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Abstract

In this paper, we study the sequential decision-making for smart weaning of1

mechanical circulatory (MCS) devices. MCS devices are percutaneous micro-axial2

flow pumps for the treatment of cardiogenic shock patients, by providing left3

ventricular unloading and forward flow of blood into the aorta. While clinical4

recommendations for the weaning of MCS devices exist, the strategy varies by care5

team and data-driven approaches are limited. Offline reinforcement learning (RL)6

has proven to be successful in sequential decision-making tasks [8, 19], but the7

prohibition of interactions with the patient as the environment constrains evaluating8

RL policies. This motivates the development of probabilistic digital twin models9

to simulate the environment. We propose a formulation for offline RL training10

and a probabilistic Transformer-based digital twin to model the noisy circulatory11

dynamics and evaluate offline RL policies. We show that our Transformer-based12

digital twin (TDT) achieves 35% lower error compared to baseline models. We13

also present a comprehensive benchmark on offline RL methods using TDT with14

clinically relevant metrics.15

1 Introduction16

This paper focuses on the problem of data-driven automatic weaning of mechanical circulatory17

support (MCS) devices. MCS devices assist the heart by pumping oxygen-rich blood from the left18

ventricle into the ascending aorta, supporting patients with compromised cardiac function. Weaning19

from MCS is a series of flow controls over a period of time in which the clinician aims to reduce flow20

support while maintaining stable hemodynamics, prior to explanting MCS [1]. Reducing the pump21

flow level (P-Level) is entirely at the discretion of the clinician: the manufacturer’s instructions for22

use suggest reducing by levels of 2, and evaluating at each reduction for evidence of deterioration.23

Deep reinforcement learning (RL) has shown great promise in automating sequential decision making24

in medical treatments, with works exploring clinical conditions such as sepsis [14, 8, 23] and cancer25

[19, 3]. With RL’s ability to learn sequential decisions from real-world datasets, a data-driven26

automated policy can reduce decision fatigue for clinicians and offer richer guidance compared27

to rule-based guidelines. However, in the medical domain, offline RL introduces two challenges:28

in training, the stochasticity of clinician decisions and limited data hinder learning; in evaluation,29

because online interaction with patients is infeasible, assessment must rely solely on simulators.30

Although there exist some physics-informed models and PDE simulators [9, 11] of patient hemo-31

dynamics, they are often deterministic and not suitable for long time-horizon simulation. Existing32

solutions fail to account for noise in the real-life patient data and partial observation, due to the fact33

that patients on MCS often receive additional treatments (e.g., surgery, medications) that the models34

do not observe. To realistically evaluate a weaning strategy, a digital twin model that can faithfully35

quantify uncertainty over a significant time-horizon is integral.36
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To this end, we develop a digital twin-supported medical environment to evaluate offline RL policies37

for MCS weaning. To simulate the circulatory dynamics and answer “what-if” questions on patient38

data, we leverage a Transformer-based digital twin model. Our digital twin captures uncertainty from39

the variability of learning and stochasticity in medical data, and can act as a practical surrogate to40

model real-time interactions. We then use the digital twin to create a medical environment, where41

researchers can evaluate and develop offline RL policies. In summary, our contributions are:42

1. We develop a transformer-based probabilistic digital twin for modeling MCS circulatory43

dynamics, outperforming baselines on both accuracy and uncertainty quantification metrics.44

2. We present a Markov Decision Process (MDP) formulation for learning MCS weaning, and45

show preliminary offline RL results with domain-specific physiological and medical metrics.46

We refer the readers to Appendix A for a review on safe medical decision making. In contrast to47

existing methods, our work employs a probabilistic transformer-based forecaster trained on real data,48

and leverage domain-specific medical metrics to facilitate evaluation of the offline RL models.49

2 Background and Problem Formulation50

Offline Reinforcement Learning. In this work, we formulate our setting as a Markov decision51

process (MDP), defined by the tuple M = (S,A, T, r, µ0, γ), with state space S, action space A,52

transition dynamics T (s′|s, a), reward function r(s, a), initial state distribution µ0, and discount53

factor, γ. Reinforcement Learning algorithms aim to find a policy π := S → A that maximizes the54

expected cumulative reward, Eπ [
∑∞

t=0 γ
tr(st, at)] . The optimal policy is defined as,55

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
. (1)

The Offline RL setting is when the algorithm only has access to a dataset sampled from the environment56

Denv = {(si, ai, ri, s′i)}i collected by a behavior policy πB and cannot interact with the environment.57

Mechanical Circulatory Support (MCS). Left sided forward flow MCS devices are medical58

devices designed to assist the heart in pumping blood from the left ventricle into the ascending aorta59

to deliver oxygenated blood to the body. Cardiogenic Shock (CGS) is a syndrome characterized by60

cardiac output insufficient for end organ perfusion. Hemodynamically, patients in CGS exhibit low61

systolic blood pressures, low mean aortic blood pressures, and high heart rates. CGS’s mortality rate62

is historically 50-80% [20, 15]. For patients in severe CGS, MCS plays an integral role in improving63

blood pressure, maintaining organ perfusion, and aiding heart muscle recovery.64

As the patient shows signs of improvement, the care team begins to wean the patient from MCS65

support. The weaning process includes step-wise reduction in MCS performance pump level (P-Level)66

with regular assessment of patient response, see Figure 5 for examples. However, to observe patient67

response, the clinician must reduce P-level and induce a change in patient state. In order to learn68

and evaluate weaning strategies, we need an environment that predicts the patient response to the69

proposed change in P-level and evaluates the quality of that P-level choice.70

3 Methodology71

MDP Design for MCS. We first formulate the MCS weaning problem as an MDP. We define each72

state in the MDP to consist of 6 time-steps of 12 physiological features over 1 hour, calculated from73

the aortic and left ventricular pressure signals coming from the MCS device, i.e. S ⊆ R72. The action74

space is A = {2, 3, · · · , 9}, corresponding to pump level P2 to P9 on the MCS device. The objective75

is to optimize patient outcome with a clinically appropriate weaning strategy. For the offline RL76

problem, we organize the patient data into a replay buffer dataset of D = {(si, ai, s′i, ri)}i according77

to the formulation. The state space, action space, reward, and MDP design is informed by expert78

recommendation and empirical results as presented in Appendix C. Under the MDP formulation, we79

will then describe our digital twin for evaluation, followed by the setup for offline RL training.80

Transformer-based Digital Twin Design. To simulate patient trajectories during weaning, we81

develop a Transformer-based digital twin (TDT) that models patient hemodynamic signals under82

MCS. The digital twin is denoted as F : S ×A → P(S), which serves as a proxy of the stochastic83

transition function for the RL task, i.e. F(s, a) = p(s′|s, a).84
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Figure 1: System diagram of the proposed framework. Digital twin module: We use a 3-layer trans-
former architecture as an encoder to learn a latent representation of the patient’s history, concatenate
the representation with the P-Level input, and then decode the output using a fully connected neural
network. Offline RL module: The digital twin can then be deployed in our medical environment to
evaluate RL policies trained fully offline, with rich medical and physiological metrics.

The digital twin’s model architecture is shown in Figure 1. The encoder with three multi-head85

self-attention layers captures long-range temporal dependencies in the multivariate physiological time86

series. The future actions (pump motor speed represented by discrete P-Level) are concatenated to87

the latent representation and passed to the decoder. The decoder (2 fully connected perceptron layers)88

predicts the next physiological state, enabling safe synthetic “what-if” scenarios by simulating patient89

responses to candidate weaning actions. Probabilistic prediction is achieved by retaining dropout90

(p = 0.1) in the decoder layers. We train the model to minimize the MSE between the predicted and91

observed future states, using historical patient data.92

Offline Reinforcement Learning. Using the TDT model, we simulate the next hemodynamic state93

of a patient given the current state and the recommended P-level to evaluate with clinical metrics.94

Before training, we first collect Denv by organizing patient trajectories into a replay buffer according95

to our state and reward design. Then, a policy π̂ can be trained on Denv with the offline RL objective96

(Eq. 1). The policy’s performance is evaluated in the digital twin environment by the following97

metrics: Physiological Reward, reflecting well-being from MAP, heart rate, and pulsatility over the98

past hour; Action Change Penalty (ACP) [23], accumulating the magnitude of P-level changes; and99

Weaning Score (WS), capturing the decrease in P-level and penalizing when P-level is increased100

every hour conditioned on observed hemodynamic stability (see Appendix B for definitions).101

4 Experiments102

Digital Twin Training and Performance. Training and evaluation of the digital twin environment103

is performed on a proprietary dataset of 379 patients, with an average length of record of 65.5 hours.104

We split the patients by ratio 65-15-20 into training, validation, and testing sets. TDT’s performance105

is measured by predictions accuracy of (over different aspects and subsets of the data) and uncertainty106

calibration (CRPS) in comparison with common dynamics modeling architectures. Please see107

appendix D for detailed introduction of metrics and baselines. Table 1 shows that our TDT108

model with sinusoidal encoding consistently outperforms baselines across accuracy and calibration109

metrics, indicating robustness under both static and dynamic conditions. The strong performance of110

the Transformer-based architecture is demonstrated through higher prediction variability, and more111

accurate modeling of P-Level change response, as demonstrated in figures 2 and 6.112

Offline RL Performance Benchmark. The offline RL algorithms are trained on the replay buffer113

created from our dataset of size 17865, and evaluated using the digital twin, autoregressively ex-114

tended 1-hour to 6-hour horizon. We present the offline dataset as expert alongside three offline RL115
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MAE MAE (MAP only) MAE Static PL MAE changing PL Trend Acc. CRPS

MLP 9.85 ± 0.44 4.11 ± 0.01 8.88 ± 0.45 13.76 ± 0.40 0.83 ± 0.03 7.43 ± 0.22

Neural Process 8.32 ± 0.18 4.63 ± 0.06 6.83 ± 0.26 14.31 ± 0.22 0.89 ± 0.00 4.92 ± 0.66

CLMU 7.61 ± 0.12 4.31 ± 0.04 7.00 ± 0.11 10.06 ± 0.17 0.89 ± 0.00 5.48 ± 0.09

SSM 8.12 ± 0.46 4.12 ± 0.11 7.49 ± 0.55 10.65 ± 0.11 0.88 ± 0.00 4.43 ± 0.29

TDT (rot.) 6.04 ± 0.72 4.04 ± 0.10 5.55 ± 0.70 8.02 ± 0.79 0.90 ± 0.01 3.92 ± 0.54

TDT (sin.) 5.41 ± 0.05 3.88 ± 0.12 4.90 ± 0.05 7.47 ± 0.08 0.88 ± 0.01 3.45 ± 0.12

Table 1: Digital twin model evaluation; See appendix D for detailed explanation of metrics and
baselines. Transformer outperforms baselines in all metrics.

Figure 2: Digital twin prediction visualization compared with baselines. The Transformer model is
more accurate in reflecting response to P-level change and more expressive when capturing large
changes in patient state, resulting in its higher accuracy. More qualitative results Appendix D.

policies: Behavioral Cloning (BC) for supervised training without exploration; Model-based Offline116

Policy Optimization (MOPO) [24] penalizing reward with transition uncertainty; and Support Value117

Regularization (SVR) [12] for out-of-distribution (OOD) regularization. See Appendix E for details.118

Metric Expert BC MOPO SVR

Reward (↑) 0.078 4.159 4.419 3.744
ACP (↓) 3.160 1.500 0.020 1.520
WS (↑) -0.061 0.279 0.006 0.192

Table 2: Comparison of different RL models
over 100 episodes in physiological reward, ac-
tion change penalty, and weaning score. ↑ and
↓ mean higher and lower is better, respectively.
Low ACP indicates a stationary policy; high ACP
indicates excessive stochasticity.

Figure 3: BC (left) and MOPO (right) P-level rec-
ommendations (solid blue) and rolled-out digital
twin MAP predictions (solid red) for 6 hours com-
pared to the expert P-level and observed MAP.

In Table 2, we emphasize that no single offline RL model performs best across all metrics for our119

task. For physiological reward, we expect the expert (clinician) policy reward to be close to 0 as it is120

normalized. Its high ACP and low WS suggest frequent P-level changes despite stable physiology.121

BC demonstrates good performance in reward and WS, learning from the successful weaning cases.122

MOPO achieves the highest reward although it shows limited weaning based on its low ACP and WS,123

as in Figure 3, indicating a conservative policy. SVR is promising in terms of WS, though it results in124

lower reward and ACP compared to BC and MOPO, underlining over-regularization. These results125

indicate the further need for RL models with OOD regularization and uncertainty quantification.126

5 Discussion127

We presented a probabilistic transformer-based digital twin to model MCS weaning dynamics and128

evaluate offline RL policies. Our TDT consistently outperformed baselines in modeling patient129

hemodynamics. Using our TDT, we evaluated offline RL algorithms on our task. We found that no130

existing method excelled across all metrics, highlighting the task complexity and the importance for131

developing and incorporating medical metrics for learning. This paper represents a step toward data-132

driven clinical decision support in critical care, and we hope to contribute insights on how to design133

and verify an offline RL-based medical decision-making system from scratch. Limitations of this134

work include high-dimensional data and the inherent constraints of offline RL approaches. Our future135

work includes developing uncertainty-aware offline RL algorithms, incorporating medical metrics136

into RL training, and evaluations for real-world safety and efficacy before clinical deployment.137
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A Related Works202

Prasad et al. [13] pioneered the application of RL for weaning mechanical ventilation, yet their203

fitted Q-iteration approach struggled with suboptimal clinical data. SRL-RNN [18] then leveraged204

recurrent neural networks to capture temporal dependencies for dynamic treatment recommendations,205

although imitation learning limits performance to clinician-level decisions. Peng et al. OGSRL [23]206

applied a guarded offline RL for Sepsis treatment. Kuang et al. [9] built patient-specific cardiac207

hemodynamic twins via physics-informed self supervised learning. Lingsch et al. [11] proposed208

neural surrogates for PDE forward simulation and inverse parameter estimation on simulated data.209

In contrast to these methods, our work employs a domain-specific probabilistic transformer-based210

forecaster trained on real-life data and medical metrics to facilitate the evaluation and development of211

the offline RL models.212

B Medically-informed Metrics213

Action Change Penalty (ACP) [23]: Abrupt and extreme changes in P-level may maximize rewards;214

however, they can induce physiological instability in a real-world setting. ACP gauges policy volatility215

and is given by:216

ACP =
∑T

i=1 ||ai−1 − ai||2
T

,

where ai−1 is an action at state i− 1, ai is a subsequent action, and T is the episode length. Lower217

ACP values indicate stable physiology and safe weaning, but note that a value of 0 is undesirable as218

the P-level must be lowered for weaning.219

Weaning Score (WS): To capture satisfactory weaning patterns, we support P-level reductions at220

most every 1 hour when the patient is observed as hemodynamically stable for the past 1 hour:221

WS =

∑T−1
i=0 I(MAP(i) > τMAP ∧ HR(i) > τHR ∧ Pulsat(i) > τPulsat) · Weaned(i)∑T−1

i=0 I
(
MAP(i) > τMAP ∧ HR(i) > τHR ∧ Pulsat(i) > τPulsat

) ,

222

Weaned(i) =


−1, if ai+1 − ai > 0,

1, if ai+1 − ai − 1,

0, otherwise,

where τMAP = 60, τHR = 50 and τPulsat = 10, indicating limits of hemodynamic stability (see Table 3223

for stability limits). Since our state design represents 1 hour in 10-minute time steps, we calculate the224

compared MAP value for a state as, MAP(i) = min1≤t≤6 MAP(i, t), same for HR and pulsatility.225

T is the episode length and i = 0 indicates the initial state. Higher weaning scores denote proper226

lowering of P-level when at a stable state, and low or negative scores imply that P-level is increased227

despite having healthy physiological indicators.228

Physiological Reward: The reward generally reflects the well-being of the patient, according to the229

mean arterial pressure (MAP), heart rate, and pulsatility of the past hour. Our design follows the clin-230

ically defined ranges for hemodynamic stability while caring for the smoothness and differentiability231

of the function.232

The reward design in table 3 is staircase-shaped, which has two drawbacks: non-differentiability and233

a sparse signal. We reformulate the hemodynamic instability score in the following way.234

• Heart Rate Penalty Function The heart rate penalty function penalizes deviations from an235

optimal heart rate of 75 bpm using a quadratic penalty:236

Phr(hr) = ReLU
(
(hr − 75)2

250
− 1

)
(2)

where ReLU(x) = max(0, x). This function has zero penalty for heart rates in the range237

[50, 100] bpm and applies quadratic penalties for heart rates outside this range.238
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Domain Score Component Value Score
Hemodynamic Variable MAP ≥ 60 0

50 to 59 1
40 to 49 3
< 40 7

Minimum MAP ≥ 60 0
in window 50 to 59 1

40 to 49 3
< 40 7

Time Spent MAP 0 0
< 60 mmHg (%) 2 1

5 3
> 5 7

Pulsatility > 20 0
10-20 5
< 10 7

HR > 100 3
< 50 3

LVEDP > 20 7
15 to 20 4
< 15 3

CPO 0.6 to 1 1
< 0.6 3
< 0.5 5

Table 3: Hemodynamic instability score table from [2]. In our MDP design, we use MAP, pulsatility,
and HR score components with slight modification. Because the score indicates risk, for the reward
function we multiply the score by -1.

• Minimum MAP Penalty Function The minimum Mean Arterial Pressure (MAP) penalty239

function ensures MAP values remain above 60 mmHg:240

PminMAP(MAP ) = ReLU
(
7(60−MAP )

20

)
(3)

This function applies a linear penalty when MAP falls below 60 mmHg, with the penalty241

increasing as MAP decreases further from this threshold.242

• Pulsatility Penalty Function The pulsatility penalty function maintains pulsatility within243

the range [20, 50]:244

Ppulsat(p) = ReLU
(
7(20− p)

20

)
+ ReLU

(
p− 50

20

)
(4)

This bi-directional penalty function penalizes pulsatility values below 20 and above 50, with245

zero penalty for pulsatility in the range [20, 50].246

• Hypertension Penalty Function The hypertension penalty function penalizes elevated247

mean MAP values above 106 mmHg:248

Phyp(MAP ) = ReLU
(
MAP − 106

18

)
(5)

This function applies a linear penalty for mean MAP values exceeding the hypertension249

threshold of 106 mmHg.250
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The overall reward function combines all penalty components and negates the sum to create a reward251

signal:252

R(s) = −
[
PminMAP(min(MAP)) + Phyp(MAP) + Phr(min(HR)) + Ppulsat(min(Pulsat))

]
(6)

where:253

• min(MAP), min(HR), min(Pulsat) are the minimum values over the time horizon254

• MAP is the mean MAP over the time horizon255

• The negative sign converts penalties into rewards (higher rewards for lower penalties)256

C Markov Decision Process (MDP) Design Details for RL257

Observations. The observation space includes 12 hemodynamic features of the patient. Our inputs258

are the pump pressure, pump speed, and motor current 25 Hz signals recorded by the MCS device.259

Calculated features derived from these signals include Mean aortic pressure (MAP), mean pump260

speed, mean motor current, mean pump flow, left Ventricular Pressure (LVP), left ventricular end261

diastolic pressure (LVEDP), heart rate (HR), Systolic blood pressure (SBP), Diastolic blood pressure262

(DBP), Pulsatility, Relaxation Constant (Tau_LV), and elastance estimation (ESE_LV); denoted as263

xt ∈ R12 for the tth time step for each patient. We take 1145 MCS-supported CGS patients as the264

train set, 264 as validation set, and 352 as the test set. We down-sample patient data from 25Hz265

to 0.00167Hz (1 sample per 10 minutes) and process them into sliding windows of 1 hour (6 time266

steps) to be used as states for digital twin prediction and decision making based on expert suggestion.267

Therefore, the observation space is S = R6×12, where each si = xt:t+6 at some t for a patient.268

In – out
horizon

15min – 15min
1 sample / 30s

30ts -> 30ts

1hr – 1hr
1 sample / 5min

12ts -> 12ts

1hr – 1hr
1 sample / 10min

6ts -> 6ts

2hr – 2hr
1 sample / 5min

24ts -> 24ts

2hr – 2hr
1 sample / 10min

12ts -> 12ts

MSE 0.234 0.142 ± 0.012 0.124 ± 0.027 0.215 ± 0.009 0.159 ± 0.006

MAP MSE 3.03 2.711 ± 0.182 2.59 ± 0.154 3.583 ± 0.340 3.356 ± 0.226

Table 4: Alternative settings for the world model. Takeaway: shorter horizon and higher down-
sampling produces stronger models, but need at least 1 hour of history to provide reasonable action
frequency and physiological context.

Action. The action for our MDP is the pump support level (P-level) of the MCS device. The269

device operates at 8 different speed levels, from P2-P9, each with a constant motor speed (rpm). The270

P-level proportionally determines the blood flow provided to the patient by the motor’s speed and271

current. Clinicians can control the P-level while the patient is on support. The P-level generally272

stays unchanged in 1-hour intervals, unlike the state features, since it is manually controlled by the273

clinicians during the treatment. In practice, we take the mean P-level over the 1-hour interval as274

expert action. As a result, we define A = {2, . . . , 9}.275

Rewards. The design for the reward function is elaborated in Appendix B, in line with medical276

consultancy. It assigns a (inverted) risk score based on acceptable intervals for hemodynamic features.277

The physiological reward is further normalized through Z-score normalization and clipped between278

[−2, 2] to ensure training stability.279

Challenges of Offline RL for MCS The commonly encountered issue of Offline RL is the limited280

access to the online environment, which results in distribution shift and large value overestimation281

errors to account for the shift in the real environment. While these are widely studied problems in282

RL, medical decision-making introduces other problems: error-prone behavioral policies, and highly283

imbalanced actions in the dataset.284

As there is no golden recipe for weaning a patient from an MCS device, the behavioral policy and the285

clinician policies are naturally imperfect. To this end, we expect offline RL to reveal the true policy286
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Figure 4: Length distributions of our patient data (left) and the reward score distributions of predicted
states versus real patient states.

from the hemodynamic features. Since it is required to simulate the real environment, we largely rely287

on a digital twin transformer model. However, the model learns to cheat by outputting cardiac cycles288

copied from the observation distribution. Furthermore, the action space is by definition fully constant289

in a state, unlike the observation space, which challenges the model compatibility.290

Example weaning. We show two examples of doctors’ weaning over the course of 24 hours in291

Figure 5.292

Figure 5: Example weaning of two patients over 24-hour horizon. The P-level change and the
patient’s MAP (Mean Arterial Pressure) is plotted. We acknowledge that MAP alone is not solely
indicative of the patient’s well-being; it is plotted in order to show part of the decision making process
for weaning.

D Digital Twin Experiment Details293

D.1 Baselines294

We evaluate our approach against several established baselines for probabilistic dynamics modeling.295

Each baseline is configured with carefully tuned hyperparameters to ensure fair comparison:296

• Multi-Layer Perceptrons (MLPs) with Monte Carlo dropout approximate probabilistic297

forecasts by treating dropout as a Bayesian approximation technique, enabling uncertainty298

quantification through multiple forward passes during inference. The MLP baseline employs299

a three-layer architecture with hidden dimensions [512, 256, 128], ReLU activation functions,300

and a dropout rate of 0.2 applied after each hidden layer. The network flattens the input301

sequence and concatenates it with p-level control signals before processing through the fully302

connected layers.303
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• Neural Processes [17] is a meta-learning approach that conditions on context observations304

to predict distributions over functions, enabling few-shot adaptation to new dynamical305

systems while maintaining uncertainty quantification. The implementation features a latent306

dimension of 128, a hidden dimension of 256, and employs separate encoder networks for307

context processing with three-layer architectures. The context encoder processes input fea-308

tures augmented with time indices, while the aggregator combines encoded representations309

across time steps. The decoder network generates both mean and variance predictions for310

each feature at each forecast timestep.311

• Conditional Legendre Memory Units (CLMUs) [10, 22] leverage orthogonal polynomial312

basis functions to capture long-term temporal dependencies through structured memory313

mechanisms. The CLMU baseline utilizes 2 layers with memory dimension 64, hidden314

dimension 128, and incorporates p-level conditioning through a dedicated projection layer.315

Each LMU layer employs Legendre polynomial transition matrices with scaling parameter316

θ = 1.0 and applies exponential smoothing with decay rate 0.9 for stable memory updates.317

The output projection includes dropout with a rate 0.1 for regularization.318

• State Space Models (SSMs) [6] represent dynamics through latent state evolution governed319

by linear or nonlinear transition functions, naturally incorporating temporal dependencies320

and enabling principled probabilistic inference over hidden states. The SSM baseline321

operates with state dimension 64, hidden dimension 128, and forecast horizon of 6 steps.322

The state transition matrix is initialized as 0.9 · I + 0.1 · N (0, 1) to ensure stability, while323

the observation model employs a two-layer network with ReLU activation and dropout rate324

0.1. Stochastic sampling is achieved by injecting Gaussian noise with standard deviation325

0.01 during state transitions.326

• Transformers with sinusoidal positional embeddings (TDT sin.) [21] and Transformers327

with rotary positional embeddings (TDT rot.) [16]. TDT (rot.) leverages self-attention328

mechanisms enhanced with rotary position encoding (RoPE) that captures relative positional329

relationships through multiplicative rotations. The transformer model’s attention mechanism330

allows the model to attend to relevant temporal patterns and input control, improving the time331

series prediction. Both transformer models have the architecture outlined in our methodology332

section.333

All baselines are trained using the Adam optimizer with a learning rate 0.001 and employ Monte334

Carlo sampling with 50 forward passes for uncertainty quantification during inference.335

D.2 Metrics for evaluating digital twin336

• MAE All: Mean Absolute Error across all 12 features.337

• MAE MAP: Mean Absolute Error for MAP (Mean Arterial Pressure) only. Although MAP338

is not solely indicative of patient’s well-being, it provides a guide towards the expressivity339

and responsiveness of the model, as other features can be more static.340

• MAE Static: MAE for samples with non-changing P-Levels over the course of 2 hours. This341

scenario constructs 72% of our dataset.342

• MAE Dynamic: MAE for samples with dynamic P-Levels. Dynamic P-Level refers to when343

there is at least 1 change in the P level over the 2 hour course of input-output pairs.344

• Trend Acc: Predicted trend direction accuracy for MAP. Trend is classified as (1) increasing345

if the slope of MAP over the predicted horizon (1 hr) is ≥ 2, (2) decreasing if the slope346

≤ 2, and (3) flat otherwise. Trend is an important factor that medical professionals take into347

consideration, being able to predict trend well shows medical saliency of the model.348

• CRPS: Continuous Ranked Probability Score is a proper scoring rule [5] for uncertainty349

quantification, calculated from 50 samples from the probabilistic predictions (samples x, x′)350

and the ground truth y as in equation 7.351

CRPS(F , y) =

∫
(F(x)− 1{x ≥ y})2 dx = Ex[|x− y|]− 1

2
Ex,x′ [|x− x′|] (7)
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D.3 Additional Visualizations.352

Please see figure 6 for further qualitative examples of digital twin models.353

Figure 6: Digital twin prediction visualization compared with baselines. The Transformer model is
more accurate in reflecting response to P-level change and more expressive when capturing large
changes in patient state, resulting in its higher accuracy.

E RL Experiment Settings and Additional Results354

E.1 Reinforcement Learning Baselines355

We explain the reinforcement learning baseline models and our implementation details in this section.356

We train all baselines on our dataset of size 17865 with the observation space of dimension 72 and357

action dimension of 1.358

• Behavior Cloning (BC) uses a supervised learning model, π(s, a), to mimic the expert (s, a)359

while minimizing the MSE loss as argminθ E(s,a)∼D

[
∥a− πθ(s)∥22

]
without exploration360

unlike on Eq. 1. It ignores the dynamics of (s, a), suffering from the distribution shift in361

the online environment. A 3-layer MLP with hidden dimensions of [256,256,256], ReLU362

activation between the layers, and tanh in the output layer is our BC model. The last layer363

has one perceptron, indicating our action dimension as 1. We trained the model for 30000364

steps with Adam optimizer using a learning rate of 1e-3 and batch size 256.365

• Batch-Constrained Q-learning (BCQ) [4] trains a conditional generative model to propose366

in-distribution actions, refines them with a small perturbation policy, and selects among367

them using twin Q-networks. This constrains actions to the dataset support and mitigates368

extrapolation error in offline Q-learning. We borrow the implementation of the algorithm369

from the authors with some hyperparameter changes. The actor network is an MLP of370

3 layers with sizes [400, 300, 300] as accompanied by ReLU activation. The twin critic371

network is an MLP with the same architecture as the actor network, returning 2 Q-values for372

soft clipped double Q-learning with λ of 0.75. The generative model is a Vanilla Variational373

Autoencoder including an encoder with 2 layers of size [750, 750] and a decoder with 3374
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layers of size [750,750,750]. The perturbation parameter, ϕ is 0.05. All networks are trained375

with Adam optimizer using a learning rate of 1e-3 and a mini batch size of 100 for 200000376

timesteps. The Q-learning parameters are γ as 0.99, τ as 0.005.377

• Model-Based Policy Optimization (MBPO) [7] fits a dynamics model pθ(s′, r | s, a) and378

then optimizes the policy on real data augmented with short-horizon rollouts from pθ. Our379

implementation of MBPO is the non-penalized version of MOPO with the same parameters380

in Table 5 with the reward penalty coefficient as 0.0.381

• Model-based Offline Policy Optimization (MOPO) [24] borrows the same policy opti-382

mization by penalizing rewards with the uncertainty of the learned dynamics model during383

training. MOPO trains a soft actor-critic network on a replay buffer augmented with short384

model rollouts. While the performance depends on the precision of the uncertainty quantifi-385

cation method and fine-calibration of the penalty weight, it shows robust results in stochastic386

data. However, it might suffer from over-penalization with suboptimal hyperparameter387

settings. We tuned the default parameters of the MOPO implementation of the authors388

to produce stable and convergent training. All hyperparameters are depicted in Table 5.389

SAC includes an actor and 2 critic networks (for double clipped Q-learning) of the same390

architecture: 2 layers of MLP with sizes [256, 256], all trained with Adam optimizer. The391

transition model has 7 ensemble MLP models of 4 layers with sizes [200, 200, 200, 200]392

and Swish activation function.393

Table 5: Hyperparameters of our MOPO implementation.

Parameters Value

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Discount factor (γ) 0.99
Target network update coefficient (τ ) 0.005
Target entropy (often −action dimension) −1
Temperature optimizer learning rate 3× 10−4

Dynamics model learning rate 1× 10−3

Dynamics ensemble size 7
Holdout ratio 0.2
Training epochs 100
Steps per epoch 1000
Evaluation episodes 1000
Mini-batch size 256
Reward penalty coefficient 1.0
Model rollout horizon 5
Rollout batch size 10000
Rollout frequency 1000
Real-to-model data sampling ratio 0.05

• Support Value Regularization (SVR) [12] adds a support-aware penalty to the Q-value394

objective, pushing down estimates for OOD (s, a) pairs so the policy stays within the395

dataset support and avoids extrapolation error. Since the regularization weights come from396

importance sampling based on BC, it over-regularizes the objective in the case of distribution397

shift. The code implementation is borrowed from the authors with some hyperparameter398

changes. The BC pretraining is identical to the introduced BC baseline. The SVR model399

includes the soft actor-critic network, the actor being in the same architecture as BC, and the400

critic having 4 MLP heads of size [356,256]. SVR optimizes the support value regularized401

temporal difference with a weight multiplier of 0.006. The regularization term suppressed402

the OOD state action pairs with the importance sampling weight, where we use 0.5 as the403

sample standard deviation. The minimum Q value for the regularization term is calculated404

from the replay buffer directly, resulting in -200. We train all networks for 100000 timesteps405

with the Adam optimizer on a learning rate of 0.0001. Actor is optimized every 2 timesteps.406

τ and γ are the same as in MOPO.407
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Metric Expert BC BCQ MBPO MOPO SVR

Phys. Reward (↑) 0.080 4.159 3.555 3.160 4.410 3.744
ACP (↓) 3.160 1.50 0.040 2.850 0.020 1.520
WS (↑) -0.061 0.279 -0.006 -0.265 0.004 0.192

Table 6: Comparison of different reinforcement learning algorithms over 100 episodes. ↑ indicates
higher the better while ↓ is the opposite. We additionally evaluate BCQ [4] and MBPO [7]. MBPO
performs worse than MOPO despite being in a similar model architecture. BCQ depicts a low ACP
reluctant to change; though, it is unsatisfactory in weaning, having a low WS.

E.2 Additional RL Results408

Figure 7: P-level recommendations (solid blue) of BCQ, MBPO, and SVR policies and rolled-out
digital twin MAP predictions (solid red) for 6 hours. Digital twin rolls out 6 hours from the first hour
on the left side of the vertical bar. With a stable p-level recommendation in BCQ and SVR, the digital
twin rolls out the same pattern. In MBPO, the digital twin predicts a descending trend that results in
a 1 P-level increase compared to the expert. SVR captures the expert P-level trend after predicting
the patient as stable.
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