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ABSTRACT

As location-based services (LBS) have grown in popularity, the collection of human
mobility data has become increasingly extensive to build machine learning (ML)
models offering enhanced convenience to LBS users. However, the convenience
comes with the risk of privacy leakage since this type of data might contain
sensitive information related to user identities, such as home/work locations. Prior
work focuses on protecting mobility data privacy during transmission or prior to
release, lacking the privacy risk evaluation of mobility data-based ML models.
To better understand and quantify the privacy leakage in mobility data-based ML
models, we design a privacy attack suite containing data extraction and membership
inference attacks tailored for point-of-interest (POI) recommendation models, one
of the most widely used mobility data-based ML models. These attacks in our
attack suite assume different adversary knowledge and aim to extract different
types of sensitive information from mobility data, providing a holistic privacy risk
assessment for POI recommendation models. Our experimental evaluation using
two real-world mobility datasets demonstrates that current POI recommendation
models are vulnerable to our attacks. We also present unique findings to understand
what types of mobility data are more susceptible to privacy attacks. Finally,
we evaluate defenses against these attacks and highlight future directions and
challenges.

1 INTRODUCTION

With the development and wide usage of mobile and wearable devices, large volumes of human
mobility data are collected to support location-based services (LBS) such as traffic management (Bai
et al., 2020; Lan et al., 2022), store location selection (Liu et al., 2017), and point-of-interest
(POI) recommendation (Sun et al., 2020; Yang et al., 2022). In particular, POI recommendation
involves relevant POI suggestions to users for future visits based on personal preferences using ML
techniques (Islam et al., 2020) and is widely deployed. POI recommendation has been integrated into
popular mapping services such as Google Maps to assist users in making informed decisions about
the next destination to visit. However, mobility data collection raises privacy concerns as it can leak
users’ sensitive information such as their identities (Blumberg & Eckersley, 2009).

Although there are a significant number of studies (Gedik & Liu, 2005; Krumm, 2007a; Andrés
et al., 2013; Shokri et al., 2013) on mobility data privacy, the existing research primarily focuses
on analyzing attacks and evaluations within the context of LBS data transmission and release
processes. For example, previous studies have demonstrated the linkages of mobility data from
various side channels, including social networks (Henne et al., 2013; Hassan et al., 2018), open-
source datasets (Gambs et al., 2014; Powar & Beresford, 2023), and network packets (Jiang et al.,
2007; Vratonjic et al., 2014). The linkages between these side channels can lead to the identification
of individuals. As a result, efforts to protect mobility data have primarily concentrated on data
aggregations and releases (Gedik & Liu, 2005; Meyerowitz & Roy Choudhury, 2009; Bordenabe
et al., 2014). These studies neglect the risk of adversaries extracting sensitive attributes or properties
from the ML models that use mobility data for training, which are inherently susceptible to inference
attacks (Shokri et al., 2017; Carlini et al., 2022).

Previous inference attacks have mainly focused on ML models trained with image and text
data (Shokri et al., 2017; Fredrikson et al., 2015a; Carlini et al., 2019). While texts and images capture
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static information, mobility data contain multimodal spatial and temporal information which provides
insights into individuals’ movements and behaviors over time. However, this unique characteristic
of mobility data makes it vulnerable to potential adversaries who can obtain mobility data to infer
the identity or trace the user’s behavior (De Montjoye et al., 2015; Liu et al., 2018). Furthermore,
existing defense mechanisms (Abadi et al., 2016; Shi et al., 2022a;b) have mainly been tested on
models trained with image or text data, making their effectiveness uncertain when applied to POI
recommendation models.

In this paper, we design a privacy attack suite to study the privacy leakage in POI recommendation
models trained with mobility data. We are selecting POI recommendation models for our study
due to their widespread usage in LBS (Wang et al., 2023). Specifically, the privacy attack suite
contains data extraction and membership inference attacks to assess the privacy vulnerabilities of
POI recommendation models at both location and trajectory levels. In contrast to privacy attacks for
image and text data, the attacks in our attack suite are uniquely adapted for mobility data and aim to
extract different types of sensitive information by assuming different adversary knowledge.

We perform experiments on three representative POI recommendation models trained on two mobility
benchmark datasets. We demonstrate that POI recommendation models are vulnerable to our
designed data extraction and membership inference attacks. We further provide an in-depth analysis
to understand what factors affect the attack performance and contribute to the effectiveness of the
attacks. Based on our analysis, we discover that the effect of data outliers exists in privacy attacks
against POI recommendations, making training examples with certain types of users, locations, and
trajectories particularly vulnerable to the attacks in the attack suite. We further test several existing
defenses and find that they do not effectively thwart our attacks with negligible utility loss, which
calls for better methods to defend against our attacks.

Contributions (1) We propose a unique privacy attack suite for POI recommendation models.
To the best of our knowledge, our work is the first to comprehensively evaluate the privacy risks
in POI recommendation models using inference attacks. (2) We conduct extensive experiments
demonstrating that POI recommendation models are vulnerable to data extraction and membership
inference attacks in our attack suite. (3) We provide an in-depth analysis to understand what unique
factors in mobility data make them vulnerable to privacy attacks, test defenses against the attacks,
and identify future directions and challenges in this area.

2 BACKGROUND

2.1 POINT-OF-INTEREST RECOMMENDATION

POI recommendation has recently gained much attention1 due to its importance in many business
applications (Islam et al., 2020), such as user experience personalization and resource optimization.
Initially, researchers focused on feature engineering and algorithms such as Markov chain (Zhang
et al., 2014; Chen et al., 2014), matrix factorization algorithms (Lian et al., 2014; Cheng et al., 2013),
and Bayesian personalized ranking (He et al., 2017; Zhao et al., 2016) for POI recommendation.
However, more recent studies have shifted their attention towards employing neural networks like
RNN (Liu et al., 2016; Yang et al., 2020), LSTM (Kong & Wu, 2018; Sun et al., 2020), and
self-attention models (Luo et al., 2021; Lian et al., 2020). Neural networks can better learn from
spatial-temporal correlation in mobility data (e.g., check-ins) to predict users’ future locations and
thus outperform other POI recommendation algorithms by a large margin. Meanwhile, this could
introduce potential privacy leakage. Thus, we aim to design an attack suite to measure the privacy
risks of neural-network-based POI recommendations systematically.

We first provide the basics of POI recommendations and notations used throughout this paper. Let U be
the user space, L be the location space, and T be the timestamp space. A POI recommendation model
takes the observed trajectory of a user as input and predicts the next POI that will be visited, which is
formulated as fθ : U×Ln×T n → R|L|. Here, the length of the input trajectory is n. We denote a user
by its user ID u ∈ U for simplicity. For an input trajectory with n check-ins, we denote its trajectory
sequence as x0:n−1

T = {(l0, t0), . . . , (ln−1, tn−1)}, where li ∈ L and ti ∈ T indicate the POI

1From 2017 to 2022, there are more than 111 papers on POI recommendation built upon mobility data
collected by location service providers (Wang et al., 2023).
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location and corresponding time interval of i-th check-in. Also, the location sequence of this trajectory
is denoted as x0:n−1

L = {l0, . . . , ln−1}. The POI recommendation model predicts the next location ln
(also denoted as y by convention) by outputting the logits of all the POIs. Then, the user can select the
POI with the highest logit as its prediction ŷ, where ŷ = argmax fθ(u, x

0:n−1
T ). Given the training

set Dtr sampled from an underlying distribution D, the model weights are optimized to minimize
the prediction loss on the overall training data, i.e., minθ

1
|Dtr|

∑
(u,x0:n−1

T ,y)∈Dtr
ℓ(fθ(u, x

0:n−1
T ), y),

where ℓ is the cross-entropy loss, i.e., ℓ(fθ(u, x0:n−1
T ), y) = − log(fθ(u, x

0:n−1
T ))y . The goal of the

training process is to maximize the performance of the model on the unseen test dataset Dte ∈ D,
which is drawn from the same distribution as the training data. During inference, this prediction ŷ is
then compared to the next real location label ln to compute the prediction accuracy. The performance
evaluation of POI recommendation models typically employs metrics such as top-k accuracy (e.g.,
k = 1, 5, 10).

2.2 THREAT MODELS

Next, we introduce the threat models of our attacks (see also Table 2 in the appendix for clarity).

Adversary Objectives To understand the potential privacy leakage of training data in POI recom-
mendation models, we design the following four attacks based on the characteristics of the mobility
data for POI recommendation, namely common location extraction (LOCEXTRACT), training tra-
jectory extraction (TRAJEXTRACT), location-level membership inference attack (LOCMIA), and
trajectory-level membership inference attack (TRAJMIA).

These four attacks aim to extract or infer different sensitive information about a user in the POI
recommendation model training data. LOCEXTRACT focuses on extracting a user’s most frequently
visited location; TRAJEXTRACT aims to extract a user’s location sequence with a certain length given
a starting location; LOCMIA is to infer whether a user has been to a location and used for training;
TRAJMIA is to infer the training membership of a trajectory sequence.

Adversary Knowledge For all attacks, we assume the attacker has access to the query interface
of the victim model. Specifically, the attacker can query the model with the target user to attack
any location and obtain the model output logits. This assumption is realistic in two scenarios: (1)
A malicious third-party entity is granted access to the POI model query API hosted by the model
owner (e.g., location service providers) for specific businesses such as personalized advertisement.
This scenario is well-recognized by Shubham Sharma (2022); Mike Boland (2021); Xin et al. (2021).
(2) The retention period of the training data expires. Still, the model owner keeps the model and
an adversary (e.g., malicious insider of location service providers) can extract or infer the sensitive
information using our attack suite, even if the training data have been deleted. In this scenario, the
model owner may violate privacy regulations such as GDPR (EU, 2018).

Depending on different attack objectives, the adversary also possesses different auxiliary knowledge.
In particular, for TRAJEXTRACT, we assume the attacker can query the victim model with a starting
location l0 that the target user visited. This assumption is reasonable because an attacker can use real-
world observation (Vicente et al., 2011b; Srivatsa & Hicks, 2012b), LOCEXTRACT, and LOCMIA
as cornerstones. As for LOCMIA and TRAJMIA, we assume the attacker has access to a shadow
dataset following the standard settings of membership inference attacks (Shokri et al., 2017; Carlini
et al., 2022).

3 ATTACK SUITE

3.1 DATA EXTRACTION ATTACKS

Our data extraction attacks are rooted in the idea that victim models display varying levels of
memorization in different subsets of training data. By manipulating queries to the victim models, the
attacker can extract users’ locations or trajectories that these victim models predominantly memorize.

LOCEXTRACT The common location extraction attack (LOCEXTRACT) aims to extract a user’s
most frequently visited location in the victim model training, i.e.,

LOCEXTRACT(fθ, u)→ l̂top1, . . . , l̂topk.
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The attack takes the victim model fθ and the target user u as the inputs and generates k predictions
l̂top1, . . . , l̂topk to extract the most frequently visited location of user u. The attack is motivated by
our key observation that when querying POI recommendation models with a random location, POI
recommendation models “over-learn” the user’s most frequently visited locations. For example, we
randomly choose 10 users and query to the victim model using 100 randomly selected locations. Of
these queries, 32.5% yield the most frequent location for the target user. Yet, these most common
locations are present in only 18.7% of these users’ datasets.

In LOCEXTRACT, we first generate a set of different random inputs for a specific user and use them
to make iterative queries to the victim model. Each query returns the prediction logits with a length
of |L| outputted by the victim model. The larger the logit value, the more confident the model
is in predicting the corresponding location as the next POI. Therefore, by iterating queries to the
model given a target user and aggregating the logit values of all queries, the most visited location
is more likely to have a large logit value after aggregation. Here, we use a soft voting mechanism,
i.e., averaging the logit values of all queries, for the aggregation function (see also Sec. D for the
comparison with different aggregation functions). With the resulting mean logits, we output the
top-k locations with k largest logit values as the attack results. Algorithm 1 gives the outline of
LOCEXTRACT. Though the attack is straightforward, it is effective and can be a stepping stone for
TRAJEXTRACT in our attack suite.

TRAJEXTRACT Our training trajectory extraction attack (TRAJEXTRACT) aims to extract the
location sequence x0:n−1

L = {l0, . . . , ln−1} in a training trajectory of user u with a length of n from
the victim model fθ. Formally,

TRAJEXTRACT(fθ, u, l0, n)→ x̂0:n−1
L0

, . . . , x̂0:n−1
Lβ

,

where x̂0:n−1
L0

, . . . , x̂0:n−1
Lβ

indicate the top-β extracted location sequences by the attack.

The key idea of the training trajectory extraction attack is to identify the location sequence with the
lowest log perplexity, as models tend to demonstrate lower log perplexity when they see trained data.
We denote log perplexity as:

PPLfθ (u, x
0:n−1
T ) = − log Prfθ (u, x

0:n−1
T ) = −

n−1∑
i=0

log Prfθ (u, x
0:i−1
T ),

where Prfθ (·) is the likelihood of observing x0:n−1
T with user u under the victim model fθ. In order

to get the lowest log perplexity of location sequences with a length of n, we have to enumerate all
possible location sequences. However, in the context of POI recommendation, there are O(|L|n−1)
possible location sequences for a given user. |L| equals the number of unique POIs within the mobility
dataset and can include thousands of options. Thus, the cost of calculating the log perplexity of
all location sequences can be very high. To this end, we use beam search to extract the location
sequences with both time and space complexity O(|L| × n × β), where β is the beam size. In
particular, to extract a trajectory of length n, we iteratively query the victim model using a set
of candidate trajectories with a size of β and update the candidate trajectories until the extraction
finishes. As highlighted in the prior work (Fan et al., 2018), when using beam search to determine
the final outcome of a sequential neural network, there is a risk of generating non-diverse outputs and
resembling the training data sequence. However, in our scenario, this property can be leveraged as
an advantage in TRAJEXTRACT, as our primary objective revolves around extracting the training
location sequence with higher confidence. As a final remark, both LOCEXTRACT and TRAJEXTRACT
need a query timestamp to query the victim model, and we will show the effects of the timestamp in
our experiments. Algorithm 2 in Appendix A gives the detailed steps of TRAJEXTRACT

3.2 MEMBERSHIP INFERENCE ATTACKS

Membership inference attack (MIA) originally aims to determine whether a target data sample is used
in the model training. In our case, we extend the notion to infer whether certain sensitive information
(e.g., user-location pair (u, l) and trajectory sequence (u, xT )) of the user’s data is involved in the
training of the victim model fθ, which can be formulated as follows:

MIA(fθ, Xtarget, Ds)→ {member, nonmember},
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where Xtarget represents the target sensitive information (Xtarget = (u, l) in LOCEXTRACT and
Xtarget = (u, xT ) in TRAJEXTRACT), and Ds is the shadow dataset owned by the adversary.

To effectively infer the membership of a given Xtarget, we adapt the state-of-the-art membership
inference attack – likelihood ratio attack (LiRA) (Carlini et al., 2022) to the context of POI recom-
mendation. The key insight of LiRA is that the model parameters trained with Xtarget differ from
those trained without it, and by conducting a hypothesis test on the distributions of model parameters,
we can identify if the victim model is trained with the Xtarget or not. LiRA consists of three steps:
(1) shadow model training, (2) querying the victim model and shadow models using Xtarget, and (3)
conducting a hypothesis test to infer the membership of the Xtarget using the query results. Due to
the space limit, we defer the details of LiRA to Appendix A.

LOCMIA In this attack, the adversary aims to determine whether a given user u has visited a
location l in the training data. However, it is not feasible to directly apply LiRA to LOCMIA as the
victim model takes the trajectory sequences as inputs, but the adversary only has a target location
without the needed sequential context. In particular, LOCMIA needs the auxiliary inputs to calculate
the membership confidence score since this process cannot be completed only using Xtarget = (u, l).
This attack is a stark contrast to MIA for image/text classification tasks where the Xtarget itself is
sufficient to compute the membership confidence score.

To this end, we design a spatial-temporal model query algorithm (Algorithm 3 in Appendix A)
to tailor LiRA to LOCMIA and optimize membership confidence score calculation. The idea
behind the algorithm is that if a particular user has been to a certain POI location, the model might
“unintentionally” memorize its neighboring POI locations and the corresponding timestamp in the
training data. Motivated by this, each time we query the models (e.g., the victim and shadow models),
we generate nl random locations and nt fixed-interval timestamps. To obtain stable and precise
membership confidence scores, we first average the corresponding confidence scores at the target
location by querying with nl locations at the same timestamp. While the adversary does not possess
the ground truth timestamp linked with the target POI for queries, the adversary aims to mimic a
query close to the real training data. To achieve this, we repeat the same procedure of querying
different locations for nt timestamps and take the maximum confidence scores among the nt averaged
confidence scores as the final membership inference score for the target example. Algorithm 4 gives
the outline of LiRA in terms of LOCMIA, and the lines marked with red are specific to LOCMIA.

TRAJMIA The attack aims to determine whether a trajectory is used in the training data of the
victim model. Unlike LOCMIA, Xtarget = (u, xT ) suffices to calculate the membership confidence
score in LiRA, and we do not need any auxiliary inputs. To fully leverage information of the target
example querying the victim model and improve the attack performance, we also utilize the n− 2
intermediate outputs and the final output from the sequence xT with a length of n to compute the
membership confidence score, i.e., we take the average of all n−1 outputs. This change improves the
attack performance as the intermediate outputs provide additional membership information for each
point in the target trajectory. The purple lines in Algorithm 4 highlight steps specific to TRAJMIA.

3.3 PRACTICAL IMPLICATIONS OF THE ATTACK SUITE

Our attack suite is designed as an integrated framework focusing on the basic units of mobility data
– locations and trajectories. It contains two prevalent types of privacy attacks: data extraction and
membership inference attacks. Each attack in our attack suite targets a specific unit of mobility data
and could serve as a privacy auditing tool (Jagielski et al., 2020). They can also be used to infer
additional sensitive information in mobility data: LOCEXTRACT extracts a user’s most common
location locations and combine the POI information to infer the users’ home and work locations;
TRAJEXTRACT can be further used to infer user trajectories and identify trip purposes by analyzing
the POIs visited during a journey (Meng et al., 2017); LOCMIA can determine the membership of
multiple POIs, thereby facilitating the inference of a user’s activity range and social connections
in Cho et al. (2011); Ren et al. (2023); Finally, TRAJMIA infers if a user’s trajectory is in a training
dataset can serve as an auditing tool to examine the privacy leakage of a given model by assuming a
worst-case adversary.

4 EXPERIMENTS

We empirically evaluate the proposed attack suite to answer the following research questions: (1)
How are the proposed attacks performed in extracting or inferring the sensitive information about
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the training data for POI recommendation (Sec. 4.2.1)? (2) What unique factors (e.g., user, location,
trajectory) in mobility data correlate with the attack performance (Sec. 4.2.2)? (3) Are the existing
defenses effective against the proposed attacks (Sec. 4.2.3)? In Appendix D, we also study the effects
of model training and attack (hyper)parameters on attack performance.

4.1 EXPERIMENTAL SETUP

We briefly describe the datasets, models, and evaluation metrics used in our experiments. Due to the
space limit, we defer the details of dataset statistics and descriptions, data preprocessing steps, and
(hyper)parameters of training and attacks to Appendix A.

Datasets Following the literature (Yang et al., 2022; Kong & Wu, 2018), we comprehensively evalu-
ate four privacy attacks on two POI recommendation benchmark datasets: FourSquare (4SQ) (Yang
et al., 2014) and GOWALLA (Cho et al., 2011).

Models We experiment with three representative POI recommendation models, including GET-
NEXT (Yang et al., 2022), LSTPM (Sun et al., 2020), and RNN (Wang et al., 2021). Note that
GETNEXT and LSTPM are the state-of-the-art POI recommendation methods based on the trans-
former and hierarchical LSTM, respectively. We also include RNN since it is a commonly used
baseline for POI recommendation.

Evaluation Metrics We use the top-k extraction attack success rate (ASR) to evaluate the effec-
tiveness of data extraction attacks. For LOCEXTRACT, the top-k ASR is defined as |Uextracted|/|U|,
where Uextracted is the set of users whose most visited locations are in the top-k predictions outputted
by our attack; For TRAJEXTRACT the top-k ASR is |correct extractions|/|all (u, l0) pairs|, where
correct extractions are (u, l0) pairs with top-k extracted results matching an exact location sequence
in the training data.

For LOCMIA and TRAJMIA, we utilize the commonly employed metrics for evaluating membership
inference attacks, namely the area under the curve (AUC), average-case “accuracy” (ACC), and
true positive rate (TPR) versus false positive rate (FPR) in the low-false positive rate regime. Our
primary focus is the TPR versus FPR metric in the low-false positive rate regime because evaluating
membership inference attacks should prioritize the worst-case privacy setting rather than average-case
metrics, as emphasized in Carlini et al. (2022).

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

4.2.1 ATTACK PERFORMANCE

Table 1: The performance of victim models.
Dataset Model Top-1 ACC Top-10 ACC

4SQ
GETNEXT 0.34 0.71

LSTPM 0.25 0.67
RNN 0.24 0.68

GOWALLA
GETNEXT 0.16 0.48

LSTPM 0.15 0.39
RNN 0.10 0.26

Figures 1 and 2 visualize the attack perfor-
mance of data extraction and membership in-
ference attacks, respectively. In Figure 1, we
observe that both LOCEXTRACT and TRAJEX-
TRACT can effectively extract users’ most com-
mon locations and trajectories across various
model architectures and datasets since the at-
tack performance is significantly better than
the random guess baseline, i.e., 1/|L| (0.04%
for LOCEXTRACT) and 1/|L|n−1(10−8% for
TRAJEXTRACT). Likewise, as shown in Fig-
ure 2, LOCMIA and TRAJMIA successfully
determine the membership of a specific user-location pair or trajectory, significantly outperforming
the random guess baseline (represented by the diagonal line in both figures).

The attack performance also demonstrates that trajectory-level attacks are significantly more challeng-
ing than location-level attacks, evident from the better performance of LOCEXTRACT and LOCMIA
compared to TRAJEXTRACT and TRAJMIA for data extraction and membership inference. We sus-
pect this is because POI recommendation models are primarily designed to predict a single location.
In contrast, our trajectory-level attacks aim to extract or infer a trajectory encompassing multiple
consecutive locations. The experiment results also align with the findings that longer trajectories are
less vulnerable to our attacks (see Figures 14 and 17 in Appendix D).
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Figure 1: Attack performance of data extraction attacks (LOCEXTRACT and TRAJEXTRACT) on
three victim models and two mobility datasets.

(a) LOCMIA (4SQ) (b) LOCMIA (GOWALLA) (c) TRAJMIA (4SQ) (d) TRAJMIA (GOWALLA)

Figure 2: Attack performance of (LOCMIA and TRAJMIA) on three victim models and two POI
recommendation datasets. The diagonal line indicates the random guess baseline.

The attack performance also differs across different model architectures and datasets. Combined
with the model performance of the victim model in Table 1, we see a general trend of privacy-utility
trade-off in POI recommendation models: with better victim model performance comes better attack
performance in general. However, this trend does not hold in some cases. For example, the MIA
performance against RNN is sometimes better than GETNEXT and LSTPM performances. This
might be because GETNEXT and LSTPM improve upon RNN by better leveraging spatial-temporal
information in the mobility datasets. However, the adversary cannot use the exact spatial-temporal
information in shadow model training since the adversary cannot access that information. Even
though our attacks adapt LiRA to utilize spatial-temporal information (see Appendix D.3 for more
results), there is room for improvement in future research.

4.2.2 FACTORS IN MOBILITY DATA THAT MAKE IT VULNERABLE TO THE ATTACKS

Prior research demonstrates that data outliers are the most vulnerable examples to privacy attacks (Car-
lini et al., 2022; Tramèr et al., 2022) in image and text datasets. However, it is unclear whether the
same conclusion holds in mobility data and what makes mobility data as data outliers. To this end,
we investigate which factors of the mobility datasets influence the attack’s efficacy. In particular, we
collect aggregate statistics of mobility data from three perspectives: user, location, and trajectory. We
analyze which factors in these three categories make mobility data vulnerable to our attacks. We
defer the details of selecting the aggregate statistics and the list of selected aggregate statistics in our
study in Appendix C.1. Our findings are as follows:

• For LOCEXTRACT, we do not identify any meaningful pattern correlated with its attack perfor-
mance. We speculate that a user’s most common location is not directly related to the aggregate
statistics we study.

• For TRAJEXTRACT, our findings indicate that users who have visited fewer unique POIs are more
vulnerable to this attack, as referenced in Figure 6 in Appendix C. This can be explained by the
fact that when users have fewer POIs, the model is less uncertain in predicting the next location
due to the reduced number of possible choices that the model memorizes.

• For LOCMIA, as shown in Figures 4(a) and 4(a), we find that locations visited by fewer users or
have fewer surrounding check-ins are more susceptible to LOCMIA. We believe this is because
those locations shared with fewer users or surrounding check-ins make them training data outliers.
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• For TRAJMIA, users with fewer total check-ins (Figure 3(a)), unique POIs (Figure 3(b)), and fewer
or shorter trajectories (Figures 3(c) and 3(d)) are more susceptible. In Figures 5(a) and 5(b), we
also see that trajectories intercepting less with others or with more check-ins are more vulnerable
to TRAJMIA. We believe these user-level and trajectory-level aggregate statistics make the target
examples data outliers.
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Figure 3: How user-level aggregate statistics are related to TRAJMIA. x-axis: Percentile categorizes
users/locations/trajectories into different groups according to their feature values. y-axis: Λ indicates
the (averaged) likelihood ratio of training trajectories/locations being the member over non-member
from the hypothesis test for each group, with a higher value indicating the larger vulnerability. The
users with fewer total check-ins, fewer unique POIs, and fewer or shorter trajectories are more
vulnerable to TRAJMIA. (4SQ)
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Figure 4: How location-level aggregate statistics
are related to LOCMIA. The locations visited by
fewer different users or have fewer surrounding
check-ins are more vulnerable to LOCMIA. (4SQ)
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In summary, we conclude that the effect of data outliers also exists in privacy attacks against POI
recommendations. In the context of POI recommendation, the mobility data outliers could be
characterized from the perspectives of user, location, and trajectory. Different attacks in our attack
suite might be vulnerable to particular types of data outliers.

4.2.3 EXISTING DEFENSES AGAINST OUR ATTACK SUITE

We evaluate existing defenses against our privacy attacks. Due to the limited space, we highlight the
key findings in this section and defer experimental details to Appendix E. Specifically, we evaluate
two streams of defense mechanisms on proposed attacks, including standard techniques to reduce
overfitting (e.g., l2 regularization) and differential privacy (DP) based defenses (e.g., DP-SGD (Abadi
et al., 2016)) for provable risk mitigation. Standard techniques are insufficient due to the lack of
theoretical guarantees. Moreover, we find that DP-SGD substantially sacrifices the model’s utility
on the POI recommendation task. The reason is that the training of POI recommendation is highly
sensitive to DP noise as the model needs to memorize user-specific patterns from limited user data.

While DP-SGD provides undifferentiated protection for all the mobility data, we argue that only
certain sensitive information (e.g., check-ins of a user’s home address) needs to be protected in POI
recommendation. To this end, we generalize the selective DP method JFT (Shi et al., 2022a) to protect
different levels of sensitive information for each attack. Our results show that existing defenses
provide a certain level of guarantee in mitigating privacy risks of ML-based POI recommendations.
However, there is no such unified defense that can fully tackle the issue with a small utility drop for
all attacks, highlighting the need for tailored defenses.
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5 RELATED WORK

Mobility Data Privacy Mobility data contain rich information that can reveal individual privacy
such as user identity. Previous work utilizes side-channel attacks to extract sensitive information
about mobility data from LBS, including social relationships (Srivatsa & Hicks, 2012a; Vicente et al.,
2011a; Xu et al., 2014), trajectory history (Krumm, 2007b; Golle & Partridge, 2009; Hoh et al., 2006),
network packets (Vratonjic et al., 2014; Jiang et al., 2007) and location embeddings Ding et al. (2022).
Despite the focus of previous work, deep neural networks (DNN) built on large volumes of mobility
data have recently become state-of-the-art backbones for LBS, opening a new surface for privacy
attacks. To the best of our knowledge, our work is the first of its kind to investigate the vulnerabilities
of DNN models in leaking sensitive information about mobility data using inference attacks.

Privacy Attacks Neural networks could leak details of their training datasets and various types of
privacy attacks, such as membership inference attacks (Shokri et al., 2017; Salem et al., 2018; Carlini
et al., 2022), training data extraction attacks (Carlini et al., 2019; 2023), and model inversion at-
tacks (Fredrikson et al., 2015b), have been proposed. Our attack suite contains membership inference
and data extraction attacks. Existing data extraction and membership inference attacks (Carlini et al.,
2019; 2022) are insufficient for POI recommendation models due to the spatio-temporal nature of the
data. Our work takes the first step to extracting sensitive location and trajectory patterns from POI
recommendation models and solving unique challenges to infer the membership of both user-location
pairs and user trajectories. As a final remark, our attacks differ from previous MIAs in mobility data
(Pyrgelis et al., 2017; Zhang et al., 2020), which focus on the privacy risks of data aggregation.

6 CONCLUSION

In this work, we take the first step to evaluate the privacy risks of the POI recommendation models. In
particular, we introduce an attack suite containing data extraction and membership inference attacks
to extract and infer sensitive information about location and trajectory in mobility data. We conduct
extensive experiments to demonstrate the effectiveness of our attacks. Additionally, we analyze what
types of mobility data are vulnerable to the proposed attacks. To mitigate our attacks, we further
adapt two mainstream defense mechanisms to the task of POI recommendation. Our results show that
there is no single solid defense that can simultaneously defend against proposed attacks. Our findings
underscore the urgent need for better privacy-preserving approaches for POI recommendation models.

Limitations and Future Work Moving forward, our future research aims to adapt to the proposed
attack to measure the privacy risks of real-world services that utilize private user data in large-scale
POI recommendations in more complex settings. For example, label-only attack (Choquette-Choo
et al., 2021) is a promising direction for future investigation given it requires less attack knowledge
and has unique requirements for data augmentation.

Our attacks have shown that sensitive information can be extracted from POI recommendation models.
The existing defense mechanisms are still incapable of simultaneously protecting victim models from
all the attacks. This calls for developing better defenses (e.g., machine unlearning (Bourtoule et al.,
2021) and fine-tuning models that have been trained on a public dataset (Yu et al., 2023)) contributing
to privacy-preserving ML-based POI recommendation systems.

Lastly, our current emphasis is on POI recommendation models. We plan to leave attacks and
defense mechanisms to other POI-related tasks, such as POI synthesis (Rao et al., 2020) and POI
matching (Ding et al., 2023), in future work.

Ethics Statement Our paper presents a privacy attack suite and evaluates existing state-of-the-art
defense mechanisms for POI recommendation models, highlighting the potential privacy vulnera-
bilities inherent in these POI-focused services. We hope our study fosters future privacy-preserving
research for mobility data-based ML models.
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Table 2: A summary of the threat model.

Attack Adversary Objective Adversary Knowledge

LOCEXTRACT Extract the most frequently visited location l of a target
user u –

TRAJEXTRACT
Extract the location sequence of a target user u with
length n: xL = {l0, . . . , ln−1} Starting location l0

LOCMIA Infer the membership of a user-location pair (u,l) Shadow dataset Ds

TRAJMIA Infer the membership of a trajectory sequence xT =
{(l0, t0), . . . , (ln, tn)} Shadow dataset Ds

A ATTACK ALGORITHMS

TRAJEXTRACT To start with, we initialize β candidate trajectories with the same starting location
l and the query time t given a user (lines 1-3). Next, we iteratively extend the candidate trajectories:
to extract the i-th (i ≥ 1) locations of x̂0:i−1

T in β candidate trajectories, we query the model using
x̂0:i−1
T and compute the log perplexity for β × L possible new trajectories with a length of i + 1.

We then choose the β trajectories with the lowest log perplexity as the new candidate trajectories in
the next iteration (line 6). The iterations end until the length of the candidate trajectories reaches n.
Lastly, we take the location sequences from the final trajectories. Note that both LOCEXTRACT and
TRAJEXTRACT need the timestamp t to query the victim model, and we will show the effects of
timestamp t in our experiments.

LiRA LiRA consists of three steps: (1) shadow model training, (2) querying victim model and
shadow models using Xtarget, and (3) conducting a hypothesis test to infer the membership of the
Xtarget using the query results. First, shadow model training generates two parameter distributions
Q̃in and Q̃out of the 2N shadow models fin and fout, respectively. Note that fin (fout) corresponds
to the shadow model trained with(out) Xtarget and there are N fin and N fin, respectively. In
LiRA, the goal of Q̃in and Q̃out is to approximate Qin and Qout, where Qin (Qout) is the parameter
distribution of fθ trained with(out) the Xtarget.

After shadow model training, we approximate the values of Q̃in (Q̃out) with the loss (e.g., cross-
entropy loss) distributions calculated by querying all shadow models fin and fout with Xtarget, i.e.,
Q̃in(Xtarget, AUX) and Q̃out(Xtarget, AUX), where AUX is the auxiliary inputs needed to calculate
the loss depending on the actual attack.

Finally, we perform a hypothesis test Λ to determine the membership of Xtarget:

Λ(fθ;Xtarget, AUX) =
p
(
lθ(Xtarget, AUX) | Q̃in(Xtarget, AUX)

)
p
(
lθ(Xtarget, AUX) | Q̃out(Xtarget, AUX)

) , (1)

where lθ(Xtarget, AUX) is the loss of querying the victim model fθ with Xtarget and
p
(
lθ(Xtarget, AUX) | Q̃in(Xtarget, AUX)

)
is the conditional probability density function of

lθ(Xtarget, AUX) given Q̃in(Xtarget, AUX). The likelihood ratio Λ can be used to determine if
we should reject the hypothesis that fθ is trained on Xtarget. In practice, we need both Q̃in and Q̃out

follow Gaussian distributions so that Eq. 1 has a closed form solution. Thus, we use the logit scaling
method (Carlini et al., 2022) (i.e., ϕ = log( p

p−1 ) where p = f(Xtarget)y) in the calculation of lθ,

Q̃in, and Q̃in.

LiRA originally trained 2N shadow models for each target example. However, this approach suffers
from computational inefficiency when the number of target examples is large. To address this issue,
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we employ the parallelized approach described in (Carlini et al., 2022), which reuses the same set of
2N shadow models for inferring the membership of multiple Xtarget.

Algorithm 1 Common Location Extraction Attack
Input: Victim model: fθ, target user: u, query budget: q, query timestamp: t, output size: k
Output: Top-k predictions: [l̂top1,. . . ,l̂topk]

1: logits← {}
2: for q times do
3: l← RANDOMSAMPLE(L) ▷ Randomly generate a location from the location space
4: logits ∪ fθ

(
u, {(l, t)}

)
5: end for
6: logitsagg = AGGREGATE(logits) ▷ Aggregate confidence for all locations
7: return l̂top1,. . . ,l̂topk ← ARGMAXk(logitsagg)

Algorithm 2 Training Trajectory Extraction Attack
Input: Victim model: fθ, target user: u, starting location: l0, target extraction length: n, query

timestamp: t, beam width: β
Output: Top-β possible extraction results: x̂0:n

L0
, . . . , x̂0:n

Lβ

1: for b← 0 to β − 1 do
2: x̂0:0

Tb
← (u, (l0, t)) ▷ Initialize the beam with l0 and t

3: end for
4: for i← 1 to n− 1 do
5: for x̂0:i−1

T in {x̂0:i−1
T0

, . . . , x̂0:i−1
Tβ

} do
6: {x̂0:i

T0
, . . . , x̂0:i

Tβ
} ← UPDATEBEAMβ(fθ(u, x̂

0:i−1
T )) ▷ Update the beam by keeping β

trajectory with the smallest PPL from the query output and current beam
7: end for
8: end for
9: x̂0:n−1

L0
, . . . , x̂0:n−1

Lβ
← GETLOC(x̂0:n−1

T0
, . . . , x̂0:n−1

Tβ
) ▷ Take the location sequence from x̂0:n−1

T

as result x̂0:n−1
L

10: return x̂0:n−1
L0

, . . . , x̂0:n−1
Lβ

Algorithm 3 SPATEMQUERY: Spatial-Temporal Model Query Algorithm for LOCMIA
Input: Target model: ftarget, number of query timestamps: nt, number of query locations: nl, target

example: Xtarget

Output: Membership confidence score: conf
1: u, l← Xtarget

2: confall ← {}
3: for i← 0 to nt − 1 do
4: conft ← {}
5: for j ← 0 to nl − 1 do
6: ti ← i/nt

7: lj ← RANDOMSAMPLE(L)
8: conft ← conft ∪ ftarget(u, (lj , ti)) ▷ Query the model with random location and a

synthetic timestamp
9: end for

10: confall ← confall ∪mean(conft) ▷ Calculate average confidence from all queries for this
timestamp

11: end for
12: return conf ← max(confall) ▷ Take the confidence scores with largest confidence at position l

as output
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Algorithm 4 Membership Inference Attack
Below, we demonstrate our location-level MIA and trajectory-level MIA algorithms. The lines
marked in red are specific to LOCMIA, while the lines marked in purple are specific to TRAJMIA.
Both attacks share the remaining lines.
Input: Victim model: fθ, shadow data: Ds, number of shadow models: N , extraction target: Xtarget,

shadow timestamp: ts, number of query timestamps: nt, number of query locations: nl

Output: The likelihood ratio to determine if we should reject the hypothesis that Xtarget is a member
of fθ: Λ

1: confin, confout ← {},{}
2: XS ← RANDOMSAMPLE({XS : Xtarget ∈ XS}) ▷ Sample a location sequence that includes

Xtarget

3: XS ← Xtarget

4: for i← 0 to N do
5: Din ← RANDOMSAMPLE(Ds) ∪XS

6: Dout ← RANDOMSAMPLE(Ds) \XS

7: fin, fout ← TRAIN(Din), TRAIN(Dout) ▷ Train fin and fout
8: confin ← confin ∪ ϕ(SPATEMQUERY(fin, nt, nl, XS))
9: confout ← confout ∪ ϕ(SPATEMQUERY(fout, nt, nl, XS))

10: confin ← confin ∪ ϕ
(
mean({fin(XS)

0:0, . . . , fin(XS)
0:n−1})

)
11: confout ← confout ∪ ϕ

(
mean({fout(XS)

0:0, . . . , fout(XS)
0:n−1})

)
12: end for
13: µin, µout ← mean(confin), mean(confout)
14: σ2

in, σ
2
out ← var(confin),var(confout)

15: confobs ← ϕ(SPATEMQUERY(fθ, nt, nl, XS))
16: confobs ← ϕ

(
mean({fθ(XS)

0:0, . . . , fθ(XS)
0:n−1})

)
17: return Λ =

p(confobs|N (µin,σ
2
in))

p(confobs|N (µout,σ2
out))

▷ Hypothesis test

Table 3: Statistics of POI Recommendation Datasets.
#POIs #Check-ins #Users #Trajectories Avg. Len.

4SQ 4,556 63,648 1,070 17,700 3.63
GOWALLA 2,559 32,633 1,419 7,256 4.46

B DETAILED EXPERIMENTAL SETUP

B.1 DATASETS

We conduct experiments on two POI recommendation benchmark datasets – FourSquare (4SQ) (Yang
et al., 2014) and GOWALLA (Cho et al., 2011) datasets. Following the literature (Yang et al., 2022;
Kong & Wu, 2018), we use the check-ins collected in NYC for both sources. The 4SQ dataset consists
of 76,481 check-ins during ten months (from April 12, 2012, to February 16, 2013). The GOWALLA
dataset comprises 35,674 check-ins collected over a duration of 20 months (from February 2009 to
October 2010). In both datasets, a check-in record can be represented as [user ID, check-in time,
latitude, longitude, location ID].

B.2 DATA PREPROCESSING

We preprocess each dataset following the literature (Yang et al., 2022): (1) We first filter out
unpopular POIs and users that appear less than ten times to reduce noises introduced by uncommon
check-ins. (2) To construct trajectories of different users in a daily manner, the entire check-in
sequence of each user is divided into trajectories with 24-hour intervals. Then, we filter out the
trajectories with only a single check-in. (3) We further normalize the timestamp (from 0:00 AM to
11:59 PM) in each check-in record into [0, 1]. After the aforementioned steps, the key statistics of the
4SQ and GOWALLA datasets are shown in Table 3. (4) Lastly, we split the datasets into the training,
validation, and test sets using the ratio of 8:1:1.
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Victim Model Training Settings: We use the official implementation of GETNEXT2 and LSTPM3

to train victim models. In particular, we train each model with a batch size 32 for 200 epochs by
default. We use five random seeds in all experiments and report the average results.

B.3 ATTACK SETTINGS

LOCEXTRACT Given a target user u, we extract the most visited location ltop1 from the victim
model fθ with a query number q = 50. We set the query timestamp t = 0.5 (i.e., the middle of
the day) by default, and we will present how the change of the query timestamp affects the attack
performance in the ablation study.

TRAJEXTRACT In this attack, we experiment with n = 4 by default, though the attacker can
potentially extract location (sub-)sequences with arbitrary length. We set the beam size β = 50 in the
beam search to query the victim model and update candidate trajectories. For each query, we also
have the default query timestamp t = 0.5.

LOCMIA In our experiments, since we randomly sample 80% of trajectories as the training
dataset Dtr to build a victim model for MIA, we treat the remaining 20% data as non-members.
For each target user u and the POI location l pair, we generate N = 64 synthesis trajectories using
TRAJSYNTHESIS with the query timestamp ts = 0.5. With the synthesis trajectories, we can also
have 64 in-models (fin) and 64 out-models (fout). We also set nt = 10 and nl = 10. For evaluation,
we conduct a hypothesis test on a balanced number of members and non-members.

TRAJMIA We extract the membership information of some trajectory sequences with arbitrary
lengths from the victim model. We also build N = 64 in-models (fin) and N = 64 out-models
(fout) for a target trajectory sequence. For evaluation, we conduct a hypothesis test on a balanced
number of members and non-members.

C MORE DETAILS OF ANALYZING FACTORS IN MOBILITY DATA THAT MAKE
IT VULNERABLE TO THE ATTACKS

C.1 HOW TO SELECT AGGREGATE STATISTICS

This section outlines the basic principles and details for selecting representative aggregate statistics
for analysis. For user-level aggregate statistics, we target the basic statistical information quantifying
properties of locations and trajectories of a user. For location-level and trajectory-level aggregate
statistics, we study their users, “neighboring” check-ins and trajectories, and the check-in time
information. In summary, we select the following aggregate statistics:

• User-level aggregate statistics:
1. Total number of check-ins;
2. Number of unique visited POIs;
3. Number of trajectories;
4. Average trajectory length;

• Location-level aggregate statistics:
1. Number of users who have visited this POI;
2. Number of check-ins surrounding (≤ 1km) this POI;
3. Number of trajectories sharing this POI;
4. Average time in a day for the visits to the POI;

• Trajectory-level aggregate statistics:
1. Number of users who have the same trajectories;
2. Number of check-ins surrounding (≤ 1km) all POI in the trajectory;
3. Number of intercepting trajectories;
4. Average check-in time of the trajectory.

2https://github.com/songyangme/GETNext
3https://github.com/NLPWM-WHU/LSTPM
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Figure 6: How user-level aggregate statistics are related to TRAJEXTRACT. The users who have
fewer unique POIs are more vulnerable to TRAJEXTRACT.
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Figure 7: How user-level aggregate statistics are related to TRAJMIA. The users with fewer total
check-ins, fewer unique POIs, and fewer or shorter trajectories are more vulnerable to TRAJMIA.
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Figure 8: How location-level aggregate statistics
are related to LOCMIA. The locations shared by
fewer users or have fewer surrounding check-ins
are more vulnerable to LOCMIA. (GOWALLA)
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Figure 9: How trajectory-level aggregate statis-
tics are related to TRAJMIA. The trajectories
with fewer intercepting trajectories or fewer POIs
in the trajectory are more vulnerable to TRA-
JMIA. (GOWALLA)

D THE IMPACT OF TRAINING AND ATTACK PARAMETERS

In this section, we analyze how training parameters (Sec. D.1) and attack parameters affect the attack
performance of data extraction attack (Sec. D.2) and membership inference attack (Sec. D.3).

D.1 THE IMPACT OF TRAINING PARAMETERS

Our primary objective of this analysis is to understand whether the occurrence of overfitting, com-
monly associated with excessive training epochs, leads to heightened information leakage based
on our proposed attacks. By showcasing the ASR at various model training stages, we aim to gain
insights into the relationship between overfitting and ASR.

Based on the results presented in Figure 10, we observe that LOCEXTRACT achieves the best
performance when the model is in the convergence stage. We speculate that continuing training
beyond convergence leads to overfitting, causing a loss of generalization. Specifically, when the
model is overfitted, it tends to assign higher confidence to the training data while disregarding the
general rules present in the dataset. In contrast, our attack employs random queries to extract the
general rules learned by the model from the dataset, resulting in better performance when applied to
the optimally fitted model.
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(a) LOCEXTRACT (b) TRAJEXTRACT (c) LOCMIA (d) TRAJMIA

Figure 10: The impact of the model generalization on the performance of four privacy attacks.

The attack performance of TRAJEXTRACTimproves as the training process progresses, which can be
attributed to the model becoming increasingly overfitted. The overfit model is more likely to output
the exact training trajectory and generates more precise training trajectories than the best-fitted model
when given the same number of queries. Similarly, the results of our membership inference attacks
reveal a trend of attack performance consistently improving with the progression of the training
process. This observation aligns with our expectations, as when the model undergoes more training
iterations, the effects of training data are more emphasized. Consequently, the distribution of query
results in our attack on the seen training data diverging further from the distribution derived from
the unseen data. This growing disparity between the two distributions facilitates the membership
inference task, particularly on overfitted models. The analysis of these three attacks indicates a
consistent trend, highlighting the increased risk of privacy leakage due to overfitting with respect to
the original training data.

D.2 ABLATION STUDY ON OUR DATA EXTRACTION ATTACKS

Data extraction attacks are effective given a limited number of queries In a realistic attack
scenario, the adversary may encounter query limitations imposed by the victim model, allowing the
adversary to query the model for only a certain number of queries. Figure 11 illustrates that our
data extraction attacks are effective given a limited number of queries. For example, as shown in
Figure 11(a), a mere q = 50 query is sufficient for the adversary to achieve a high ASR and infer a
user’s frequently visited location. In terms of TRAJEXTRACT attack (Figure 11(b)), the adversary can
opt for a small beam width of β = 10, requiring only 1000 queries to extract a trajectory of length
n = 4. This practicality of our data extraction attack holds true even when the query limit is very
small.

Appropriate query timestamp improves the effectiveness of data extraction attacks POI rec-
ommendation models rely on temporal information to make accurate location predictions. However,
obtaining the same timestamps as training for attack can be challenging and is an unrealistic assump-
tion. Therefore, in our data extraction attack setup, we set the query timestamp to t = 0.5 (i.e., the
middle of the day).

To analyze the effect of how different query timestamps affect data extraction attack performance,
we conduct extraction attacks and vary different timestamps that represent various sections within
a 24-hour window in the experiments. The results, illustrated in Figure 12, indicate that utilizing
timestamps corresponding to common check-in times, such as the middle of the day or late afternoon,
yields better attack outcomes. This finding aligns with the rationale that users are more likely to
engage in check-ins during the daytime or after work hours. Consequently, locations associated with
common check-in times exhibit a higher likelihood of being connected to the most frequently visited
locations.

Soft voting improves LOCEXTRACT For LOCEXTRACT, we have the option to employ either
hard voting or soft voting to determine the most frequently occurring location. Hard-voting ensembles
make predictions based on a majority vote for each query while soft-voting ensembles consider the
average predicted probabilities and select the top-k locations with the highest probabilities. From the
experimental results depicted in Figure 13, we observe that there is not a substantial difference in
ASR-1 when using hard voting or soft voting. However, employing soft voting yields better ASR-3
and ASR-5 results.
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Figure 11: Our LOCEXTRACT is effective with a small number of queries and TRAJEXTRACT is
effective with a small beam size (i.e., both attacks are effective within a small query budget).
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(c) LOCEXTRACT (GOWALLA)

0 0.25 0.5 0.75 1.0
Normalized Day Time

0

2

4

6

8

10

T
op

k-
A

S
R

(%
)

k = 1

k = 3

k = 5

(d) TRAJEXTRACT (GOWALLA)

Figure 12: The optimal query timestamp can significantly improve the performance of LOCEXTRACT
and TRAJEXTRACT.
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Figure 13: Comparing soft voting with hard voting for logits aggregation in LOCEXTRACT. Soft
voting has larger improvements over hard voting as k increases.

Location sequences of shorter trajectories are more vulnerable to TRAJEXTRACT For TRA-
JEXTRACT, we conduct an ablation study to extract trajectories of varying lengths n. The results,
illustrated in Figure 14, indicate that the attack achieves higher ASR on shorter trajectories than
longer ones. This observation can be attributed to our assumption that the attacker possesses prior
knowledge of a starting location. As the prediction moves further away from the starting location,
its influence on subsequent locations becomes weaker. Consequently, predicting locations farther
from the starting point becomes more challenging, decreasing the attack’s success rate for longer
trajectories. Moreover, the extraction of long trajectories presents additional difficulties. With each
step, the probability of obtaining an incorrect location prediction increases, amplifying the challenges
the attack algorithm faces.

D.3 ABLATION STUDY ON OUR MEMBERSHIP INFERENCE ATTACKS

A larger number of shadow models improves the effectiveness of MIAs As mentioned in Carlini
et al. (2022), it has been observed that the attack’s performance of LiRA tends to improve as the
number of shadow models increases. Consistently, our attacks also follow this pattern, as depicted
in Figure 15. Both location-level MIA and trajectory-level MIA show enhanced performance as we
incorporate more shadow models. This improvement is because an increased number of shadow
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Figure 14: The location sequences of shorter (sub-)trajectories are more vulnerable to TRAJEXTRACT.

2 8 16 32 64 128 256
Number of Shadow Model

0

20

40

60

80

100

P
er

ce
nt

(%
)

AUC

ACC

TPR @ 10% FPR

(a) LOCMIA (4SQ)

2 8 16 32 64 128 256
Number of Shadow Model

0

20

40

60

80

100

P
er

ce
nt

(%
)

AUC

ACC

TPR @ 10% FPR

(b) TRAJMIA (4SQ)

1 8 16 32 64 128 256
Number of Shadow Model

0

20

40

60

80

100

P
er

ce
nt

(%
)

AUC

ACC

TPR @ 10% FPR

(c) LOCMIA (GOWALLA)

1 8 16 32 64 128 256
Number of Shadow Model

0

20

40

60

80

100

P
er

ce
nt

(%
)

AUC

ACC

TPR @ 10% FPR

(d) TRAJMIA (GOWALLA)

Figure 15: The attack performance of LOCMIA and TRAJMIA significantly improves as the number
of shadow model increases.
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Figure 16: Both the number of query timestamps nt and the number of query locations nl affect the
attack performance of LOCMIA. We use the default nt = 10 and nl = 10 in (a) and (b), respectively.
Given a few queries, our LOCMIA remains effective.

models allows for a better approximation of the distributions for fin and fout, thereby simulating the
victim model more accurately.

LOCMIA is effective given a limited number of queries Since our LOCMIA involves multiple
queries to explore locations preceding the target location, as well as the corresponding timestamps, it
is essential to consider potential limitations on the number of queries in real-world scenarios. Thus,
we conduct experiments to investigate the impact of query limits on LOCMIA. The results, depicted
in Figure 16(a), indicate that our attack remains effective even with a limited number of queries for
different location choices. The further increase in query locations would not significantly improve
attack results.

We also conduct experiments with different settings for the number of query timestamps, denoted as
nt. The rationale behind this step is that the adversary does not possess information about the real
timestamp used to train the victim model. To simulate the effect of selecting the correct timestamp,
we perform experiments with varying timestamps to identify the timestamp that yielded the highest
confidence score for the targeted location. Based on empirical observations from our experiment on
the 4SQ dataset (see Figure 16(b)), increasing the number of query timestamps tends to yield better
overall results in practice.
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Figure 17: The longer trajectories are less vulnerable to TRAJMIA.

TRAJMIA is less effective as the length of target trajectory increases From Figure 17, we note
that the attack performance drops as target trajectories are longer. This decline happens because all
trajectory query scores influence the attack. Lengthier trajectories introduce increased randomness
for the query, affecting the outcome of TRAJMIA.

Table 4: Sensitive information defined in each attack.
Attack Sensitive Information

LOCEXTRACT Most common location of each user
TRAJEXTRACT Each location sequence/sub-sequence (xL)

LOCMIA Each user-location pair (u, l)
TRAJMIA Each trajectory sequence/sub-sequence (xT )

E DEFENSE

In this section, we generalize and evaluate existing defenses against our privacy attacks. In E.1, we
illustrate the metrics to measure the defense performance. In E.2, we describe the defense mechanisms
in detail. In E.3, we compare different defenses and analyze the numerical results with detailed
explanations.

E.1 DEFENSE METRICS

Our inference attacks extract different sensitive information about the training dataset from the
victim model, as summarized in Table 4. To this end, we evaluate defense mechanisms in terms of
their performance in preventing each attack from stealing the corresponding sensitive information.
Specifically, we measure their defense performance on protecting all the sensitive information and a
targeted subset of sensitive information for each attack, respectively. Here, we define the targeted
subset of sensitive information as the mobility data a defender wants to protect in practice (e.g.,
some selected user-location pairs in LOCMIA). We introduce this metric because not all mobility
data are sensitive or equally important. Take LOCMIA as an example: Since the utility of POI
recommendation is highly related to the model’s memorization of user-location pairs, a user may
want the model to recognize most of the POIs in his trajectory history while hiding those that are
very likely to leak his personal identity (e.g., home). In other words, not all the mobility data need to
be protected and it’s more important to evaluate how defense mechanisms perform on the targeted
subset of sensitive information.

To this end, we jointly measure the defense performance in protecting all the sensitive information
and the targeted subset of sensitive information for each attack. Based on different attack objectives,
we construct a different targeted subset of sensitive information for measurement by randomly
sampling a portion of (e.g., 30%) the most common locations in LOCEXTRACT, location sequences
in TRAJEXTRACT, user-location pairs in LOCMIA and trajectory sequences in TRAJMIA. It is noted
that we randomly sample 30% of sensitive information in each attack to construct the targeted subset
for the ease of experiments. In practice, the defender may have more personalized choices based on
user-specific requirements, which we leave as future work.
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Figure 18: Defense performance on protecting all corresponding sensitive information for each attack.
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Figure 19: Defense performance on protecting the targeted subset of sensitive information for each
attack.

E.2 DEFENSE TECHNIQUES

We now evaluate two streams of defense mechanisms on proposed attacks, including standard ML
techniques for reducing memorization and differential privacy (DP) based defenses for provable risk
mitigation. For standard techniques, we apply L2 norm regularization and early stopping during
training to reduce the victim model’s memorization to some degree. However, due to the lack of
theoretical guarantees, the victim model still leaks certain levels of sensitive information when these
techniques are applied. To fill this gap, differential privacy (Dwork et al., 2014) is also used to defend
against our attacks, which can theoretically limit the impact of any single data point on the final
outcomes, according to Definition 1.

We first experiment with DP-SGD (Abadi et al., 2016), the most representative DP-based defense, to
train differentially-private POI recommendation models. The key idea of DP-SGD is to add Gaussian
noises N (0, σ2C2I) to the clipped gradients g of the model during its training process. Here, C
indicates a clipping threshold that bounds the sensitivity of g by ensuring ∥g∥ ≤ C. To achieve (ϵ, δ)-

DP, we have σ =
√

2 ln 1.25
δ /ϵ. Despite that DP-SGD achieves promising results on some language

tasks, we find that it can substantially sacrifice the model’s utility on the POI recommendation task.
Specifically, the top-10 accuracy is only 4.97% when the mechanism satisfies (5, 0.001)-DP, while
the original top-10 accuracy without DP is 71%. The reason is that POI recommendation aims to
make user-level predictions within a large input (e.g., > 1k users) and output (e.g., a large number
of possible POIs) space. For different users, even the same location sequence may lead to different
results. In other words, the model needs to learn user-specific patterns from very limited user-level
training data. As a result, the training is quite sensitive to the noises introduced by DP-SGD, making
it not applicable to POI recommendations.

We note that DP-SGD provides undifferentiated protection for all the mobility data, which causes
such poor utility. However, for each attack, only the sensitive information needs to be protected.
Moreover, a defender may only care about whether the targeted subset of sensitive information is
protected or not. To this end, we use the notion of selective DP (Shi et al., 2022b) to relax DP and
improve the model’s utility-privacy trade-offs. Specifically, we apply the state-of-the-art selective
DP method JFT (Shi et al., 2022a) to protect different levels of sensitive information for each attack.
The key idea of JFT is to adopt a two-phase training process: in the phase-I training, JFT redacts
the sensitive information in the training dataset and optimizes the model with a standard optimizer;
in the phase-II training, JFT applies DP-SGD to finetune the model on the original dataset in a
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privacy-preserving manner. Because of the phase-I training, we observe that the model’s utility is
significantly promoted.

In addition to JFT, we also apply Geo-Indistinguishability (Geo-Ind) (Andrés et al., 2013) to secure
location data in LOCEXTRACT. Geo-Ind replaces each target POI with a nearby location based on
the Laplacian mechanism. In this way, a redacted location tells nothing about the original POI and its
neighboring locations (≤ r) with ϵr-privacy guarantees, as shown in 2. We note that Geo-Ind is only
applicable to (most common) locations in LOCEXTRACT (but not LOCMIA) as it requires modifying
the training data and is incompatible with the notion of membership. Next, we will illustrate the
defense performance of regularization, early stopping, JFT, and Geo-Ind on proposed attacks.

E.3 DEFENSE SETUP AND RESULTS

Setup GETNext models trained on the 4sq dataset are used for experiments. For L2 regularization,
we use weight decay ∥w∥ = 1e−2 and 3e−2. For early stopping, we stop the training after 5 epochs.
For JFT, we mask sensitive information that needs to be protected in phase-I. Then in phase-II, we use
DP-SGD (Abadi et al., 2016) with different ϵJ (1 and 5) to finetune the model. The C and δ are set to
10 and 1e−3. For Geo-Ind against LOCEXTRACT, we apply different ϵG (0.01 and 0.05) to replace
each sensitive POI with its nearby location such that the original POI is indistinguishable from any
location within r = 400 meters. Since both JFT and Geo-Ind can be used to protect different amounts
of sensitive information, we either protect nearly all the sensitive information or only the targeted
subset of sensitive information for each attack, denoted by suffixes (A) and (T).

LOCEXTRACT Figure 18(a) shows the defense results on protecting all the sensitive information for
LOCEXTRACT. From the figure, we observe that DP-based defenses achieve better performance than
standard techniques. Both JFT (A) and Geo-Ind (A) reduce ASR from 30% to 1% with only a 10%
drop in utility. The reason is that these methods allow the defender to selectively protect common
locations only. Besides, when protecting the same amount of sensitive information, JFT achieves
slightly better accuracy than Geo-Ind because it involves phase-II training to further optimize the
model. Moreover, although the ASR is still high for JFT (T) and Geo-Ind (T) in Figure 18(a), we
notice that they can substantially reduce the attack performance on the targeted subset of sensitive
information, as shown in Figure 19(a). This allows a defender to protect the targeted subset with
negligible utility drop. Figure 20 further shows that Geo-Ind can predict nearby locations of a
protected POI as prediction results to maintain its usage.

TRAJEXTRACT Figures 18(b) and 19(b) show that all the defenses can well protect location (sub-
)sequences from being extracted by TRAJEXTRACT. This is because sequence-level extraction is a
challenging task that pretty much relies on memorization.

LOCMIA Figures 18(c) and 19(c) show that none of the existing defenses can be used to protect
user-location membership information. While JFT (A) reduces the TPR@10%FPR to less than 20%,
it significantly sacrifices the model’s utility. The reason is that the defender needs to redact a large
number of user-location pairs so as to protect them. As a result, the model may learn from wrong
sequential information in the phase-I training, leading to a large utility drop. Even for protecting the
targeted subset with 30% of total user-location pairs only, there’s still a 20% drop in utility.

TRAJMIA Figures 18(d) and 19(d) show the utility-privacy trade-off of different defenses against
TRAJMIA We notice that JFT (T) can effectively mitigate the MIA on the targeted subset of trajectory
sequences with a small degradation in accuracy. However, the utility drop is still large if a defender
aims to protect the membership information of all trajectory sequences.

Summary Existing defenses provide a certain level of guarantee in mitigating the privacy risks of
ML-based POI recommendations. However, it is still challenging to remove the victim model’s
vulnerabilities within a reasonable utility drop. This is because existing POI recommendation models
rely heavily on memorizing user-specific trajectory patterns that lack sufficient semantic information
(e.g., compared to text in NLP). As a result, defense mechanisms such as DP-SGD can easily
compromise the utility due to their noises on the gradients. Moreover, defenses such as JFT are not
general for all inference attacks since each attack targets different sensitive information. To this end,
our evaluation calls for more advanced mechanisms to defend against our attacks.
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Figure 20: For LOCEXTRACT, when ground truths are the most common locations, Geo-Ind (A) can
predict a nearby location (≤ 400 m) of each protected location as the next POI with higher accuracy
than JFT (A). The reason is that Geo-Ind applies the Laplacian mechanism to replace each protected
POI with its nearby location.

E.4 ADDITIONAL DEFINITIONS IN DEFENSE

Definition 1 ((ϵ, δ)-DP) A randomized mechanism A satisfies (ϵ, δ)-DP if and only if for any two
adjacent datasets D and D′, we have:

∀O ∈ Range(A) : Pr[A(D) ∈ O] ≤ eϵPr[A(D′) ∈ O] + δ

where Range(A) indicates the set of all possible outcomes of mechanism A and δ indicates the
possibility that plain ϵ-differential privacy is broken.

Definition 2 (geo-indistinguishability) A mechanism A satisfies ϵ-geo-indistinguishability iff for
all l and l′ , we have:

dP(A(l),A(l′)) ≤ ϵd(l, l′)

where d denotes the Euclidean metric and dP denotes the distance between two output distributions.
Enjoying ϵr-privacy within r indicates that for any l and l′ such that d(l, l′) ≤ r, mechanism A
satisfies ϵ-geo-indistinguishability.

F MORE RELATED WORK ON DEFENSES AGAINST PRIVACY ATTACKS

Defenses against privacy attacks on mobility data As discussed in Section 5, there have been
various studies on stealing sensitive information from mobility data. Consequently, researchers
have also explored various approaches to safeguard the privacy of mobility data, including K-
Anonymity (Gedik & Liu, 2005; Gruteser & Grunwald, 2003), which aims to generalize sensitive
locations by grouping them with other locations, Location Spoofing (Bordenabe et al., 2014; Hara
et al., 2016), which involves sending both real and dummy locations to deceive adversaries, Geo-
indistinguishability (Yan et al., 2022; Andrés et al., 2013), and local differential privacy (LDP) (Xu
et al., 2023; Bao et al., 2021). However, these prior defense mechanisms primarily focus on data
aggregation and release processes and can not be directly used in the context of POI recommendation.
In contrast, our work is the first to concentrate on protecting privacy breaches originating from deep
learning models such as POI recommendation models.

Defenses against privacy attacks on deep neural networks There are also multiple works on
protecting the privacy of deep learning models, with some notable examples including regularization
and early stopping, which are commonly employed techniques to mitigate overfitting (Goodfellow
et al., 2016). Another approach is differentially private stochastic gradient descent (DP-SGD) (Abadi
et al., 2016), which achieves differential privacy by introducing noise during the gradient descent
process while training the model. Additionally, selective differential privacy (S-DP) has been proposed
to safeguard the privacy of specific subsets of a dataset with a guarantee of differential privacy (Shi
et al., 2022b;a). However, these methods have primarily been tested on image or language-related
models and require customization to fit into the usage of POI recommendation models. In our work,
we focus on adapting these defense mechanisms to POI recommendation models by developing
privacy definitions that are specifically tailored to the attacks we propose. In addition, we follow
the concept of selective DP (Shi et al., 2022a) to relax the original DP and selectively protect the
sensitive information (e.g., most common locations) in mobility data.
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