomedical illustra-
tions

OmniMedVQA Digital Photography, Fundus Photography, Infrared Reflectance Imaging,
Magnetic Resonance Imaging, Optical Coherence Tomography, Der-
moscopy, Endoscopy, Microscopy Images, Ultrasound

Table 23: Ablation study for diverse data sources.
Training Data Source VQA Chat Captioning Generation Average
VQA-RAD 45.3 27.9 26.7 16.1 39.2
SLAKE 45.1 22.2 27.9 17.8 28.3
LLaVA-Med-IT 24.1 45.4 26.1 16.1 27.9
PMC-OA 35.7 31.2 25.9 18.0 27.7
PubMedVision 15.5 47.2 28.9 16.5 27.0
PathVQA 40.3 24.2 25.6 17.5 26.9
PMC-VQA 34.8 29.7 25.5 17.3 26.8
Quilt-Instruct 4.6 40.8 25.5 17.5 22.1
LLaVA-Med-PMC 13.6 27.0 26.0 16.3 20.7
OmniMedVQA 7.1 26.6 25.6 16.1 18.9
MIMIC-CXR 3.8 27.9 19.1 16.7 16.9
Quilt-1M 8.6 24.4 20.1 13.0 16.5

Table 24: Captioning and generation performance by training with Quilt and Report data.
Metric MIMIC-CXR Quilt-1m
Caption (Quilt) 9.1 23.4
Caption (Report) 38.5 23.0
Generation (Quilt) 12.2 19.4
Generation (Report) 36.3 13.9
Caption (Avg) 23.8 23.2
Generation (Avg) 24.2 16.7

Table 25: Distribution of diagnostic procedures in MEDMAX-train data.
Category VQA (%) Report Gen (%) Visual Chat (%) Image Gen (%) Multimodal Gen (%) Report Cond ImageGen (%) Image Caption (%) Total (%)
Xray 6.0 89.0 3.0 9.0 - 84.0 6.0 28.1
CT 12.0 2.0 11.0 27.0 8.0 3.0 19.0 11.7
Dermatopathology 12.0 - 16.0 12.0 13.0 - 20.0 10.4
MRI 11.0 - 15.0 18.0 2.0 - 7.0 7.6
Pulmonary 5.0 4.0 7.0 4.0 6.0 13.0 3.0 6.0
Gastrointestinal 8.0 - 5.0 2.0 18.0 - 4.0 5.3
Neuropathology 7.0 - 5.0 2.0 9.0 - 2.0 3.6
Fluorescence 3.0 - 3.0 5.0 4.0 - 8.0 3.3
Soft Tissue 8.0 - 4.0 2.0 6.0 - 2.0 3.1
Hematopathology 3.0 - 3.0 4.0 3.0 - 3.0 2.3
Gynecologic 4.0 - 1.0 - 7.0 - 4.0 2.3
Radioisotope 2.0 5.0 4.0 1.0 1.0 - 2.0 2.1
Others 2.0 - 4.0 2.0 4.0 - 3.0 2.1
Bone 4.0 - 2.0 1.0 5.0 - 2.0 2.0
Dot 5.0 - 2.0 2.0 - - 4.0 1.9
Ultrasound 3.0 - 3.0 3.0 1.0 - 1.0 1.6
PET - - 4.0 4.0 3.0 - - 1.6
Mitotic 2.0 - 1.0 2.0 2.0 - 3.0 1.4
Genitourinary 2.0 - 2.0 - 4.0 - 1.0 1.3
Renal 1.0 - 3.0 - 2.0 - - 0.9
fMRI - - 1.0 - 2.0 - 3.0 0.9
Endoscope - - 1.0 - - - 3.0 0.6
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Table 26: Distribution of diagnostic procedures in MEDMAX-eval data.
Category Visual Chat (%) Report Gen (%) Image Caption (%) Image Gen (%) VQA (%) Report Cond ImageGen (%) Total (%)
Xray 4.0 82.0 3.0 10.0 10.0 86.0 32.5
CT 13.0 1.0 26.0 18.0 12.0 1.0 11.8
Dermatopathology 26.0 - 22.0 14.0 5.0 - 11.2
MRI 13.0 - 17.0 13.0 10.0 - 8.8
Pulmonary 6.0 9.0 2.0 2.0 9.0 13.0 6.8
Hematopathology 11.0 - 6.0 3.0 5.0 - 4.2
Gastrointestinal 7.0 - 5.0 4.0 5.0 - 3.5
Neuropathology 3.0 - 5.0 4.0 7.0 - 3.2
Fluorescence 2.0 - 1.0 8.0 5.0 - 2.7
Bone 3.0 - 2.0 3.0 7.0 - 2.5
Soft Tissue 1.0 - 3.0 3.0 5.0 - 2.0
Renal - - 2.0 4.0 5.0 - 1.8
Mitotic 2.0 - 2.0 3.0 3.0 - 1.7
Dot 1.0 - 2.0 4.0 2.0 - 1.5
Radioisotope - 8.0 1.0 - - - 1.5
Gynecologic 3.0 - - 3.0 2.0 - 1.3
Ultrasound 1.0 - - 1.0 5.0 - 1.2
Others 1.0 - - 2.0 2.0 - 0.8
fMRI 2.0 - - - - - 0.3
Endoscope 1.0 - - 1.0 - - 0.3
PET - - 1.0 - - - 0.2
Genitourinary - - - - 1.0 - 0.2

Multimodal Generation

 #### a) Clinical Interpretation
A nodular lesion with a cystic component in the left cerebellar hemisphere means there is an abnormal growth in
this part of the brain, accompanied by a fluid-filled area. The measurement of 23 × 31 mm refers to the size of the
lesion in anteroposterior and transverse dimensions. Vasogenic edema indicates that the lesion is causing swelling in
the surrounding brain tissue due to fluid leakage from blood vessels, which is a common response to the presence
of a lesion. The "mass effect" refers to the pressure or displacement the lesion and edema exert on nearby brain
structures.

In the context of the cerebellum, this can potentially affect balance and coordination, depending on the size and
specific location. The enhancement with imaging contrast often suggests active pathological processes like a tumor,
inflammation, or infection.

#### b) Visual Context <image>
Imagine the cerebellum as an area roughly the size of a tangerine at the back part of your brain. The lesion is a
spot within this area, and the accompanying cyst and edema can create pressure, similar to how an inflating balloon
might press against the inside of a box.

#### c) Key Components
- **Diagnostic significance:** Such lesions might suggest tumorous growths or other pathologies needing further
evaluation.
- **Related conditions:** Potential diagnoses include astrocytoma, metastasis, or abscess, among others.
- **Normal reference ranges:** Normal brain tissue would not exhibit such changes.
- **Potential next steps:** Further diagnostic steps might include surgical evaluation or biopsy, as well as
consultation with neurology or oncology specialists to determine the lesion's nature and appropriate treatment.

What does it mean when a nodular lesion in the brain's left cerebellar hemisphere has a cystic component and causes vasogenic edema?

<image>

Image CaptioningVisual Chat

The staining technique used in this
image is hematoxylin and eosin
(H&E) stain.

The image shows a chest X-ray of the thoracic cavity,
revealing an opacification or increased density in the right
hemithorax (right side) compared to the left hemithorax.
The heart appears enlarged and shifted towards the
affected side, indicating a significant mass effect on the
mediastinal structures. This radiographic finding is
consistent with a large pleural effusion or fluid
accumulation within the right lung field, which has caused
displacement of the cardiac silhouette.

What is the staining
technique used?

Please describe this picture.

Generate a chest x-ray with
small right-sided pleural effusion.

Image Generation

Figure 12: Positive qualitative examples. Sample generations from the MEDMAX model across diverse
tasks: multimodal (interleaved) generation, visual chat, image captioning, and image generation. We verify with
experts cited in acknowledgments that the provided medical information is high quality and correct.

28



Multimodal Generation

**a) Clinical Interpretation**

VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) and STAT3 (Signal Transducer and Activator of Transcription 3) are
proteins that play significant roles in cell signaling pathways, influencing cell growth and survival. In osteosarcoma cells,
which are a type of bone cancer cells, these proteins can affect the arrangement of the cytoskeleton, an essential structure
responsible for maintaining cell shape, enabling intracellular transport, and facilitating cell movement.

When VEGFR2 is inhibited by treatments like apatinib or when its expression is reduced via knockdown techniques, the
resulting changes in the cytoskeleton can lead to decreased cell proliferation and mobility. Similarly, knocking down STAT3
also alters cytoskeletal dynamics, potentially impairing the cancer cells' ability to invade or metastasize. Both of these
interventions aim to disrupt the cancer cells' usual adaptations that favor tumor growth and spread.

**b) Visual Context**
<image>
Imagine the cytoskeleton as a dynamic scaffold within the cell, somewhat akin to the framework of a building. It's made up
of various proteins that are constantly assembling and disassembling, which allows the cell to change shape and move.
Under the microscope, you would see these components as intricate networks that, when affected by treatments targeting
VEGFR2 and STAT3, appear differently aligned or possibly less organized, highlighting their disrupted function.

**c) Key Components**
The clinical significance of these findings lies in the potential for targeted therapies that inhibit VEGFR2 and STAT3 to
effectively impair the aggressive behaviors of osteosarcoma cells. This could lead to the development of new treatments that
slow down tumor progression. Next steps in research could include exploring combination therapies that further enhance
these effects or conducting clinical trials to assess the efficacy and safety of such targeted treatments in patients with
osteosarcoma.

How do VEGFR2 and STAT3 affect the cytoskeletal structure in osteosarcoma cells?

Image CaptioningVisual Chat

The image displays a microscopic view of cells,
specifically focusing on the cytoskeletal structure
within these cells. The background is predominantly
blue due to DAPI staining which binds strongly to
DNA and highlights cell nuclei in bright white
against a dark background. Within each nucleus,
there are several green fluorescent structures that
represent actin filaments stained with phalloidin. 

Are there both chest X-rays 
and CT scans in the image?

Please describe this picture.

Image Generation

<image>

Yes, the figure includes a combination 
of chest X-ray images (left) and 
computed tomography (CT) scan 
images (right).

generate an image of 
hypertrophic cells within the 
lacunae 

Figure 13: Negative qualitative examples. Sample generations from the MEDMAX model across diverse
tasks: multimodal (interleaved) generation, visual chat, image captioning, and image generation. Pitfalls include
poor image generation, confusion between segments within an image, and misaligned captions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim to propose MEDMAX, a novel instruction-
tuning datasets for training mixed-modal biomedical assistants. The entire paper is centered
around the data curation process and the performance of the model trained with the MED-
MAX data.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations in the conclusion as well as Limitations
section in the Appendix C.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not have any theoretical proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: (a) We describe every step of data curation in the paper. (b) We provide the
details of the base model and finetuning setup in the paper. (c) We provide the evaluation
data and metrics details in paper. (d) We provide all the code, data, and models required to
reproduce the results on the project github repo.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The project website contains all the relevant links to the github (for code) and
huggingface (for model and data) used to access the open parts of the dataset. In addition,
we provide the instructions required to get access to the closed part of the datasets from the
original sources like MIMIC-CXR and Quilt-1M.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental setup in detail in §4.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Under the limited compute resources, we could not train many versions of the
MEDMAX model on the same data. However, the evaluations were conducted on popular
VQA, visual chat, and our self-designed evaluation datasets with many instances to ensure
the standard error is low.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental setup section §4 provides details about the compute resources
required to train the model. More information is also presented on our github repo.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is single-blind submission to ensure full transparency as per Datasets
and Benchmarks track.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction mentions the usefulness of having an unified native multi-
modal biomedical assistant. However, there are safety challenges to using AI as biomedical
assistant in case of critical emergencies. We expect the patients to consult the doctors in
such cases instead of relying on our system. We have discussed this in the conclusion.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification:Our dataset combines our synthetically generated MEDMAX-INSTRUCT, which
leverages information from popular image-text datasets, with other widely accepted biomed-
ical sources. Additionally, we recognize the potential for image generation capabilities to
be misused in creating objectionable content. We highlight that incorporating sophisticated
Not Safe For Work (NSFW) filters prior to image generation could help mitigate the risk of
producing unsafe content.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The MEDMAX dataset is released with the Apache-2.0 license. We cite all
the source datasets in the paper. In addition, we respect the individual licenses of the data
sources and do not release the parts of the data which require special permissions to access
them. However, the huggingface dataset ‘README’ clearly describes the procedure to
acquire the closed parts of the dataset. Further, we highlight that no private user data was
used in the construction of this data, and all third-party data complies with the respective
licenses (Appendix 21).

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We provide the details of MEDMAX-INSTRUCT data creation in §3.1. In
addition, the MEDMAX model is uploaded on huggingface and the instructions to run it are
mentioned in the github repo.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform large-scale crowdsourcing experiments. The medical
experts who volunteered to help with preliminary qualitative analysis are mentioned in the
acknowledgement section.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform any experiments with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: (a) LLMs were used for synthetic data generation and attributed with citations
in the dataset and experimental sections. (b) LLMs like ChatGPT were used for proofreading
the content for grammatical correctness but the entire paper is written and planned by the
authors.
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