
Reliable Algorithm Selection for Machine Learning-Guided Design

Clara Fannjiang 1 Ji Won Park 1

Abstract

Algorithms for machine learning-guided design,
or design algorithms, use machine learning-based
predictions to propose novel objects with desired
property values. Given a new design task—for ex-
ample, to design novel proteins with high binding
affinity to a therapeutic target—one must choose
a design algorithm and specify any hyperparam-
eters and predictive and/or generative models in-
volved. How can these decisions be made such
that the resulting designs are successful? This pa-
per proposes a method for design algorithm selec-
tion, which aims to select design algorithms that
will produce a distribution of design labels satisfy-
ing a user-specified success criterion—for exam-
ple, that at least ten percent of designs’ labels ex-
ceed a threshold. It does so by combining designs’
predicted property values with held-out labeled
data to reliably forecast characteristics of the label
distributions produced by different design algo-
rithms, building upon techniques from prediction-
powered inference (Angelopoulos et al., 2023).
The method is guaranteed with high probability
to return design algorithms that yield successful
label distributions (or the null set if none exist), if
the density ratios between the design and labeled
data distributions are known. We demonstrate the
method’s effectiveness in simulated protein and
RNA design tasks, in settings with either known
or estimated density ratios.

1 Design Algorithm Selection
Machine learning-guided design aims to propose novel ob-
jects, or designs, that exhibit desired values of a property of
interest by consulting machine learning-based predictions of
the property in place of costly and time-consuming measure-
ments. The approach has been used to design novel enzymes

1Prescient Design, Genentech. Correspondence to: Clara Fan-
njiang <wong-fannjiang.clara@gene.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Design algorithm selection. Different design algorithm
configurations (shown as robots) produce different distributions
of designs (e.g., biological sequences). Distributions of designs’
predicted property values (x-axis) and labels (y-axis) also differ
(blobs). Before the costly step of acquiring design labels, design
algorithm selection aims to choose design algorithm configurations
that will satisfy a success criterion—for example, that the average
design label surpasses a threshold (horizontal black line). This is
challenging because designs’ predictions can be misleading; true
labels can be low even if predictions are high (e.g., rightmost blob).

that efficiently catalyze reactions of interest (Greenhalgh
et al., 2021), photoreceptors with unprecedented light sen-
sitivity for optogenetics (Bedbrook et al., 2019), and anti-
bodies with enhanced binding affinity to therapeutic targets
(Gruver et al., 2023), among many other applications. The
methods used in such efforts, which we call design algo-
rithms, are varied. Some entail sampling from a generative
model that upweights objects with promising predictions
(Brookes et al., 2019; Biswas et al., 2021); others start with
initial candidates and iteratively introduce modifications
that yield more desirable predictions (Bryant et al., 2021;
Thomas et al., 2025). To propose designs, one must choose
among these design algorithms. Many have consequential
hyperparameter(s) that must be set, such as those that nav-
igate a trade-off between departing from training data to
achieve unprecedented predicted values and staying close
enough that those predictions can be trusted (Biswas et al.,
2021; Gruver et al., 2023; Zhu et al., 2024). One must also
specify the predictive model that the design algorithm con-
sults, as well as any generative model it may involve. These
decisions collectively yield a design algorithm configura-
tion, or configuration for short—for example, the design
algorithm AdaLead (Sinai et al., 2020) using the hyperpa-

1

Reliable Algorithm Selection for Machine Learning-Guided Design

rameter settings r = 0.2, µ = 0.02, κ = 0.05 and a ridge
regression predictive model. The choice of the configuration
dictates the resulting designs, and, consequently, whether
the design effort succeeds or fails. Specifically, we say that
a configuration is successful if it produces a distribution
of design labels that satisfies a user-specified success cri-
terion—for example, that at least ten percent of the design
labels exceed some threshold. In this paper, we propose a
solution to the problem of design algorithm selection:

How can one select a design algorithm configuration
that is guaranteed to be successful?

To anticipate whether a configuration will be successful, one
can examine predicted property values for designs that it
produces. However, these predictions can be particularly
error-prone, as design algorithms often produce distribu-
tions of designs shifted away from the training data in order
to achieve unprecedented predicted values (Fannjiang &
Listgarten, 2024). We propose a method for design algo-
rithm selection that combines predictions for designs with
labeled data held out from training, in a way that corrects
for these errors and enables theoretical guarantees on the se-
lected configurations. First, we formalize design algorithm
selection as a multiple hypothesis testing problem. We
consider a finite set of candidate design algorithm configu-
rations, called the menu, which we describe shortly. Each
configuration on the menu is affiliated with a hypothesis
test of whether it satisfies the success criterion. The method
then computes a statistically valid p-value for this hypothe-
sis test, by combining held-out labeled data with predicted
property values for designs generated by the configuration.
Loosely speaking, it uses the labeled data to characterize
how prediction error biases a p-value based on predictions
alone and removes this bias, building upon techniques from
prediction-powered inference (Angelopoulos et al., 2023).
Finally, the p-values are assessed with a multiple testing cor-
rection to choose a set of design algorithm configurations.
The method is guaranteed with high probability to select
successful configurations (or return the null set if none are
identified), if the ratios between the design and labeled data
densities are known for all configurations on the menu. If
these density ratios are unknown, we show empirically that
the method still frequently selects successful configurations
using estimated density ratios.

The contents of the menu will depend on the task at hand. If
a bespoke design algorithm has been developed specifically
for the task, we may be interested in setting a key hyperpa-
rameter, such as real-valued hyperparameters that dictate
how close to stay to the training data or other trusted points
(Schubert et al., 2018; Linder et al., 2020; Biswas et al.,
2021; Gruver et al., 2023; Fram et al., 2024; Tagasovska
et al., 2024). The menu would then be a finite set of candi-
date values for that hyperparameter, such as a grid of values

between plausible upper and lower bounds. In other cases,
such as when a variety of design algorithms are appropriate
for the task, we may want to consider multiple options for
the design algorithm, its hyperparameter(s), and the predic-
tive model it consults. The menu could then comprise all
combinations of such options. Indeed, the menu can include
or exclude any configuration we desire; we can include op-
tions for any degree of freedom whose effect on the designs
we want to consider, while holding fixed those that can be
reliably set by domain expertise.

Our contributions are as follows. We introduce the problem
of design algorithm selection, which formalizes a conse-
quential decision faced by practitioners of machine learning-
guided design and connects it to the goal of producing a
distribution of design labels that satisfies a criterion. We
propose a method for design algorithm selection, which
combines designs’ predicted property values with held-out
labeled data in a principled way to reliably assess whether
candidate design algorithm configurations will be success-
ful. We provide theoretical guarantees for the configurations
selected by the method, if the ratios between the design and
labeled data densities are known. Finally, we demonstrate
the method’s effectiveness in simulated protein and RNA
design tasks, including settings where these density ratios
are unknown and must be estimated.

2 Problem Formalization
This section formalizes the design algorithm selection prob-
lem. The next section proposes our solution.

The goal of a design task is to find novel objects in some
domain, X , whose labels in some space Y satisfy a desired
criterion. For example, one may seek protein sequences
of length L, x ∈ X = AL where A is the set of amino
acids, whose real-valued catalytic activities for a reaction
of interest, y ∈ Y = R, surpass some threshold. Note that
it is often neither necessary nor feasible for every proposed
design to satisfy the criterion—it is sufficiently useful that
some of them do so (Wheelock et al., 2022). This observa-
tion guides our formalization of the success criterion, which
we describe shortly. We first describe the other components
of our framework.

Design algorithms are methods that output novel objects
whose labels are believed to satisfy the desired criterion.
We focus on those that consult a predictive model, though
our framework is agnostic as to how they do so; they may
also use other sources of information, such as unlabeled
data or biomolecular structures. An example of a design
algorithm for the aforementioned enzyme design task is to
sample from a generative model fit to sequences that are
evolutionarily related to a known enzyme, and return the
samples with desirable predictions (Thomas et al., 2025).

2

Reliable Algorithm Selection for Machine Learning-Guided Design

A design algorithm configuration or configuration is a spec-
ification of all the hyperparameter settings and models
needed to deploy a design algorithm. Given a design task,
a practitioner constructs a menu, Λ: a set of candidate con-
figurations to be considered. For each configuration on the
menu, λ ∈ Λ, we get predicted property values for N de-
signs produced by the configuration: {fλ(xλ

i)}Ni=1, where
fλ is the predictive model used by configuration λ.

We assume access to a set of i.i.d. labeled data: xi ∼ Plab,
yi ∼ PY |X=x, i = 1, . . . , n, where Plab is the labeled
distribution and PY |X=x is the conditional distribution of
the label random variable, Y , given the point x. We assume
that this conditional distribution is fixed for every point in
X , as is the case when the label is dictated by the laws of
nature. This data must be independent from the training
data for the predictive models used on the menu, but it need
not be from the training data distribution. Whenever unclear
from context, we will say held-out or additional labeled
data to disambiguate this data from the training data.

2.1 The Success Criterion

Given the above components, the goal of design algorithm
selection is to select a subset of configurations, Λ̂ ⊆ Λ, that
satisfy the success criterion, which we now formalize.

The designs produced by any design algorithm configura-
tion, λ ∈ Λ, are sampled from some design distribution
over X , denoted PX;λ. This distribution may be specified
explicitly (Brookes et al., 2019; Zhu et al., 2024), or only
implicitly, such as when the algorithm iteratively introduces
mutations to training sequences based on the resulting pre-
dicted property values (Sinai et al., 2020). The design distri-
bution in turn induces the design label distribution over Y ,
denoted PY ;λ, which is the distribution of design labels and
can be sampled from as follows: x ∼ PX;λ, y ∼ PY |X=x.
Note that the labeled data and design data are related by
covariate shift (Shimodaira, 2000): the distributions over X ,
Plab and PX;λ, differ, but the conditional distribution of the
label for any point, PY |X=x for any x, is fixed.

As previously noted, the aspiration for most design endeav-
ors in practice is not that every single design satisfies a
criterion, but that enough of them do so (Wheelock et al.,
2022). Accordingly, our framework defines success in terms
of the design label distribution, PY ;λ, rather than the label
of any specific design. The practitioner can specify any
success criterion that requires the expected value of some
function of the design labels to surpass some threshold:

θλ := EY∼PY ;λ
[g(Y)] ≥ τ (1)

for some g : Y → R and τ ∈ R.1 We call θλ the population-

1See §B.1 for generalization to other success criteria; here we
focus on this special case for its broad applicability.

level metric. Examples include the mean design label when
g is the identity, as well as the fraction of designs whose
labels exceed some value γ ∈ Y , when g(y) = 1[y ≥ γ].
For example, a practitioner can request that at least ten
percent of the designs’ labels exceed that of a wild type, yWT,
using the success criterion EY∼PY ;λ

[1[Y ≥ yWT]] ≥ 0.1.
We call a configuration successful if it yields a design label
distribution that achieves the success criterion.

Our goal is to select a subset of configurations from the
menu such that, with guaranteed probability, every selected
configuration is successful (or to return the empty set, if no
successful configuration exists on the menu). That is, for
any user-specified error rate α ∈ [0, 1], we aim to construct
a subset Λ̂ ⊆ Λ such that

P(θλ ≥ τ, ∀λ ∈ Λ̂) ≥ 1− α. (2)

If the density ratios between the design and labeled distri-
butions are known for all configurations on the menu, our
proposed method, which we detail next, guarantees Eq. 2.

3 Design Algorithm Selection by
Prediction-Powered Multiple Testing

Our method tackles design algorithm selection by approach-
ing it as a multiple hypothesis testing problem (Alg. 1). The
goal is to select a subset of configurations that are all success-
ful, such that the error rate—the probability of incorrectly
including one or more unsuccessful configurations—is at
most α. To accomplish this, for each configuration on the
menu, consider the null hypothesis that it is unsuccessful:
Hλ : θλ := EY∼PY ;λ

[g(Y)] < τ . We compute a p-value,
pλ, for testing against this null hypothesis, as we describe
shortly. Finally, we use the Bonferroni correction to se-
lect all configurations whose p-values are sufficiently small.
This subset of configurations satisfies Eq. 2, our goal for
design algorithm selection.

The key subproblem is obtaining statistically valid p-values
for testing against the null hypotheses Hλ, λ ∈ Λ. These
hypotheses concern the design label distributions, yet we
do not have labels for the designs, only predictions. To
extract information from these predictions without being
misled by prediction error, we turn to prediction-powered
inference (Angelopoulos et al., 2023), a framework that
combines predictions with held-out labeled data to conduct
valid statistical inference. Specifically, we use prediction-
powered inference techniques adapted for covariate shift,
due to the covariate-shift relationship between the design
data and labeled data. We defer a thorough treatment to
§A.1, but conceptually, the labeled data, weighted by the
density ratios between the design and labeled distributions,
is used to characterize how prediction error distorts estima-
tion of the population-level metric, θλ, based on predictions
alone. This error characterization is then combined with the

3

Reliable Algorithm Selection for Machine Learning-Guided Design

predictions for the designs to compute p-values that have
either asymptotic (Alg. 2) or finite-sample (Alg. 3) validity.
Using the latter, the output of Algorithm 1 satisfies Eq. 2.

Algorithm 1 Design algorithm selection by multiple hy-
pothesis testing
Inputs: N designs generated by each design algorithm
configuration on the menu, {xλ

i }Ni=1,∀λ ∈ Λ; predictive
models used by each configuration, {fλ}λ∈Λ; labeled data,
{(xj , yj)}nj=1; error rate, α ∈ [0, 1].
Output: Selected configurations, Λ̂ ⊆ Λ.

1: for λ ∈ Λ do
2: Predictions for designs, ŷλi ← fλ(x

λ
i), i ∈ [N].

3: Predictions for labeled data, ŷj ← fλ(xi), j ∈ [n].
4: pλ ← GETPVALUE({ŷλi }Ni=1, {(xj , yj , ŷj)}nj=1)
5: end for
6: Λ̂← {λ ∈ Λ : pλ ≤ α/|Λ|}

Algorithm 2 Prediction-powered p-value for testing Hλ :
θλ := EY∼PY ;λ

[g(Y)] < τ

Inputs: Predictions for designs, {ŷλi }Ni=1; labeled data and
their predictions, {(xj , yj , ŷj)}nj=1.
Output: p-value, P .

1: µ̂← 1
N

∑N
i=1 g(ŷ

λ
i)

2: wj ← DENSITYRATIO(xj), j = 1, . . . , n

3: ∆̂← 1
n

∑n
j=1 wj(g(yj)− g(ŷj))

4: θ̂ ← µ̂+ ∆̂
5: σ̂2

pred ← 1
N

∑N
i=1(g(ŷ

λ
i)− µ̂)2

6: σ̂2
err ← 1

n

∑n
j=1

(
wj [g(yj)− g(ŷj)]− ∆̂

)2
7: P ← 1− Φ

((
θ̂ − τ

)
/

√
σ̂2

pred

N +
σ̂2

err
n

)

Theorem 3.1. For any error rate α ∈ [0, 1], function
g : Y → R, and threshold τ ∈ R, Algorithm 1 using
Algorithm 3 as the p-value subroutine returns a subset of
configurations from the menu, Λ̂ ⊆ Λ, that satisfies

P(θλ ≥ τ, ∀λ ∈ Λ̂) ≥ 1− α

where θλ := EY∼PY ;λ
[g(Y)], and the probability is over

random draws of the labeled data and the designs for all
configurations on the menu.

Using asymptotically valid p-values (Alg. 2) yields an
asymptotic version of the guarantee (Thm. A.1). In ex-
periments with known density ratios between the design and
labeled distributions, we always achieved error rates under
α even with asymptotically valid p-values. Since these are
faster to compute, as they leverage closed-form representa-
tions of the asymptotic null distributions, we recommend
using these in practice.

Selecting zero or multiple configurations Note that an
error rate of zero can be trivially achieved by returning the
empty set—that is, by not selecting any configuration. This
is a legitimate outcome if there are no successful configura-
tions on the menu, but otherwise, we will show empirically
that our method also exhibits a high selection rate, or rate of
returning nonempty sets. On the other hand, if our method
selects multiple configurations then one can safely use any
(or any mixture) of them with the same high-probability
guarantee of success. In particular, one can further narrow
down Λ̂ using additional criteria—for example, picking the
selected configuration that produces the most diverse de-
signs, in order to hedge against unknown future desiderata.

Density ratios between design and labeled distributions
Computing the p-values requires the density ratio between
the design and labeled distributions, pX;λ(xi)/plab(xi), for
every configuration and every labeled instance. Important
settings in biological sequence design where the design den-
sity can be evaluated are when designs are sampled from
autoregressive generative models (Shin et al., 2021) or when
the design distribution is a product of independent categori-
cal distributions per sequence site (Weinstein et al., 2022;
Zhu et al., 2024). Labeled sequence data is often gener-
ated by adding random substitutions to wild-type sequences
(Biswas et al., 2021; Bryant et al., 2021) or by recombin-
ing segments of several “parent” sequences (Romero et al.,
2013; Bedbrook et al., 2019), in which case plab is also
explicitly known. Valid p-values can also be computed if
both pX;λ and plab are only known up to normalizing fac-
tors, such as when sequences are generated by Potts models
(Russ et al., 2020; Fram et al., 2024) (§B.2). In other set-
tings, however, these density ratios need to be approximated.
In experiments with unknown density ratios, we use multi-
nomial logistic regression-based density ratio estimation
(Srivastava et al., 2023) and show that our method still em-
pirically outperforms others in selecting successful configu-
rations. Although Theorems 3.1 or A.1 no longer apply in
this setting, they inform us what guarantees we can recover,
to the extent that the density ratios are approximated well.

When have we gone “too far?” For each configuration,
the further apart the design and labeled distributions are,
the higher the variance of the density ratios that are used to
weight the labeled data. This reduces the effective sample
size of the labeled data in characterizing prediction error,
which leads to higher uncertainty about the value of the
population-level metric, θλ. Consequently, even if the con-
figuration is successful, it may not be selected if the design
and labeled distributions are too far apart. Indeed, this is
desirable behavior: the method essentially identifies where
over X we lack sufficient statistical evidence of achieving
the success criterion. It returns the empty set if the predic-
tions and labeled data do not collectively provide adequate
evidence that any configuration on the menu is successful.

4

Reliable Algorithm Selection for Machine Learning-Guided Design

Another factor to how many configurations are selected is
the multiple testing correction, as it determines what counts
as adequate evidence of success. A conceptual strength
of framing design algorithm selection as a multiple testing
problem is that any multiple testing procedure that controls
family-wise error rate (FWER) can be used in Line 6 of Al-
gorithm 1. Our instantiation uses the Bonferroni correction,
as it does not require any assumptions about how different
configurations are related, and it yielded reasonably high
selection rates with menus of a few hundred configurations
in experiments. However, one can also substitute FWER-
controlling procedures that account for hierarchical (Bretz
et al., 2009) or correlation structure (Dudoit et al., 2003) in
the menu, which could yield less conservative multiplicity
corrections and therefore higher selection rates.

4 Related Work
Design algorithm selection belongs to a body of work on
managing predictive uncertainty in machine learning-guided
design. Design algorithms can be constrained to stay close
to the training data or trusted reference points, such that
predictions remain trustworthy (Brookes et al., 2019; Lin-
der et al., 2020; Biswas et al., 2021; Gruver et al., 2023;
Tagasovska et al., 2024), and out-of-distribution detection
methods can flag individual designs whose predictions are
unreliable (Damani et al., 2023). A variety of methods have
been used to quantify predictive uncertainty for individ-
ual designs in biomolecular design tasks (Greenman et al.,
2025), including those based on ensembling (Scalia et al.,
2020; Gruver et al., 2021), Gaussian processes (Hie et al.,
2020; Tran et al., 2020), and evidential learning (Soleimany
et al., 2021). In particular, conformal prediction techniques
produce prediction sets for designs that also have frequentist-
style guarantees: the sets contain the design labels with guar-
anteed probability, where the probability is over drawing
designs from the design distribution (Fannjiang et al., 2022;
Prinster et al., 2023). However, it is unclear how to invoke
such statements to make decisions about which designs to
use, as there is no guarantee regarding the prediction sets for
any specific designs of interest—for example, those whose
prediction sets satisfy a desired condition.

Moreover, quantifying uncertainty for individual designs
is perhaps unnecessary for the goal of many design cam-
paigns in practice. Success often does not necessitate that
every design performs as desired, but only that sufficiently
many do so, regardless of which specific ones (Wheelock
et al., 2022). For example, Wang et al. (2022) develop a
method that selects designs from a pool of individual can-
didates, such that the selected subset contains a desired
expected number whose label surpasses a threshold. Con-
formal selection methods (Jin & Candès, 2022; 2023; Bai
& Jin, 2024) combine ideas from conformal prediction and

multiple testing to also select designs from a candidate pool,
with guaranteed upper bounds on the false discovery rate,
or expected proportion of selected designs whose label falls
below a desired threshold. The setting of these methods
differs from ours in that they assume access to a pool of
candidates that are exchangeable—for example, candidates
drawn i.i.d. from some distribution. However, depending
on the application, it may not always be straightforward to
narrow down a large design space X to a suitable pool of
candidates to begin with, without selecting a design algo-
rithm configuration with which to generate designs. The
goal of our work is therefore to choose from a set of can-
didate design algorithm configurations, each of which will
produce a different distribution of designs when deployed.
Our approach aims to select configurations that will achieve
a success criterion, which we formalize as a user-specified
population-level metric, θλ, surpassing some threshold.

Bayesian optimization (BO) (Shahriari et al., 2016) is a well-
studied paradigm for iteratively selecting designs, acquiring
their labels, and updating a predictive model in order to
optimize a property of interest. In each round, using the lan-
guage of our framework, BO prescribes a design algorithm:
it chooses the design (or batch of designs (Desautels et al.,
2014)) that globally maximizes some acquisition function
that quantifies desirability based on the model’s predictions,
and which typically incorporates the model’s predictive un-
certainty, such as the expected improvement of a design’s
label over the best one found thus far. A typical goal of
BO algorithms is to converge to the global optimum as the
rounds progress, under regularity conditions on the property
of interest (Srinivas et al., 2010; Bull, 2011; Berkenkamp
et al., 2019). In contrast, the goal of design algorithm se-
lection is to achieve criteria on the distribution of design
labels to be imminently proposed. Such guarantees can help
justify designs to stakeholders when acquiring labels for
even one round is resource-intensive, and the priority is to
find designs that achieve specific improvements within one
or a few rounds, rather than to eventually find the best pos-
sible design as the rounds progress indefinitely. However,
nothing precludes batch BO algorithms from being used
as design algorithms in our framework: configurations of
these algorithms with different hyperparameter settings or
acquisition functions, for example, can be on the menu.

Similar to our work, Wheelock et al. (2022) also aim to
characterize the design label distribution. To do so, however,
their approach focuses on how to construct a forecast, or
model of the conditional distribution of the label, for indi-
vidual designs. An equally weighted mixture of designs’
forecasts then serves as a model of the design label dis-
tribution. A rich body of work also exists on calibrating
forecasts, such that various aspects of these conditional dis-
tributions are statistically consistent with held-out labeled
data (Gneiting et al., 2007; Kuleshov et al., 2018; Song et al.,

5

Reliable Algorithm Selection for Machine Learning-Guided Design

2019). Our approach differs in that it directly estimates the
population-level metric, θλ, that determines whether a con-
figuration is successful, rather than modeling the labels of
individual designs. That is, our method handles prediction
error in a way that is specifically tailored for the endpoint of
selecting which design algorithm configuration to deploy.

At a technical level, our work uses prediction-powered in-
ference techniques (Angelopoulos et al., 2023) adapted for
covariate shift, in order to conduct statistically valid hy-
pothesis tests of whether configurations are successful. The
multiple hypothesis testing approach is similar to that of
Angelopoulos et al. (2021), who use multiple testing to set
hyperparameters for predictive models to achieve desired
risk values with high-probability guarantees.

5 Experiments
We first demonstrate that our method selects successful
configurations with high probability, as guaranteed by the-
ory, when the design and labeled densities are known.
Next, we show that it still selects successful configura-
tions more effectively than alternative methods when these
densities are estimated. Code for these experiments is at
https://github.com/clarafy/design-algorithm-selection §.

Two metrics are of interest: error rate and selection rate. Er-
ror rate is the empirical frequency at which a method selects
a configuration that fails the success criterion (Eq. 1), over
multiple trials of sampling designs from each configuration
as well as held-out labeled data (for methods that require
it). Selection rate is the empirical frequency over those
same trials at which a method selects anything at all. A
good method achieves a low error rate while maintaining a
high selection rate, which may be challenging for ambitious
success criteria.

Note that the prediction-only and GMMForecasts methods
do not need held-out labeled data. For fair comparison, we
ran these methods with predictive models trained on the total
amount of labeled data used by our method (10k instances,
whereas our method trained on 5k and held out 5k).

Prediction-only method This baseline uses only the pre-
dictions for a configuration’s designs to assess whether it is
successful. Specifically, it follows the same multiple testing
framework as our method, but computes the p-values using
the designs’ predictions as if they were labels (Alg. 6).

Gaussian-mixture-model forecasts method Both this and
the next method construct a forecast, or model of the condi-
tional distribution of the label, for every design generated
by a configuration. They then use the equally weighted mix-
ture of the designs’ forecasts as a model of the design label
distribution for a configuration, and select the configuration
if this model satisfies the success criterion. These two meth-

ods differ in how they construct the forecast for a designed
sequence; we now describe the first, called GMMForecasts.

We follow Wheelock et al. (2022), who model the condi-
tional distribution of the label as a mixture of two Gaussians
with sequence-specific parameters, which capture beliefs
over the label if the sequence is “functional” or “nonfunc-
tional.” After training this model, we infer forecasts for
every design produced by a configuration λ, with differ-
ent values of a hyperparameter q ∈ [0, 1] that controls,
roughly speaking, how much the forecasts deviate from the
training data (see §C.2 for details). The equally weighted
mixture of these forecasts, PGMM

λ , serves as a model of the
design label distribution for configuration λ. We select λ if
EY∼PGMM

λ
[g(Y)] ≥ τ .

Calibrated forecasts method For this method, called
CalibratedForecasts, the forecast for each design is ini-
tially modeled as a Gaussian with mean and variance set to
the predictive mean and variance, respectively, given by the
predictive model. We then use the labeled data to calibrate
these forecasts post hoc using isotonic regression (Kuleshov
et al., 2018) (see §C.3 for details). We select configuration
λ if EY∼P cal

λ
[g(Y)] ≥ τ , where P cal

λ is the equally weighted
mixture of the calibrated forecasts for the designs from λ.

Conformal prediction method We adapted conformal pre-
diction techniques to conduct design algorithm selection
(see §C.4 for details). This method has similar theoretical
guarantees to our method, but is prohibitively conservative:
it never selected anything in any of our experiments. We
therefore exclude these results for clarity of visualization.

5.1 Algorithm Selection for Designing Protein GB1

The design task for the first set of experiments was to de-
sign novel protein sequences that have high binding affinity
to an immunoglobulin, by specifying the amino acids at
four particular sites of a protein called GB1. These ex-
periments simulate library design, an important practical
setting in which both the design and labeled densities have
closed-form expressions. Specifically, the most time- and
cost-effective protocols today for synthesizing protein se-
quences in the wet lab can be described mathematically as
sampling the amino acid at each site independently from a
site-specific categorical distribution, whose parameters we
can set; the density for any sequence is then the product of
the probabilities of the amino acid at each site. We follow
the design algorithm developed by Zhu, Brookes, & Busia
et al. (2024): after training a predictive model of binding
affinity (see §D for details), f , we set the parameters of the
site-specific categorical distributions such that sequences
with high predictions have high likelihood, as follows.

Let Q denote the class of distributions that are products
of four independent categorical distributions over twenty

6

https://github.com/clarafy/design-algorithm-selection

Reliable Algorithm Selection for Machine Learning-Guided Design

amino acids. The authors use stochastic gradient descent
to approximately solve qλ = argminq∈Q DKL(p

⋆
λ || q),

where p⋆λ(x) ∝ exp(f(x)/λ) and λ > 0 is a temperature
hyperparameter that needs to be set carefully. Note that
the training distribution, described shortly, was similar to a
uniform distribution, which corresponds to λ =∞. If λ is
low, designs sampled from qλ tend to have predictions that
are high but untrustworthy since qλ is far from the training
distribution, while the opposite is true for high λ (Fig. 2).
The goal is therefore to select λ such that qλ is successful.

Figure 2. Library design for protein GB1. Mean prediction and
KL divergence from the training distribution of the 101 design
algorithm configurations on the menu. Each dot corresponds to
the design distribution, qλ, for a specific value of the temperature
hyperparameter, λ. Two red-outlined squares correspond to design
distributions for the lowest temperature (λ = 0.2) and the highest
temperature (λ = 0.7), whose parameters values are shown in the
inset (top and bottom heatmaps, respectively).

Labeled data To simulate training and held-out labeled
data, we sampled sequences from a common baseline called
the NNK library, which is close to uniform categorical dis-
tributions at every site, but slightly modified to reduce the
probability of stop codons. For the labels, we used a data
set that contains experimentally measured binding affinities
for every sequence in X (Wu et al., 2016)—that is, all 204

variants of protein GB1 at 4 specific sites. Labels were
log-ratios relative to wild-type GB1, whose label was 0.

Menu and success criteria The menu contained 101 values
of λ between 0.2 and 0.7. We used the following success
criteria: that the mean design label surpasses τ , for τ ∈
[0, 1.5] (for reference, the mean training label was −4.8),
and that the exceedance over 1 (i.e., the fraction of design
labels that exceed 1, using g(Y) = 1[Y ≥ 1]) surpasses τ ,
for τ ∈ [0, 1] (for reference, the training labels’ exceedance
over 1 was 0.006).

Selection experiments For the prediction-only method and
GMMForecasts, which do not need held-out labeled data,
we trained the binding affinity predictive model on 10k

labeled sequences. We then solved for qλ, as described
above, for all λ ∈ Λ. For each of T = 10 trials, we sampled
N = 1M designs from each qλ and ran both methods to
select temperatures.

For our method and CalibratedForecasts, which use
held-out labeled data, we trained the predictive model on
5k labeled sequences and solved for qλ, λ ∈ Λ. For each
of T = 500 trials, we sampled n = 5k additional labeled
sequences, which were used to run both methods along with
N = 1M designs from each qλ.

We can compute the true value of θλ for all λ ∈ Λ, since
we have labels for all sequences in X (Wu et al., 2016).
The error rate for each method was then computed as∑T

t=1 1[∃λ ∈ Λ̂ s.t. θλ < τ]/T . We used α = 0.1 as a
representative value for the desired error rate.

Results A good design algorithm selection method achieves
a low error rate and a high selection rate for a variety
of success criteria (settings of g and τ in the criterion
EY∼PY ;λ

[g(Y)] ≥ τ). For success criteria concerning the
mean design label (i.e., g is the identity), the prediction-
only and CalibratedForecasts methods had error rates
of 100% for most values of τ considered (Fig. 3a). Partic-
ularly for the former, the mean design label achieved by
selected temperatures could be considerably lower than τ
(Fig. 3b).

Our method had error rates below the desired level of α for
all values of τ considered. The selection rate was 100% for
a broad range of τ , though it gradually declined for τ > 1,
reflecting increasing conservativeness for more stringent
success criteria (Fig. 3a). We also ran our method with
estimated density ratios for comparison, with very similar
results (see §D.1 and Fig. 6).

For GMMForecasts, smaller values of the hyperparameter
q ∈ [0, 1] yield forecasts that are, roughly speaking, more
similar to the training data (see §C.2 for details). Using
q ∈ {0, 0.5} was prohibitively conservative and never se-
lected anything on any trial. Using the maximum value,
q = 1, did yield high selection and low error rates for
τ < 0.5. However, for greater values of τ , the method
ceased selecting anything, incorrectly indicating that no
configuration can achieve these success criteria (Fig. 3a).
All methods had similar qualitative performance for suc-
cess criteria concerning the exceedance over 1, though
GMMForecasts was slightly less conservative (Fig. 7).

Recall that both the prediction-only and GMMForecasts
methods do not require held-out labeled data, and therefore
used predictive models trained on all 10k labeled sequences.
Our method outperformed them in spite of using only half
the amount of training data, demonstrating the benefit in
this setting of reserving labeled data for quantifying and
managing the consequences of prediction error.

7

Reliable Algorithm Selection for Machine Learning-Guided Design

Figure 3. Design algorithm selection for designing protein GB1. (a) Error rate (top; lower is better) and selection rate (bottom; higher is
better) for all methods, for range of values of τ , the desired mean design label. For reference, the mean label of the training data was −4.8.
GMMForecasts with hyperparameter q ∈ {0, 0.5} (dark and medium purple lines) never selected anything, resulting in error and selection
rates of zero for all τ . (b) For each method, the median (solid line) and 20th to 80th percentiles (shaded regions) of the lowest mean
design label achieved by selected configurations, over trials for which the method did not return the empty set. Dots mark where each
median trajectory ends (i.e., the value of τ beyond which a method ceases to select any configuration, and the lowest mean design label of
configurations selected for that τ). Results on or above the dashed diagonal line indicate that selected configurations are successful.

Figure 4. Design algorithm selection for designing RNA binders. (a) Error rate (top; lower is better) and selection rate (bottom; higher
is better) for all methods, for range of values of τ , the desired mean design label. For reference, the mean label of the training data was
0.28. (b) For each method, the median (solid line) and 20th to 80th percentiles (shaded regions) of the lowest mean design label achieved
by selected configurations, over trials for which the method did not return the empty set. Dots mark where each median trajectory ends
(i.e., the value of τ beyond which a method ceases to select any configuration, and the lowest mean design label of configurations selected
for that τ). Results on or above the dashed diagonal line indicate that selected configurations are successful.

5.2 Algorithm Selection for Designing RNA Binders

These next experiments show the utility of our method in
a setting that involves a variety of design algorithms and
predictive models on the menu, and that requires density
ratio estimation. The task is to design length-50 RNA se-
quences that bind well to an RNA target, where the label is
the ViennaFold binding energy (Lorenz et al., 2011).

Labeled data To simulate training and held-out labeled
data, we generated random mutants of a “seed” sequence,
with 0.08 probability of mutation at each site. Each mutant,
x, was assigned a noisy label, y = BINDINGENERGY(x) +
ϵ, where ϵ ∼ N (0, σ = 0.02).

Menu and success criteria The menu contained the fol-
lowing design algorithms and respective hyperparameter
settings (see §E.1 and Figs. 8, 9 for details): AdaLead (Sinai
et al., 2020), with its threshold hyperparameter, κ, set to
values in [0.2, 0.01]; the algorithm used by Biswas et al.
(2021), which approximately runs MCMC sampling from
p(x) ∝ exp(f(x)/T), with the temperature hyperparame-
ter, T , set to values in [0.005, 0.02]; Conditioning by Adap-
tive Sampling (Brookes et al., 2019) and Design by Adaptive
Sampling (Brookes & Listgarten, 2018), with their quantile
hyperparameter, Q, set to values in [0.1, 0.9]; and Proximal
Exploration (Ren et al., 2022) with default hyperparameters,
as the authors did not highlight any critical hyperparameters.
Each of these design algorithms and respective hyperparam-

8

Reliable Algorithm Selection for Machine Learning-Guided Design

eter settings was run with three different predictive models,
resulting in a menu of 78 configurations: a ridge regression
model, with the regularization hyperparameter set by leave-
one-out cross-validation, an ensemble of fully connected
neural networks, and an ensemble of convolutional neural
networks. The success criterion was that the mean design
label surpasses τ , for τ ∈ [0.28, 0.5] (for comparison, the
mean training label was 0.28). We also ran our method with
an expanded menu of 249 configurations involving an addi-
tional hyperparameter and architectures, to assess how the
multiple testing correction affects selection rates for larger
menus (see §E.1 and Fig. 8).

Density ratio estimation Since the configurations do not
have closed-form design densities, we used multinomial
logistic regression-based density ratio estimation (MDRE)
(Srivastava et al., 2023), which trains a classifier between
designs and labeled sequences to estimate the density ratios
between their distributions (see §E.2 for details).

Selection experiments For the prediction-only method and
GMMForecasts, which do not require held-out labeled data,
we first trained the three predictive models on 10k labeled
sequences. For each of T = 10 trials, we sampled N = 50k
designs from each configuration and ran both methods to
select configurations.

For our method and CalibratedForecasts, which use
held-out labeled data, we trained the three predictive models
on 5k labeled sequences. These sequences, as well as N =
50k designs generated from each configuration, were used
to fit the MDRE model used by our method. For each of
T = 200 trials, we sampled n = 5k additional labeled
sequences, which were used to run both methods along with
the N designs from each configuration.

For each configuration, λ, we took the average of 500k
design labels to serve as θλ. The error rate for each method
was then computed as

∑T
t=1 1[∃λ ∈ Λ̂ s.t. θλ < τ]/T , and

we used α = 0.1 as the desired error rate.

Results The prediction-only and CalibratedForecasts
methods had 100% error rates for much of the range of τ
considered. Our method had much lower error rates, though
greater than α for τ > 0.32 due to density ratio estimation
error (Fig. 4a, top). Furthermore, when our method selected
configurations that were unsuccessful, their mean design
labels were still close to τ (Fig. 4b; the shaded green region
does not extend far below the dashed diagonal line). Our
method assesses configurations more accurately at the cost
of selected subsets, Λ̂, that are higher variance (Fig. 4b; the
shaded green region is wider than other shaded regions), due
to the reduced effective sample size of the weighted labeled
data.

GMMForecasts with q = 0 had low error rates, even zero,
for τ < 0.37, but was the most conservative method: it

stopped selecting any configurations for greater τ (Fig. 4a,
bottom). Using q ∈ {0.5, 1} maintained 100% selection
rates for broader ranges of τ at the cost of much higher error
rates, though like our method, the errors’ consequences were
not severe, especially for q = 0.5: the mean design labels of
unsuccessful configurations were not far below τ (Fig. 4b).

Overall, compared to any alternative method except
GMMForecasts with q = 0, our method had lower error
rates over the range of τ for which the alternative had
non-zero selection rates (Fig. 4a). Our method also main-
tained non-zero selection rates for a broader range of τ than
GMMForecasts with any q (Fig. 4a, bottom). These results—
which hold even with estimated density ratios, and holding
out labeled data—illustrate the benefits of quantifying the
consequences of prediction error on downstream quantities
or decisions of interest, over focusing on the uncertainties
of individual predictions.

6 Discussion
We introduced an algorithm selection method for machine
learning-guided design, which selects design algorithm con-
figurations that will be successful with high probability—
that is, produce a distribution of design labels that satisfies
a user-specified population-level success criterion. It does
so by using held-out labeled data to characterize and then
undo how prediction error biases the assessment of whether
a configuration is successful. Though the present work fo-
cuses on success in a single “round” of design, it can also
provide a principled decision-making framework for multi-
round design endeavors in which a top priority is that the
designs at each round achieve certain criteria—for example,
to justify resources for acquiring their labels.

As with other uncertainty quantification methods that
achieve frequentist-style guarantees under covariate shift
(Tibshirani et al., 2019; Fannjiang et al., 2022; Prinster et al.,
2023; Jin & Candès, 2023), the method uses the density ra-
tios between the design and labeled distributions. Advances
in density ratio estimation techniques will strengthen the
method’s performance in settings where these density ratios
are not known—in particular, techniques that are tailored
for importance-weighted mean estimation. Another promis-
ing direction is the incorporation of multiple testing pro-
cedures that respect structure among configurations on the
menu, which may enable less conservative selection than
the Bonferroni correction. Looking forward, we encourage
continued work on how to address predictive uncertainty
in machine learning-guided design with respect to how it
directly impacts endpoints or decisions of interest, rather
than with general-purpose notions of uncertainty (Greenman
et al., 2025).

9

Reliable Algorithm Selection for Machine Learning-Guided Design

Acknowledgements
Our gratitude goes to Anastasios N. Angelopoulos, Stephen
Bates, Richard Bonneau, Kyunghyun Cho, Andreas Loukas,
Ewa Nowara, Stephen Ra, Samuel Stanton, Nataša
Tagasovska, and Tijana Zrnic for helpful discussions and
feedback on this work.

Impact Statement
This work enables practitioners of machine learning-guided
design to select successful algorithms more reliably than
existing methods. There are many potential societal conse-
quences of machine learning-guided design, none which we
feel must be specifically highlighted here.

References
Angelopoulos, A. N., Bates, S., Candès, E. J., Jordan, M. I.,

and Lei, L. Learn then test: Calibrating predictive algo-
rithms to achieve risk control. arXiv [cs.LG], October
2021.

Angelopoulos, A. N., Bates, S., Fannjiang, C., Jordan, M. I.,
and Zrnic, T. Prediction-powered inference. Science, 382
(6671):669–674, November 2023.

Bai, T. and Jin, Y. Optimized conformal selection: Powerful
selective inference after conformity score optimization.
arXiv [stat.ME], November 2024.

Bedbrook, C. N., Yang, K. K., Robinson, J. E., Mackey,
E. D., Gradinaru, V., and Arnold, F. H. Machine learning-
guided channelrhodopsin engineering enables minimally
invasive optogenetics. Nat. Methods, 16(11):1176–1184,
November 2019.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-regret
bayesian optimization with unknown hyperparameters.
J. Mach. Learn. Res., abs/1901.03357(50):1–24, January
2019.

Bickel, S., Bruckner, M., and Scheffer, T. Discriminative
learning under covariate shift. J. Mach. Learn. Res., 10:
2137–2155, 2009.

Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M., and
Church, G. M. Low-N protein engineering with data-
efficient deep learning. Nat. Methods, 18(4):389–396,
April 2021.

Bretz, F., Maurer, W., Brannath, W., and Posch, M. A
graphical approach to sequentially rejective multiple test
procedures. Stat. Med., 28(4):586–604, February 2009.

Brookes, D., Park, H., and Listgarten, J. Conditioning by
adaptive sampling for robust design. In Chaudhuri, K. and

Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 773–782.
PMLR, 09–15 Jun 2019.

Brookes, D. H. and Listgarten, J. Design by adaptive sam-
pling. In NeurIPS Workshop on Machine Learning for
Molecules and Materials, 2018.

Bryant, D. H., Bashir, A., Sinai, S., Jain, N. K., Ogden, P. J.,
Riley, P. F., Church, G. M., Colwell, L. J., and Kelsic,
E. D. Deep diversification of an AAV capsid protein by
machine learning. Nat. Biotechnol., February 2021.

Bull, A. D. Convergence rates of efficient global optimiza-
tion algorithms. Journal of Machine Learning Research,
12(88):2879–2904, 2011.

Damani, F., Brookes, D. H., Sternlieb, T., Webster, C., Ma-
lina, S., Jajoo, R., Lin, K., and Sinai, S. Beyond the
training set: an intuitive method for detecting distribu-
tion shift in model-based optimization. arXiv [cs.LG],
November 2023.

Desautels, T., Krause, A., and Burdick, J. W. Paralleliz-
ing exploration-exploitation tradeoffs in gaussian process
bandit optimization. J. Mach. Learn. Res., 15(1):3873–
3923, 2014.

Dudoit, S., Shaffer, J. P., and Boldrick, J. C. Multiple
hypothesis testing in microarray experiments. Stat. Sci.,
18(1):71–103, February 2003.

Fannjiang, C. and Listgarten, J. Is novelty predictable? Cold
Spring Harb. Perspect. Biol., 16(2):a041469, February
2024.

Fannjiang, C., Bates, S., Angelopoulos, A. N., Listgarten, J.,
and Jordan, M. I. Conformal prediction under feedback
covariate shift for biomolecular design. Proc. Natl. Acad.
Sci. U. S. A., 119(43):e2204569119, October 2022.

Fram, B., Su, Y., Truebridge, I., Riesselman, A. J., Ingraham,
J. B., Passera, A., Napier, E., Thadani, N. N., Lim, S.,
Roberts, K., Kaur, G., Stiffler, M. A., Marks, D. S., Bahl,
C. D., Khan, A. R., Sander, C., and Gauthier, N. P. Simul-
taneous enhancement of multiple functional properties
using evolution-informed protein design. Nat. Commun.,
15(1):5141, June 2024.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. Probabilistic
forecasts, calibration and sharpness. J. R. Stat. Soc. Series
B Stat. Methodol., 69(2):243–268, April 2007.

Greenhalgh, J. C., Fahlberg, S. A., Pfleger, B. F., and
Romero, P. A. Machine learning-guided acyl-ACP re-
ductase engineering for improved in vivo fatty alcohol
production. Nat. Commun., 12(1):5825, October 2021.

10

Reliable Algorithm Selection for Machine Learning-Guided Design

Greenman, K. P., Amini, A. P., and Yang, K. K. Bench-
marking uncertainty quantification for protein engineer-
ing. PLoS Comput. Biol., 21(1):e1012639, January 2025.

Gruver, N., Stanton, S., Kirichenko, P., Finzi, M., Maf-
fettone, P., Myers, V., Delaney, E., Greenside, P., and
Wilson, A. G. Effective Surrogate Models for Protein
Design with Bayesian Optimization. In ICML Workshop
on Computational Biology, 2021.

Gruver, N., Stanton, S., Frey, N., Rudner, T. G. J., Hotzel,
I., Lafrance-Vanasse, J., Rajpal, A., Cho, K., and Wilson,
A. G. Protein design with guided discrete diffusion. In
Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt,
M., and Levine, S. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 12489–12517.
Curran Associates, Inc., 2023.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive esti-
mation of unnormalized statistical models, with applica-
tions to natural image statistics. J. Mach. Learn. Res., 13
(11):307–361, 2012.

Hie, B., Bryson, B. D., and Berger, B. Leveraging uncer-
tainty in machine learning accelerates biological discov-
ery and design. Cell Syst, 11(5):461–477.e9, November
2020.

Jin, Y. and Candès, E. Selection by prediction with con-
formal p-values. J. Mach. Learn. Res., 24(244):244:1–
244:41, October 2022.

Jin, Y. and Candès, E. J. Model-free selective inference
under covariate shift via weighted conformal p-values.
arXiv [stat.ME], July 2023.

Kuleshov, V., Fenner, N., and Ermon, S. Accurate uncer-
tainties for deep learning using calibrated regression. In
Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 2796–
2804. PMLR, 10–15 Jul 2018.

Linder, J., Bogard, N., Rosenberg, A. B., and Seelig, G.
A generative neural network for maximizing fitness and
diversity of synthetic DNA and protein sequences. Cell
Syst, 11(1):49–62.e16, July 2020.

Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C.,
Tafer, H., Flamm, C., Stadler, P. F., and Hofacker, I. L.
ViennaRNA package 2.0. Algorithms Mol. Biol., 6:26,
November 2011.

Owen, A. B. Monte Carlo Theory, Methods, and Examples.
https://artowen.su.domains/mc/, 2013.

Prinster, D., Saria, S., and Liu, A. JAWS-x: Addressing
efficiency bottlenecks of conformal prediction under stan-
dard and feedback covariate shift. In Krause, A., Brun-
skill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett,
J. (eds.), Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 28167–28190. PMLR,
23–29 Jul 2023.

Ren, Z., Li, J., Ding, F., Zhou, Y., Ma, J., and Peng, J.
Proximal exploration for model-guided protein sequence
design. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S. (eds.), Proceedings of the
39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pp. 18520–18536. PMLR, 17–23 Jul 2022.

Rhodes, B., Xu, K., and Gutmann, M. U. Telescoping
density-ratio estimation. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
4905–4916. Curran Associates, Inc., 2020.

Romero, P. A., Krause, A., and Arnold, F. H. Navigating the
protein fitness landscape with gaussian processes. Proc.
Natl. Acad. Sci. U. S. A., 110(3):E193–201, January 2013.

Russ, W. P., Figliuzzi, M., Stocker, C., Barrat-Charlaix, P.,
Socolich, M., Kast, P., Hilvert, D., Monasson, R., Cocco,
S., Weigt, M., and Ranganathan, R. An evolution-based
model for designing chorismate mutase enzymes. Science,
369(6502):440–445, July 2020.

Scalia, G., Grambow, C. A., Pernici, B., Li, Y.-P., and Green,
W. H. Evaluating scalable uncertainty estimation methods
for deep learning-based molecular property prediction. J.
Chem. Inf. Model., 60(6):2697–2717, June 2020.

Schubert, B., Schärfe, C., Dönnes, P., Hopf, T., Marks, D.,
and Kohlbacher, O. Population-specific design of de-
immunized protein biotherapeutics. PLoS Comput. Biol.,
14(3):e1005983, March 2018.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A
review of bayesian optimization. Proc. IEEE, 104(1):
148–175, January 2016.

Shimodaira, H. Improving predictive inference under co-
variate shift by weighting the log-likelihood function. J.
Stat. Plan. Inference, 90(2):227–244, October 2000.

Shin, J.-E., Riesselman, A. J., Kollasch, A. W., McMahon,
C., Simon, E., Sander, C., Manglik, A., Kruse, A. C., and
Marks, D. S. Protein design and variant prediction using
autoregressive generative models. Nat. Commun., 12(1):
2403, April 2021.

11

https://artowen.su.domains/mc/

Reliable Algorithm Selection for Machine Learning-Guided Design

Sinai, S., Wang, R., Whatley, A., Slocum, S., Locane, E.,
and Kelsic, E. D. AdaLead: A simple and robust adap-
tive greedy search algorithm for sequence design. arXiv
[cs.LG], October 2020.

Soleimany, A. P., Amini, A., Goldman, S., Rus, D., Bhatia,
S. N., and Coley, C. W. Evidential deep learning for
guided molecular property prediction and discovery. ACS
Cent Sci, 7(8):1356–1367, August 2021.

Song, H., Diethe, T., Kull, M., and Flach, P. Distribution
calibration for regression. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pp. 5897–5906.
PMLR, 09–15 Jun 2019.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: no regret
and experimental design. In Proceedings of the 27th In-
ternational Conference on International Conference on
Machine Learning, pp. 1015–1022. Omnipress, 2010.

Srivastava, A., Han, S., Xu, K., Rhodes, B., and Gutmann,
M. U. Estimating the density ratio between distributions
with high discrepancy using multinomial logistic regres-
sion. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.

Tagasovska, N., Gligorijević, V., Cho, K., and Loukas, A.
Implicitly guided design with propen: Match your data
to follow the gradient. In Globerson, A., Mackey, L., Bel-
grave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 37, pp. 35973–36001. Curran Associates,
Inc., 2024.

Thomas, N., Belanger, D., Xu, C., Lee, H., Hirano, K.,
Iwai, K., Polic, V., Nyberg, K. D., Hoff, K. G., Frenz,
L., Emrich, C. A., Kim, J. W., Chavarha, M., Ramanan,
A., Agresti, J. J., and Colwell, L. J. Engineering highly
active nuclease enzymes with machine learning and high-
throughput screening. Cell Syst., 16(3):101236, March
2025.

Tibshirani, R. J., Foygel Barber, R., Candes, E., and Ramdas,
A. Conformal prediction under covariate shift. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019.

Tran, K., Neiswanger, W., Yoon, J., Zhang, Q., Xing, E.,
and Ulissi, Z. W. Methods for comparing uncertainty
quantifications for material property predictions. Mach.
Learn. Sci. Technol., 1(2):025006, June 2020.

Wang, L., Joachims, T., and Rodriguez, M. G. Improv-
ing screening processes via calibrated subset selection.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
22702–22726. PMLR, 2022.

Waudby-Smith, I. and Ramdas, A. Estimating means of
bounded random variables by betting. J. R. Stat. Soc.
Series B Stat. Methodol., February 2023.

Weinstein, E. N., Amin, A. N., Grathwohl, W. S., Kassler,
D., Disset, J., and Marks, D. Optimal design of stochastic
dna synthesis protocols based on generative sequence
models. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I.
(eds.), Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics, volume 151 of
Proceedings of Machine Learning Research, pp. 7450–
7482. PMLR, 28–30 Mar 2022.

Wheelock, L. B., Malina, S., Gerold, J., and Sinai, S. Fore-
casting labels under distribution-shift for machine-guided
sequence design. In Knowles, D. A., Mostafavi, S., and
Lee, S.-I. (eds.), Proceedings of the 17th Machine Learn-
ing in Computational Biology Meeting, volume 200 of
Proceedings of Machine Learning Research, pp. 166–180.
PMLR, 2022.

Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O., and
Sun, R. Adaptation in protein fitness landscapes is facili-
tated by indirect paths. eLife, 5, July 2016.

Zhu, D., Brookes, D. H., Busia, A., Carneiro, A., Fannjiang,
C., Popova, G., Shin, D., Donohue, K. C., Lin, L. F.,
Miller, Z. M., Williams, E. R., Chang, E. F., Nowakowski,
T. J., Listgarten, J., and Schaffer, D. V. Optimal trade-off
control in machine learning-based library design, with
application to adeno-associated virus (AAV) for gene
therapy. Sci Adv, 10(4):eadj3786, January 2024.

12

Reliable Algorithm Selection for Machine Learning-Guided Design

A Additional Algorithms and Proofs

Algorithm 3 Prediction-powered p-value for testing Hλ : θλ := EY∼PY ;λ
[g(Y)] < τ (finite sample-valid)

Inputs: Predictions for designs, {ŷλi }Ni=1; labeled data and their predictions, {(xj , yj , ŷj)}nj=1; small grid spacing, δ > 0.
Output: p-value, P .

1: wj ← DENSITYRATIO(xj), j = 1, . . . , n
2: for α ∈ {0, δ, . . . , 1− δ, 1} do
3: Lα ← PPMEANLB(α, {ŷλi }Ni=1, {(yj , ŷj , wj)}nj=1)
4: if Lα > τ then
5: P ← α
6: break
7: end if
8: end for

Algorithm 4 PPMEANLB: Prediction-powered confidence lower bound on θλ := EY∼PY ;λ
[g(Y)] (finite sample-valid)

Inputs: Significance level, α ∈ [0, 1]; predictions for designs, {ŷλi }Ni=1; labels, predictions, and density ratios for labeled
data, {(yi, ŷi, wi)}ni=1; range, [L,U], of g(Y); bound, D, on the density ratios.
Output: Confidence lower bound, L.

1: µ̂lower ← MEANLB(0.1 · α, {g(ŷλi)}Ni=1, [L,U])

2: ∆̂lower ← MEANLB(0.9 · α, {wj · (g(yj)− g(ŷj))}nj=1, [D(L− U), D(U − L)])

3: L← µ̂lower + ∆̂lower

Algorithm 5 MEANLB: Confidence lower bound on a mean (finite sample-valid; Waudby-Smith & Ramdas (2023))
Inputs: Significance level, α ∈ [0, 1]; data, {zi}ni=1; range of random variable, [L,U].
Output: Confidence lower bound, B.

1: zi ← (zi − L)/(U − L), i = 1, . . . , n
2: A ← {0, δ, . . . , 1− δ, 1}
3: M+

0 (m)← 1,m ∈ A
4: for t = 1, . . . , n do
5: µ̂t ←

0.5+
∑t

i=1 zi
t+1 , σ̂2

t ←
0.25+

∑t
i=1(zi−µ̂t)

2

t+1 , λt ←
√

2 log(2/α)
nσ̂2

t−1

6: for m ∈ A do
7: M+

t (m)←
(
1 + min{λt,

0.5
m }(zt −m)

)
M+

t−1(m)

8: if M+
t (m) ≥ 1/α then

9: A ← A \ {m}
10: end if
11: end for
12: end for
13: B ← minA · (U − L) + L

Theorem A.1. For any error rate α ∈ [0, 1], function g : Y → R, and threshold τ ∈ R, Algorithm 1 using Algorithm 2 as
the p-value subroutine returns a subset of configurations from the menu, Λ̂ ⊆ Λ, that satisfies

lim inf
n,N→∞

P(θλ ≥ τ, ∀λ ∈ Λ̂) ≥ 1− α, (3)

where θλ := EY∼PY ;λ
[g(Y)], n and N are the amounts of labeled data and designs from each configuration, respectively,

n
N → r for some r ∈ (0, 1), and the probability is over random draws of the labeled data and the designs from all
configurations on the menu.

13

Reliable Algorithm Selection for Machine Learning-Guided Design

A.1 Proofs of Theorems 3.1 and A.1

The proofs of Theorems 3.1 and A.1 rely on establishing the validity of the p-values computed by Algorithms 3 and 2,
respectively. Both algorithms use the framework of prediction-powered inference (Angelopoulos et al., 2023), which
constructs confidence intervals and p-values for an estimand of interest—here, the population-level metric, EY∼PY ;λ

[g(Y)]—
by combining predictions for Y with an estimand-specific characterization of prediction error called the rectifier. For our
estimand, these two components emerge from the following simple decomposition of the population-level metric:

EY∼PY ;λ
[g(Y)] = EX∼PX;λ

[g(f(X))] + EX,Y∼PX;λ·PY |X [g(Y)− g(f(X))], (4)

where f is any predictive model. The first summand is the mean prediction for designs, and the second is the mean prediction
bias, which serves as the rectifier. More generally, prediction-powered inference encompasses any estimand that can be
expressed as the minimizer of an expected convex loss (see Appendix B.1), in which case the rectifier can be derived from a
similar decomposition of the expected loss gradient.

Let {xλ
i }Ni=1 denote N designs from configuration λ, and let {(xj , yj)}nj=1 denote the n labeled instances. We can use the

predictions for the designs to estimate the first summand in Eq. 4 as

µ̂ :=
1

N

N∑
i=1

g(f(xλ
i)), (5)

and use the n labeled instances to estimate the second, the rectifier. Specifically, we leverage the covariate shift relationship
between the design and labeled data to rewrite the rectifier as

EX,Y∼PX;λ·PY |X [g(Y)− g(f(X))] = EX,Y∼Plab·PY |X

[
pX;λ(X)pY |X(Y | X)

plab(X)pY |X(Y | X)
(g(Y)− g(f(X)))

]
= EX,Y∼Plab·PY |X

[
pX;λ(X)

plab(X)
(g(Y)− g(f(X)))

]
.

This final expression can be estimated using the labeled data, where each instance is weighted by the density ratio between
the design and label distributions:

∆̂ :=
1

n

n∑
j=1

pX;λ(xj)

plab(xj)
(g(yj)− g(f(xj)) . (6)

Adding together the two estimates in Eqs. 5 and 6 yields a prediction-powered estimate of the population-level metric,

θ̂ := µ̂+ ∆̂, (7)

from which a prediction-powered p-value can be computed. Specifically, Algorithm 2 follows standard protocol for
constructing asymptotically valid p-values, by first deriving the asymptotic null distribution of the prediction-powered
estimate, and then evaluating its survival function to produce a p-value. Alternatively, Algorithm 3 inverts finite sample-valid,
prediction-powered confidence lower bounds on the population-level metric to obtain finite sample-valid p-values.

We now briefly describe why the prediction-powered estimate of the population-level metric, Eq. 7, generally has lower
variance—and yields correspondingly more powerful p-values—than ignoring the N predictions and using only the n
weighted labeled instances to estimate the population-level metric. Specifically, the covariate shift relationship between the
design and labeled data allows us to rewrite the population-level metric as

EY∼PY ;λ
[g(Y)] = EX,Y∼PX;λ·PY |X [g(Y)] = EX,Y∼Plab·PY |X

[
pX;λ(X)pY |X(Y | X)

plab(X)pY |X(Y | X)
g(Y)

]
= EX,Y∼Plab·PY |X

[
pX;λ(X)

plab(X)
g(Y)

]
, (8)

and correspondingly construct a “labeled-only” estimate,

1

n

n∑
j=1

pX;λ(xj)

plab(xj)
g(yj). (9)

14

Reliable Algorithm Selection for Machine Learning-Guided Design

We now compare the asymptotic variances of the prediction-powered estimate, Eq. 7, and the labeled-only estimate, Eq. 9.
Critically, we assume that N ≫ n, as it is typically far cheaper to generate designs in silico than it is to acquire labeled data.
The central limit theorem gives the asymptotic variance of the prediction-powered estimate as

1

N
Var(g(f(Xλ))) +

1

n
Var
(
pX;λ(X)

plab(X)
(g(Y)− g(f(X)))

)
.

For N ≫ n, this expression is dominated by the second term, the variance of the weighted prediction error scaled by 1/n
(indeed, we can make the first term arbitrarily small by computationally generating more designs). The asymptotic variance
of the labeled-only estimate is the variance of the weighted labels scaled by 1/n,

1

n
Var
(
pX;λ(X)

plab(X)
g(Y)

)
.

So long as the variance of the weighted prediction error is smaller than that of the weighted labels—that is, the predictions
explain some of the variance of labels—the asymptotic variance of the prediction-powered estimate will be smaller than that
of the labeled-only estimate. That is, the prediction-powered estimate uses information from the predictions to increase its
effective sample size compared to the labeled-only estimate.

Proof of Theorem A.1 (asymptotically valid design algorithm selection)

Proof. We first establish the asymptotic validity of the p-value, pλ, computed by Algorithm 2. Specifically, we show that
under the null hypothesis, Hλ : θλ < τ , pλ is the survival function of the asymptotic distribution of the prediction-powered
estimate θ̂, and therefore satisfies

lim sup
n,N→∞

P(pλ ≤ u) ≤ u, ∀u ∈ [0, 1], (10)

where n/N → r for some r ∈ (0, 1).

We first derive the asymptotic distribution of θ̂ := µ̂ + ∆̂, where µ̂ := (1/N)
∑N

i=1 g(ŷ
λ
i) is the average prediction for

N designs, and ∆̂ := (1/n)
∑n

j=1 wj(g(yj)− g(ŷj)) where wj = pX;λ(xj)/plab(xj) is the importance-weighted average
prediction bias for the n labeled instances. The central limit theorem implies that

√
N(µ̂− E[µ̂]) d−→ N (0, σ2

pred),
√
n(∆̂− E[∆̂])

d−→ N (0, σ2
err),

where σ2
pred := VarX∼PX;λ

[g(f(X))] and σ2
err := VarX,Y∼PX;λ·PY |X [g(Y)− g(f(X))]. Applying the continuous mapping

theorem to the sum of µ̂ and ∆̂ yields that

√
N(µ̂+ ∆̂− E[µ̂+ ∆̂]) =

√
N(µ̂− E[µ̂]) +

√
N

n

√
n(∆̂− E[∆̂])

d−→ N (0, σ2
pred +

1

r
σ2

err)

where recall that n/N → r. Since

E[µ̂+ ∆̂] = EX∼PX;λ
[g(f(X))] + EX,Y∼PX;λ·PY |X [g(Y)− g(f(X))] = EY∼PY ;λ

[g(Y)] := θλ,

we equivalently have

√
N(µ̂+ ∆̂− θλ)

d−→ N (0, σ2
pred +

1

r
σ2

err).

We can now evaluate the survival function of this distribution under the null hypothesis, Hλ : θλ < τ , to obtain a p-value.
Specifically,

pλ = 1− Φ

(
θ̂ − τ√
σ̂2/N

)
,

15

Reliable Algorithm Selection for Machine Learning-Guided Design

where σ̂2 is any consistent estimate of σ2
pred + 1

rσ
2
err, satisfies Eq. 10. We use the estimate σ̂2 = σ̂2

pred + N
n σ̂2

err where

σ̂2
pred := 1

N

∑N
i=1(g(ŷ

λ
i) − µ̂)2 and σ̂2

err :=
1
n

∑n
j=1(wj [g(yj) − g(ŷj)] − ∆̂)2, which is consistent as σ̂2

pred and σ̂2
err are

consistent estimates of σ2
pred and σ2

err, respectively.

Having established the validity of pλ, λ ∈ Λ, we can control the family-wise error rate (FWER) with a Bonferroni correction:

lim sup
n,N→∞

FWER := lim sup
n,N→∞

P

(⋃
λ∈Λ: θλ<τ

λ ∈ Λ̂

)
≤

∑
λ∈Λ: θλ<τ

lim sup
n,N→∞

P
(
λ ∈ Λ̂

)
=

∑
λ∈Λ: θλ<τ

lim sup
n,N→∞

P
(
pλ ≤

α

|Λ|

)
≤ |{λ ∈ Λ : θλ < τ}| · α

|Λ|

≤ |Λ| · α

|Λ|
= α,

where the first line uses a union bound, the second follows from the definition of Λ̂ in Algorithm 1, and the third is due to
the validity of each pλ. This gives us lim infn,N→∞ P(θλ ≥ τ, ∀λ ∈ Λ̂) = 1− lim supn,N→∞ FWER ≥ 1− α.

Proof of Theorem 3.1 (finite sample-valid design algorithm selection)

Proof. We first show that the p-value computed by Algorithm 3, pλ, has finite-sample validity, meaning that under the
null hypothesis, Hλ : θλ < τ , we have P(pλ ≤ u) ≤ u,∀u ∈ [0, 1]. First, the confidence lower bound, Lα, computed by
PPMEANLB (Alg. 4) is valid: it satisfies P(θλ ≥ Lα) ≥ 1− α. This follows from the fact that MEANLB produces valid
confidence lower bounds, µ̂lower and ∆̂lower, for EX∼PX;λ

[g(f(X))] and EX,Y∼PX;λ·PY |X [g(Y)− g(f(X))], respectively
(Theorem 3 from Waudby-Smith & Ramdas (2023)). Adding together these bounds therefore yields a valid confidence lower
bound, Lα, for θλ. Algorithm 3 then constructs a p-value by inverting Lα:

pλ = inf{α ∈ [0, 1] : Lα ≥ τ}. (11)

This p-value is valid because under the null hypothesis, Hλ : θλ < τ , for all u ∈ [0, 1] we have

P(pλ ≤ u) ≤ P(θλ < Lu) = 1− P(θλ ≥ Lu) ≤ 1− (1− u) = u,

where the first inequality follows from the definition of pλ in Eq. 11 and the fact that θλ < τ , and the second inequality
comes from the validity of Lu.

Having established the validity of pλ, λ ∈ Λ, the family-wise error rate (FWER), or the probability that one or more
unsuccessful configurations is selected, can be controlled with the Bonferroni correction:

FWER := P

(⋃
λ∈Λ: θλ<τ

λ ∈ Λ̂

)
≤

∑
λ∈Λ: θλ<τ

P
(
λ ∈ Λ̂

)
=

∑
λ∈Λ: θλ<τ

P
(
pλ ≤

α

|Λ|

)
≤ |{λ ∈ Λ : θλ < τ}| · α

|Λ|

≤ |Λ| · α

|Λ|
= α,

where the first line uses a union bound, the second follows from the definition of Λ̂ in Algorithm 1, and the third is due to
the validity of each pλ. We then have P(θλ ≥ τ, ∀λ ∈ Λ̂) = 1− FWER ≥ 1− α.

16

Reliable Algorithm Selection for Machine Learning-Guided Design

B Extensions

B.1 More General Success Criteria

The main text considers success criteria of the following form: θλ := EY∼PY ;λ
[g(Y)] ≥ τ for some g : Y → R, τ ∈ R.

More generally, we can use prediction-powered inference techniques to compute valid p-values whenever the population-level
metric, θλ, can be expressed as the minimizer of the expectation of some convex loss (Angelopoulos et al., 2023):

θλ := argmin
θ

EX,Y∼PX;λ·PY |X [ℓθ(X,Y)],

where ℓθ is convex in θ. When ℓθ(X,Y) = (g(Y)− θ)2 for some g : Y → R, we recover the special case in the main text.
We could not conceive of practical settings requiring this general characterization of θλ, but it may be useful for future work.

B.2 Design and Labeled Densities Known up to Normalizing Constants

We can compute asymptotically valid p-values if we have unnormalized forms of the design and labeled densities, such as
when sequences are generated from energy-based models (Biswas et al., 2021), Potts models (Russ et al., 2020; Fram et al.,
2024), or other Markov random fields. Specifically, assume we can evaluate pu

X;λ(x) = a · pX;λ(x) and pu
lab(x) = b · plab(x)

for unknown constants a, b ∈ R, where the superscript indicates that the densities are unnormalized. To leverage these
in place of the exact densities in Algorithm 2, consider the corresponding scaled density ratios on the labeled data,
wu

j := pu
X;λ(xj)/p

u
train(xj), j = 1, . . . , n. The self-normalized importance-weighted estimator of prediction bias,

∆̂u :=

∑n
j=1 w

u
j · (g(yj)− g(ŷj))∑n

j=1 w
u
j

,

is a consistent estimator of the rectifier in Eq. 4, EX,Y∼PX;λ·PY |X [g(Y)− g(f(X))]. Since ∆̂u is a ratio of means, the delta
method can be used to derive its asymptotic variance (Owen, 2013), which can be estimated as

σ̂2
∆̂u :=

1

n

1
n

∑n
j=1(w

u
j)

2 · ([g(yj)− g(ŷj)]− ∆̂u)2(
1
n

∑n
j=1 w

u
j

)2 .

We can then compute an asymptotically valid p-value using Algorithm 2, but replacing ∆̂ with ∆̂u in Line 3 and σ̂2
err/n with

σ̂2
∆̂u in Line 7.

C Other Methods

C.1 Prediction-Only Method

Algorithm 6 Prediction-only p-value
Inputs: Predictions for designs, {ŷλi }Ni=1; desired threshold, τ ∈ R.
Output: p-value, P .

1: θ̂ ← 1
N

∑N
i=1 g(ŷ

λ
i)

2: σ̂2
pred ← 1

N

∑N
i=1(g(ŷ

λ
i)− θ̂))2

3: P ← 1− Φ
(
(θ̂ − τ)/

√
σ̂2

pred/N
)

The prediction-only method runs multiple testing (Alg. 1) with p-values computed using only the predictions for the
designs (Alg. 6), treating them as if they were labels. These p-values are asymptotically valid for testing whether
EX∼PX;λ

[g(f(X))] ≥ τ—that is, whether the expected function of predictions for designs, but not necessarily their labels,
surpasses a threshold.

C.2 Gaussian-Mixture-Model Forecasts Method

The GMMForecasts method follows Wheelock et al. (2022), who model the forecast for a designed sequence as a mixture of
two Gaussians (representing beliefs over the label if the sequence is “nonfunctional” and “functional”) with sequence-specific

17

Reliable Algorithm Selection for Machine Learning-Guided Design

mixture proportion, means, and variances. To construct these forecasts, their approach first assumes access to a predictive
mean and variance for each designed sequence, as described below. It then uses the training data to fit a mapping from these
initial predictive means and variances to Gaussian mixture model (GMM) parameters. It also seeks to address covariate shift
between the design and training data by using a sequence’s edit distance from a reference training sequence (set to wild-type
GB1 in the GB1 experiments, and the seed sequence in the RNA binder experiments) as an additional feature in fitting this
mapping. Forecasts—that is, GMM parameters—are then inferred for each designed sequence.

The forecasts also involve a key hyperparameter, q ∈ [0, 1]. For each designed sequence, after GMM parameters are inferred,
the mean of the “functional” Gaussian is adjusted by taking a convex combination of it and the original predictive mean,
where q weights the latter. Using different values of q reflects how much one trusts the predictions; high values result in
forecasts where the “functional” Gaussian mean is determined largely by the original predictive mean. We ran the method
with q ∈ {0, 0.5, 1} to span the range of possible values.

Predictive mean and variance for a sequence When using predictive models that were ensembles (i.e., the fully connected
ensemble in the GB1 experiments, and the fully connected and convolutional ensembles in the RNA binder experiments),
the predictive mean and variance for a sequence was set to the empirical mean and variance, respectively, of the predictions
for that sequence. When using the ridge regression model in the RNA binder experiments, the model weights were fit on
90% of the training data, and the predictive mean for a sequence was set to the model’s prediction for it. The (homogeneous)
predictive variance was set to the model’s mean squared error over the remaining 10% of the training data.

C.3 Calibrated Forecasts Method

The CalibratedForecasts method is based on the idea that forecasts, or models of the conditional distributions of the
label, should be statistically consistent with held-out labeled data. Specifically, we want the forecasts to be calibrated as
defined by Kuleshov et al. (2018), whose definition is related to the notion of probabilistic calibration (Gneiting et al., 2007):

PX,Y (Y ≤ F−1
X (p))) = p, ∀p ∈ [0, 1], (12)

where FX denotes the CDF of the forecast for a sequence X ∈ X , and the probability is over the distribution of labeled data.
That is, for any p ∈ [0, 1], the label falls under the p-quantile given by a calibrated forecast with frequency p.

For a given sequence, let an initial forecast be a Gaussian with mean and variance set to a predictive mean and variance, as
described above for GMMForecasts. We then use the held-out labeled data to learn a transformation of these initial forecast
CDFs, such that the transformed CDF is closer to achieving calibration (Eq. 12). Specifically, we use isotonic regression,
following Kuleshov et al. (2018). We then construct a forecast for every designed sequence by first forming the initial
forecast, and then transforming the corresponding CDF with the fitted isotonic regression function.

C.4 Conformal Prediction Method

Algorithm 7 Conformal prediction-based method for design algorithm selection
Inputs: Designs generated with each configuration, {xλ

i }Ni=1 for all λ ∈ Λ; predictive models used by each configuration,
{fλ}λ∈Λ; held-out labeled data, {(xj , yj)}nj=1; desired threshold, τ ∈ R; error rate, α ∈ [0, 1].
Output: Subset of selected configurations, Λ̂ ∈ Λ.

1: for λ ∈ Λ do
2: Predictions for designs, ŷλi ← fλ(x

λ
i), i = 1, . . . , N

3: Predictions for labeled data, ŷj ← fλ(xi), j = 1, . . . , n
4: Density ratios for designs, vi ← DENSITYRATIOλ(x

λ
i), i = 1, . . . , N

5: Density ratios for labeled data, wj ← DENSITYRATIOλ(xj), j = 1, . . . , n
6: lλi ← SPLITCONFORMALLB((ŷλi , vi), {(yj , ŷj , wj)}nj=1, α/(|Λ| ·N)), i = 1, . . . , N

7: Lλ ← (1/N)
∑N

i=1 l
λ
i

8: end for
9: Λ̂← {λ ∈ Λ : Lλ ≥ τ}

We adapt conformal prediction techniques to conduct design algorithm selection (Algs. 7, 8). For simplicity, we describe
the method with g as the identity function; for other functions, one can replace all references to labels with g(Y).

18

Reliable Algorithm Selection for Machine Learning-Guided Design

Algorithm 8 SPLITCONFORMALLB: split conformal lower bound for a design label
Inputs: a design’s prediction and density ratio, (ŷλ, v); labels, predictions, and density ratios for held-out labeled data,
{(yj , ŷj , wj)}nj=1; α ∈ [0, 1].
Output: Lower bound, L ∈ R.

1: uj ← wj∑n
j=1 wj+v , j = 1, . . . , n

2: u← v∑n
j=1 wj+v

3: r ← (1− α)-quantile of the distribution comprising the mixture of point masses
∑n

j=1 uj · δŷj−yj
+ u · δ∞

4: L← ŷλ − r

For a given configuration, λ, we can construct a valid lower bound for the empirical average of design labels, (1/N)
∑N

i=1 y
λ
i ,

by averaging Bonferroni-corrected conformal lower bounds for each design. Concretely, we can use a split conformal
method (Tibshirani et al., 2019) to construct lower bounds, li, for the labels of N designs, with confidence of 1 − α/N
each (Alg. 8). These lower bounds each satisfy P(yλi ≥ li) ≥ 1− α/N , where the probability is over random draws of the
held-out labeled data. The average of these bounds, L = (1/N)

∑N
i=1 li, then satisfies P((1/N)

∑N
i=1 y

λ
i ≥ L) ≥ 1− α.

This is because the event {yλi ≥ li, ∀i ∈ [N]} occurs with probability at least 1− α due to the Bonferroni correction, and
on this event, we have (1/N)

∑N
i=1 y

λ
i ≥ (1/N)

∑N
i=1 li.

To conduct design algorithm selection, we introduce an additional Bonferroni correction for the size of the menu, |Λ|: for
each configuration, we construct a split conformal lower bound with a confidence of 1− α/(|Λ| ·N |) for each design, then
take their average lower bound, Lλ. The event {(1/N)

∑N
i=1 y

λ
i ≥ Lλ, ∀λ ∈ Λ} occurs with probability at least 1 − α,

which in turn implies that for Λ̂ := {λ ∈ Λ : Lλ ≥ τ}, we have

P

(
1

N

N∑
i=1

yλi ≥ τ, ∀λ ∈ Λ̂

)
≥ 1− α.

Note that the lower bounds Lλ, λ ∈ Λ, are immensely conservative: because conformal prediction techniques are meant to
characterize individual labels, they cannot naturally account for how prediction errors over many designs can “cancel out” in
estimation of the mean design label. We rely instead on Bonferroni corrections to guarantee the extremely stringent criterion
that every individual design’s lower bound is correct, which in practice meant that Lλ was always negative infinity in our
experiments. Conformal prediction is fundamentally not the right tool when one is interested in how prediction error affects
distributions of labels, rather than the labels of individual instances.

D Protein GB1 Experiment Details
Labels were log enrichments relative to wild-type GB1, such that values greater (less) than 0 indicate greater (less) binding
affinity than the wild type. Following Zhu, Brookes, & Busia et al. (2024), the predictive model, f , was an ensemble of fully
connected neural networks, trained using a weighted maximum likelihood method that accounted for the estimated variance
of each sequence’s log enrichment label. After training on 5k labeled sequences, the model’s predictions for all x ∈ X
yielded an RMSE of 1.02, Pearson correlation coefficient of 0.79, and Spearman correlation coefficient of 0.68 (Fig. 5).

D.1 Estimated Density Ratios

We ran our method with estimated density ratios, for success criteria concerning the mean design label. Specifically, we
separately estimated the labeled distribution and the design distribution corresponding to each configuration. For the former,
we performed maximum-likelihood estimation with Laplace smoothing (with pseudocounts of 1) to estimate the site-specific
categorical distributions using the held-out labeled sequences; for the latter, we did the same using the designed sequences.
For a given sequence, we then took the ratio of its densities under these two estimated distributions as the estimated density
ratio. The results from our method using these estimated density ratios were very similar to the original results using the
known density ratios (Fig. 6).

19

Reliable Algorithm Selection for Machine Learning-Guided Design

Figure 5. Binding affinity predictions for all protein GB1 variants. Predicted and measured binding affinity for all variants of protein
GB1 at four sites of interest. Labels are from Wu et al. (2016) and predictions are from an ensemble of fully connected models trained on
5k labeled sequences from an NNK library. Both axes are log enrichments relative to wild-type GB1, whose label is 0.

Figure 6. Design algorithm selection for designing protein GB1 (estimated density ratios). (a) Error rate (top; lower is better) and
selection rate (bottom; higher is better) for our original results (with known density ratios between the designed and labeled distributions;
green) and our method with estimated density ratios (purple). (b) The median (solid line) and 20th to 80th percentiles (shaded regions) of
the lowest mean design label achieved by selected configurations, over trials for which the method did not return the empty set. Dots mark
where each median trajectory ends (i.e., the value of τ beyond which the method ceased to select any configuration, and the lowest mean
design label of configurations selected for that τ). Results on or above the dashed diagonal line indicate that selected configurations are
successful.

20

Reliable Algorithm Selection for Machine Learning-Guided Design

Figure 7. Design algorithm selection for designing protein GB1 (exceedance-based success criteria). (a) Error rate (top; lower is
better) and selection rate (bottom; higher is better) for all methods, for range of values of τ , the desired exceedance over 1 (that is,
the fraction of designs whose label exceeds 1). For reference, the training labels’ exceedance over 1 was 0.006. GMMForecasts with
hyperparameter q ∈ {0, 0.5, 1} (dark purple, medium purple, and pink lines) had error rates of zero for all values of τ . (b) Median (solid
line) and 20th to 80th percentiles (shaded regions), of the lowest mean design label achieved by selected configurations, across trials for
which each method did not return the empty set. Dots mark where each median trajectory ends (i.e., the value of τ beyond which a method
ceases to select any configuration, and the lowest mean design label of configurations selected for that τ). Results on or above the dashed
diagonal line indicate that selected configurations are successful.

D.2 Exceedance-Based Success Criteria

We ran the same experiments described in §5.1 and shown in Figure 3, except with success criteria involving the exceedance
over 1: EY∼PY ;λ

[1(Y ≥ 1)] ≥ τ , for τ ∈ [0, 1]. For context, a label value of 1 was greater than 99.4% of the training labels
and represents a binding affinity of about 2.7 times that of wild-type GB1. The results were qualitatively similar to those in
the main text, except that GMMForecasts with q ∈ {0, 0.5} was slightly less conservative and yielded high selection rates
for a limited range of τ (Fig. 7).

E RNA Binder Experiment Details
To facilitate interpretability of the label values, following Sinai et al. (2020) we normalized the ViennaFold binding energy
(Lorenz et al., 2011) by that of the complement of the RNA target sequence, which can be seen as an estimate of the
energy of the true optimal binding sequence. Consequently, a label value of 1 means a binding energy equal to that of the
complement sequence.

E.1 Menu of Design Algorithm Configurations

See Fig. 8 for a diagram of the menu structure.

Predictive models The three predictive models were a ridge regression model, where the ridge regularization hyperparameter
was set by leave-one-out cross-validation; an ensemble of three fully connected neural networks, each with two 100-unit
hidden layers; and an ensemble of three convolutional neural networks, each with three convolutional layers with 32 filters,
followed by two 100-unit hidden layers. Each model in both ensembles was trained for five epochs using Adam with a
learning rate of 10−3.

Design algorithm hyperparameter settings For AdaLead (Sinai et al., 2020), the values of the threshold hyperparameter
on the menu were κ ∈ {0.2, 0.15, 0.1, 0.05, 0.01}. For Biswas, the algorithm used by Biswas et al. (2021), the values of
the temperature hyperparameter on the menu were T ∈ {0.02, 0.015, 0.01, 0.005}. For Conditioning by Adaptive Sampling
(Brookes et al., 2019), or CbAS, the values of the quantile hyperparameter on the menu were Q ∈ {0.1, 0.2, . . . , 0.9}.
For Design by Adaptive Sampling (Brookes & Listgarten, 2018) (DbAS) with either the fully connected or convolutional
models, the values of the quantile hyperparameter on the menu were Q ∈ {0.1, 0.2, . . . , 0.9}, and with ridge regression,

21

Reliable Algorithm Selection for Machine Learning-Guided Design

Figure 8. Menu structure for designing RNA binders. The menu for the results in the main text (size 78) had a nested configuration
space involving categorical options for the predictive model and design algorithm, and grids of real values for one hyperparameter for
each design algorithm. The expanded menu for the results in Figure 10 (size 249) adds an additional real-valued hyperparameter for
AdaLead, and integer-valued options for the generative model architecture for CbAS and DbAS (dash-outlined cells).

Figure 9. Design algorithm configurations for designing RNA binders. Gray dots give the label (x-axis) and edit distance from a seed
sequence (y-axis) for the 5k training sequences used by the predictive models. Colored markers give the average design prediction (x-axis)
and average edit distance from the seed (y-axis) for each configuration on the menu. Multiple markers of the same type correspond to
configurations with the same design algorithm and predictive model, but different hyperparameter values. For example, the five blue
triangles correspond to AdaLead using the convolutional ensemble and threshold hyperparameter values {0.2, 0.15, 0.1, 0.05, 0.01}.

22

Reliable Algorithm Selection for Machine Learning-Guided Design

Figure 10. Design algorithm selection for designing RNA binders (expanded menu). (a) Error rate (top; lower is better) and selection
rate (bottom; higher is better) for our original results (with menu of size 78; green) and our method with the expanded menu of size
249 diagrammed in Figure 8 (purple). (b) For both menus, the median (solid line) and 20th to 80th percentiles (shaded regions) of the
lowest mean design label achieved by selected configurations, over trials for which the method did not return the empty set. Dots mark
where each median trajectory ends (i.e., the value of τ beyond which the method ceased to select any configuration, and the lowest mean
design label of configurations selected for that τ). Results on or above the dashed diagonal line indicate that selected configurations are
successful.

Q ∈ {0.1, 0.2}. Both CbAS and DbAS involve a generative model, which was a variational autoencoder (VAE) with 10 latent
dimensions, and fully connected models with 20-unit hidden layers for both the encoder and decoder. Both algorithms were
run for twenty iterations; each iteration retrained the VAE for five epochs using Adam with learning rate 10−3. PEX (Ren
et al., 2022) was run with default values of all hyperparameters. The resulting menu of design algorithm configurations
varied greatly in their mean design prediction, as well as their distance from the training sequences (Fig. 9).

To assess how the multiplicity correction might impact selection rates for larger menus, we also ran our method with an
expanded menu of 279 configurations. In addition to the hyperparameter settings listed above, this menu included different
values of the AdaLead recombination rate hyperparameter, r ∈ {0.1, 0.2, 0.5}, and numbers of hidden units ({5, 10}) and
latent dimensions ({20, 100}) in the VAE used by both CbAS and DbAS (Fig. 8). Interestingly, our method exhibited similar
error rates but higher selection rates with this larger menu, including non-zero selection rates for a broader range of τ than
with the original menu of size 79 (Fig. 10a), due to the expanded menu containing more configurations that produce higher
mean design labels.

E.2 Density Ratio Estimation

To estimate the density ratio function, pX;λ(·)/plab(·), for every configuration on the menu, λ ∈ Λ, we used multinomial
logistic regression-based density ratio estimation (MDRE) (Srivastava et al., 2023). MDRE builds upon a formal connection
between density ratio estimation (DRE) and classification (Bickel et al., 2009; Gutmann & Hyvärinen, 2012): for the
(correctly specified) binary classifier that minimizes the population cross-entropy risk in distinguishing between samples
from two distributions, its logit for any input x is equivalent to the density ratio for x, pX;λ(x)/plab(x) (Gutmann &
Hyvärinen, 2012). In practice, however, we can only hope to find a classifier that minimizes the empirical risk between
finite samples from the two distributions. This distinction between the population and empirical risks hinders DRE far
more than it does classification for classification’s sake: obtaining the density ratio requires getting the exact value of the
population-optimal classifier’s logit, whereas optimal classification performance can be achieved by any classifier that learns
the same decision boundary as the optimal classifier, even if its logits differ from the optimal classifier. Accordingly, we
found that for many configurations on the menu, classifiers with very low training and validation losses often yielded poor
approximations of the density ratio. This was particularly true when the design and labeled distributions were far apart,
because the classification problem is too easy given finite samples: many different classifiers can minimize the empirical
risk, none of which may happen to coincide with the population-optimal one whose logits are equivalent to density ratios.
Telescoping density ratio estimation (Rhodes et al., 2020) tackles this problem by constructing intermediate distributions
that interpolate between the numerator and denominator distributions, creating a sequence of “harder” binary classification

23

Reliable Algorithm Selection for Machine Learning-Guided Design

problems for which there are fewer empirically optimal classifiers, and whose resulting estimated density ratios can be
combined through a telescoping sum to approximate the original density ratio of interest. MDRE is similarly motivated
but constructs a single multi-class classification problem between the intermediate distributions, justified by theoretical
connections between the population-optimal classifier and the density ratio analogous to those described above (Srivastava
et al., 2023). Concretely, let hc(x) denote the unnormalized log-probability according to a trained classifier that x belongs
to distribution c ∈ {1, . . . , C}, where C denotes the total number of distributions. MDRE uses exp(hi(x) − hj(x)) to
approximate the density ratio between distributions i (numerator) and j (denominator).

Note that the design algorithm selection problem naturally lends itself to the construction of the intermediate dis-
tributions used by MDRE, because many design algorithms have hyperparameters that navigate how far the de-
sign distribution strays from the labeled distribution. It is often of interest to include different settings of such
hyperparameters on the menu, in which case all of these configurations’ density ratios with the labeled distribu-
tion can be approximated using one MDRE classifier. For the RNA binder experiments, denote configurations by
[design algorithm]-[predictive model]-[hyperparameter value]—for example, Biswas-CNN-0.02 refers to
running Biswas with the convolutional ensemble predictive model and temperature hyperparameter T = 0.02. We fit a
separate MDRE model for each combination of a design algorithm and a predictive model—that is, a separate multi-class
classifier for AdaLead-ridge-*, for AdaLead-FC-*, for AdaLead-CNN-*, for Biswas-ridge-*, for Biswas-FC-*, for
Biswas-CNN-*, for CbAS-ridge-*, for CbAS-FC-*, for CbAS-CNN-*, for DbAS-ridge-*, for DbAS-FC-*, for DbAS-CNN-*,
for PEX-ridge, for PEX-FC, and for PEX-CNN, where the last three reduced to binary classification problems. Each of these
classifiers was fit on the 5k training sequences and N = 50k designed sequences from each included configuration. For
example, the 10-category classifier for estimating density ratios for CbAS-ridge-* was fit on the 5k training sequences
and 50k sequences each from CbAS-ridge-0.1, CbAS-ridge-0.2, . . . , CbAS-ridge-0.8, and CbAS-ridge-0.9. Each
classifier was a model with one 256-unit hidden layer and a quadratic final layer, trained for 100 epochs using Adam with a
learning rate of 10−3.

24

