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MALT: Improving Reasoning with Multi-Agent LLM Training

Anonymous Authors1

Abstract
Large Language Models (LLMs) often produce
answers with a single chain-of-thought, which
restricts their ability to explore reasoning paths
or self-correct flawed outputs in complex tasks.
In this paper, we introduce MALT (Multi-Agent
LLM Training), a novel post-training strategy that
divides the reasoning process into generation, ver-
ification, and refinement steps using a sequential
pipeline of heterogeneous agents. During data
generation, each agent is repeatedly sampled to
form a multi-agent search tree, where final out-
puts are graded against ground-truth data. We
then apply value iteration to propagate reward
signals back to each role-conditioned model, au-
tomatically producing multi-agent post-training
data without human or teacher-model supervision.
Our off-policy approach allows each agent to spe-
cialize by learning from correct and incorrect tra-
jectories, ultimately improving the end-to-end rea-
soning chain. On MATH, GSM8K, and CSQA,
MALT surpasses the same baseline LLM with
a relative improvement of 15.66%, 7.42%, and
9.40% respectively, making it an important ad-
vance towards multi-agent cooperative training.

1. Introduction
Reasoning with Large Language Models (LLMs) is in-
herently challenging, particularly for tasks that require
multi-step deductions, intermediate computations, or self-
correction (Xiang et al., 2025). Recent work on multi-agent
approaches—such as debate frameworks (Du et al., 2024)
or orchestrated problem-solving (Fourney et al., 2024)—has
shown promise by assigning different parts of the reasoning
process to separate models, allowing for refinement and
increased deliberation at inference time (Snell et al., 2024).
However, the underlying LLMs are typically the same base
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Figure 1. Overview of MALT. During joint-training we use a base
LLM (eg. Llama) to generate several reasoning trajectories. These
trajectories are used to create 3 specialized agents, a generator, ver-
ifier and refiner through SFT and DPO training. During inference,
the 3 agents work together to answer a given question.

model pre-trained on data that lacks exposure to the special-
ized roles or meta-strategies involved in solving complex
problems, which introduces a distribution shift while rea-
soning at test-time (Xiang et al., 2025; Han et al., 2024). An
open gap thus persists: How can we jointly train LLMs to
specialize in a multi-agent setting to improve reasoning?
Such a gap persists due to several key obstacles: First, it
is difficult to propagate gradient signals through multiple
discrete token-outputs during training. Second, there is little
role-specific labeled training data. Third, credit assignment
in such setups is difficult when only the final outcome re-
ceives rewards (Tumer & Agogino, 2007). Finally, it is
important to determine what type of multi-agent setup is
even useful to implement meta-strategies that can improve
reasoning so that more inference compute can be spent effi-
ciently towards solving problems.

In this paper, we address these challenges by introduc-
ing an intuitive strategy to jointly post-train LLMs in a
generate-critique-refine pipeline. This is analogous to how
humans tackle complex tasks—drafting an initial answer,
thoroughly checking and critiquing it, and refining the so-
lution to match their specifications (Qian et al., 2024). We
propose a method, visualized in Figure 1, that automati-
cally generates large-scale, labeled data for each agent via a
multi-agent credit assignment approach. With this dataset,
our post-training approach enables role-conditioned models
to learn from both positive and negative reasoning trajecto-
ries—providing a path to improve reasoning performance
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across a range of problems with trained multi-agent setups.

To the best of our knowledge, we are the first to address
this critical gap with Multi-Agent LLM Training (MALT):
a strategy involving three models working sequentially on
problems—a generator, a verifier, and a refinement model.

MALT employs a sampling procedure that expands a search
tree based on each model’s outputs with an exponential
branching factor, thereby producing large amounts of useful
synthetic data. Role-specific data, particularly when aug-
mented with rationales, has been shown in previous work to
significantly improve performance (Zelikman et al., 2022).
However, this introduces a credit assignment problem where
internal branches may be correct or incorrect and must be
labeled to post-train models based solely on final output
signals. To address this, we propose a value-iteration-based
attribution strategy (Sutton & Barto, 2018). By analyzing
only the outputs of the search tree, our method identifies
which model introduced an error, enabling credit assignment
without requiring human-labeled data or a separate oracle
policy to evaluate trajectories. This eliminates the need
for human intervention in selecting trajectories, generating
role-specific data, or designing value functions, and instead
enables the automatic generation of reasoning traces from
the search tree for post-training via supervised fine-tuning
and preference optimization (Rafailov et al., 2023). MALT
combines all these steps into an intuitive joint-training pro-
cedure, providing performance improvements and acting as
an early first step towards integrating search and learning
for multi-agent LLM systems.

Our contributions are threefold:

• We propose Multi-Agent LLM Training (MALT) to
cooperatively post-train a generator, verifier, and refine-
ment model on challenging reasoning tasks by leverag-
ing search and subsequent fine-tuning.

• We propose a search-tree expansion process and use a
value iteration technique to propagate binary outcome
rewards to automatically attribute correct and incorrect
reasoning traces to individual models. This, requiring
no human supervision, can be utilized for supervised
fine-tuning and preference optimization.

• We apply MALT to math and common sense reasoning
questions from MATH, CSQA, and GSM8K, achieving
relative improvements of 15.66%, 9.40%, and 7.42%
over a single-model baseline, as well as outperforming
other comprehensive baselines and ablations.

2. Related Work
Advanced Reasoning: Multi-agent architectures have
emerged as an effective way to handle complex reasoning by
distributing problem-solving roles among distinct models
(Xiang et al., 2025; Cobbe et al., 2021). Frameworks such as

Agent Q (Putta et al., 2024) and AutoGen (Wu et al., 2024)
coordinate solutions through guided search and composi-
tional dialogue, yet they often rely on a single underlying
model for multiple tasks or omit a dedicated verification
mechanism. Debate-style (Du et al., 2024) and orchestrated
(Fourney et al., 2024) multi-agent methods assign differ-
ent parts of the reasoning process to separate models, en-
abling increased deliberation at inference time (Snell et al.,
2024). However, the underlying models lack advanced train-
ing for role specification, which may lead to suboptimal
performance or distribution shifts during test-time (Xiang
et al., 2025). In contrast, single-agent approaches utilize
techniques such as introspection (Qu et al., 2024) and self-
critique (Saunders et al., 2022) to detect their own errors, but
they typically lack the mechanisms to correct those errors
in a single inference pass (Ye et al., 2024).

Training Data and Preference Optimization: Harnessing
synthetic data generation in tandem with preference-based
training has emerged as a potent strategy for boosting LLM
performance. Setlur et al. (2024) demonstrates that train-
ing on both correct and incorrect synthetic solutions, opti-
mized with Direct Preference Optimization (DPO) (Rafailov
et al., 2023), significantly improves math reasoning accu-
racy. Singh et al. (2024) propose a self-training method
(ReSTEM) that repeatedly generates, filters, and fine-tunes
using scalar feedback, surpassing purely human-based fine-
tuning on tasks like advanced math and coding. Parallel
work by Pang et al. (2024) shows how preference signals
applied across entire chains-of-thought can refine intermedi-
ate reasoning steps. Our method builds on these insights by
generating large volumes of role-specific data, both correct
and incorrect, and uses preference-like signals to train each
agent.

Inference Time Compute: Strategic use of inference-time
compute can also boost accuracy. Brown et al. (2024)
demonstrates that repeated sampling from a single model
improves coverage, while Snell (Snell et al., 2024) shows
that iterative refinement can outperform naive scaling in
certain tasks. Meanwhile, supervised fine-tuning (SFT) re-
mains the backbone of LLM adaptation (Devlin et al., 2019;
Howard & Ruder, 2018), but can demand large volumes
of human-labeled data. Quasi-supervised methods (Yang
et al., 2024) address data scarcity by providing supervision
for intermediate steps. Finally, Zelikman et al. (2022) and
Xiang et al. (2025) underscore the effectiveness of struc-
tured chain-of-thought prompting for complex tasks, while
Cobbe (Cobbe et al., 2021) confirms that an explicit veri-
fier stage reduces errors on GSM8K. Our work unifies the
aforementioned techniques to create a multi-agent pipeline
that orchestrates a generator, verifier, and refinement model,
leveraging search, synthetic data generation, and preference-
based training to enable more robust multi-step reasoning.
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3. Preliminaries
Chain of Thought (CoT) When an LLM solves a ques-
tion q with step-by-step reasoning (s1, . . . , sn), the answer
a can be viewed as sampled from:

pd(a | q) ∝
∫

pd(a | s1:n, q)
n∏

t=1

pd(st | s<t, q) dS

as described in (Xiang et al., 2025). For complex problems,
the same work describes a true solution-generating process
that involves extra latent steps (z1, . . . , zk), which is a meta-
generalization of the prior CoT argument:

pd(a, s1:n | q) ∝
∫

pd(a, s1:n | z1:k, q)
k∏

t=1

pd(zt | z<t, q) dZ

These meta-variables could capture iterative or corrective
steps, unfolding a more adaptive, multi-stage reasoning
trajectory. In a multi-agent setup, we consider a process with
three specialized models: a Generator G, a Verifier V , and
a Refinement model R producing g, v, and r respectively.
This can be mapped onto the meta-CoT setting, where

p(a | q) =
∫

pG(g | q) pV(v | q, g) pR(a | q, g, v) d(g, v)

Here, g and v, from the standpoint of standard ⟨q, a⟩
datasets, act like latent meta-steps guiding more complex so-
lution processes, akin to zt in meta-CoT. By explicitly mod-
eling these roles during joint post-training (see Section 4),
the multi-agent sequential deliberation process allows us to
tackle problems beyond a single-pass CoT setting.

Supervised Finetuning (SFT) Given DSFT
train containing

positive demonstrations (e.g. correct generator outputs or
useful verifier critiques), we can carry out SFT:

LSFT(πθ) = −E(x,y)∼DSFT
train

T∑
t=1

log πθ(yt|y<t, x),

which has proved to be a simple and relatively successful
technique to improve reasoning performance.

Direct Preference Optimisation (DPO) In SFT, we can
exclusively use positive samples in order to improve our test
set performance. By using preference optimization, we can
also leverage negative examples y− ≺ y+, where ≺ means
that y+ is preferred over y−. While RLHF (Christiano et al.,
2017) used to be the preferred preference optimization strat-
egy, it was recently shown that reinforcement learning can
be effectively replaced by a modified supervised learning
objective (Rafailov et al., 2023, DPO):

LDPO(πθ) = E(x,y+,y−)∼DDPO
train

σ

(
β log

πθ(y
+ | x)

πref(y+ | x)

−β log
πθ(y

− | x)
πref(y− | x)

)
.

We assume πref is a reference policy, obtained through SFT.
DDPO

train is a dataset of triplets including both queries and posi-
tive/negative outputs and β a scaling parameter. We provide
a theoretical link between optimizing the DPO objective and
the optimal RL policy in Appendix A.4.

4. Method: Multi-Agent LLM Training
In complex reasoning tasks, a single LLM must handle all
aspects of the solution generation process - often leading
to limited exploration, the lack of self-correction, and diffi-
culty refining partial steps (Ye et al., 2024). However, the
reasoning process can be broken down into a system of
decentralized LLMs, where each model has differing objec-
tives and/or partial observability. As described in Section
3, this represents a meta-CoT (Xiang et al., 2025) setting
where intermediate outputs in the multi-agent setup can
improve the overall reasoning process. Although in fully
observable and cooperative cases, systems of LLM agents
could technically be simulated by a single centralized LLM,
a decomposition into separate heterogeneous LLM agents
offers various benefits analogous to those observed in de-
centralized multi-agent learning (Schroeder de Witt et al.,
2020). Decentralization factorizes large joint action spaces,
allowing each agent to focus on smaller sub-tasks under its
own partial observability, leading to more targeted explo-
ration and clearer credit assignment (Tan, 1993). In this
section, we present our methodology for a multi-agent set-
ting consisting of a sequential heterogeneous process where
agents can be trained based on joint rewards.

4.1. Multi-Agent Inference Setting

We formulate our multi-agent inference setting as a collabo-
rative reasoning framework designed to solve complex tasks.
LetQ denote a dataset of natural language questions, where
each q ∈ Q represents a specific task instance. The objec-
tive is to generate a prediction a ∈ A for a given input q,
where A is the set of all possible answers. During training,
there exists a ground truth function f : Q → A, where
f(q) = aGT serves as the ideal prediction for evaluating a.

Our framework consists of three specialized LLMs acting
as distinct agents, each defined as a function:

1. Generator (G : Q×PG → OG): Produces an initial
response to the question.

2. Verifier (V : OG × Q × PV → OV ): Critiques the
generated response for potential errors.

3. Refinement Model (R : OG×OV ×Q×PR → OR):
Integrates feedback to improve the final prediction.

Here, PG,PV ,PR denote the set of prompts for each model,
and OG,OV , and OR are the sets of possible outputs for
the generator, verifier, and refiner respectively. A is the set
of possible answers extracted from the refiner’s output with
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Figure 2. MALT Method Overview. Given an input, we consider a three-agent system composed of a Generator for initial answer
production, a Verifier providing a critique, and a Refinement Model integrating all intermediate reasoning steps into a final output. For
questions in the training set, we introduce a tree search and credit assignment process (Left) to generate synthetic datasets with reasoning
trajectory preference pairs for each model. These are used to post-train individual models (Center). During inference over the test-set, we
perform three parallel sequential passes through the multi-agent setup, and return the final answer obtained via majority voting (Right).

a fixed deterministic function T . Formally, we define the
interaction between these agents as:

go = G(q, pg) where go ∈ OG, pg ∈ PG (1)
vo = V(q, pv, go) where vo ∈ OV , pv ∈ PV (2)
ro = R(q, pr, go, vo) where ro ∈ OR, pr ∈ PR (3)
a = T (ro) where a ∈ A (4)

This setup is reminiscent of how LLMs are used in produc-
tion, where they receive initial prompts containing ques-
tions, feedback, and are then asked to refine answers (Wang
et al., 2024).We demonstrate in Section 5 that this inference
setting enhances performance compared to single-model ap-
proaches. The key insight, however, relies on leveraging this
multi-agent inference setting to generate synthetic data that
scales exponentially with respect to a branching factor. Be-
low, we discuss out data generation and post-training setup.

4.2. Collecting Reasoning Trajectories

In standard single-LLM setups, a single model simply
produces an answer a for each question q. By con-
trast, our multi-agent framework uses three specialized
agents—Generator, Verifier, and Refiner—sequentially. To
enable training of these agents, we need to capture how
each agent’s output contributes to the final prediction and
whether the overall solution is correct or incorrect. A rea-
soning trace leading to a contains [go, vo, ro], where the
multi-agent answer generation process will be:

a = T
(
R
(
q, pr, G(q, pg), V

(
q, pv, G(q, pg)

)))
. (5)

During data generation, G,V, and R all share the same
base model parameters; in the subsequent training phase
(Section 4.3), each policy is updated independently to spe-
cialize in its respective role. An outcome reward model
R : A×A → {0, 1}, based on the ground truth in the train-
ing set, evaluates a to mark the trajectory as either correct
(1) or incorrect (0). Specifically, for a predicted answer a
and ground truth aGT, we define:

R(a, aGT) =

{
1, if a = aGT,

0, otherwise.
(6)

To collect role-specific post-training data, we use <
q, aGT > pairs from an initial training set Dtrain associated
with each benchmark. Our solution is illustrated in Figure 2
(left). The following sampling strategy is employed for all
models, with a brancing factor of n.

1. For each problem qi ∈ Dtrain in the training data, we
sample n completions from the generator:

{gi,j ∼ G(xi)}nj=1. (7)

2. For each G output gi,j , we produce n verifications:

{vi,j,k ∼ V(gi,j , qi)}nk=1. (8)

3. For each V output vi,j,k, we generate n refinements:

{ri,j,k,l ∼ R(gi,j , vi,j,k, qi)}nl=1. (9)

This process results in n3 trajectories for each training ex-
ample, totaling |Dtrain| · n3 trajectories. We use the outcome
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reward modelR to label the refinement outputs as correct
(✓) or incorrect (×). The exponential branching factor is
very useful to collect a large number of diverse training sam-
ples (and inference can be parallelized for efficiency while
post-training will just rely on the fixed dataset collected).

To effectively utilize reward signals from the refinement
model’s outputs, we adopt a value iteration approach to
propagate values backward through the reasoning chain.
Specifically, we compute the expected value of each inter-
mediate output (i.e. generator and verifier outputs) based
on the values of downstream outputs from the refiner. This
global pooling approach is useful because an intermedi-
ate step’s utility depends on how it influences downstream
outputs and final correctness (see Figure 2, Left). Partial
solutions can still yield correct answers once refined, so
simply providing binary labels is insufficient. By assign-
ing each output an expected value, we better capture the
influence on the final reward. This also allows MALT to
be generalized to settings where intermediate steps may not
carry the same labels, and each intermediate output can now
be credited in proportion to its impact on the final solution.

Value Function Definitions We define the value of each
refinement node ri,j,k,l by directly comparing its final an-
swer a to the ground truth:

V(ri,j,k,l) = R(T (ri,j,k,l), aGT) ∈ {0, 1}. (10)

The value of a verifier output vi,j,k is then computed as the
expected value of its child refinements:

V(vi,j,k) = El[V(ri,j,k,l)] ≈
1

n

n∑
l=1

V(ri,j,k,l). (11)

Similarly, the value of a generator output gi,j is computed
as the expected value of its child verifier outputs:

V(gi,j) = Ek[V(vi,j,k)] ≈
1

n

n∑
k=1

V(vi,j,k). (12)

Each output state’s empirical mean is a Monte Carlo ap-
proximation (unbiased sample avg.) of its true expected
correctness, indicated using “≈” for the expected value cal-
culation and for each q. This process allows us to propagate
reward signals from final outputs through the tree to each in-
termediate state, capturing the overall utility of each output.

Thresholding and Binarization To prepare the data for
training (SFT and DPO), we binarize values using a thresh-
old of 0.5, aligning with majority voting principles. Nodes
with values greater than 0.5 are labeled as correct (✓), and
those with values less than or equal to 0.5 are labeled as
incorrect (×). The intuition behind this strategy is discussed
in more detail in Appendix A.4, where we demonstrate

that it ensures the policy’s expected value monotonically
increases. Formally, for each output state s (i.e. output from
any model in the multi-agent setup), we define its label ŝ as:

ŝ =

{
✓, if V(s) > 0.5,

×, otherwise.
(13)

4.3. MALT Post-training

With each output assigned a value, the goal is to now use
these for post-training the models (see Figure 2, Center).
We first detail how training data for each model is gener-
ated: Each refinement output ri,j,k,l has an associated value
V(ri,j,k,l) ∈ {0, 1}. We create preference pairs (r+, r−)
where r+ is a correct refinement (V(r+) = 1) and r− is
an incorrect refinement (V(r−) = 0) for the same verifier
input vi,j,k. Formally:

DR =

{
(r+, r−)

∣∣∣∣∣r
+, r− ∈ {ri,j,k,l}nl=1,

V(r+) = 1, V(r−) = 0

}
. (14)

For each verifier output vi,j,k, we compute its value
V(vi,j,k) and binarize it as follows:

v̂i,j,k =

{
✓, if V(vi,j,k) > 0.5,

×, otherwise.
(15)

Preference pairs for the verifier model are created by com-
paring outputs under the same generator output gi,j :

DV =

{
(v+, v−)

∣∣∣∣∣v
+, v− ∈ {vi,j,k}nk=1,

v̂+ = ✓, v̂− = ×

}
. (16)

A similar process applies to the generator model, where
generator outputs gi,j are binarized based on their values
V(gi,j), and preference pairs DG are created by comparing
outputs under the same query qi. Thus, datasets are collected
only in pairs, leading to a sufficiently large (see Sec. 5) and
diverse set obtained from the tree expansion process.

Refinement and Verifier Model Training Following the
data generation process outlined above and the training se-
tups in Section 3, we first perform SFT on the G, V , R mod-
els with the questions and positive samples in DG, DV , and
DR respectively, updating each model’s policy separately.
For G, this is analogous to standard STaR post-training (Ze-
likman et al., 2022) with a specialized dataset. Next, on only
the SFT updated V and R models, we apply DPO with ques-
tion and chosen-rejected pairs in DV and DR respectively.
For the Generator, we opt for SFT-only because DPO does
not improve performance (primarily because the base LLM
- Llama 3.1 8B is already extensively post-trained on prefer-
ences as a generator (Grattafiori et al., 2024) and Sec. 5.4).
By combining SFT with preference-based updates, we cap-
ture both “ideal” behaviors (through correct samples) and

5
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“relative” preferences (through correct-vs-incorrect pairs).
This allows us to not only bootstrap reasoning based on
positive traces but also learn generalizable knowledge about
useful reasoning trajectories (Chu et al., 2025). We show
our training and inference setups in Figure 2 and a present a
detailed algorithm for MALT in Appendix A.1.

5. Experiments
In this section, we outline the experimental details, includ-
ing a description of the model, the benchmarks used for
evaluation, and the training pipeline. We then present our
main experimental results, followed by an empirical analysis
and baseline comparisons, along with ablations.

5.1. Experimental Details

Benchmarks and Models We use the Llama-3.1-8B-
Instruct model (Grattafiori et al., 2024), chosen for its open-
source nature and balance between competitive baseline
performance and size fitting in a limited compute budget.
We evaluate MALT and all baselines on three widely-used
benchmarks: GSM8K (Cobbe et al., 2021), which consists
of 7.47k training examples and 1.32k test questions, focused
on diverse grade school math problems. To evaluate MALT
on more challenging mathematical reasoning questions, we
use MATH (Hendrycks et al., 2021), consisting of 7.5k
training and 5k test problems. MATH has proven to be con-
sistently difficult for smaller language models, with Llama
3.1 8B performing around 49.50% test-accuracy. Lastly, to
extend the scope beyond mathematical tasks, we evaluate on
CommonsenseQA (CSQA) (Talmor et al., 2019) with 9.74k
training examples and 1.22k dev-set questions. CSQA is
a multiple-choice question answering dataset around com-
monsense reasoning problems and has been used similarly
by prior work (Zelikman et al., 2022; 2024; Wei et al., 2023).

Baselines We compare MALT against eight baselines in
2 primary settings, all using Llama 3.1 8B. First, we imple-
ment the inference-only setting with (1) a single-agent (SA)
naive setting in which a single model is used as a generator
to provide an outupt, (2) a multi-agent (MA) setting, where
the pre-trained baseline model operates in a sequential way
as a generator, verifier, and refinement agent with the same
prompts given to MALT post-trained models. Our second
setting is with only supervised fine-tuning on all three mod-
els with the positive data from the synthetic set collected
for MALT. We refer to this as our STaR baseline. MALT in-
volves a majority-voting based self-consistency mechanism
described below and also implemented for all baselines.

MALT Procedure For MALT, we generate synthetic
data for each benchmark separately using the tree-based
approach (Algorithm 1) with a branching factor of n = 3,
yielding 27 trajectories per question and approximately

2k–6k labeled pairs per model/benchmark. Each final
answer is compared against the ground truth in the training
set to assign a binary reward, which is then propagated to
label the G, V , and R outputs. During this, each model
has a fixed role conditioning prompt template that is also
used for baselines and for the post-trained models. We
first train each role-specific Llama-3.1-8B-Instruct model
on positive labels with LoRA-based SFT and then with
DPO to incorporate reasoning preference data for reinforce-
ment learning (discussed in Section 4.3. We use LoRA
adapter-based fine-tuning(Hu et al., 2021), significantly
reducing the computational load for post-training (see
Appendix A.6 for more details). At inference, MALT
follows a simple sequential inference pass through the
three heterogeneous models reasoning over questions in the
test set. Training small models on long sequences of text
can lead to instability or hallucinations (Park et al., 2024),
therefore MALT employs a three-vote self-consistency
mechanism, mitigating potential hallucinations.

5.2. Experimental Results

Our experimental results along with all the baselines are
presented in Table 1, along with Ablations in Tables 2 and
3. Our results are averaged over four runs on random sub-
sets of the large test-sets across seeds, and we report the
standard deviation for all our results. Below, we detail our
experimental results and associated analysis and discussion.

Baselines comparison We propose baseline results in
Table 1. Baseline single agent scores on MATH, CSQA,
and GSM8K are 49.50%, 74.50%, and 84.25%, approxi-
mately in line with scores reported in Llama 3.1 8B’s release
(Grattafiori et al., 2024). These scores go up to 52.50%,
75.75%, 86.75% and 53.50%, 79.00%, 87.00% with sin-
gle model majority voting and multi-agent majority voting
respectively. Additionally, after applying STaR (SFT on
positive synthetic CoTs), single-agent baselines achieve
around 52.25%, 76.25%, and 81.75% on MATH, CSQA,
and GSM8K, while the multi-agent STaR variant remains
around 52.50%, 75.50%, and 80.00%. Self consistency re-
sults for STaR variants surpass purely untrained baselines
but still lag behind the reasoning improvements obtained
with MALT and described below.

MALT Core Results MALT (Table 1, right) achieves
an accuracy of 57.25%, 81.50%, and 90.50% on MATH,
CSQA, and GSM8K. Overall, MALT significantly outper-
forms all baselines, including all settings with supervised
fine-tuned models. Over the base model’s performance as a
generator, MALT achieves relative improvements of 15.66%,
9.40%, and 7.42% on MATH, CSQA, and GSM8K. This
demonstrates the reasoning efficacy of our search and attri-
bution based data generation, post-training, and inference
pipeline in MALT across benchmarks of varying difficulty.
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Test Accuracy (%) over 4 seeds ↑

Benchmark
Inference-only STaR Training MALT

MALT
SA SA+MV MA MA+MV SA SA+MV MA MA+MV (w/o MV)

GSM8K 84.25 ± 2.28 86.75 ± 2.38 84.75 ± 2.86 87.00 ± 4.00 81.75 ± 0.83 84.75 ± 2.68 80.00 ± 1.58 86.75 ± 2.28 83.50 ± 2.18 90.50 ± 2.06

CSQA 74.50 ± 3.35 75.75 ± 5.49 77.50 ± 5.17 79.00 ± 4.69 76.25 ± 4.32 78.75 ± 4.26 75.50 ± 2.69 76.00 ± 1.73 77.50 ± 1.12 81.50 ± 2.29

MATH 49.50 ± 2.06 52.50 ± 2.50 51.75 ± 3.56 53.50 ± 2.87 52.25 ± 1.48 54.00 ± 2.73 52.50 ± 3.20 53.75 ± 2.68 52.25 ± 1.79 57.25 ± 1.48

Table 1. Benchmark results. We compare MALT with baselines on three different benchmarks. For baselines, we include different setups
such as single agent (SA) and multi-agent (MA), both with and without majority voting (MV). MALT outperforms all baselines.

Incorrect  Correct
Correct  Correct

Incorrect  Incorrect
Correct  Incorrect

0 20 40 60 80 100
Percentage

MATH

CSQA

GSM8K

14.2
11.2

9.5

43.0

70.2
81.0

36.2

14.2
5.8

6.5
4.2

3.8

Figure 3. Self-correction rates. MALT consistently increases the
number of correct answers by correcting previously incorrect an-
swers at a much higher rate than introducing new mistakes com-
pared to a single-model baseline (MV@3).

5.3. Core analysis

Self-consistency From results in Table 1, MALT demon-
strates improved reasoning with majority-voting for self-
consistency (Wang et al., 2022), but its performance without
MV remained close to that of the multi-agent inference-
only setting. A qualitative examination of the reasoning
trajectories revealed that while MALT was able to solve
questions previously unsolved by all baselines, it experi-
enced self-consistency issues due to hallucinations. Thus,
we use a small majority voting factor of 3 and observe that
self-consistency reliably yields significantly higher relative
improvement for MALT over baselines. For instance, on
MATH, self-consistency resulted in a relative improvement
of 9.57%, exceeding the 3− 6% gains in other baselines.

Reasoning self-correction rates We measured how often
MALT flips an incorrect solution into a correct one versus
the opposite (Figure 3). On MATH, MALT converts 14.25%
of wrong answers into correct ones, while only 6.50% of
correct answers become wrong. For GSM8K, 9.75% flip to
correct and 3.75% flip to incorrect, and CSQA with 11.25%
vs. 4.25%. These numbers indicate that MALT’s genera-
tor–verifier–refiner process shows strong self-improvement
with significantly lower mistakes introduced.

G V R

85

88

91

Baseline

Baseline+MV

GSM8K

G V R

75

80

Baseline

Baseline+MV

CSQA

G V R
50

55

60

Baseline

Baseline+MV

MATH

Figure 4. Improvement over turns. MALT demonstrates consis-
tent improvements at each turn. Test accuracy at each turn from a
sequential pass through the post-trained Generator, Verifier, and
Refinement models (All with MV@3).

Improvement over turns We use GPT-4 to rate the accu-
racy of each step MALT produced on the test sets to analyze
its performance after each agent inference (“turn”). Figure 4
shows how performance evolves. For example, MATH’s
untrained baseline improves from 49.50% to 52.50% with
majority voting. MALT, over its 3 reasoning and multi-agent
deliberation turns, increases performance to 53.50% (turn 1
- Generator), 55.75% (turn 2 - Verifier), and 57.25% (turn 3
- Refiner). We observe similar increases across GSM8K and
CSQA. This consistent turn-wise improvement highlights
how sequential verification and refinement are both very
important for improving overall reasoning performance. We
also provide ablations to understand why generate-verify-
refine is the most appropriate paradigm in Section 5.4.

Overall performance Across all benchmarks, MALT con-
sistently outperforms both zero-shot and fine-tuned base-
lines, closing gaps on problems previously unsolved by
any baseline. Its multi-agent framework not only achieves
higher average scores but also corrects systematic errors.
For example, the verifier often successfully locates errors
by redoing calculations and providing a precise critique,
with the pattern learnt automatically from synthetic data
generated via our search process. Similarly, for CSQA, the
verifier implicitly learns to focus on aspects of the prob-
lem overlooked by the generator, allowing for additional
inference-compute spent on important gaps. Examples of
these reasoning interactions are provided in Appendix A.2.
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MALT Post-training GSM8K CSQA MATH
G V R

✗ ✓ ✓ 87.00 78.75 54.25
✓ ✗ ✓ 85.75 76.75 54.50
✓ ✓ ✗ 86.25 75.50 55.25

✓ ✓ ✓ 90.50 81.50 57.25

Table 2. Ablations with untrained models in MALT (MV@3).
This table shows the performance of untrained agents combined
with trained ones, demonstrating that all agents perform best when
cooperating with peers trained with MALT.

5.4. Ablation studies

Untrained model ablations We test how useful training
each individual agent is by replacing one of them with an
untrained baseline and keeping the other two MALT-trained
agents. As seen in Table 2, this consistently degrades perfor-
mance on all benchmarks. For instance, using an untrained
generator yields mean accuracies of 54.25% (MATH),
87.00% (GSM8K), and 78.75% (CSQA), notably lower
than a fully trained system. Similar drops occur when substi-
tuting an untrained verifier or refiner. This reinforces that all
agents benefit from the MALT pipeline, and removing train-
ing from any one of them reduces performance (see Table 2).

Importance of generate-verify-refine Next, we mea-
sure the impact of removing one role from our three-agent
pipeline and running simpler two-agent systems. Specif-
ically, we compare (i) generate-refine (G + R, skipping
the verifier) and (ii) generate-verify (G+ V , skipping the
refiner). As shown in Table 3, both setups underperform
the full pipeline: G+R yields mean accuracies of 54.75%
(MATH), 84.75% (GSM8K), and 76.25% (CSQA), while
G + V yields 55.75% (MATH), 88.75% (GSM8K), and
78.00% (CSQA), both paradigms below the generate-verify-
refine setup in MALT. This confirms our specific multi-agent
setup yields consistently stronger results by enabling more
inference spent on sequential deliberation.

Effectiveness of DPO over only SFT As shown in Ta-
ble 1, DPO consistently improves MALT’s performance
beyond SFT alone by leveraging negative data—an ap-
proach also observed in (Putta et al., 2024) and (Setlur et al.,
2024). In particular, purely positive “rationales” can intro-
duce spurious correlations and degrade SFT performance,
which does indeed occur in our empirical and qualitative
results; the contrastive training approach that DPO provides
with negative data helps the model identify high-advantage
reasoning steps to improve with higher sample-efficiency
(Rafailov et al., 2024).For reasoning problems, SFT tends
to memorize the data and rules, which is useful to bootstrap
reasoning to a certain extent (Zelikman et al., 2022). How-
ever, our results indicate that this could degrade performance
sometimes, and preference learning methods such as DPO

Configuration GSM8K CSQA MATH

G only 84.75 78.75 54.00
G+ V 88.75 78.00 55.75
G+R 84.75 76.25 54.75

G+ V +R (Ours) 90.50 81.50 57.25

Table 3. Performance of ablated multi-agent setups (MV@3).
This table shows that all agents in our pipeline are necessary to
achieve the best results.

(see Appendix A.4.2 for a theoretical analysis) exhibit better
performance at learning generalizable knowledge around
reasoning steps (Chu et al., 2025). However, for the Gener-
ator, we find that SFT+DPO actually lowers performance
(for e.g. 52.25% on MATH with SFT and 51.25% with
SFT+DPO)—likely because Llama 3.1 8B-Instruct already
underwent post-training with DPO on a very similar genera-
tor data distribution for benchmarks (Grattafiori et al., 2024),
making DPO on a similar distribution prone to overfitting,
consistent with observations in Setlur et al. (2024).

6. Discussion and Conclusion
We presented MALT, a novel post-training strategy dividing
CoT reasoning among three specialized LLMs-a generator,
verifier, and refiner-to tackle complex reasoning tasks. To
our knowledge, MALT is the first approach bridging the
gap between prior multi-agent inference methods and fully-
trained multi-agent systems, by generating role-specific data
using a tree-based sampling and credit assignment mecha-
nism, without human annotations. Crucially, MALT utilizes
the negative synthetic data to identify and correct flawed
reasoning steps with LLM post-training. Unlike standard
single-LLM setups, our design closely mirrors how humans
solve complex tasks or even use LLMs—attempting a solu-
tion, critiquing errors, and finally refining the result. This
process yields consistent gains on benchmarks of varying
difficulty across all baselines and ablations, demonstrating
the effectiveness of multi-agent post-training. We provide
detailed theoretical grounding and additional explanations
In Appendix A.4. Moreover, in Section A.5, we outline
future directions, such as scaling the branching factor and
understanding its effect on performance, and moving to an
online RL paradigm. These directions require more compute
and remain beyond the scope of this work.

By structuring the reasoning process as a multi-agent sys-
tem in which specialized models sequentially deliberate over
problems, MALT enables role-specific reasoning capabili-
ties in pre-trained models to improve. This allows systems
of LLMs to more efficiently utilize meta-strategies such as
self-correction and chaining inference steps. With MALT,
we introduce a new research paradigm that can be applied
to any foundation model to improve reasoning capabilities.
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Impact Statement
This paper presents a method to enhance the reasoning capa-
bilities of frontier models in multi-agent setups. We believe
that our contributions may have significant societal implica-
tions. First, our post-trained agents demonstrated substantial
performance improvements across competitive benchmarks.
This could enable groups of small, open-source models to
achieve performance levels comparable to closed-source
frontier models. Additionally, MALT has important impli-
cations for AI safety, which we address in Appendix A.7.
We emphasize the importance of using our contributions
responsibly.
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A. Appendix
A.1. Algorithm

MALT orchestrates a three-agent system—comprising a Generator for initial answers, a Verifier for critiques, and a Refiner
that integrates these steps into a final response. During training, we expand a multi-agent search tree for each question,
labeling correct and incorrect branches via a value iteration based credit assignment mechanism. This generates role-specific
preference pairs for post-training each agent via supervised fine-tuning and preference optimization. Algorithm 1 provides a
complete description of the data collection and training pipeline for MALT.

Algorithm 1 Multi-Agent LLM Training and Synthetic Data Generation (MALT)

Require: Initial Dataset D, Models G, V , R, Branching factor n
GOAL: Trained models G′, V ′, R′

1: Initialize datasets SG, SV , SR as empty sets
2: for q ∈ D do
3: AG ← {gj = G(q)}nj=1 ▷ Generate n outputs from G

4: for each gj ∈ AG do
5: A

gj
V ← {vj,k = V (q, gj)}nk=1 ▷ Generate n outputs from V

6: for each vj,k ∈ A
gj
V do

7: A
gj ,vj,k

R ← {rj,k,l = R(q, gj , vj,k)}nl=1 ▷ Generate n outputs from R

8: for each rj,k,l ∈ A
gj ,vj,k
R do

9: Compute V (rj,k,l) = R(rj,k,l, aGT) ▷ Reward for R output
10: Add (q, gj , vj,k, rj,k,l, V (rj,k,l)) to SR
11: end for
12: Compute V (vj,k) =

1

n

∑n
l=1 V (rj,k,l) ▷ Value for V output

13: Binarize v̂j,k = I[V (vj,k) > 0.5]
14: Add (q, gj , vj,k, v̂j,k) to SV
15: end for
16: Compute V (gj) =

1

n

∑n
k=1 V (vj,k) ▷ Value for G output

17: Binarize ĝj = I[V (gj) > 0.5]
18: Add (q, gj , ĝj) to SG
19: end for
20: end for
21: Training the Models
22: G′ ← SFT(G,SG) ▷ Fine-tune G with supervised data
23: VSFT ← SFT (V, {(q, gj , vj,k) | (q, gj , vj,k, v̂j,k) ∈ SV , v̂j,k = 1}) ▷ Fine-tune V on positive samples
24: V ′ ← DPO(VSFT,SV ) ▷ Train V with DPO using preferences
25: RSFT ← SFT (R, {(q, gj , vj,k, rj,k,l) | V (rj,k,l) = 1}) ▷ Fine-tune R on positive samples
26: R′ ← DPO(RSFT,SR) ▷ Train R with DPO using preferences
27: return G′, V ′, R′

A.2. Qualitative Examples

In this section, we present three key qualitative examples: a synthetic training example for SFT and DPO, a qualitative
performance comparison between an untrained and a trained verifier, and a complete MALT setup demonstrating a
backtracking and improvement reasoning cycle that generates a correct answer.

GSM8K Synthetic Dataset Sample for the Refinement Model (GT Answer = 25)

System prompt
You are an expert problem solver that refines math solutions based on feedback.
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Input
Question: Marco loves trading cards. He has a total of 500 cards on hand, and a fourth of them are duplicates.
Marco decides to trade one-fifth of these duplicates for completely new cards to his friend Josh. How many new
cards did Marco get?
Initial Answer: I’d be happy to help you solve this problem step by step.
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates.
Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
* First, we need to find the number of duplicates Marco has. Since a fourth of his cards are duplicates, we can find
the number of duplicates by multiplying 500 by 1/4. * Then, we need to find one-fifth of the number of duplicates to
find out how many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards traded from the total
number of duplicates to find the remaining duplicates.
Step 4: Execute our plan
* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates = 125 x 1/5 = 25 * Marco traded
25 cards with Josh.
Step 5: State our conclusion and double-check our answer
* Marco got 25 new cards from trading with Josh.
Final Answer: 25

Rejected Output
Based on the initial answer and the verification feedback, I refine the solution as follows:
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates.
Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
* First, we need to find the number of duplicates Marco has. Since a fourth of his cards are duplicates, we can find
the number of duplicates by multiplying 500 by 1/4. * Then, we need to find one-fifth of the number of duplicates to
find out how many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards traded from the total
number of duplicates to find the remaining duplicates.
Step 4: Execute our plan
* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates = 125 x 1/5 = 25 * Marco traded
25 cards with Josh. Since he traded one-fifth of his duplicates, we can find the total number of duplicates he has left
by adding the number of cards traded back to the number of duplicates: 125 + 25 = 150 * To find the number of new
cards Marco got, we subtract the number of duplicates he traded from the total number of duplicates: 150 - 25 = 125
Step 5: State our conclusion and double-check our answer
* Marco got 125 new cards from trading with Josh.
Final Answer: Final Answer: 125

Accepted Output
Refined Solution:
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates. * Marco trades one-fifth of his duplicates with
Josh.
Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
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* First, we need to find the number of duplicates Marco has. Since a fourth of his cards are duplicates, we can find
the number of duplicates by multiplying 500 by 1/4. * Then, we need to find one-fifth of the number of duplicates to
find out how many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards traded from the total
number of duplicates to find the remaining duplicates.
Step 4: Execute our plan
* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates = 125 x 1/5 = 25 * Marco traded
25 cards with Josh. * Remaining duplicates = 125 - 25 = 100
Step 5: State our conclusion and double-check our answer
* Marco got 25 new cards from trading with Josh.
Final Answer: 25

Qualitative Example of an Untrained VS Trained Verifier

Question
Billy buys a 12-pack of soda from the store. If he has twice as many brothers as sisters, and he has 2 sisters, how
many sodas can he give to each of his siblings if he wants to give out the entire 12-pack while giving each the same
number?

Initial Answer
I’d be happy to help you solve this problem step by step.
**Step 1: Identify the key information given in the question.**
* Billy buys a 12-pack of soda. * He has twice as many brothers as sisters. * He has 2 sisters.
**Step 2: Determine what the question is asking us to find.**
The question is asking us to find out how many sodas Billy can give to each of his siblings if he wants to give out the
entire 12-pack while giving each the same number.
**Step 3: Plan our approach to solving the problem.**
Let’s let x be the number of siblings (brothers and sisters). We know that Billy has 2 sisters, so the number of
brothers is 2 times the number of sisters, which is 2x. The total number of siblings is the sum of the number of sisters
and brothers, which is x + 2x = 3x. We are given that Billy has a 12-pack of soda, so we can set up the equation:
12 = x + 2x
**Step 4: Execute our plan, showing all work clearly.**
To solve for x, we can combine like terms:
12 = 3x
Divide both sides by 3:
4 = x
So, Billy has 4 siblings in total (2 sisters and 2 brothers).
**Step 5: State our conclusion and double-check our answer.**
Since Billy has 12 sodas and 4 siblings, he can give:
12 ÷ 4 = 3
sodas to each of his siblings.
Final Answer: 3

Untrained Verifier
As a verifier, I will critically evaluate the initial answer provided above.
The initial answer states that Billy can give 3 sodas to each of his siblings. Let’s verify the answer by performing the
calculations.
**Verification:**
1. We are given that Billy has 12 sodas and 4 siblings (2 sisters and 2 brothers). 2. To find out how many sodas each
sibling can get, we can divide the total number of sodas (12) by the number of siblings (4):
12 ÷ 4 = 3
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The initial answer is correct! Billy can indeed give 3 sodas to each of his siblings.
**Feedback:**
The initial answer is mathematically correct. The calculations are accurate, and the solution is well-explained. The
answer is also logically consistent with the given information. Well done!
However, it’s always a good idea to double-check the calculations to ensure accuracy. In this case, the verification
step confirms that the initial answer is correct.

Trained Verifier
As a verifier, I will carefully evaluate the initial answer provided above.
The initial answer states that Billy can give 3 sodas to each of his siblings. Let’s double-check the calculations to
ensure the answer is mathematically correct.
The initial answer claims that Billy has 4 siblings (2 sisters and 2 brothers). However, the question states that Billy
has twice as many brothers as sisters, and he has 2 sisters. This implies that the number of brothers is 2 times the
number of sisters, which is 2 x 2 = 4 brothers. Therefore, Billy actually has 2 sisters and 4 brothers, making a total
of 6 siblings.
The initial answer also claims that Billy can give 12 sodas to 4 siblings, resulting in 3 sodas per sibling. However,
dividing 12 sodas among 6 siblings would actually give 2 sodas per sibling, not 3.
**Conclusion:**
The initial answer contains a calculation error. The correct number of siblings is 6, not 4. Therefore, Billy can give 2
sodas to each of his siblings, not 3.
As a verifier, I recommend that the initial answer be corrected to reflect the correct calculation. The correct answer
is 2 sodas per sibling.

A Complete Reasoning and Improvement Sequence Example with MALT on CommonsenseQA

Question
He looked at the field of pumps, all slowly churning oil out of the what?

Choices
A: manual
B: street
C: restaurant
D: ground
E: service station

Initial Answer (Generator)
Reasoning steps: 1. The context of the question is about pumps churning oil, which suggests a location where oil is
being dispensed or extracted. 2. A ”manual” (A) does not typically relate to a location where oil is churning. 3. A
”street” (B) is a general location, but it’s not specific to oil churning. 4. A ”restaurant” (C) is not associated with oil
churning. 5. The ”ground” (D) could be a possible location, but it’s not the most specific or common location for oil
churning. 6. A ”service station” (E) is a common location where oil is churning, as it’s where cars are serviced and
oil is dispensed.
Final Answer: E

Verifier
The initial answer is E: service station.
This answer seems to be the most logical choice given the context of the question. The phrase ”field of pumps”
suggests a location where multiple pumps are present, and a service station is a common place where multiple
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pumps are used to dispense oil and other fuels.
However, the question asks what the pumps are churning oil out of, not where the pumps are located. This changes
the interpretation of the question.
Considering the phrase ”churning oil out of,” it implies that the pumps are extracting or pumping oil from a source.
In this case, the most likely source of oil would be the ground, as oil is often extracted from the ground.
Therefore, the correct answer is D: ground.

Refined Answer
Reasoning steps: 1. The context of the question is about pumps churning oil, which suggests a location where
oil is being extracted or dispensed. 2. The phrase ”churning oil out of” implies that the pumps are extracting or
pumping oil from a source. 3. The most common source of oil is the ground, as it is often extracted from the earth.
4. Therefore, the pumps are churning oil out of the ground.
Final Answer: D

Ground Truth (not provided to any model)
D

A.3. Detailed Discussion

We now discuss key design choices. Simplicity with theoretical grounding—particularly the assurance of a trained policy
with a monotonically increasing value—was a primary consideration. We opted for DPO over PPO-based methods due to
our focus on a straightforward offline data generation process, treating our approach as an independent learning problem in a
centralized setting (Lerer et al., 2020) with a single iteration (the key difference being that our agent policies post-training
differ). In this setting, DPO is more stable than PPO and requires less overhead. While PPO could use the value computed
at each branch as a reward for post-training nodes (a promising future direction), it introduces significant computational
complexity. Moving from offline to online RL with additional computational overhead might indeed improve performance
quite a bit.

Our value iteration method, when binarized, resembles global majority-based pooling: for a given node and branch, the
binary reward of the leaf nodes in the subtree determines the usefulness of the branch, analogous to binarizing values
propagated through the tree. In contrast, local pooling computes the binary value of a branch based only on the majority
outcomes of its direct children, propagating this process to the leaf nodes. We also leave the choice between MCTS and
an expansive tree-based sampling strategy as an open problem. Given our limited tree depth, tree-based sampling proved
efficient, supported synthetic data generation with an exponential branching factor, and produces explainable outputs. Our
dataset is collected offline, and individual models are trained on this synthetic data. While this approach works empirically,
handling any new, out-of-distribution data would require iterative rollout and post-training methods.

Based on our empirical results and the modularity of our algorithmic approach, it is highly plausible that our method
will scale to larger models and scenarios with many agents, thus laying the foundations for new state-of-the-art AI agents
based on systems of cooperative frontier models. Overall, our multi-agent system is currently composed of a sequence of
agents that start out with the same parameters and different prompts. MALT performs joint training to transform this into a
heterogeneous agent setting, where agents with different parameters operate cooperatively. Exploring other multi-agent
settings is an important direction for subsequent work.

A.4. Theoretical Justification for MALT

A.4.1. CREDIT ASSIGNMENT STRATEGY

Here, we provide a theoretical justification for why our framework, when updating the agent policies based on binarized
pooled rewards with a threshold at θ = 0.5, leads to policy improvements. We formalize the pooling operation, define
the dynamic programming approach of value iteration in our context, and show that our policy updates lead to monotonic
increases in expected reward.
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We consider a tree-structured reasoning process where each node represents a model in our system: Generator (G), Verifier
(V ), or Refinement Model (R). The branches connecting these nodes represent the outputs (actions) generated by each
model. For each model, multiple outputs (branches) are possible, representing the different actions or decisions the model
can make. Each leaf node corresponds to the terminal outputs of the Refinement model R and receives a binary reward:

R(r) =

{
1, if r is correct,
0, otherwise.

(17)

We define the value function V (ν) for a node ν (model) as the expected reward of its downstream refinements starting from
that node:

V (ν) = Eπ[R(r) | ν], (18)

where the expectation is over all possible branches under the current policy π, starting from node ν. Starting from the leaves:

V (r) = R(r) ∈ {0, 1}, (19)

At each node ν (model), the value is computed as:

V (ν) =
1

K

K∑
i=1

Q(µ, ai), (20)

where:

• K is the number of outputs sampled at node ν,

• µ is the subsequent model with K outputs

This pooling operation aggregates the expected rewards from downstream paths in a dynamic-programming approach. We
then apply a binarization function V̂ (ν) to label nodes as ’useful’ (1) or ’not useful’ (0) using a threshold θ = 0.5:

V̂ (ν) =

{
1, if V (ν) > 0.5,

0, otherwise.
(21)

There is a monotonic relationship between values and binarization. Note that we binarize our values because of computational
constraints and DPO’s requirement of a pair of useful and not useful outputs for preference optimization. With the use of
PPO, we could potentially use these values directly as rewards for optimal post-training and leave this for future work. For
any two nodes ν and µ, if V (ν) ≥ V (µ), then V̂ (ν) ≥ V̂ (µ), due to binarization being a non-decreasing function. We
update the policy πi by using the binarized pooled reward V̂ (s′) of the next node as the reward signal.

We now show that if we use the binarized pooled reward for policy gradient updates, we will achieve monotonic improvements
in the expected reward. Let πt be the policy at iteration t, and Vπt

(ν) be the value of node ν under policy πt.

Base Case: At iteration t = 0, we have the initial value function Vπ0
(ν) under the initial policy π0.

Inductive Step: Assume that at iteration t, the value function satisfies:

Vπt
(ν) ≥ Vπt−1

(ν) for all nodes ν. (22)

Policy Update: We update the policy πt to πt+1 by using policy gradient methods with the binarized pooled reward V̂ (ν)
as the reward signal. Specifically, we adjust the policy to increase the probability of outputs leading to child nodes with
V̂ (ci) = 1.

Now in order to show that:
Vπt+1(ν) ≥ Vπt(ν) for all nodes ν. (23)
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At each node ν, the value under policy πt is:

Vπt
(ν) =

1

K

K∑
i=1

Qπt
(µ, ai), (24)

After the policy update, the value under policy πt+1 is:

Vπt+1(ν) =
1

K

K∑
i=1

Qπt+1(µ, ai). (25)

Using policy gradient methods (Schulman et al., 2017a) that increase the probabilities of selecting outputs leading to child
nodes with V̂ (ci) = 1, and because V̂ (ci) = 1 implies V (ci) > 0.5, we can infer that:

Vπt+1
(ci) ≥ Vπt

(ci) for all child nodes ci. (26)

We note that methods such as DPO or PPO are not inherently guaranteed to be monotonically increasing in terms of expected
reward and discuss this further below in Appendix A.4.2. TRPO does offer such guarantees (Schulman et al., 2017a). At the
very least, if the update is monotonic when considering the actual value, it is guaranteed to be monotonic when using the
binarization based on the proof below.

By the inductive hypothesis and the policy update, the values of child nodes do not decrease:

Vπt+1
(ci) ≥ Vπt

(ci). (27)

Therefore, at node ν:

Vπt+1(ν) =
1

K

K∑
i=1

Vπt+1(ci) ≥
1

K

K∑
i=1

Vπt(ci) = Vπt(ν). (28)

Thus, Vπt+1
(ν) ≥ Vπt

(ν).

By induction, this holds for all nodes in the tree, including the root node. Therefore, we get:

J(πt+1) = Vπt+1(G) ≥ Vπt(G) = J(πt). (29)

Adaptive Thresholding and Sample Efficiency: In iterative settings, the threshold θ should be an adaptive factor increasing
from 0.5 to 1. In our setting, where all data is collected offline, 0.5 is a balanced threshold to use for the following reasons:

• Lower Thresholds (θ < 0.5): This allows for greater sample-efficiency as more branches labeled as correct are used as
part of training. However, it might introduce noise into the training process with samples that have low values being
chosen as correct.

• Higher Thresholds (θ > 0.5): This would allow for a focus on actions leading to higher-value nodes, reducing variance.
However, having θ too high would reduce sample efficiency.

Using θ = 0.5 provides a balance suitable for a single iteration based on an offline generated dataset. By formalizing
our pooling and value iteration approach, we have shown that updating the policy based on the binarized pooled reward
with thresholding at θ = 0.5 leads to monotonic improvement in the expected reward. This holds because increasing the
probability of selecting actions (outputs) leading to next nodes with higher V̂ (s′) does not decrease the expected reward at
any node, and thus the overall expected reward improves or remains the same.

A.4.2. POLICY OPTIMIZING THE DPO OBJECTIVE IS IDENTICAL TO OPTIMAL RL POLICY

To support our claims in Appendix A.4.1, we leverage Theorem 1 from (Putta et al., 2024) and Theorem 6.1 from (Setlur
et al., 2024), adjusted for our binarization setting:
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Theorem. Consider a policy π that optimizes our objective over trajectories generated by a reference policy πref. At each
node (state) ht, preferences between actions during DPO are generated according to:

p(awt ≻ alt | ht) ∝ σ
(
Q̂(ht, a

w
t )− Q̂(ht, a

l
t)
)
, (30)

where:

• awt and alt are two win/loss actions at node ht,

• Q̂(ht, a) ∈ {0, 1} is the binarized value function, representing the expected reward of action a at state ht,

Then, the policy that optimizes the Direct Preference Optimization (DPO) objective is identical to the optimal RL policy:

π∗(a | ht) ∝ πref(a | ht) exp

(
Q̂(ht, a)

β

)
, (31)

where β is the DPO hyperparameter.

The proof for Theorem 1 in (Putta et al., 2024) shows that the policy π∗ approximates the optimal RL policy. That is, we
can approximate the optimal RL policy if we generate preferences under the optimal value function (or an approximation
thereof, i.e. our binarized version as shown below).

In our setting, since Q̂(ht, a) ∈ {0, 1}, the exponential term simplifies to:

• exp
(

1
β

)
when Q̂(ht, a) = 1,

• 1 when Q̂(ht, a) = 0.

Therefore, the optimized policy becomes:

π∗(a | ht) ∝

πref(a | ht) exp

(
1

β

)
, if Q̂(ht, a) = 1,

πref(a | ht), if Q̂(ht, a) = 0.
(32)

This means that the policy π∗ increases the probability of selecting actions with Q̂(ht, a) = 1 by a constant factor relative
to the reference policy πref. By optimizing the DPO objective with these binarized preferences, we ensure that the policy
increasingly favors actions leading to higher expected rewards, aligning with our credit assignment strategy described in
Appendix A.4. This supports our claim of (approximate) monotonic improvement, as the policy updates move us closer to
the optimal policy by consistently selecting actions associated with higher binarized values.

A.5. Future Directions

Our findings showcase the potential of multi-agent LLM systems optimized with fine-tuning and collaborative inference
techniques. There are several future directions from this line of work: Using PPO (Schulman et al., 2017b) and the exact
value propogated backward for each trajectory to update model weights, possibly in an online RL fashion, might produce
strong results with additional computational overhead (Ivison et al., 2024). Moreover, we provide several levers around the
number of models (where the three model setup can be used iteratively), controlling the branching factor for data generation,
examining the effect of majority voting on more samples, changing the attribution threshold, or treating the attribution
threshold as an adaptive parameter when iteratively training and rolling out from the multi-agent system (see Appendix A.6).
Moreover, prompt-tuning strategies and different roles can be considered or distillation techniques. We note that these are
all specific and interesting directions. However, they lie beyond the scope of this paper, where our goal is to introduce a new
multi-agent post-training methodology and demonstrate strong empirical performance.
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A.6. Additional Information

For SFT, we used LoRA with a learning rate multiplier of 0.1 and a batch size of 8 to avoid overfitting. For preference
optimization, we used Direct Preference Optimization (DPO) with a preference tuning learning rate multiplier to 0.1, training
beta parameter of 0.2, and adapter weight configured to 0.2. We varied the number of epochs between 1 to 10 based on
the size of the synthetic dataset for each model and leave a deeper exploration of hyperparameter configurations that could
require a significant amount of compute to future work. SFT training was often until convergence. DPO training did not
necessarily converge by the end of all iterations.

We keep our prompts the same for every baseline and trained model on a given benchmark. Our prompts use CoT and
zero-shot prompting. We use a temperature of 0.3 for Llama 3.1 8B Instruct since it was qualitatively good enough to prevent
hallucinations and still led to diverse enough samples. MALT requires the presence of an initial training set containing
question-answer pairs, which led to the use of MATH, CSQA, and GSM8K.

During inference for the data collection strategy, using an exponential branching factor does not add significant compute
overhead because inference calls can be parallelized when sampling from a model with the exact same input. Moreover,
during training, we obtain a fixed dataset upon which LoRA fine-tuning can be conducted. LoRA adapters ensure that the
model weights themselves aren’t duplicated, thus requiring only minimal additional memory for the adapters themselves
while the base models remain the same.

A.7. Safety

Our approach can be used not just to enhance the reasoning capabilities of LLM systems, but also address crucial open
problems in the safety of multi-agent systems. Importantly, MALT-trained systems of trusted small models could attain
better task performance while retaining high degrees of trust, producing more powerful overseers within the AI control
setting (Greenblatt et al., 2024). Another prominent application of our approach would be to train verifiers as safety critics
within a multi-agent setup. This could scale up the settings such as OpenAI CriticGPT (McAleese et al., 2024) to any
number of models, resulting in more powerful safety critics and allowing for the legibility of solutions to be improved.

A.8. Limitations and Ethics Statement

We note that even at low temperatures, model performance on benchmarks often exhibits high variance. To address this
within our computational constraints, we conducted evaluations on subsets of test-sets (size 100) across four seeds. While
CommonsenseQA is known to contain many biased or incorrectly labelled questions (Geva et al., 2019), we utilized it in a
manner consistent with prior work. We aim to make all our training data, inference logs, and code publicly available.
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