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Abstract

In this paper, we study the sequential decision-making for smart weaning of
mechanical circulatory (MCS) devices. MCS devices are percutaneous micro-axial
flow pumps for the treatment of cardiogenic shock patients, by providing left
ventricular unloading and forward flow of blood into the aorta. While clinical
recommendations for the weaning of MCS devices exist, the strategy varies by
care team and data-driven approaches are limited. Offline reinforcement learning
(RL) has proven to be successful in sequential decision-making tasks, but the
prohibition of interactions with the patient as the environment constrains evaluating
RL policies. This motivates the development of probabilistic digital twin models
to simulate the environment. We propose a formulation for offline RL training
and a probabilistic Transformer-based digital twin to model the noisy circulatory
dynamics and evaluate offline RL policies. We show that our Transformer-based
digital twin (TDT) achieves 35% lower error compared to baseline models. We
also present a comprehensive benchmark on offline RL methods using TDT with
clinically relevant metrics.

1 Introduction

This paper focuses on the problem of data-driven automatic weaning of mechanical circulatory
support (MCS) devices. MCS devices assist the heart by pumping oxygen-rich blood from the left
ventricle into the ascending aorta, supporting patients with compromised cardiac function. Weaning
from MCS is a series of flow controls over a period of time in which the clinician aims to reduce flow
support while maintaining stable hemodynamics, prior to explanting MCS [1]. Reducing the pump
flow level (P-Level) is entirely at the discretion of the clinician: the manufacturer’s instructions for
use suggest reducing by levels of 2, and evaluating at each reduction for evidence of deterioration.

Deep reinforcement learning (RL) has shown great promise in automating sequential decision making
in medical treatments, with works exploring clinical conditions such as sepsis [13} (7, 23] and cancer
(L8 3]. With RL’s ability to learn sequential decisions from real-world datasets, a data-driven
automated policy can reduce decision fatigue for clinicians and offer richer guidance compared
to rule-based guidelines. However, in the medical domain, offline RL introduces two challenges:
in training, the stochasticity of clinician decisions and limited data hinder learning; in evaluation,
because online interaction with patients is infeasible, assessment must rely solely on simulators.

Although there exist some physics-informed models and PDE simulators [8} [10]] of patient hemo-
dynamics, they are often deterministic and not suitable for long time-horizon simulation. Existing
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solutions fail to account for noise in the real-life patient data and partial observation, due to the fact
that patients on MCS often receive additional treatments (e.g., surgery, medications) that the models
do not observe. To realistically evaluate a weaning strategy, a digital twin model that can faithfully
quantify uncertainty over a significant time-horizon is integral.

To this end, we develop a digital twin-supported medical environment to evaluate offline RL policies
for MCS weaning. To simulate the circulatory dynamics and answer “what-if” questions on patient
data, we leverage a Transformer-based digital twin model. Our digital twin captures uncertainty from
the variability of learning and stochasticity in medical data, and can act as a practical surrogate to
model real-time interactions. We then use the digital twin to create a medical environment, where
researchers can evaluate and develop offline RL policies. In summary, our contributions are:

1. We develop a transformer-based probabilistic digital twin for modeling MCS circulatory
dynamics, outperforming baselines on both accuracy and uncertainty quantification metrics.

2. We present a Markov Decision Process (MDP) formulation for learning MCS weaning, and
show preliminary offline RL results with domain-specific physiological and medical metrics.

We refer the readers to Appendix [A]for a review on safe medical decision making. In contrast to
existing methods, our work employs a probabilistic transformer-based forecaster trained on real data,
and leverage domain-specific medical metrics to facilitate evaluation of the offline RL models.

2 Background and Problem Formulation

Offline Reinforcement Learning. In this work, we formulate our setting as a Markov decision
process (MDP), defined by the tuple M = (S, A, T, r, uo, ), with state space S, action space A,
transition dynamics T'(s’|s, a), reward function (s, a), initial state distribution g, and discount
factor, . Reinforcement Learning algorithms aim to find a policy 7 := S — A that maximizes the
expected cumulative reward, E [~ 7'7(s¢, a;)] . The optimal policy is defined as,

vast,at)] : (1)

t=0

7 = argmaxE,
™

The Offline RL setting is when the algorithm only has access to a dataset sampled from the environment
Deny = {(5i,ai,74,5:)}i collected by a behavior policy 72 and cannot interact with the environment.

Mechanical Circulatory Support (MCS). Left sided forward flow MCS devices are medical
devices designed to assist the heart in pumping blood from the left ventricle into the ascending aorta
to deliver oxygenated blood to the body. Cardiogenic Shock (CGS) is a syndrome characterized by
cardiac output insufficient for end organ perfusion. Hemodynamically, patients in CGS exhibit low
systolic blood pressures, low mean aortic blood pressures, and high heart rates. CGS’s mortality rate
is historically 50-80% [19}[14]. For patients in severe CGS, MCS plays an integral role in improving
blood pressure, maintaining organ perfusion, and aiding heart muscle recovery.

As the patient shows signs of improvement, the care team begins to wean the patient from MCS
support. The weaning process includes step-wise reduction in MCS performance pump level (P-Level)
with regular assessment of patient response, see Figure [6|for examples. However, to observe patient
response, the clinician must reduce P-level and induce a change in patient state. In order to learn
and evaluate weaning strategies, we need an environment that predicts the patient response to the
proposed change in P-level and evaluates the quality of that P-level choice.

3 Methodology

MDP Design for MCS. We first formulate the MCS weaning problem as an MDP. We define each
state in the MDP to consist of 6 time-steps of 12 physiological features over 1 hour, calculated from
the aortic and left ventricular pressure signals coming from the MCS device, i.e. S C R"2. The action
space is A = {2,3,---,9}, corresponding to pump level P2 to P9 on the MCS device. The objective
is to optimize patient outcome with a clinically appropriate weaning strategy. For the offline RL
problem, we organize the patient data into a replay buffer dataset of D = {(s;, a;, s;,7;) }; according
to the formulation. The state space, action space, reward, and MDP design is informed by expert
recommendation and empirical results as presented in Appendix [C} Under the MDP formulation, we
will then describe our digital twin for evaluation, followed by the setup for offline RL training.
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Figure 1: System diagram of the proposed framework. Digital twin module: We use a 3-layer trans-
former architecture as an encoder to learn a latent representation of the patient’s history, concatenate
the representation with the P-Level input, and then decode the output using a fully connected neural
network. Offline RL module: The digital twin can then be deployed in our medical environment to
evaluate RL policies trained fully offline, with rich medical and physiological metrics.

Transformer-based Digital Twin Design. To simulate patient trajectories during weaning, we
develop a Transformer-based digital twin (TDT) that models patient hemodynamic signals under
MCS, denoted as F : S x A — P(S), serving as a proxy of the stochastic transition function for the
RL task, i.e. F(s,a) = p(s’|s,a). We use the DT terminology to indicate that the environment can
be used to evaluate learned policies, not to be confused with a complete replication of the system.

The digital twin’s model architecture is shown in Figure[TI] The encoder with three multi-head
self-attention layers captures long-range temporal dependencies in the multivariate physiological time
series. The future actions (pump motor speed represented by discrete P-Level) are concatenated to
the latent representation and passed to the decoder. The decoder (2 fully connected perceptron layers)
predicts the next physiological state, enabling safe synthetic “what-if”” scenarios by simulating patient
responses to candidate weaning actions. Probabilistic prediction is achieved by retaining dropout
(p = 0.1) in the decoder layers. We train the model to minimize the MSE between the predicted and
observed future states, using historical patient data.

Offline Reinforcement Learning. Using the TDT model, we simulate the next hemodynamic state
of a patient given the current state and the recommended P-level to evaluate with clinical metrics.
Before training, we first collect D, by organizing patient trajectories into a replay buffer according
to our state and reward design. Then, a policy 7 can be trained on De,, with the offline RL objective
(Eq. [T). The policy’s performance is evaluated in the digital twin environment by the following
metrics: Physiological Reward, reflecting well-being from MAP, heart rate, and pulsatility over the
past hour; Action Change Penalty (ACP) [23], accumulating the magnitude of P-level changes; and
Weaning Score (WS), capturing the decrease in P-level and penalizing when P-level is increased
every hour conditioned on observed hemodynamic stability (see Appendix [B]for definitions).

4 Experiments

Digital Twin Training and Performance. Training and evaluation of the digital twin environment
is performed on a proprietary dataset of 379 patients, with an average length of record of 65.5 hours.
We split the patients by ratio 65-15-20 into training, validation, and testing sets. TDT’s performance
is measured by predictions accuracy of (over different aspects and subsets of the data) and uncertainty
calibration (CRPS) in comparison with common dynamics modeling architectures. Please see
appendix [D] for detailed introduction of metrics and baselines. Table [I] shows that our TDT
model with sinusoidal encoding consistently outperforms baselines across accuracy and calibration
metrics, indicating robustness under both static and dynamic conditions. The strong performance of
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Figure 2: Digital twin prediction visualization compared with baselines. The Transformer model is
more accurate in reflecting response to P-level change and more expressive when capturing large
changes in patient state, resulting in its higher accuracy. More qualitative results Appendix @}

the Transformer-based architecture is demonstrated through higher prediction variability, and more
accurate modeling of P-Level change response, as demonstrated in figures 2] and [7}

‘ MAE MAE MaPontyy  MAE suticp MAE changingp. Trend Acc. CRPS

MLP 9.85 +044 4.11 +o.01 8.88 +04s5 13.76 +0.40 0.83 +003 743 +o22
Neural Process | 8.32 +0.18 4.63 +006 6.83 +026 14.31 +o022 0.89 +000 4.92 +os66
CLMU 7.61 +o.12 4.31 +0.04 7.00 +o0.11 10.06 +o0.17 0.89 +000 5.48 +0.09
SSM 8.12 +046 4.12 +o.11 7.49 +o055 10.65 +o.11 0.88 +000 4.43 +029
TDT (rot.) 6.04 £072  4.04 +o.10 5.55 070 8.02 +0.79 0.90 +001 3.92 +054
TDT (sin.) 541 +o.0s5 3.88 +o.a2 4.90 +o0.05 747 +0.08 0.88 +001 345 +oa2

Table 1: Digital twin model evaluation; See appendix @] for detailed explanation of metrics and
baselines. Transformer outperforms baselines in all metrics.

Offline RL Performance Benchmark. The offline RL algorithms are trained on the replay buffer
created from our dataset of size 17865, and evaluated using the digital twin, autoregressively extended
1-hour to 6-hour horizon. Our digital twin serves as a model-based offline policy (OPE) evaluation
method [25,122]. We present the offline dataset P-levels as the expert policy alongside three offline RL
policies: Behavioral Cloning (BC) for supervised training without exploration; Model-based Policy
Optimization (MBPO) [6]] modeling the transition function, Model-based Offline Policy Optimization
(MOPO) [24] penalizing reward with transition uncertainty; and Support Value Regularization (SVR)
[11] for out-of-distribution (OOD) regularization. See Appendix [E]for details.

Expert (DT)  Expert (Real) BC MBPO MOPO SVR
Phys. Reward (1) 0.557 0.371 0.175+£0.118  0.420£0.139 0.373 £0.129  0.530 £ 0.152
ACP (J) 1.79 1.78 0.068 £0.012  0.459 £0.032 0.984 £ 0.020 0.599 £ 0.057
WS (1) 0.042 0.076 0.321 £0.009  0.120 £ 0.008  0.035 £ 0.005 0.140 £ 0.005

Table 2: Different offline RL models evaluated with 6-hour roll-outs in the TDT environment for 1000
episodes in terms of physiological reward, action change penalty, and weaning score. Results are
averaged over 5 seeds. We include expert policy evaluation with digital twin rollouts (DT) and offline
data (Real) for 744 episodes. (1) and (}) mean higher and lower is better, respectively. Low ACP
indicates an overly stationary policy; high ACP indicates excessive stochasticity. High physiological
reward suggests patient stability, while high WS shows successful weaning of the MCS device.
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Figure 3: We depict P-level recommendations of offline RL policies (solid blue) and the digital twin
mean arterial pressure (MAP) 6-hour roll-outs (solid red) compared to the expert (clinician) P-level
and observed MAP. Left of the vertical gray line shows the input MAP to the digital twin.



We define a clinically salient policy as one that excels across all metrics, showing high-quality policy
training with high physiological reward, low stochasticity with low ACP, and successful weaning
with high WS. Note that we do not aggregate the metrics, as their relative importance should first
be determined through adoption and feedback from intensive care unit clinicians. In Table 2] we
emphasize that no single offline RL model performs best across all metrics for our task. We expect
the expert (Real) physiological reward to be close to 0 as we normalized it to stabilize policy training.
All expert evaluations depict high ACP and low WS, suggesting frequent P-level changes despite
stable physiology. BC demonstrates good performance in ACP and WS, learning from the successful
weaning cases. MOPO and MBPO achieve similar physiological rewards, although they show limited
weaning and high P-level variability based on high ACP and low WS, as in Figure 3] indicating a
conservative policy. SVR is promising for WS and physiological reward, though it results in higher
ACP than BC and MBPO, underscoring over-regularization. These results indicate the further need
for RL models with OOD regularization and uncertainty quantification.
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Figure 4: Comparison of change in physiological reward, ACP, and WS metrics with respect to
various evaluation horizons in hours. This experiment is done on the clinician P-level decisions
evaluated by our digital twin (orange) and on the offline patient outcomes (blue).

Simulation-Real Gap of Digital Twin on Expert Policy. In Figure{4] we observe that our digital
twin performs similarly to the offline dataset within bounds. Noting that digital twin results in mostly
higher physiological rewards, the gap between offline and digital twin evaluation increases within a
tolerable bound, where the largest increase is 60%. The overall digital twin ACP remains the same
since the compared actions are the real P-levels, while only the next state differs. In WS, the gap
increases as horizon increases with offline dataset always having higher WS. In light of these, we
select 6 hours for the evaluation horizon as it results in a tolerable gap between digital twin and
offline data across physiological reward and WS.

5 Discussion

We presented a probabilistic transformer-based digital twin to model MCS weaning dynamics and
evaluate offline RL policies. Our TDT consistently outperformed baselines in modeling patient
hemodynamics. Using our TDT as model-based offline policy evaluation, we evaluated offline RL
algorithms on our task. We found that no existing method excelled across all metrics, highlighting
the task complexity and the importance of developing and incorporating medical metrics for learning.
This paper represents a step toward data-driven clinical decision support in critical care, and we hope
to contribute insights on how to design and verify an offline RL-based medical decision-making
system from scratch. Limitations of this work include high-dimensional data and the inherent
constraints of offline RL approaches. Our future work includes developing uncertainty-aware offline
RL algorithms, incorporating medical metrics into RL training, and evaluations for real-world safety
and efficacy before clinical deployment.
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A Related Works

Prasad et al. [12]] pioneered the application of RL for weaning mechanical ventilation, yet their
fitted Q-iteration approach struggled with suboptimal clinical data. SRL-RNN [[17] then leveraged
recurrent neural networks to capture temporal dependencies for dynamic treatment recommendations,
although imitation learning limits performance to clinician-level decisions. Peng et al. OGSRL [23]]
applied a guarded offline RL for Sepsis treatment. Kuang et al. [8]] built patient-specific cardiac
hemodynamic twins via physics-informed self supervised learning. Lingsch et al. [10] proposed
neural surrogates for PDE forward simulation and inverse parameter estimation on simulated data.
In contrast to these methods, our work employs a domain-specific probabilistic transformer-based
forecaster trained on real-life data and medical metrics to facilitate the evaluation and development of
the offline RL models.

B Medically-informed Metrics

Action Change Penalty (ACP) (similar to [23]]): Abrupt and extreme changes in P-level may
maximize rewards; however, they can induce physiological instability in a real-world setting. ACP
gauges policy volatility and is given by:
T
ACP =Z Hai_l — ai||2, if Hai_l — ai||2 > 2.
i=1

where a;_1 is an action at state ¢ — 1, a; is a subsequent action, and 7" is the episode length. Lower
ACP values indicate stable physiology and safe weaning, but note that a value of 0 is undesirable as
the P-level must be lowered for weaning.

Weaning Score (WS): To capture satisfactory weaning patterns, we support P-level reductions at
most every 1 hour when the patient is observed as hemodynamically stable for the past 1 hour:

Zz:ol I(MAP(i) > mmap A HR(4) > mr A Pulsat(i) > 7puisar) - Weaned (i)

WS — ,
S I(MAP(i) > Tvap A HR(i) > Tur A Pulsat(i) > Tpyisa)
—1, ifCLH_l —a; >0,
Weaned(i) = < |a;j+1 — aq], ifa41 —a; € {—1,-2}
0, otherwise,

where Tyap = 60, 7yr = 50 and 7py5 = 10, indicating limits of hemodynamic stability (see TableE]
for stability limits). Since our state design represents 1 hour in 10-minute time steps, we calculate the
compared MAP value for a state as, MAP(¢) = min; <;<¢ MAP(4, ), same for HR and pulsatility.
T is the episode length and ¢ = 0 indicates the initial state. Higher weaning scores denote proper
lowering of P-level when at a stable state, and low or negative scores imply that P-level is increased
despite having healthy physiological indicators.

Physiological Reward: The reward design in Table [3]is staircase-shaped, which has two drawbacks:
non-differentiability and a sparse signal. We reformulate the hemodynamic instability score in the
following way.

* Heart Rate Penalty Function The heart rate penalty function penalizes deviations from an
optimal heart rate of 75 bpm using a quadratic penalty:

B (hr — 75)2
Pu(hr) = ReLU (250 _ 1> @)

where ReLU(z) = max(0, ). This function has zero penalty for heart rates in the range
[50, 100] bpm and applies quadratic penalties for heart rates outside this range.

* Minimum MAP Penalty Function The minimum Mean Arterial Pressure (MAP) penalty
function ensures MAP values remain above 60 mmHg:

7(60 — MAP)) 3

Prinvap(M AP) = ReLU ( 20



Score Component Value Score

Hemodynamic Variable MAP >60 O
50 to 59
40 to 49
< 40

Minimum MAP > 60
in window 50 to 59
40 to 49

< 40

Time Spent MAP 0

< 60 mmHg (%) 2
5
>5

Pulsatility > 20
10-20
<10

HR > 100
<50

LVEDP > 20
15 to 20
<15

CPO 0.6t01
< 0.6
<0.5
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Table 3: Hemodynamic instability score table from [2]. In our MDP design, we use MAP, pulsatility,
and HR score components with slight modification. Because the score indicates risk, for the reward
function we multiply the score by -1.

This function applies a linear penalty when MAP falls below 60 mmHg, with the penalty
increasing as MAP decreases further from this threshold.

* Pulsatility Penalty Function The pulsatility penalty function maintains pulsatility within
the range [20, 50]:

7(20 — — 50
Pyusar(p) = ReLU ((zop)) 4 ReLU <p % > (4)

This bi-directional penalty function penalizes pulsatility values below 20 and above 50, with
zero penalty for pulsatility in the range [20, 50].

* Hypertension Penalty Function The hypertension penalty function penalizes elevated
mean MAP values above 106 mmHg:

MAP — 106
Phyp(MAP) = ReLU (18) 4)
This function applies a linear penalty for mean MAP values exceeding the hypertension

threshold of 106 mmHg.

The overall reward function combines all penalty components and negates the sum to create a reward
signal:

R(S) = — [PminMAp(min(MAP)) + Phyp(m) + Phr(mln(HR)) —|— Ppulsal(min(Pulsat))} (6)



* min(MAP), min(H R), min(Pulsat) are the minimum values over the time horizon
* MAP is the mean MAP over the time horizon

* The negative sign converts penalties into rewards (higher rewards for lower penalties)

C Markov Decision Process (MDP) Design Details for RL

Observations. The observation space includes 12 hemodynamic features of the patient. Our inputs
are the pump pressure, pump speed, and motor current 25 Hz signals recorded by the MCS device.
Calculated features derived from these signals include Mean aortic pressure (MAP), mean pump
speed, mean motor current, mean pump flow, left Ventricular Pressure (LVP), left ventricular end
diastolic pressure (LVEDP), heart rate (HR), Systolic blood pressure (SBP), Diastolic blood pressure
(DBP), Pulsatility, Relaxation Constant (Tau_LV), and elastance estimation (ESE_LV); denoted as
x; € R'2 for the t*" time step for each patient. We take 246 MCS-supported CGS patients as the train
set, 57 as validation set, and 76 as the test set. We down-sample patient data from 25Hz to 0.00167Hz
(1 sample per 10 minutes) and process them into sliding windows of 1 hour (6 time steps) to be used
as states for digital twin prediction and decision making based on expert suggestion. Therefore, the
observation space is S = R6*12, where each s; = 4.4, ¢ at some t for a patient.

In — out 15min — 15min 1hr — 1hr 1hr — 1hr 2hr — 2hr 2hr — 2hr
horizon 1 sample / 30s 1 sample / 5Smin 1 sample/ 10min 1 sample/5min 1 sample / 10min
30ts -> 30ts 12ts -> 12ts 6ts -> 6ts 24ts -> 24ts 12ts -> 12ts
MSE 0.234 0.142 +0.012 0.124 +0.027 0.215 +0.009 0.159 +o0.006
MAP MSE 3.03 2.711 +0.182 2.59 +o0.as54 3.583 +0340 3.356 +0.226

Table 4: Alternative settings for the world model. Takeaway: shorter horizon and higher down-
sampling produces stronger models, but need at least 1 hour of history to provide reasonable action
frequency and physiological context.

Action.  The action for our MDP is the pump support level (P-level) of the MCS device. The
device operates at 8 different speed levels, from P2-P9, each with a constant motor speed (rpm). The
P-level proportionally determines the blood flow provided to the patient by the motor’s speed and
current. Clinicians can control the P-level while the patient is on support. The P-level generally
stays unchanged in 1-hour intervals, unlike the state features, since it is manually controlled by the
clinicians during the treatment. In practice, we take the mean P-level over the 1-hour interval as
expert action. As a result, we define A = {2,...,9}.

Rewards. The design for the reward function is elaborated in Appendix|B| in line with medical
consultancy. It assigns a (inverted) risk score based on acceptable intervals for hemodynamic features.
The physiological reward is further normalized through Z-score normalization and clipped between
[—2, 2] to ensure training stability.

Challenges of Offline RL for MCS The commonly encountered issue of Offline RL is the limited
access to the online environment, which results in distribution shift and large value overestimation
errors to account for the shift in the real environment. While these are widely studied problems in
RL, medical decision-making introduces other problems: error-prone behavioral policies, and highly
imbalanced actions in the dataset.

As there is no golden recipe for weaning a patient from an MCS device, the behavioral policy and the
clinician policies are naturally imperfect. To this end, we expect offline RL to reveal the true policy
from the hemodynamic features. Since it is required to simulate the real environment, we largely rely
on a digital twin transformer model. However, the model learns to cheat by outputting cardiac cycles
copied from the observation distribution. Furthermore, the action space is by definition fully constant
in a state, unlike the observation space, which challenges the model compatibility.

Example weaning. We show two examples of doctors’ weaning over the course of 24 hours in
Figure 6]
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Figure 5: Length distributions of our patient data (left) and the reward score distributions of predicted
states versus real patient states.
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Figure 6: Example weaning of two patients over 24-hour horizon. The P-level change and the
patient’s MAP (Mean Arterial Pressure) is plotted. We acknowledge that MAP alone is not solely
indicative of the patient’s well-being; it is plotted in order to show part of the decision making process
for weaning.

D Digital Twin Experiment Details

D.1 Baselines

We evaluate our approach against several established baselines for probabilistic dynamics modeling.
Each baseline is configured with carefully tuned hyperparameters to ensure fair comparison:

* Multi-Layer Perceptrons (MLPs) with Monte Carlo dropout approximate probabilistic
forecasts by treating dropout as a Bayesian approximation technique, enabling uncertainty
quantification through multiple forward passes during inference. The MLP baseline employs
a three-layer architecture with hidden dimensions [512, 256, 128], ReLU activation functions,
and a dropout rate of 0.2 applied after each hidden layer. The network flattens the input
sequence and concatenates it with p-level control signals before processing through the fully
connected layers.

* Neural Processes [[16] is a meta-learning approach that conditions on context observations
to predict distributions over functions, enabling few-shot adaptation to new dynamical
systems while maintaining uncertainty quantification. The implementation features a latent
dimension of 128, a hidden dimension of 256, and employs separate encoder networks for
context processing with three-layer architectures. The context encoder processes input fea-
tures augmented with time indices, while the aggregator combines encoded representations
across time steps. The decoder network generates both mean and variance predictions for
each feature at each forecast timestep.
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* Conditional Legendre Memory Units (CLMUs) [9} 21] leverage orthogonal polynomial
basis functions to capture long-term temporal dependencies through structured memory
mechanisms. The CLMU baseline utilizes 2 layers with memory dimension 64, hidden
dimension 128, and incorporates p-level conditioning through a dedicated projection layer.
Each LMU layer employs Legendre polynomial transition matrices with scaling parameter
f = 1.0 and applies exponential smoothing with decay rate 0.9 for stable memory updates.
The output projection includes dropout with a rate 0.1 for regularization.

* State Space Models (SSMs) [5] represent dynamics through latent state evolution governed
by linear or nonlinear transition functions, naturally incorporating temporal dependencies
and enabling principled probabilistic inference over hidden states. The SSM baseline
operates with state dimension 64, hidden dimension 128, and forecast horizon of 6 steps.
The state transition matrix is initialized as 0.9 - I 4+ 0.1 - A'(0, 1) to ensure stability, while
the observation model employs a two-layer network with ReLLU activation and dropout rate
0.1. Stochastic sampling is achieved by injecting Gaussian noise with standard deviation
0.01 during state transitions.

¢ Transformers with sinusoidal positional embeddings (TDT sin.) [20] and Transformers
with rotary positional embeddings (TDT rot.) [15]. TDT (rot.) leverages self-attention
mechanisms enhanced with rotary position encoding (RoPE) that captures relative positional
relationships through multiplicative rotations. The transformer model’s attention mechanism
allows the model to attend to relevant temporal patterns and input control, improving the time
series prediction. Both transformer models have the architecture outlined in our methodology
section.

All baselines are trained using the Adam optimizer with a learning rate 0.001 and employ Monte
Carlo sampling with 50 forward passes for uncertainty quantification during inference.

D.2 Baseline Hyperparameters and Training Configuration

The training setup utilizes a batch size of 64, conducted over 50 epochs. For robust statistical analysis,
the model is run three times. Additionally, uncertainty quantification is performed using 50 evaluation
samples.

MLP with Dropout Baseline

Architecture

Input Dimension = 6 x 12 4+ 6 = 78 (flattened sequence + p-levels)
Hidden Layers = [512, 256, 128]
Output Dimension = 66

Parameter Value
Hidden Dimensions [512, 256, 128]
Dropout Rate 0.2
Activation Function RelLU
Learning Rate 0.001
Optimizer Adam
Loss Function MSE
Training Epochs 50
Batch Size 64

Table 5: MLP Dropout Baseline Hyperparameters

D.2.2 Neural Process Baseline

Architecture The Neural Process implements a variational approach with encoder-aggregator-
decoder structure.
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Parameter Value

Input Dimension 12
Latent Dimension 128
Hidden Dimension 256
Learning Rate 0.001
Optimizer Adam
Loss Function MSE
Training Epochs 50
Batch Size 64

Table 6: Neural Process Baseline Hyperparameters

* Context Encoder: (d;nput + 1) = 256 — 256 — 2 X djgrent
e Aggregator: digtent — 256 — 2 X djatent

* Decoder: (diarent + dinput + 1) — 256 — 256 — Jeutrut 9
Where dinput = 12, dlatent = 128, and doutput = 66.

D.2.3 Conditional Legendre Memory Unit (CLMU) Baseline

Architecture The CLMU implements a memory-based approach using Legendre polynomials for
sequence modeling.

Parameter Value
Input Dimension 12
Memory Dimension 64
Hidden Dimension 128
Number of Layers 2
Forecast Horizon 6
Dropout Rate 0.1
Learning Rate 0.001
Optimizer Adam
Loss Function MSE
Training Epochs 50
Batch Size 64

Table 7: CLMU Baseline Hyperparameters

* Legendre Memory Units: 2 layers with memory dimension 64

* Condition Projection: 6 — 128 (for p-level conditioning)
Hidden Layers: (64 4+ 128) — 64 per layer

* QOutput Projection: 64 — 128 — 66 with ReLU and Dropout(0.1)

D.2.4 State-Space Model Baseline

The State-Space Model implements linear dynamical systems for time-series forecasting.

« State Transition: A : 64 — 64 (initialized as 0.9 x I + 0.1 x N(0, 1))

* Input Mapping: B : 12 — 64

* Control Projection: 6 — 64

* Observation Model: 64 — 128 — 128 — 66 with ReLU and Dropout(0.1)
« State Update: s; = tanh(As;_; + Bx; + control)
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Parameter Value
Input Dimension 12
State Dimension 64
Hidden Dimension 128
Forecast Horizon 6
Dropout Rate 0.1
Learning Rate 0.001
Optimizer Adam
Loss Function MSE
Training Epochs 50
Batch Size 64

Table 8: State-Space Model Baseline Hyperparameters

D.2.5 Standard Transformer

Parameter Value
Number of Features 12
Model Dimension 256
Number of Heads 8
Encoder Layers 3
Decoder Layers 2
Encoder Dropout 0.1
Decoder Dropout 0.0
Max Sequence Length 100
Forecast Horizon 6
Learning Rate 0.001
Optimizer Adam
Loss Function MSE
Training Epochs 35
Batch Size 64

Table 9: Standard Transformer Hyperparameters

D.2.6 Rotary Transformer

The Rotary Transformer uses identical hyperparameters to the standard transformer, with the replace-
ment of rotary positional embeddings as the input embedding layer.

D.3 Hyperparameter Search Configuration

The hyperparameter search was conducted using Weights & Biases with the following search space:

D.4 Metrics for evaluating digital twin
e MAE All: Mean Absolute Error across all 12 features.

* MAE MAP: Mean Absolute Error for MAP (Mean Arterial Pressure) only. Although MAP
is not solely indicative of patient’s well-being, it provides a guide towards the expressivity
and responsiveness of the model, as other features can be more static.

* MAE Static: MAE for samples with non-changing P-Levels over the course of 2 hours. This
scenario constructs 72% of our dataset.

* MAE Dynamic: MAE for samples with dynamic P-Levels. Dynamic P-Level refers to when
there is at least 1 change in the P level over the 2 hour course of input-output pairs.
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Parameter Values

Model Dimension  [128, 256, 512]
Number of Heads [4, 8, 16]
Encoder Layers [2, 3, 4]
Decoder Layers [1, 2, 3]
Encoder Dropout  [0.0, 0.1, 0.2]
Decoder Dropout  [0.0, 0.1, 0.2]

Model Type [transformer, rotary_transformer]
Batch Size [32, 64, 128]
Learning Rate [0.0001, 0.001, 0.01]

Training Epochs [35]

Table 10: Transformer model Hyperparameter Search Space

* Trend Acc: Predicted trend direction accuracy for MAP. Trend is classified as (1) increasing
if the slope of MAP over the predicted horizon (1 hr) is > 2, (2) decreasing if the slope
< 2, and (3) flat otherwise. Trend is an important factor that medical professionals take into
consideration, being able to predict trend well shows medical saliency of the model.

* CRPS: Continuous Ranked Probability Score is a proper scoring rule [4] for uncertainty
quantification, calculated from 50 samples from the probabilistic predictions (samples x, ")
and the ground truth y as in equation[7]

CRPS(F,y) = [ (F@) = 1o 2 9)) do = Eullo — gl 5Eowllo =] )

D.5 Additional Visualizations.

Please see figure 7] for further qualitative examples of digital twin models.

E RL Experiment Settings

We explain the reinforcement learning baseline models and our implementation details in this section.
We train all baselines on our dataset of size 17865 with the observation space of dimension 72 and
action dimension of 1.

* Behavior Cloning (BC) uses a supervised learning model, 7 (s, a), to mimic the expert (s, a)
while minimizing the MSE loss as arg ming E(; 4)~p {Ha — 7(s) ||§} without exploration

unlike on Eq. |1} It ignores the dynamics of (s, a), suffering from the distribution shift in
the online environment. A 3-layer MLP with hidden dimensions of [256,256,256], ReLU
activation between the layers, and tanh in the output layer is our BC model. The last layer
has one perceptron, indicating our action dimension as 1. We trained the model for 30000
steps with Adam optimizer using a learning rate of 1e-3 and batch size 256.

* Model-Based Policy Optimization (MBPO) [6] fits a dynamics model py(s’, 7 | s,a) and
then optimizes the policy on real data augmented with short-horizon rollouts from pg. Our
implementation of MBPO is the non-penalized version of MOPO with the same parameters
in Table [TT] with the reward penalty coefficient as 0.0.

* Model-based Offline Policy Optimization (MOPO) [24] borrows the same policy opti-
mization by penalizing rewards with the uncertainty of the learned dynamics model during
training. MOPO trains a soft actor-critic network on a replay buffer augmented with short
model rollouts. While the performance depends on the precision of the uncertainty quantifi-
cation method and fine-calibration of the penalty weight, it shows robust results in stochastic
data. However, it might suffer from over-penalization with suboptimal hyperparameter
settings. We tuned the default parameters of the MOPO implementation of the authors
to produce stable and convergent training. All hyperparameters are depicted in Table
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Figure 7: Digital twin prediction visualization compared with baselines. The Transformer model is
more accurate in reflecting response to P-level change and more expressive when capturing large
changes in patient state, resulting in its higher accuracy.

SAC includes an actor and 2 critic networks (for double clipped Q-learning) of the same
architecture: 2 layers of MLP with sizes [256, 256], all trained with Adam optimizer. The
transition model has 7 ensemble MLP models of 4 layers with sizes [200, 200, 200, 200]

and Swish activation function.

Table 11: Hyperparameters of our MOPO implementation.

Parameters Value
Actor learning rate 3x107*
Critic learning rate 3x107*
Discount factor () 0.99
Target network update coefficient (7) 0.005
Target entropy (often —action dimension) -1
Temperature optimizer learning rate 3x107%
Dynamics model learning rate 1x1073
Dynamics ensemble size 7
Holdout ratio 0.2
Training epochs 100
Steps per epoch 1000
Evaluation episodes 1000
Mini-batch size 256
Reward penalty coefficient 1.0
Model rollout horizon 5)
Rollout batch size 10000
Rollout frequency 1000
Real-to-model data sampling ratio 0.05
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* Support Value Regularization (SVR) [11] adds a support-aware penalty to the Q-value
objective, pushing down estimates for OOD (s, a) pairs so the policy stays within the
dataset support and avoids extrapolation error. Since the regularization weights come from
importance sampling based on BC, it over-regularizes the objective in the case of distribution
shift. The code implementation is borrowed from the authors with some hyperparameter
changes. The BC pretraining is identical to the introduced BC baseline. The SVR model
includes the soft actor-critic network, the actor being in the same architecture as BC, and the
critic having 4 MLP heads of size [356,256]. SVR optimizes the support value regularized
temporal difference with a weight multiplier of 0.006. The regularization term suppressed
the OOD state action pairs with the importance sampling weight, where we use 0.5 as the
sample standard deviation. The minimum Q value for the regularization term is calculated
from the replay buffer directly, resulting in -200. We train all networks for 100000 timesteps
with the Adam optimizer on a learning rate of 0.0001. Actor is optimized every 2 timesteps.
7 and ~y are the same as in MOPO.
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