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Abstract

Estimating data distributions using parametric families is crucial in many learning setups,
serving both as a standalone problem and an intermediate objective for downstream tasks.
Mixture models, in particular, have attracted significant attention due to their practical
effectiveness and comprehensive theoretical foundations. A persisting challenge is model
misspecification, which occurs when the model to be fitted has more mixture components
than those in the data distribution. In this paper, we develop a theoretical understanding of
the Expectation-Maximization (EM) algorithm’s behavior in the context of targeted model
misspecification for overspecified two-component Mixed Linear Regression (2MLR) with
unknown d-dimensional regression parameters and mixing weights. In Theorem 5.1 at the
population level, with an unbalanced initial guess for mixing weights, we establish linear
convergence of regression parameters in O(log(1/ϵ)) steps. Conversely, with a balanced
initial guess for mixing weights, we observe sublinear convergence in O(ϵ−2) steps to achieve
the ϵ-accuracy at Euclidean distance. In Theorem 6.1 at the finite-sample level, for mixtures
with sufficiently unbalanced fixed mixing weights, we demonstrate a statistical accuracy of
O((d/n)1/2), whereas for those with sufficiently balanced fixed mixing weights, the accuracy
is O((d/n)1/4) given n data samples. Furthermore, we underscore the connection between
our population level and finite-sample level results: by setting the desired final accuracy
ϵ in Theorem 5.1 to match that in Theorem 6.1 at the finite-sample level, namely letting
ϵ = O((d/n)1/2) for sufficiently unbalanced fixed mixing weights and ϵ = O((d/n)1/4)
for sufficiently balanced fixed mixing weights, we intuitively derive iteration complexity
bounds O(log(1/ϵ)) = O(log(n/d)) and O(ϵ−2) = O((n/d)1/2) at the finite-sample level for
sufficiently unbalanced and balanced initial mixing weights, respectively. We further extend
our analysis in the overspecified setting to the finite low SNR regime, providing approximate
dynamic equations that characterize the EM algorithm’s behavior in this challenging case.
Our new findings not only expand the scope of theoretical convergence but also improve
the bounds for statistical error, time complexity, and sample complexity, and rigorously
characterize the evolution of EM estimates.

1 Introduction

Mixtures of parameterized models are powerful tools to model intricate relationships in practical scenarios,
such as Mixed Linear Regression (MLR) and Gaussian Mixture Models (GMM) (Beale & Little, 1975). It is
common for the number of mixture components in the fitted model to differ from that of the data distribution,
which can substantially slow down parameter estimation convergence rates. We specifically focus on the
overspecified setting, where the number of mixture components in the fitted model exceeds that of the data
distribution. Expectation Maximization (EM) algorithm (Dempster et al., 1977; Wu, 1983; De Veaux, 1989;
Jordan & Xu, 1995; Wedel & DeSarbo, 1995) is notable for its computational efficiency and ease of practical
implementation, overcoming the intractable problem of non-convexity and the presence of numerous spurious
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local maxima in Maximum Likelihood Estimation (MLE) (Qian et al., 2022). It proceeds through two steps:
in the E-step, it computes the expected log-likelihood using the current parameter estimate; subsequently,
the M-step updates the parameters to maximize the expected log-likelihood computed in the E-step. These
iterative steps serve to maximize the lower bound on MLE until convergence. The goal of this paper is to
gain a comprehensive understanding of EM updates for overspecified mixture models.

1.1 Related Work

It has been shown that EM achieves global convergence for GMM with k = 2 components (2GMM) (Klusowski
& Brinda, 2016; Xu et al., 2016; Daskalakis et al., 2017; Ndaoud, 2018; Zhao et al., 2020; Wu & Zhou, 2021).
Studies (Balakrishnan et al., 2017; Klusowski & Brinda, 2016; Kwon et al., 2019; 2022) have confirmed that
EM for two-component mixed linear regression (2MLR) converges from a random initialization with high
probability. GMMs with k ≥ 3 components frequently lead to EM with random initialization being trapped
in local minima with high probability, while local maxima can demonstrate notably inferior likelihood than
any global maximum (Jin et al., 2016). For mixture models with multiple components, such as Gaussian
Mixture Models (GMM), it is well known that the negative log-likelihood—used as the objective function
in the EM algorithm—can exhibit several spurious local minima that are not globally optimal, even when
the mixture components are well separated (Chen et al., 2024b). Consequently, proper initialization of the
parameters is crucial, as assumed in the analysis of mixtures of many linear regressions (Kwon & Caramanis,
2020). A convergence analysis for EM in MLR with multiple components has been presented (Kwon &
Caramanis, 2020), but it requires careful initialization and strong separation for regression parameters. Even
for the case of 2GMM, most work requires good initialization and strong separation for regression parameters.
For instance, Wu & Zhou (2021) analyzed the convergence rates of 2GMM with fixed balanced mixing
weights given a specific initialization and strong separation for location parameters. Alternatively, specific
initialization needs to trend toward the ground truth in cases of weak separation or no separation (Weinberger
& Bresler, 2022). There is a lack of understanding of the EM update rules in mixture models given weak
separation or no separation of the ground truth parameters.

When ground truth parameters of some components in mixture models have no separation, this means we are
using a model with more components to fit a ground truth data distribution with fewer components, which
is called the overspecified setting. In particular, the 2GMM/2MLR model is considered overspecified when
there is no separation between the true regression parameters or location parameters of its two components.
Moreover, it has been observed that the convergence of EM can be prohibitively slow when dealing with
poorly separated mixtures (Redner & Walker, 1984), while achieving rapid linear convergence or superlinear
convergence in cases with strong separation (Kwon et al., 2021; Ghosh & Kannan, 2020). The convergence
rate of regression parameters using EM for 2GMM in the overspecified setting, assuming known mixing
weights, is analyzed in Dwivedi et al. (2020b); Dhawan et al. (2023). Kwon et al. (2019; 2021) derived iteration
complexity and statistical accuracy for the known-weight case across all SNR regimes—but their results
in the low-SNR setting apply only when mixing weights are known to be balanced. Kwon & Caramanis
(2020) analyzed EM for MLR with more than two components under restrictive conditions—such as requiring
initializations very near the ground truth and well-separated regression parameters—which do not cover
cases of overspecification where the ground truth parameters coincide. Nevertheless, there is a lack of prior
research formally analyzing the evolution of EM updates for 2MLR with unknown regression parameters and
mixing weights in the overspecified setting, with most prior research primarily concentrating on scenarios
with known mixing weights. The behavior of EM updates in overspecified settings is not fully understood
when dealing with unknown mixing weights, whether they are balanced or unbalanced. In this paper, we
address this gap by conducting a detailed analysis of the EM updates for overspecified 2MLR, based on the
expressions of integrals with Bessel functions given in (Luo & Hashemi, 2024). Even though Luo & Hashemi
(2024) provided closed-form EM update rules (using Bessel functions) for 2MLR across all SNR regimes, but
they focus primarily on the high-SNR case and do not discuss convergence guarantees or the dynamics in the
overspecified setting and the low-SNR regime. The statistical rates for parameter estimation of a class of
overspecified finite mixture models have been studied in several studies (Chen, 1995; Ho & Nguyen, 2016;
Heinrich & Kahn, 2018; Doss et al., 2020; Manole & Ho, 2020; 2022; Ho et al., 2022b; Nguyen et al., 2023a).
The optimal minimax rates for 2MLR with known balanced mixing weights have been determined in Kwon
et al. (2021), while those for 2GMM with known mixing weights have been established in Dwivedi et al.
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(2020b) using the scheme outlined by Balakrishnan et al. (2017). However, the statistical error for 2MLR
with unknown mixing weights remains unclear. We develop new techniques to sharpen the analysis for this
statistical error.

1.2 Technical Overview

In this paper, we present a comprehensive study of overspecified mixture models. The paper is organized as
follows. In section 2, we state the setting of two-component mixed linear regression (2MLR), overspecification,
and the EM update rules, and introduce Bessel functions for the analysis of EM updates. In section 3, we
provide two motivating examples (haplotype assembly and phase retrieval) of the 2MLR model to justify the
practical implications. In section 4, we characterize the population EM update rules with expectations under
the density involving Bessel functions (equation 10), show their nonincreasing property and boundedness
(Facts 4.2, 4.3), and provide their approximate dynamic equations (Proposition 4.4) for the evolution of
regression parameters and mixing weights. In section 5, we establish the guarantees of convergence rate
for population EM (Theorem 5.1) with balanced and unbalanced initial guesses for mixing weights, and
establish theoretical bounds for sublinear convergence (Proposition 5.3) with balanced initial guesses and the
contraction factor of linear convergence (Proposition 5.4) with unbalanced initial guesses. In section 6, we
present the tight bounds for sample complexity, time complexity, and final accuracy for finite-sample EM
(Theorem 6.1) by coupling the analysis of population EM and finite-sample EM and establishing statistical
errors (Propositions 6.3, 6.4) in the overspecified setting. In section 7, we discuss the differences between
results of 2MLR and 2GMM, extend our analysis from the overspecified setting to the low-SNR regime, and
examine the challenges of analyzing overspecified mixture models with multiple components. In section 8, we
validate our theoretical findings with numerical experiments. Detailed derivations and proof techniques are
provided in the Appendices. In summary, our contributions include:

• We derive the approximate dynamic equations for the regression parameters and mixing weights in
Proposition 4.4 based on the population EM update rules to disentangle the relationships between
regression parameters and mixing weights by establishing novel inequalities and identities for EM
update rules (see equation 10 and Appendices A, H), aiding in the investigation of EM evolution in
the overspecified setting and the low-SNR regime.

• Linear convergence of regression parameters with a rate of O(log(1/ϵ)) is achieved with an unbalanced
initial guess for mixing weights. In contrast, sublinear convergence at a rate of O(ϵ−2) is confirmed
with a balanced initial guess by replacing annulus-based localization in Dwivedi et al. (2020b)
with a “variable separation” method upon the discretized differential inequality (see the proofs of
Proposition 5.3 and Theorem 6.1 in Appendices D, G respectively), ensuring ϵ-accuracy in Euclidean
distance, as shown in Theorem 5.1 and Proposition 5.3.

• We address the gap for sufficiently balanced mixtures, where the imbalance of the initial guess for
mixing weights is less than or of the same order of magnitude as (d/n)1/4 in Theorem 6.1, improving
bounds on statistical error, time complexity, and sample complexity in 2MLR by establishing the
concentration inequality based on modified log-Sobolev inequality (see Section 5.3 modified logarithmic
Sobolev inequalities in Ledoux (2001)) and bounds for the statistics (see Appendices E, F). Our new
techniques advance the results beyond those for 2GMM (Dwivedi et al., 2020b).

By adopting the above novel techniques, we rigorously characterize the evolution of EM estimates for both
regression parameters and mixing weights of overspecified MLR models by providing approximate dynamic
equations (Proposition 4.4) for EM update rules and establishing convergence guarantees (Theorems 5.1, 6.1)
for final accuracy, time complexity, and sample complexity at population and finite-sample levels, respectively.

2 Problem Setup

In this paper, we investigate the symmetric two-component mixed linear regression (2MLR) model given by:

y = (−1)z+1⟨θ∗, x⟩+ ε, (1)
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where ε denotes the additive Gaussian noise, s = (x, y) ∈ Rd×R represents the covariate-response observation,
z ∈ {1, 2} is the latent variable, i.e., the label of the data, with probabilities P[z = 1] = π∗(1) and
P[z = 2] = π∗(2). The ground truth values for the regression parameters and the mixing weights are expressed
by θ∗ and π∗ = (π∗(1), π∗(2)), respectively. θ and π = (π(1), π(2)) denote the estimated values for the
regression parameters and mixing weights in the fitted 2MLR model, respectively.

Consider the 2MLR model in equation 1. Let n denote the number of samples S := {(xi, yi)}n
i=1 used for

each EM update, and let {zi}n
i=1 be the values of the latent variable for these samples. Furthermore, σ2

denotes the noise variance, θ̄ := θ/σ and θ̄∗ := θ∗/σ are the normalized parameters, and η := ∥θ∗∥/σ is
the signal-to-noise ratio (SNR), while ρ := ⟨θ∗, θ⟩/(∥θ∗∥ · ∥θ∥) is the cosine angle between the ground truth
and the estimated regression parameters. In this paper, we focus on the case of overspecification, namely
θ∗ = 0⃗ = (0, 0, · · · , 0) ∈ Rd, where the ground truth regression parameters are zero, and there is no separation
between two mixtures. We note that the 2MLR and 2GMM models are standard models for establishing
theoretical understanding of methods for mixture models, see, e.g., the recent works (Dwivedi et al., 2020b;
Weinberger & Bresler, 2022; Dhawan et al., 2023; Luo & Hashemi, 2024; Reisizadeh et al., 2024). Thus, we
adopt the 2MLR model and its standard assumptions in this paper to develop a finer understanding of the
misspecification phenomenon (see also Section 2.2.2, page 6 of Balakrishnan et al. (2017); page 1 of Klusowski
& Brinda (2016); page 4 of Reisizadeh et al. (2024); and page 3 of Luo & Hashemi (2024)).

Bessel Function. K0(x), for all x > 0, is the modified Bessel function of the second kind with parameter 0,
defined by the integral representation K0(x) :=

∫∞
0 exp(−x cosh t) dt which is also the solution f = K0(x) to

the modified Bessel equation x2 d2f
dx2 +xdf

dx −x
2f = 0. The approximations for K0(x) are: K0(x) ≈ ln 2

x −γ for
x→ 0+, where γ ≈ 0.577 is Euler’s constant, and K0(x) ≈

√
π
2x exp(−x) for x→ +∞. (see equation 10.32.9

for the integral representation, equation 10.25.1 for the modified Bessel equation, and equations 10.25.2,
10.25.3, and 10.31.2 for approximations in Chapter 10 of Olver et al. (2010)). An important fact is that for
the product of two independent standard Gaussian random variables Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1), it has
the probability density fX involving the Bessel function K0, X := Z1 × Z2 ∼ fX(x) = K0(|x|)

π (see page 50,
Section 4.4 Bessel Function Distributions, Chapter 12 Continuous Distributions (General) of Johnson et al.
(1970)).

Notations. The notations Ω(·), O(·) and Θ(·) share the standard definitions of asymptotic notations:
f = Ω(g) means g = O(f) for f, g, namely |f(x)| ≥ C × |g(x)| for some constant C > 0 and all x sufficiently
large (see page 528 of Lehman (2017)). f = Θ(g) means f = O(g) and g = O(f). We also write f ≲ g if
f = O(g), and f ≳ g if f = Ω(g), and f ≍ g if f = Θ(g). a ∨ b and a ∧ b refer to the least upper bound
max(a, b) and the greatest lower bound min(a, b) of a, b, respectively.

2.1 EM Updates

The EM algorithm estimates the regression parameters and the mixing weights from observations. Balakrishnan
et al. (2017) gave the population EM update rule of regression parameters for 2MLR given the known balanced
mixing weights π = π∗ = ( 1

2 ,
1
2 ) as follows:

M(θ) = Es∼p(s|θ∗,π∗) tanh
(
y⟨x, θ⟩
σ2

)
yx.

For the more general case of unknown mixing weights π, we introduce the variable ν to characterize the
imbalance tanh ν = π(1)− π(2) of the mixing weights π = (π(1), π(2)), namely

ν := ln π(1)− ln π(2)
2 , (2)

and the population EM update rule for regression parameters θ becomes

M(θ, ν) := Es∼p(s|θ∗,π∗) tanh
(
y⟨x, θ⟩
σ2 + ν

)
yx, (3)

while the population EM update rule for the imbalance tanh(ν) is given by

N(θ, ν) := Es∼p(s|θ∗,π∗) tanh
(
y⟨x, θ⟩
σ2 + ν

)
. (4)
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The corresponding finite-sample EM update rules with n observations are given by

Mn(θ, ν) =
(

1
n

n∑
i=1

xix
⊤
i

)−1(
1
n

n∑
i=1

tanh
(
yi⟨xi, θ⟩
σ2 + ν

)
yixi

)
, Nn(θ, ν) = 1

n

n∑
i=1

tanh
(
yi⟨xi, θ⟩
σ2 + ν

)
.

(5)

To further simplify the analysis of the finite-sample EM update rules, we introduce the following easy EM
update rule for regression parameters:

M easy
n (θ, ν) = 1

n

n∑
i=1

tanh
(
yi⟨xi, θ⟩
σ2 + ν

)
yixi. (6)

The derivation of the EM update rules for the 2GMM model is on pages 4–6 of Weinberger & Bresler (2022),
and the rigorous derivation of 2MLR for the population and finite-sample EM update rules (equations 3, 4, 5)
can be found in Appendix B of Luo & Hashemi (2024).

2.2 Auxiliary Quantities

The superscript t stands for the t-th EM iteration. For instance, θt and πt denote the t-th iteration of
regression parameters and mixing weights. For the ease of theoretical analysis, we denote

αt := ∥θ
t∥
σ

, βt := tanh(νt) = πt(1)− πt(2), (7)

to be the ℓ2 norm of the normalized regression parameters θt/σ, and |βt| = ∥πt − 1
2∥1 = |πt(1) − 1/2| +

|πt(2) − 1/2| represents the ℓ1 distance between the mixing weight πt and the balanced mixing weights
(1/2, 1/2), namely the imbalance in mixtures, to further simplify the discussions on the convergence of EM
iterations. Here, 1 = (1, 1) is the vector of all ones. To further simplify the analysis, we introduce these two
functions m(α, ν) and n(α, ν) of α = ∥θ∥/σ and ν = (ln π(1)− ln π(2))/2 by defining them as the expectations
under the density X ∼ fX(x) = K0(|x|)

π involving the Bessel function K0,

m(α, ν) = E[tanh(αX + ν)X], n(α, ν) = E[tanh(αX + ν)]. (8)

In particular, we write m0(α) = m(α, 0) = E[tanh(αX)X] for the case of tanh ν = π(1)− π(2) = 0.

3 Motivating Examples

As motivating examples, we highlight the tasks of haplotype assembly in bioinformatics and genomics (Cai
et al., 2016) and phase retrieval, which arises in numerous fields including acoustics, optics, and quantum
information (Candes et al., 2015), and also learning overparameterization models and Mixture of Experts
(MoE) models, to justify the practical implications of our work.

3.1 Haplotype Assembly

Haplotypes are sequences of chromosomal variations in an individual’s genome that are crucial for determining
the individual’s disease susceptibility. Haplotype assembly involves reconstructing these sequences from a
mixture of sequenced chromosome fragments. Notably, humans have two haplotypes, i.e., they are diploid
organisms (see Cai et al. (2016) for a clear mathematical formulation of the problem). For diploids, the primary
challenge is to reconstruct two distinct haplotypes (binary sequences of single nucleotide polymorphisms—
SNPs) from short, noisy sequencing reads. Each read corresponds to a local window of the genome but
originates from one of the two chromosomes. The ambiguity in the haplotype origin of each read can be
modeled as a mixture of two linear regression models with symmetric parameters, aligning with the model
discussed in our work. Following Cai et al. (2016), let θ∗ ∈ {−1,+1}d represent one haplotype, and the other
haplotype is its negative, −θ∗. The binary variable zi ∈ {−1,+1} indicates the haplotype origin of the i-th
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read, where the probability of the read originating from θ∗ is P[zi = +1] = π∗(1), and the probability of
it originating from −θ∗ is P[zi = −1] = π∗(2). Furthermore, the j-th entry, εi[j] for j ∈ [d], of the noise
vector εi follows a distribution defined by a fixed error probability pe: specifically, the noise causes an error
(a flip) with probability pe, meaning P(εi[j] = −2ziθ

∗[j]) = pe, and the noise is zero (correct reading) with
probability 1− pe, meaning P(εi[j] = 0) = 1− pe. Given this framework, the read signal yi can be modeled
by the following two-mixture model: yi = ziθ

∗ + εi. The primary goal is to estimate the unknown ground
truth parameters, which are the mixing probabilities π∗ = (π∗(1), π∗(2)) and the haplotype θ∗, using the
dataset of read signals {yi}n

i=1. It should be noted that while this is also a two-mixture model, it features a
distinct formulation and noise structure.

3.2 Phase Retrieval

Regarding the application of the phase retrieval problem, as noted in Section 3 of Klusowski et al. (2019)
and discussed in Section 3.5 of Chen et al. (2015), there is an established connection between the symmetric
2MLR and the phase retrieval problem. Specifically, by squaring the response variable yi and subtracting the
variance σ2, we obtain:

y′
i := y2

i − σ2 = |⟨xi, θ
∗⟩|2 + ξi. (9)

This formulation is essentially the phase retrieval model with a heteroskedastic error term ξi :=
2(−1)zi+1⟨xi, θ

∗⟩εi + (ε2
i − σ2), which has zero mean, i.e., E[ξi] = 0. Therefore, by leveraging our re-

sults on symmetric 2MLR, we can directly establish convergence guarantees for the corresponding phase
retrieval problem. For phase retrieval problems, several theoretical guarantees for the parameter estimate θ̂
have been established. Regarding the convex formulation (Chen et al., 2015), for n ≳ d samples, the relative
error bound is ∥θ̂ − θ∗∥/σ ≲

√
d/n log4 n+ min(

√
d/n/η, (d/n)1/4) log4 n, where η = ∥θ∗∥/σ represents the

signal-to-noise ratio, as shown on page 10 of Chen et al. (2015). In the case of agnostic estimation (Neykov
et al., 2016), for n ≳ d2 log d samples, the error bound of the estimate θ̂ satisfies ∥θ̂−θ∗∥/∥θ∗∥ ≲

√
(d log d)/n

under the constraint ∥θ̂∥ = ∥θ∗∥, as established on pages 3 and 9 of Neykov et al. (2016). For the EM
algorithm when the sample size n is sufficiently greater than the dimension d (n ≳ d), the relative error
bound for the estimated vector θ̂ depends on the initialization of the mixing weight π0. With unbalanced
initialization of mixing weights ∥π0 − 1

2∥1 ≳ (d/n)1/4, the relative error is bounded by ∥θ̂ − θ∗∥/σ ≲
√
d/n.

Conversely, with balanced initialization of mixing weights ∥π0 − 1
2∥1 ≲ (d/n)1/4, the relative error bound is

less favorable, given by ∥θ̂ − θ∗∥/σ ≲ (d/n)1/4 (see Theorem 6.1). Regarding sample complexity, our results
require n ≳ d samples, matching the sample complexity requirement established in Chen et al. (2015) and
improving upon the n ≳ d2 log d requirement in Neykov et al. (2016). In terms of error rates, with balanced
initialization, our rate (d/n)1/4 matches the second term in Chen et al. (2015), demonstrating that the EM
algorithm achieves a better rate when SNR η is sufficiently small. With unbalanced initialization, our rate√
d/n matches the leading term

√
d/n log4 n in Chen et al. (2015) and improves upon the

√
d log d/n rate

in Neykov et al. (2016) by removing the logarithmic factor when SNR η ≍ 1. These theoretical comparisons
demonstrate that our EM-based approach achieves competitive or improved error rates compared to existing
phase retrieval methods, while providing explicit characterization of the initialization-dependent convergence
behavior.

3.3 Overparametrization Models

For the general setting of overparameterization models, our theoretical results provide one of the fundamental
examples. In our theoretical results of the EM algorithm for the 2MLR model, we exhibit linear convergence
with an unbalanced guess of mixing weights, while showing sublinear convergence (αt ≍ 1/

√
t) with a balanced

guess of mixing weights (see Theorems 5.1, 6.1), which is consistent with the convergence rate of O(1/
√
t) for

the overparameterized Gaussian mixture model (Xu et al., 2024). Interestingly, for the problem of low-rank
matrix factorization (Xiong et al., 2023) in the overparameterization regime, an exponentially faster linear
convergence rate is achieved using gradient descent with an asymmetric parameterization, while gradient
descent with symmetric parameterization exhibits a sublinear rate of 1/t2. This suggests that imbalance
accelerates the convergence rate. Overparameterization also has an impact on the convergence rate of
gradient descent for learning a single neuron in neural networks (Xu & Du, 2023). The method exhibits linear
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convergence in the exact-parameterization regime, but shows a sublinear convergence rate of 1/t3 in the
overparameterization regime. Therefore, overparameterization can exponentially slow down the convergence
rate of Gradient Descent (GD).

3.4 Mixture of Experts

While the EM algorithm has been shown to be a powerful tool for learning Mixture of Experts (MoE)
models (Fruytier et al., 2025), establishing the convergence rates of the Maximum Likelihood Estimator
(MLE) for these complex mixture models under exact-specified and over-specified settings remains a significant
open challenge (Ho et al., 2022a; Nguyen et al., 2023b; 2024). In this context, our theoretical analysis of the
EM algorithm for the 2MLR model serves as a fundamental example. By establishing rigorous guarantees
in this setting, our work provides the necessary theoretical groundwork to deepen the understanding of
convergence behaviors in more complex architectures, such as MoE and deep mixture models.

4 Population EM Updates

In this section, we characterize the population EM update rules by using expectations (equation 10) under
the density involving Bessel function K0. We show an alternative approach to derive Identity 4.1 (Corollary
3.2 of Luo & Hashemi (2024)) that leverages the key fact that the product X = Z1Z2 of two independent
standard Gaussians follows X ∼ K0(|x|)

π , from which we can derive the expectations (equation 10). We further
show the nonincreasing property and boundedness (Facts 4.2, 4.3) of the expectations of EM update rules
and provide approximate dynamic equations (Proposition 4.4) for the evolution of regression parameters and
mixing weights.
Identity 4.1. (Corollary 3.2 in Luo & Hashemi (2024): EM Updates for Overspecified 2MLR) Suppose a
2MLR model is fitted to the overspecified model with no separation, where θ∗ = 0⃗. The EM update rules at the
population level for θ̄t := θt/σ = M(θt−1, νt−1)/σ and tanh(νt) := πt(1)− πt(2) = N(θt−1, νt−1) are then as
follows.

θ̄t = θ̄0

∥θ̄0∥ ·
1
π

∫
R tanh(∥θ̄t−1∥x− νt−1)xK0(|x|)dx,

tanh(νt) = 1
π

∫
R tanh(νt−1 − ∥θ̄t−1∥x)K0(|x|)dx,

where θ̄0 := θ0/σ.
Remark. Identity 4.1 (see our derivation in Appendix B, Subsection B.1) completely characterizes the
evolution of EM updates by using Bessel functions. Note that the proposition unveils that the EM update for
regression parameters at the population level must be in the same direction as the previous EM iteration (as
further corroborated numerically in Fig. 1a). The numerical experiments in Fig. 1a of EM updates validate
the theoretical results. Hence, we only need to focus on the reduction of length in terms of the regression
parameters; therefore, we introduce the ℓ2 norm of the normalized regression parameters αt := ∥θt∥/σ and the
imbalance of mixing weights βt := tanh(νt) to facilitate the analysis in the following context. Furthermore,
the population EM update rules for αt, βt can be expressed as expectations with respect to a symmetric
random variable X, whose probability density involves the Bessel function K0, namely X ∼ K0(|x|)

π , given by

αt+1 = m(αt, νt) = E[tanh(αtX + νt)X], βt+1 = n(αt, νt) = E[tanh(αtX + νt)]. (10)

Fact 4.2. (Monotonicity of Expectations) Let m(α, ν) := E[tanh(αX + ν)X] and n(α, ν) := E[tanh(αX + ν)]
be the expectations with respect to X ∼ K0(|x|)

π . Then they satisfy the monotonicity properties:

(monotonicity of m(α, ν)): m(α, ν) is a nonincreasing function of ν ≥ 0 for fixed α ≥ 0, and a nondecreasing
function of α ≥ 0 for fixed ν ≥ 0, namely:

0 = m(α,∞) ≤ m(α, ν′) ≤ m(α, ν) ≤ m(α, 0) ≤ α for 0 ≤ ν ≤ ν′, α ≥ 0,

0 = m(0, ν) ≤ m(α, ν) ≤ m(α′, ν) ≤ m(∞, ν) = 2
π

for 0 ≤ α ≤ α′, ν ≥ 0.

7
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(a) Trajectories of EM iterations for regression pa-
rameters in the overspecified setting given different
initial values. d = 2, trajectories of θt for 10 trials
with θ0 and π0 uniformly sampled from [−2, 2]2 and
[0, 1], respectively in the overspecified setting θ∗ = 0⃗.

(b) Initialization phase of αt := ∥θt∥/σ in the worst-
case scenario with a balanced initial guess π0 = ( 1

2 , 1
2 )

and α0 := ∥θ0∥/σ → ∞. Even in the worst case, the
initialization phase of αt is bounded by α1 ≤ 2

π
, α3 <

0.31, and α20 < 0.1 after 1, 3, and 20 EM iterations.

Figure 1: Left: EM trajectories are nearly perfect rays from the origin to the initial point, which aligns with
the theoretical results in Identity 4.1. Right: In the worst case, we show that αt ≥ 0.1 for all t ≤ 9 (see
remark on the proof of Fact 5.2 in Appendix D, Subsection D.2) by using the theoretical matching lower
bound for the worst case in Proposition 5.3. Also, we demonstrate that αt < 0.1 for all t ≥ 36 (Fact 5.2) by
applying the theoretical upper bound in Proposition 5.3. As α20 ≈ 0.1 by numerical evaluations, and 20 > 9
and 20 < 36, the theoretical results are consistent with the numerical results shown in the figure.

(monotonicity of n(α, ν)): n(α, ν) is a nonincreasing function of α ≥ 0 for fixed ν ≥ 0, and a nondecreasing
function of ν ≥ 0 for fixed α ≥ 0, namely:

0 = n(∞, ν) ≤ n(α′, ν) ≤ n(α, ν) ≤ n(0, ν) = tanh(ν) for 0 ≤ α ≤ α′, ν ≥ 0,
0 = n(α, 0) ≤ n(α, ν) ≤ n(α, ν′) ≤ n(α,∞) = 1 for 0 ≤ ν ≤ ν′, α ≥ 0.

Remark. m(α, ν) is an even function of ν and n(α, ν) is an odd function of ν. Moreover, by using the Fact 4.2
together with equation 10, we can establish the bounded and nonincreasing properties of {αt}∞

t=0, {|βt|}∞
t=0.

Fact 4.3. (Nonincreasing and Bounded) Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) =
N(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the
population level, then βt · β0 ≥ 0, αt ≤ 2/π, and {αt}∞

t=0 and {|βt|}∞
t=0 are non-increasing.

Remark. In Fact 4.3 (see proof in Appendix B, Subsection B.2), the nonincreasing property of ∥θt∥ and
∥πt − 1

2∥1 at the population level indicates that the estimates of regression parameters gradually approach
the ground truth θ∗ = 0⃗, while the estimates for mixing weights shift from “unbalanced” to “balanced”. For
the case of π0 = (1/2, 1/2), we always have βt = β0 = ∥π0 − 1

2∥1 = 0 by using the nonincreasing property
of {|βt|}∞

t=0. Additionally, the bounded ∥θ∥/σ ensures that EM iterations remain within a bounded region,
regardless of the initial distance from the ground truth θ∗ = 0⃗.
Proposition 4.4. (Approximate Dynamic Equations) Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt :=
tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν)
at the population level, then the series approximations for EM update rules are

αt+1 = αt(1− [βt]2) +O([αt]3),
βt+1 = βt(1− αtαt+1) +O([αt]4).

Remark. Proposition 4.4 (see proof in Appendix B, Subsection B.3) characterizes the evolution of EM updates
by introducing approximate dynamic equations when the regression parameters are small enough. When αt is

8
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Figure 2: Top: Relation of the (αt−αt+1)/αt and [βt]2 given αt = 0.1 and βt ∈ {0.1, 0.2, · · · , 0.9, 1}. Bottom:
Relation of the (βt − βt+1)/βt and αtαt+1 given αt = 0.1 and βt ∈ {0.1, 0.2, · · · , 0.9, 1}. The difference
between (αt−αt+1)/αt and [βt]2 is bounded by (1− [βt]2)O([αt]2), and the difference between (βt−βt+1)/βt

and αtαt+1 is bounded by (1− [βt]2)O([αt]4) (see remark on the proof of Proposition 4.4 in Appendix B,
Subsection B.3).

sufficiently small, the higher order terms for αt+1 and βt+1 are (1− [βt]2)O([αt]3) and βt(1− [βt]2)O([αt]4)
respectively (see the remark on the proof of Proposition 4.4 in Appendix B, Subsection B.3). We illustrate
our findings by comparing the EM updates at the population level with our approximate dynamics, as shown
in Fig. 2.

Further, we precisely outline the evolution of EM estimates for both regression parameters and mixing weights
as opposed to just the former as done in Dwivedi et al. (2020b). Using the techniques from pages 30-33
of Dwivedi et al. (2020a), we can only establish a rough upper bound for the update |βt+1| := |πt+1(1)−πt+1(2)|,
which represents the imbalance of mixing weights. However, to fully understand the evolution of EM iterations,
it is crucial to establish a lower bound for |βt+1|. We achieve this by bounding expectations involving the
Bessel function K0 (see Lemma A.7 and Lemma C.2). By applying this lower bound for the imbalance |βt|,
we further establish Theorem 5.1, which characterizes the convergence rate at the population level.

In the special case of balanced mixing weights, namely βt = tanh νt = 0 then 1− [βt]2 = 1, we have βt+1 = βt

by using Fact 4.3, the lower/upper bounds for αt+1 when αt is sufficiently small by introducing [αt]3 term:

αt − 3[αt]3 ≤ αt+1 ≤ αt − 3[αt]3
1 + 8[αt] , (11)

where the upper bound αt−3[αt]3/(1+8[αt]) still holds when βt ≠ 0 (see remark on the proof of Proposition 4.4
in Appendix B, Subsection B.3), and we further establish Proposition 5.3 by using the above bounds for αt+1.

5 Population Level Analysis

In this section, we give an analysis of population EM and establish convergence rate guarantees for population
EM (Theorem 5.1) with balanced and unbalanced initial guesses for mixing weights. We show theoretical
bounds for sublinear convergence (Proposition 5.3) with balanced initial guesses and the contraction factor
of linear convergence (Proposition 5.4) with unbalanced initial guesses, by bounding the expectations
(equation 10) under the density involving Bessel functions for EM updates in the overspecified setting.

Main theorem 5.1. (Convergence Rate at Population Level) Suppose a 2MLR model is fitted to the
overspecified model with no separation θ∗ = 0⃗, then for any ϵ ∈ (0, 2/π]:

(unbalanced) if π0 ̸=
( 1

2 ,
1
2
)
, population EM takes at most T = O

(
log 1

ϵ

)
iterations to achieve ∥θT ∥/σ ≤ ϵ,

(balanced) if π0 =
( 1

2 ,
1
2
)
, population EM takes at most T = O(ϵ−2) iterations to achieve ∥θT ∥/σ ≤ ϵ.

Remark. In Theorem 5.1 (see proof in Appendix D, Subsection D.4), with an unbalanced initial guess
for mixing weights, that is β0 ̸= 0, we further show the linear convergence and the upper bound for the
contraction factor αt+1/αt, therefore EM updates achieve the ϵ-accuracy in O(log(1/ϵ)) steps. Even in the
worst case (the initial guess for mixing weights is balanced, β0 = 0), we still show that αt = O(t− 1

2 ) holds

9
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(a) Interpolation across initial mixing weight regimes
π0 = ( 1

2 , 1
2 ), (0.6, 0.4), (0.7, 0.3), showing sublinear conver-

gence for π0 = ( 1
2 , 1

2 ) and linear convergence for π0 =
(0.6, 0.4), (0.7, 0.3), with the normalized regression parame-
ter α0 = ∥θ0∥/σ = 0.1.

(b) Relation of the converged value β∞ ≈ βT = ∥πT −
1
2 ∥1 and the initial value β0 = ∥π0 − 1

2 ∥1 when β0 =
π0(1) − π0(2) ≥ 0, where β0 takes ten evenly spaced
values between 0.01 and 0.99, given different initial
α0 := ∥θ0∥

σ
= 0.1, 0.3, 0.5.

Figure 3: Comparison of convergence behavior and EM trajectories at population level.

(Proposition 5.3), and it takes at most O(ϵ−2) iterations to achieve ϵ-accuracy in ℓ2 norm. We validate the
sublinear convergence rate with numerical results, see Fig. 4a. Compared to O(ϵ−2 log(1/ϵ)) steps taken to
achieve the ϵ-accuracy for 2GMM with known balanced mixing weights πt = ( 1

2 ,
1
2 ) (Equation (15), page 16

in Dwivedi et al. (2020b)), we give a better estimation O(ϵ−2) for steps in 2MLR.

Intuitive Explanation of Theorem 5.1. For GMM/MLR models, running the EM algorithm is equivalent
to performing a step of Gradient Descent on the negative log-likelihood (Kwon et al., 2024). When an
unbalanced estimate of mixing weights is given, the negative log-likelihood retains its dominant quadratic
term, [α]2. This quadratic form ensures that the EM algorithm behaves like a Gradient Descent step on a
strongly convex function, suggesting a fast, linear convergence rate for αt. In contrast, when a balanced
estimate of mixing weights is given, the [α]2 term in the negative population log-likelihood cancels out
(page 22 of Luo & Hashemi (2024) and Lemma A.3). Specifically, the likelihood term can be expanded
as [α]2/2 − E[ln cosh(αX)] = [α]2/2 − E[(αX)2/2 − (αX)4/12 + . . .] ≈ 3[α]4/4. The EM algorithm, being
equivalent to Gradient Descent, then follows a path approximated by αt+1 ≈ αt −∇(3[αt]4/4) = αt − 3[αt]3,
leading to a much slower, sublinear convergence rate where αt is proportional to 1/

√
t.

Proof Sketch. of Theorem 5.1. By invoking Fact 5.2 of initialization at population level, it is guaranteed
that αT0 = ∥θT0∥/σ < 0.1 after running population EM for at most T0 = O(1) iterations. By applying the
nonincreasing property of {αt}∞

t=0, we show that αt ≤ αT0 < 0.1 for t ≥ T0

For the case of π0 = (1/2, 1/2), by applying the sublinear convergence guarantee in Proposition 5.3 and
selecting t = Θ(ϵ−2), the normalized regression parameters αt+T0 = O(t−1/2 ∧ αT0) = O(t−1/2) ≤ ϵ achieve
ε-accuracy within t+ T0 = Θ(ϵ−2) +O(1) = Θ(ϵ−2) iterations.

For the case of π0 ̸= (1/2, 1/2), namely β0 ̸= 0, by using the bound for the contraction factor αt+1+T0/αt+T0

in Proposition 5.4 repeatedly, then αt+T0/αT0 ≤ αt+T0/0.1 ≤ 10(1 − c[β∞]2)t for some c > 0. Then by
selecting t = Θ(log(1/ϵ)/(− log(1− c[β∞]2)) = Θ(log(1/ϵ)), it is sufficient to show that αt+T0 ≤ ϵ.
Fact 5.2. (Initialization at Population Level) Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) =
N(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the
population level. If we run EM at the population level for at most T0 = 36 iterations, then αT0 < 0.1.

Remark. By using such nonincreasing and bounded property in Fact 4.3 and applying the EM update rules
in Identity 4.1, we show that the regression parameters will converge to a small region ∥θt∥/σ < 0.31 within
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only three iterations of EM updates. Then by invoking the following upper bound in Proposition 5.3, it takes
at most 33 iterations for the value to drop below 0.1. Thus, Fact 5.2 is established (see proof in Appendix D,
Subsection D.2). Similarly, we can show that in the worst case of sublinear convergence with balanced initial
guess π0 = ( 1

2 ,
1
2 ) and α0 = ∥θ0∥/σ →∞, we have α3 = ∥θ3∥/σ ≈ 0.31 and αt ≥ 0.1 for all t ≤ 9 by using

the matching lower bound in Proposition 5.3, which also matches the numerical results in Fig. 1b.
Proposition 5.3. (Sublinear Convergence Rate) Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) =
N(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the
population level. Suppose that α0 ∈ (0, 0.31), then

αt ≤ 1√
6t+

{
8 + 1

α0

}2 − 8
∀t ∈ Z≥0;

when the initial guess of mixing weights is balanced π0 = ( 1
2 ,

1
2 ), namely β0 = tanh ν0 = ∥π0 − 1

2∥1 = 0, then

αt ≥ 1√
6t+ 22 ln(1.2t+ 1) + ( 1

α0 )2
∀t ∈ Z≥0.

(a) Upper bound illustration for sublinear convergence
with balanced initial mixing weights.

(b) Lower bound illustration for sublinear convergence
with balanced initial mixing weights.

Figure 4: Sublinear convergence rate bounds for αt := ∥θt∥/σ as shown in Proposition 5.3, with different
initial values α0 = 0.02, 0.05, 0.1 and balanced initial guess β0 := ∥π0 − 1

2∥1 = 0 over 200 EM iterations.

Remark. The above Proposition 5.3 (see proof in Appendix D, Subsection D.1) highlights that at the
population level, when the initial guess of the mixing weights is balanced, the EM updates exhibit an excessively
slow convergence rate. To establish the above tight bounds, we present much tighter lower and upper bounds
for αt+1 with the same coefficients of [αt]3 in equation 11 (see remark on Proposition 4.4)). Furthermore, we
developed a technique of “variable separation” by interpreting the upper bound αt+1 ≤ αt − 3[αt]3/(1 + 8αt)
in equation 11 as the discretized version of a differential inequality dα ≤ −3[α]3dt. Consequently, we derived
the simple upper bound for αt in Proposition 5.3 by solving the discretized version of the differential inequality.
For sufficiently small αt, we could further establish a tighter upper bound αt+1 ≤ αt − 3[αt]3/(1 + 10[αt]2),
and the “variable separation” technique could be applied to derive the other upper bound for αt by
introducing Lambert W function (see Section 4.13 Lambert W-Function in Olver et al. (2010)), namely
αt ≤ 1/

√
6t+ ( 1

α0 )2 − 10 ln(6[α0]2t− 10[α0]2 ln(10[α0]2) + 1) (see remark on the proof of Proposition 5.3 in
Appendix D, Subsection D.1). As α0 approaches 0, the logarithmic term in the above upper bound for αt

becomes negligible, and the upper bound can be approximated by 1/
√

6t+ ( 1
α0 )2. Our lower/upper bounds

for αt are tight given the balanced initial guess π0 = ( 1
2 ,

1
2 ), since t ≳ ln(ct+ c′) for some constants c, c′ > 0.
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Proposition 5.4. (Contraction Factor for Linear Convergence) Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and
βt := tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ and
N(θ, ν) at the population level. Then β∞ := limt→∞ βt exists and

(i) if β0 = 0, then β∞ = 0,

(ii) if β0 > 0, then 0 < β∞ ≤ βt ≤ β0,

(iii) if β0 < 0, then 0 > β∞ ≥ βt ≥ β0.

Suppose that αt ∈ (0, 0.1), then
αt+1

αt
≤ 1− 4

5 [β∞]2.

Remark. Proposition 5.4 (see proof in Appendix D, Subsection D.3) provides the upper bound for the
contraction factor αt+1/αt of linear convergence when αt = ∥θt∥/σ is small enough, which is strictly less than
1 when the initial guess of mixing weights π0 ̸= ( 1

2 ,
1
2 ). This upper bound for contraction factor is obtained

by establishing the bounds (see Subsection A.3 and Appendix C) for expectations in Identity 4.1, thereby
αt+1/αt ≤ 1− (5/3)[αt]2− (4/5)[βt]2 ≤ 1− (4/5)[β∞]2. Furthermore, we can provide the lower/upper bounds
for β∞ by showing that −[α0]2/(300[β0]20) ≤ ln |β∞| − ln |β0| ≤ −[α0]2/4 when α0 < 0.1, |β0| <

√
2/5 (see

proof of Proposition 5.4 and its remark in Appendix D, Subsection D.3). Also, we can show the lower bound
for the contraction factor αt+1/αt ≥ 1 − 3[αt]2 − [βt]2 ≥ 1 − Θ( 1

t ) − [β0]2 by using Proposition 5.3 and
Fact 4.3 when α0 < 0.1 is sufficiently small (see Appendix C for the derivation of the first inequality). Since
αt+1/αt is lower bounded and upper bounded by some constants which are in the range of (0, 1) when t is
sufficiently large, αt converges linearly when the initial guess π0 ̸= ( 1

2 ,
1
2 ) is unbalanced (namely β0 ̸= 0).

6 Finite-Sample Level Analysis

In this section, we give a finite-sample analysis and present tight bounds for sample complexity, time
complexity, and final accuracy (Theorem 6.1) by coupling the analysis of population EM and finite-sample
EM and establishing statistical errors (Propositions 6.3, 6.4) in the overspecified setting.

Main theorem 6.1. (Convergence Rate at Finite-Sample Level for Fixed Mixing Weights)

Suppose a 2MLR model is fitted to the overspecified model with no separation θ∗ = 0⃗, given mixing
weights πt = π0 and n = Ω

(
d ∨ log 1

δ ∨ log3 1
δ′

)
samples:

(sufficiently unbalanced) if
∥∥π0 − 1

2
∥∥

1 ≳
[

d∨log 1
δ

n

] 1
4 , finite-sample EM takes at most T =

O
(∥∥π0 − 1

2
∥∥−2

1 log n
d∨log 1

δ

)
iterations to achieve ∥θT ∥/σ = O

(∥∥π0 − 1
2
∥∥−1

1

[
d∨log 1

δ

n

] 1
2
)

,

(sufficiently balanced) if
∥∥π0 − 1

2
∥∥

1 ≲
[

d∨log 1
δ

n

] 1
4 , finite-sample EM takes at most T = O

([
n

d∨log 1
δ

] 1
2
)

iterations to achieve ∥θT ∥/σ = O
([

d∨log 1
δ

n

] 1
4
)

, with probability at least 1− T (δ + δ′).

Remark. Theorem 6.1 (see proof in Appendix G, Subsection G.2) provides the final statistical errors, time
complexity, and sample complexity in the specific setting of fixed mixing weights. There is a tight connection
between Theorem 6.1 at the finite-sample level and Theorem 5.1 at the population level. In particular, by
setting the final accuracy ϵ in Theorem 5.1 for regression parameters to be O((d/n)1/2) for the “sufficiently
unbalanced” case, we intuitively obtain the required iteration complexity T = O(log 1

ϵ ) = O(log n
d ) for the

“sufficiently unbalanced” case, which is consistent with the iteration complexity O(log n
d ) in Theorem 6.1 at

the finite-sample level. Moreover, by setting the final accuracy ϵ in Theorem 5.1 for regression parameters to
be O((d/n)1/4) for the “sufficiently balanced” case, we intuitively obtain the required iteration complexity
T = O(ϵ−2) = O((n/d)1/2) for the “sufficiently balanced” case, which is consistent with the time complexity
O((n/d)1/2) in Theorem 6.1 at the finite-sample level. This main theorem addresses all regimes where the
mixing weights remain fixed, πt = π0. In contrast, Theorems 1 and 3 in Dwivedi et al. (2020b) cover only
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(a) Bounds of the time complexity T in both sufficiently
unbalanced and balanced cases.

(b) Bounds of the statistical accuracy ∥θT − θ∗∥/σ in
both sufficiently unbalanced and balanced cases.

Figure 5: Theorem 6.1 provides bounds on time complexity and statistical accuracy for fixed mixing weights
πt = π0 in both sufficiently unbalanced and balanced cases.

the cases of sufficiently unbalanced Gaussian mixtures, where ∥π0 − 1
2∥1 ≳ O((d/n)1/4) and the special case

π0 = ( 1
2 ,

1
2 ); while our main theorem covers all regimes of mixing weights, including the “sufficiently balanced”

case ∥π0 − 1
2∥1 ≲ O((d/n)1/4), which is handled by introducing our proof technique of “variable separation”.

In addition to developing new proof techniques, we improve the bounds in Theorem 3 of Dwivedi et al. (2020b)

for statistical accuracy O
([

d∨log 1
δ ∨log log 1

ϵ′
n

] 1
4 −ϵ′)

, time complexity O
((

n
d

) 1
2 −2ϵ′

log n
d log 1

ϵ′

)
, and sample

complexity Ω(d ∨ log 1
δ ∨ log log 1

ϵ′ ) for ϵ′ ∈ (0, 1/4) in the case of balanced mixing weights π0 = ( 1
2 ,

1
2 ). The

previous bounds diverged as ϵ′ → 0 whereas our time and sample complexity remain stable.

Intuitive Explanation of Theorem 6.1. The final statistical accuracy of the MLE estimate is governed
by the invertibility of the Fisher Information matrix, which is the second-order derivative of the negative
population log-likelihood. With an unbalanced estimate of mixing weights, the negative log-likelihood
maintains the [α]2 = ∥θ∥2/σ2 term, which ensures the Fisher Information matrix (w.r.t. the regression
parameters) is invertible. As a well-established result (Van der Vaart, 2000), this invertibility guarantees that
the MLE estimate achieves the standard parametric rate of order n−1/2, and therefore the final accuracy of
the EM algorithm is also proportional to n−1/2. However, when a balanced estimate is given, the critical
term [α]2 vanishes, causing the Fisher Information matrix to be singular. This singularity slows down the
standard parametric rate of final accuracy (Dwivedi et al., 2020b), resulting in a converged αT that exhibits
a rate proportional to n−1/4.
Proof Sketch. of Theorem 6.1. Initially, Fact 6.2 ensures that after at most T0 = O(1) finite-sample
EM iterations, we have αT0 = ∥θT0∥/σ < 0.1 with high probability. Therefore, without loss of generality, we
assume α0 < 0.1, β0 ≥ 0. For simplicity, we denote finite-sample and population updates for the norm of
normalized regression parameters as αt, ᾱt, respectively.

We upper bound the (t + 1)-th finite-sample EM iteration αt+1 using the triangle inequality αt+1 ≤
|αt+1− ᾱt+1|+ ᾱt+1. The first term represents the statistical error |αt+1− ᾱt+1| = (βt +αt)O((d/n)1/2) (see
Proposition 6.4), while the second term ᾱt is the population EM update, which is bounded by the upper
bounds provided in Appendix C.

For the case where βt = β0 ≥ Θ((d/n)1/4), by selecting sufficiently large sample size n and simplifying the
expression, we derive the recurrence relation αt+1 − Θ((d/n)1/4/β0) ≤ (1 − c[β0]2)(αt − Θ((d/n)1/4/β0))
for some c > 0. Using the approximation 1 − c[β0]2 ≤ exp(−c[β0]2), we can express the above relation
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recursively, leading to: αT −Θ((d/n)1/4/β0) = O(exp(−c[β0]2T )). By choosing T = Θ(log(n/d)/[β0]2), we
achieve ϵ-accuracy for the normalized regression parameters, yielding: αT ≤ Θ((d/n)1/4/β0).

In the case where β0 = βt ≤ Θ((d/n)1/4), we similarly derive a recurrence relation by selecting sufficiently
large sample size n and simplifying the expression, αt+1 ≤ αt − c[αt]3 for some c > 0 when αt ≥ Θ((d/n)1/4).
This relation can be viewed as the discretized version of the ordinary differential inequality: dα ≤ −cα3dt.
By applying the method of “variable separation” to this discretized version, we obtain αt ≤ Θ(t−1/2) when
αt ≥ Θ((d/n)1/4). To achieve αT ≤ Θ((d/n)1/4), we select T = Θ((d/n)1/4)−2 = Θ((n/d)1/2).
Fact 6.2. (Initialization at Finite-Sample Level) Let αt := ∥θt∥/σ = ∥Mn(θt−1, νt−1)∥/σ and βt :=
tanh(νt) = Nn(θt−1, νt−1) for all t ∈ Z+ be the t-th iteration of the EM update rules ∥Mn(θ, ν)∥/σ and
Nn(θ, ν) at the finite-sample level. If we run EM at the finite-sample level for at most T0 = O(1) iterations
with n = Ω

(
n ∨ log 1

δ

)
samples, then αT0 < 0.1 with probability at least 1− δ.

Remark. Fact 6.2 (see proof in Appendix G, Subsection G.1) is established in a similar way as Fact 5.2
at the population level, but requires selecting a sufficiently large number of samples n = Ω(d ∨ log 1

δ ) to
guarantee that the statistical error is small enough.
Proposition 6.3. (Statistical Error of Mixing Weights) Let N(θ, ν) and Nn(θ, ν) be the EM update rules for
mixing weights tanh(ν) := π(1) − π(2) at the population level and finite-sample level with n samples, and
n ≳ log 1

δ , δ ∈ (0, 1), then

|Nn(θ, ν)−N(θ, ν)| = min
{
∥θ∥/σ
1 + |ν| , 1

}
O

√ log 1
δ

n


with probability at least 1− δ.
Remark. Proposition 6.3 (see proof in Appendix F, Subsection F.1) is proved by applying the elementary
inequality for tanh and the concentration inequality, which is based on modified log-Sobolev inequality
in Ledoux (2001) (see Appendix E, Subsection E.1 and Subsection E.2).
Proposition 6.4. (Statistical Error of Regression Parameters) Let M(θ, ν) and Mn(θ, ν) be the EM update
rules for regression parameters θ at the population and finite-sample levels with n samples, and if n ≳ d∨ log 1

δ ,
δ ∈ (0, 1), then with probability at least 1− δ,

∥Mn(θ, ν)−M(θ, ν)∥/σ = O

√d ∨ log 1
δ

n

 ,

and if n ≳ d ∨ log 1
δ ∨ log3 1

δ′ , δ′ ∈ (0, 1), then with probability at least 1− (δ + δ′),

∥Mn(θ, ν)−M(θ, ν)∥/σ = {tanh |ν|+ ∥θ∥/σ}O

√d ∨ log 1
δ

n

 .

Remark. Proposition 6.4 (see proof in Appendix F, Subsection F.4) demonstrates our sample complexity
n = Ω(d ∨ log 1

δ ), whereas Lemma 1 of Dwivedi et al. (2020b) presents a sample complexity n = Ω(d log 1
δ ).

The difference lies in the techniques used: their multiplicative log factor is derived through the standard
symmetrization technique with Rademacher variables and the application of the Ledoux-Talagrand contraction
inequality (see the proof of Lemma 1 on page 44 of Dwivedi et al. (2020b) and Appendix E of Kwon et al.
(2021) for Lemma 11). In contrast, we obtain our additive log factor by applying the rotational invariance
of Gaussians and expressing the ℓ2 norm of the orthogonal error as the geometric mean of two Chi-square
distributions (see Appendix E, Subsection E.3).

7 Discussions on Extensions

In this section, we discuss the differences between results of 2MLR and 2GMM, extend our analysis from the
overspecified setting to the low-SNR regime, and examine the challenges of analyzing overspecified mixture
models with multiple components.
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7.1 Convergence and Sample Complexity: 2MLR vs 2GMM

In the overspecified setting (signal-to-noise-ratio (SNR) η := ∥θ∗∥/σ → 0), the population EM update rules for
2MLR are as follows (see equation 10) for the normalized regression parameters αt = ∥θt∥/σ and imbalance
of mixing weights βt = tanh(νt) = πt(1)− πt(2):

αt+1 = E[tanh(αtX + νt)X], βt+1 = E[tanh(αtX + νt)] where X ∼ K0(|x|)
π

In contrast, for 2GMM, the population EM update rules are (see page 6 of Weinberger & Bresler (2022)):

αt+1 = E[tanh(αtZ + νt)Z], βt+1 = E[tanh(αtZ + νt)] where Z ∼ N (0, 1)

Here, K0 denotes the modified Bessel function of the second kind, the density function of X has exponential
tail since K0(x) ≈

√
π
2x exp(−x) for x → ∞, and Z follows a standard normal distribution, which is sub-

Gaussian (Wainwright, 2019). At the population level, we still can establish the sublinear convergence rates
of αt = O(1/

√
t) with balanced initial mixing weights (β0 = 0), and linear convergence rates with unbalanced

initial mixing weights (β0 ̸= 0) for both 2MLR and 2GMM by bounding the above expectations.

However, at the finite-sample level, convergence guarantees differ between 2MLR and 2GMM. For 2MLR,
Theorem 6.1 indicates that a sample size n = Ω(d ∨ log3 1

δ ) is sufficient to ensure convergence. In contrast,
for 2GMM, we can show that a smaller sample size n = Ω(d ∨ log 1

δ ) is required to achieve the same
probability 1−Tδ over T iterations. Intuitively, the difference arises because, for finite n, the sample averages
1
n

∑n
i=1 tanh(αZi + ν)Zi,

1
n

∑n
i=1 tanh(αZi + ν) converge to their expectation more rapidly when {Zi}n

i=1 are
sub-Gaussian (in 2GMM) compared to when they have an exponential tail in probability (in 2MLR). This
faster convergence in the sub-Gaussian case allows for reliable parameter estimation with fewer samples.

7.2 Extended Analysis in Low SNR Regime

To further extend our analysis from the limiting case of η := ∥θ∗∥/σ = 0 to the case of finite low SNR (η ≲ 1)
of Mixed Linear Regressions (MLR), we can still obtain the recurrence relations of αt, βt as follows:

αt+1 = E[tanh(αtX + νt)X] + ηβ∗ρtE[tanh(αtX + νt)X2] +O(η2),
βt+1 = E[tanh(αtX + νt)] + ηβ∗ρtE[tanh(αtX + νt)X] +O(η2),

(12)

where β∗ = tanh(ν∗) is the imbalance of mixing weights of the ground truth, and ρt = ⟨θ∗, θt⟩/(∥θ∗∥ · ∥θt∥)
is the cosine angle between the ground truth and the estimated regression parameters at t-th iteration.

While equation 10 gives the EM update rules of αt, βt in the overspecified setting of η = 0, we can also obtain
the EM update rules of αt, βt in the low SNR regime (equation 12) with the help of introducing η, ρt by using
the perturbation method as discussed in Appendix H. The differences between the EM update rules of αt, βt

in the finite low SNR regime η ≲ 1 and the EM update rules of αt, βt in the overspecified setting η = 0 come
from the presence of η, ρt in the EM update rules. In the overspecified setting, the EM update rules of αt, βt

are given by equation 10 with η = 0 and are independent of ρt, where the cosine angle ρt = ρ0 remains the
same as the initial value ρ0 as shown in Identity 4.1 and Figure 1a. But in the finite low SNR regime η ≲ 1,
the EM update rules of αt, βt are given by equation 12 with η and ρt, where the cosine angle ρt is updated by
the EM update rules of ρt as follows when η is sufficiently small (see details in Appendix H, Subsection H.3):

ρt+1 = ρt +(1− [ρt]2) ·ηβ∗(E[tanh(αtX+νt)]−αtE[tanh2(αtX+νt)X])/E[tanh(αtX+νt)X]+O(η2). (13)

Remark. The equation 12 and equation 13 (see proof in Appendix H, Subsection H.3) are proved by
using the perturbation method as discussed in Appendix H, Subsection H.2. Moreover, the expectations
E[tanh(αtX + νt)X2],E[tanh(αtX + νt)X],E[tanh(αtX + νt)] and E[tanh2(αtX + νt)X] in equation 12 and
equation 13 can be approximated by series expansions of αt around αt = 0 as in Appendix H, Subsection H.1.
The remainder terms of O(η2) in equation 12 and equation 13 hide the effect of αt, βt, ρt in the EM update
rules. Consequently, by substituting the series expansions of the expectations into equation 12 and equation 13,
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we can obtain the following approximate dynamic equations of αt, βt, ρt in the finite low SNR regime:αt+1

βt+1

ρt+1

 =

 αt(1− [βt]2)
βt(1− [αt]2(1− [βt]2))

ρt

+ ηβ∗ ×

ρ
tβt(1− 9[αt]2(1− [βt]2))

ρtαt(1− [βt]2)
(1− [ρt]2) βt(1−6[αt]2[βt]2)

αt(1−[βt]2)

+O([αt]3) +O(η2). (14)

In particular, when η = 0, we have ρt+1 = ρt by Identity 4.1, and the above approximate dynamic equations
reduce to the approximate dynamic equations of αt, βt in the overspecified setting, which aligns with our
previous results obtained in Proposition 4.4. Also, a finer analysis shows that |ρt| = 1 implies |ρt+1| = 1
even when η ̸= 0 (see the remark of Appendix H, Subsection H.3), therefore the EM iterations of regression
parameters have the same direction as the ground truth if the initial value of the regression parameters is in
the same direction as the ground truth.

7.3 Generalizing to Multiple Components

As shown in the numerical experiments of Dwivedi et al. (2020b), the EM algorithm for overspecified Gaussian
mixtures with multiple components can also exhibit the slow convergence of final accuracy in terms of sample
size n. The order of the final accuracy O((d/n)1/4) demonstrates slower convergence in the sufficiently
balanced case compared to the final accuracy O((d/n)1/2) in the sufficiently unbalanced case for 2MLR and
2GMM in the overspecified setting, which is not merely a coincidence, but a general phenomenon. However, it
remains an open problem to establish the convergence guarantees for the final accuracy, time complexity and
sample complexity for overspecified mixture models with multiple components. As for a general overspecified
model with multiple components, it is necessary to carefully examine the many-to-one correspondence between
the components of the fitted model and those of the ground truth (see page 6 of Qian et al. (2022)). Therefore,
the assumption of well-separated regression parameters and the requirement for a good initialization of the
mixing weights, as in existing works such as Kwon & Caramanis (2020), no longer hold. This requires a
more careful analysis and development of more advanced techniques for the analysis of overspecified mixture
models with multiple components.

8 Experiments

In this section, we validate our theoretical findings in the previous sections with numerical experiments. The
code for our numerical experiments is available at https://github.com/dassein/em_overspecified_mlr.

Trajectory of EM Iterations. We sample 2,000 independent and identically distributed (i.i.d.) two-
dimensional covariates and additive noises from Gaussian distributions and set the true regression parameters
θ∗ = 0⃗. In Fig. 1a, all the iterations are nearly perfect rays from the origin to the initial point, which aligns
with Identity 4.1.

Dynamics of the EM iteration. In the overspecified setting, we show that the approximate dynamic
equations (αt − αt+1)/αt ≈ [βt]2 and (βt − βt+1)/βt ≈ αtαt+1 when the regression parameters are small
enough in Proposition 4.4. We demonstrate the linear correlations in Fig. 2, therefore, our experiments
validate Proposition 4.4. For the experimental settings, we specify αt = 0.1 and consider different values of
βt ∈ {0.1, 0.2, · · · , 0.9, 1}.

Convergence Rate in Regression Parameters. Fig. 3a presents the fast convergence with unbalanced
initial guess and the slow convergence with balanced initial guess, which is in agreement with our theoretical
results in Theorem 5.1.

Sublinear Convergence Rate with Balanced Initial Guess. Fig. 4a and Fig. 4b exhibit the slow
sublinear convergence rate given the balanced initial guess, which aligns with our sublinear theoretical bounds.
Hence, our experimental results validate our analysis in Proposition 5.3.

Initialization Phase in the Worst Case. In Fig. 1b, we show the iterations of αt in the worst case with
balanced initial mixing weights π0 = ( 1

2 ,
1
2 ), i.e., β0 = tanh ν0 = 1

2 −
1
2 = 0, and infinite initial regression

parameters α0 = ∥θ0∥/σ →∞. In the worst case, we show that αt ≥ 0.1 for all t ≤ 9 by using the theoretical
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matching lower bound for the worst case in Proposition 5.3. Also, we demonstrate that αt < 0.1 for all t ≥ 36
(Fact 5.2) by applying the theoretical upper bound in Proposition 5.3. As α20 ≈ 0.1 by numerical evaluations,
and 20 > 9 and 20 < 36, the theoretical results from Proposition 5.3 and Fact 5.2 are consistent with the
numerical results shown in Fig. 1b.

Converged Mixing Weights and Initial Guesses. In Proposition 5.4, we prove that converged mixing
weights βT are nonzero for a nonzero initial guess β0 ̸= 0, and provide a lower bound for βT . We observe
the correlation between the converged βT and varying β0 uniformly sampled from [0.01, 0.99], with α0 ∈
{0.1, 0.3, 0.5}. These theoretical findings are supported by numerical results in Fig. 3b.

9 Conclusions

In this paper, we thoroughly investigated the EM’s behavior in overspecified two-component Mixed Linear
Regression (2MLR) models. We rigorously characterized the EM estimates for both regression parameters
and mixing weights by providing the approximate dynamic equations (Proposition 4.4) for the evolution
of EM estimates and establishing the convergence guarantees (Theorems 5.1, 6.1) for the final accuracy,
time complexity, and sample complexity at population and finite-sample levels, respectively. Notably, with
an unbalanced initial guess for mixing weights, we showed linear convergence of regression parameters in
O(log(1/ϵ)) steps. Conversely, with a balanced initial guess, sublinear convergence occurs in O(ϵ−2) steps to
achieve ϵ-accuracy. For mixtures with sufficiently imbalanced fixed mixing weights ∥πt − 1

2∥1 ≳ O((d/n)1/4),
we establish statistical accuracy O((d/n)1/2), whereas for those with sufficiently balanced fixed mixing weights
∥πt − 1

2∥1 ≲ O((d/n)1/4), the accuracy is O((d/n)1/4). Additionally, our novel analysis sharpens bounds
for statistical error, time complexity, and sample complexity needed to achieve a final statistical accuracy
of O((d/n)1/4) with fixed sufficiently balanced mixing weights. Furthermore, we discussed the differences
between results of 2MLR and 2GMM, and extended our analysis from the overspecified setting to the finite
low SNR regime.

Building upon the analysis and established connections between the diffusion model objective and the classic
EM algorithm in GMM (Shah et al., 2023), we foresee extending this analysis from GMM to MLR and
establishing the time and sample complexities involved in learning the diffusion model objective, as discussed
in recent works (Chen et al., 2024a; Gatmiry et al., 2024). The practical applications (haplotype assembly (Cai
et al., 2016; Sankararaman et al., 2020) and phase retrieval (Klusowski et al., 2019; Chen et al., 2015)) of
mixture models such as MLR and GMM can spur significant interest within the statistics community toward
establishing rigorous theoretical foundations for generative diffusion models.
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We organize the Appendices as follows:

• Appendix A, we prepare lemmas for identities of hyperbolic functions, inequalities of tanh and simple
expectations under the density involving K0, and lower/upper bounds for expectations with tanh
under the density involving K0.

• Appendix B, we provide proofs for EM update rules M(θ, ν), N(θ, ν) at the population level, the
nonincreasing property of ∥θt∥, ∥πt − 1

2∥1 and boundness of ∥θt∥, and the approximate dynamic
equations of ∥M(θt, νt)∥/σ,N(θt, νt) when ∥θ∥/σ is small.

• Appendix C, we present lemmas on the evolution of αt := ∥θt∥/σ, βt = πt(1)− πt(2) in population
EM, providing lower/upper bounds for αt+1/(αt(1− [βt]2)), αt+1/αt and βt+1/βt.

• Appendix D, we provide proofs for convergence rates of regression parameters ∥θ∥ at the population
level. For π0 = ( 1

2 ,
1
2 ), we show sublinear convergence rate with time complexity O(ϵ−2) to achieve

ϵ-accuracy. while for π0 ̸= ( 1
2 ,

1
2 ), we demonstrate linear convergence rate with time conplexity

O(log 1
ϵ ). We also establish the existence of β∞ = limt→∞ βt and give an upper bound with β∞ for

the contraction factor of linear convergence.

• Appendix E, we develop lemmas to bound errors at the finite-sample level by establishing tighter
concentration inequalities using the modified log-Sobolev inequality, bounding statistics, and deriving
inequalities for tanh.

• Appendix F, we establish bounds for the projected error and statistical error in regression parameters
for both easy EM and standard finite-sample EM, as well as for the statistical error in mixing weights.

• Appendix G, we provide proofs for convergence rates at finite-sample level. For mixtures with
sufficiently imbalanced fixed mixing weights ∥πt − 1

2∥1 ≳ O((d/n)1/4), the statistical accuracy
is O((d/n)1/2), whereas for those with sufficiently balanced fixed mixing weights ∥πt − 1

2∥1 ≲
O((d/n)1/4), the accuracy is O((d/n)1/4).

• Appendix H, we extend our analysis to the finite low SNR regime (η = ∥θ∗∥/σ ≲ 1), and provide the
approximate dynamic equations for EM iterations of αt, βt and the cosine angle ρt := ⟨θt, θ∗⟩/∥θt∥∥θ∗∥
in low SNR regime.
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A Lemmas in Proofs for Results of Population EM Updates

A.1 Identities of hyperbolic functions and expectations under the density involving K0

Lemma A.1. (Identities of Hyperbolic Functions in Polyanin & Manzhirov (2008))

tanh(a+ b)− tanh(−a+ b)
2 = [1− tanh2(b)] tanh(a)

1 + tanh2(b) tanh2(a)
,

tanh(a+ b) + tanh(−a+ b)
2 = tanh(b)[1− tanh2(a)]

1− tanh2(b) tanh2(a)
.

Proof. The first identity is proved by using the identities of Hyperbolic Functions in Supplement 1, Page 698
of Polyanin & Manzhirov (2008). The second one is proved by letting a← b, b← a in the first one.

Lemma A.2. Let m(α, ν) := E[tanh(αX+ν)X], n(α, ν) := E[tanh(αX+ν)] be the expectations with respect
to X ∼ fX(x) = K0(|x|)/π, a random variable with probability density involving the Bessel function K0, and
β := tanh(ν), then m(α, ν) = ∂n(α,ν)

∂α and

m(α, ν) = (1− β2)E
[

tanh(αX)X
1− β2 tanh2(αX)

]
, n(α, ν) = βE

[
1− tanh2(αX)

1− β2 tanh2(αX)

]
Proof. By applying Leibniz integral rule or invoking the dominated convergence theorem to exchange the
order of taking limit and taking the expectations (see Theorem 1.5.8, page 24 of Durrett (2019)), we obtain
the relation m(α, ν) = ∂n(α,ν)

∂α . Since X ∼ fX(x) = K0(|x|)
π is a symmetric random variable, we have:

E[f(X)] = E[f(−X)] = E[[f(X) + f(−X)]1X≥0] = 1
2E[[f(X) + f(−X)]].

By substituting f(X) with tanh(αX + ν), tanh(αX + ν)X, and applying the above proven identities of
hyperbolic functions, these two identities are proved.

Lemma A.3. (Expectations in Gradshteyn & Ryzhik (2014)) For α ∈ [0, 1), n ∈ Z+, and a random variable
X ∼ K0(|x|)

π , then we have:

E[exp(−α|X|)] = 2
π

arccosα√
1− α2

, E[cosh(αX)] = 1√
1− α2

, E[|X|] = 2
π
, E[X2n] = [(2n− 1)!!]2,

where (2n− 1)!! = 1× 3× 5 · · · × (2n− 1).

Proof. We prove the first and second identities by taking the limit ν → 0 in the third formula in table 6.611
with modified Bessel function Kν , Section 6.61 Combinations of Bessel functions and exponentials, Page 703
of Gradshteyn & Ryzhik (2014), and invoking cosh(αx) = (exp(αx) + exp(−αx))/2.

We prove the third and fourth identities by letting ν = 0 in the 16th formula in table 6.561, Section 6.56-6.58
Combinations of Bessel functions and powers, Page 685 of Gradshteyn & Ryzhik (2014), and invoking
Γ(n+ 1

2 ) =
√
π2−n(2n− 1)!!.
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A.2 Inequalities of tanh and simple expectations under the density involving K0

Lemma A.4. For t ∈ R≥0, we have:

t− t3

3 ≤ tanh(t) ≤ t− t3

3 exp(−t)

t2 − 2
3 t

4 ≤ tanh2(t) ≤ t2 − 2
3 t

4 exp(−t)

t3 − t5 ≤ tanh3(t) ≤ t3 − t5 exp(−t)

t4 − 4
3 t

6 ≤ tanh4(t) ≤ t4 − 4
3 t

6 exp(−t)

Proof. By using Taylor expansion with remainder (see 5.15 Theorem, pages 110-111 of Rudin (1976))
for tanh(t), tanh2(t), tanh3(t), tanh4(t) and dropping out the non-negative remainder, we obtain the lower
bounds for tanh(t), tanh2(t), tanh3(t), tanh4(t). The upper bounds for tanh(t), tanh2(t), tanh3(t), tanh4(t)
are established by introducing the exponential decay in the terms of t3, t4, t5, t6 respectively, where the
analysis on the monotonicity of the gaps between the upper bounds and tanh(t), tanh2(t), tanh3(t), tanh4(t)
ensures the correctness of the upper bounds when t is small, and the fact that tanh(t) is bounded but the
upper bounds are unbounded as t increases ensures the correctness when t is large.

Lemma A.5. For any ν, t ∈ R, we have:

1 + tanh2(ν) tanh2(t) ≤
1

1− tanh2(ν) tanh2(t)
≤ 1 + tanh2(ν) sinh2(t)

Proof. By substituting tanh2(ν) tanh2(t)→ x into 1+x ≤ 1
1−x , we otain the lower bound for 1

1−tanh2(ν) tanh2(t) .
By substituting tanh2(ν)→ r, sinh2(t)→ x into 1 ≤ 1+(r−r2) x2

1+x = (1−r x
1+x )(1+rx),∀r ∈ [0, 1], x ∈ R≥0,

we establish the upper bound for 1
1−tanh2(ν) tanh2(t) .

Lemma A.6. For α ∈ [0, 0.31), and a random variable X ∼ K0(|x|)
π , we have:

9
1 + 8α ≤ d4

dα4E[exp(−α|X|)] = E[X4 exp(−α|X|)]

225
1 + 16α ≤ d6

dα6E[exp(−α|X|)] = E[X6 exp(−α|X|)]

18α2

1− 25
3 α

2 ≥ d2

d(2α)2E[cosh(2αX)]− E[X2] = E[X2(cosh(2αX)− 1)]

Proof. By Leibniz integral rule or the dominated convergence theorem to exchange the order of taking limit
and taking expectations (see Theorem 1.5.8, page 24 of Durrett (2019)), we obtain the relations between the
right-hand side expectations and the simple expectations as shown above. Therefore, we obtain the closed
form expressions for expectations on the right-hand side by taking derivatives of the closed-form expressions
of simple expectations, which are given in Lemma of Subsection A.1. Consequently, we directly give the
lower/upper bounds of rational functions on the left-hand side for these closed form expressions based on
their Padé approximants, verified by analyzing the monotonicity, convexity of the gaps between the rational
functions and the closed form expressions, and evaluating values at the boundaries of the interval of α.

A.3 Lower/Upper bounds for expectations with tanh under the density involving K0

Lemma A.7. Let n(α, ν) := E[tanh(αX + ν)] be the expectation with respect to a random variable with
density X ∼ K0(|x|)/π, suppose α ∈ [0, 0.31) and β := tanh(ν) ≥ 0, then

n(α, ν) ≥ β ·
{

1− α2(1− β2) + α4
[
(1− β2)× 6

1 + 8α − β
2 × 9

]
+ α6β2 × 300

1 + 16α

}
n(α, ν) ≤ β ·

{
1− α2(1− β2) + α4(1− β2)× 6

}
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Proof. We obtain the following lower/upper bounds for n(α, ν) by applying the Lemmas of indentities in
Subsection A.1 and invoking the Lemmas of inequalities in Subsection A.2.

n(α, ν) = βE
[

1− tanh2(αX)
1− β2 tanh2(αX)

]
≥ βE[(1− tanh2(αX)){1 + β2 tanh2(αX)}] = βE[1− (1− β2) tanh2(αX)− β2 tanh4(αX)]

≥ β

{
1− (1− β2)E

[
(αX)2 − 2

3(αX)4 exp(−α|X|)
]
− β2E

[
(αX)4 − 4

3(αX)6 exp(−α|X|)
]}

≥ β

{
1− (1− β2)

[
α2 − α4 × 6

1 + 8α

]
− β2

[
α4 × 9− α6 × 300

1 + 16α

]}
n(α, ν) ≤ βE

[
(1− tanh2(αX)){1 + β2 sinh2(αX)}

]
= βE[1− (1− β2) tanh2(αX)]

≤ β

{
1− (1− β2)E

[
(αX)2 − 2

3(αX)4
]}

= β
{

1− (1− β2)
[
α2 − α4 × 6

]}

Lemma A.8. Let m(α, ν) := E[tanh(αX + ν)X] be the expecatation with respect to a random variable with
density X ∼ K0(|x|)/π, suppose α ∈ [0, 0.31) and β := tanh(ν) ≥ 0, then

m(α, ν) ≥ α(1− β2) ·
{

1− α2 [3− β2 × 9
]
− α4β2 × 225

}
m(α, ν) ≤ α(1− β2) ·

{
1− α2

[
3

1 + 8α − β
2 × 9

1− 25
3 α

2

]
− α4β2 ×

225
3

1 + 16α

}
Proof. We obtain the following lower/upper bounds for m(α, ν) by applying Lemmas of indentities in
Subsection A.1, invoking Lemmas of inequalities in Subsection A.2 and noting that sinh2(t) = cosh(2t)−1

2 ≥ t2.

m(α, ν) = (1− β2)E
[

tanh(αX)X
1− β2 tanh2(αX)

]
≥ (1− β2)E

[
tanh(αX)X{1 + β2 tanh2(αX)}

]
= (1− β2)E

[
|X| tanh(α|X|) + β2|X| tanh3(α|X|)

]
≥ (1− β2)

{
E
[
|X|

(
(α|X|)− 1

3(α|X|)3
)]

+ β2E
[
|X|

(
(α|X|)3 − (α|X|)5)]}

= (1− β2)
{
α− α3 × 3 + β2(α3 × 9− α5 × 225)

}
m(α, ν) ≤ (1− β2)E

[
tanh(α|X|)|X|{1 + β2 sinh2(αX)}

]
≤ (1− β2)E

[(
(α|X|)− 1

3(α|X|)3 exp(−α|X|)
)
|X|(1 + β2 sinh2(αX))

]
≤ (1− β2)E

[
|X|

(
(α|X|)− 1

3(α|X|)3 exp(−α|X|)
)]

+ (1− β2)β2E
[
|X|(α|X|) (cosh(2α|X|)− 1)

2 − 1
3 |X|(α|X|)

5 exp(−α|X|)
]

= (1− β2)
{
α− α3 × 3

1 + 8α + β2
(
α3 × 9

1− 25
3 α

2 − α
5 ×

225
3

1 + 16α

)}

Lemma A.9. Let m0(α) := E[tanh(αX)X] be the expectation with respect to a random variable with
density X ∼ K0(|x|)/π, suppose α ∈ [0, 0.31), then

α− 3α3 ≤ m0(α) ≤ α− 3α3

1 + 8α

Proof. By letting β := tanh(ν) = 0 in the previous Lemma, the lower/upper bounds for m0(α) are obtained.
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B Proofs for Results of Population EM Updates

B.1 Proof for EM Update Rules

Theorem B.1. (Identity 4.1 in Section 4: EM Updates for Overspecified 2MLR) Suppose a 2MLR model is
fitted to the overspecified model with no separation, where θ∗ = 0⃗. The EM update rules at the population
level for θ̄t := θt/σ = M(θt−1, νt−1)/σ and tanh(νt) := πt(1)− πt(2) = N(θt−1, νt−1) are then as follows.

θ̄t = θ̄0

∥θ̄0∥
· 1
π

∫
R

tanh(∥θ̄t−1∥x− νt−1)xK0(|x|)dx,

tanh(νt) = 1
π

∫
R

tanh(νt−1 − ∥θ̄t−1∥x)K0(|x|)dx,

where θ̄0 := θ0/σ.

Proof. In the overspecified setting, namely θ∗ = 0⃗, the expectation in the EM update rules (equation 3,
equation 4) becomes

Es∼p(s|θ∗,π∗) := Ex∼N (0,Id)Ey|x∼π∗(1)N (⟨x,θ∗⟩,σ2)+π∗(2)N (−⟨x,θ∗⟩,σ2) = Ex∼N (0,Id)Ey∼N (0,σ2).

We decompose x = x̄ θt−1

∥θt−1∥ + x⊥, and x̄ ∼ N (0, 1), x⊥ ∈ span(θt−1)⊥ with E[x⊥] = 0. Since x̄, x⊥, ȳ :=
y/σ = ε/σ are independent of each other, we obtain

θt = Ex∼N (0,Id)Ey∼N (0,σ2) tanh
(
y⟨x, θt−1⟩

σ2 + νt−1
)
yx

= σ
θt−1

∥θt−1∥
Ex̄∼N (0,1)Eȳ∼N (0,1) tanh

(
ȳx̄ · ∥θ

t−1∥
σ

+ νt−1
)
ȳx̄

tanh(νt) = Ex̄∼N (0,1)Eȳ∼N (0,1) tanh
(
ȳx̄ · ∥θ

t−1∥
σ

+ νt−1
)

It is well known that the Normal Product Distribution is z := ȳx̄ ∼ K0(|z|)
π , see also Page 50, Section 4.4

Bessel Function Distributions, Chapter 12 Continuous Distributions (General) of Johnson et al. (1970) for
more information.

θt

σ
= θt

∥θt∥
E

z∼ K(|z|)
π

tanh
(
z · ∥θ

t−1∥
σ

+ νt−1
)
z

tanh(νt) = E
z∼ K(|z|)

π

tanh
(
z · ∥θ

t−1∥
σ

+ νt−1
)

The above two equations immediately give the EM update rules and equation 10 is proved. Let x :=
−z ∼ K(|x|)

π , consider the direction θ̄t

∥θt∥ , note that tanh
(
νt−1 +

∥∥θ̄t−1
∥∥x)− tanh

(
νt−1 −

∥∥θ̄t−1
∥∥x) > 0 for∥∥θ̄t−1

∥∥ ̸= 0, x > 0.∫
R

tanh
(∥∥θ̄t−1∥∥x− νt−1)x ·K0(|x|)dx =

[∫ ∞

0
+
∫ 0

−∞

]
tanh

(∥∥θ̄t−1∥∥x− νt−1)x ·K0(|x|)dx

=
∫ ∞

0

(
tanh

(
νt−1 +

∥∥θ̄t−1∥∥x)− tanh
(
νt−1 −

∥∥θ̄t−1∥∥x))x ·K0(|x|)dx > 0

Hence, we conclude that θ̄t

∥θt∥ = θ̄t−1

∥θt−1∥ = · · · = θ̄0

∥θ0∥ , thereby the proof is complete.
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B.2 Proof for Nonincreasing Property

Theorem B.2. (Fact 4.2 in Section 4: Monotonicity of Expectations) Let m(α, ν) := E[tanh(αX + ν)X]
and n(α, ν) := E[tanh(αX + ν)] be the expectations with respect to X ∼ K0(|x|)

π . Then they satisfy the
monotonicity properties:

(monotonicity of m(α, ν)): m(α, ν) is a nonincreasing function of ν ≥ 0 for fixed α ≥ 0, and a nondecreasing
function of α ≥ 0 for fixed ν ≥ 0, namely:

0 = m(α,∞) ≤ m(α, ν′) ≤ m(α, ν) ≤ m(α, 0) ≤ α for 0 ≤ ν ≤ ν′, α ≥ 0,

0 = m(0, ν) ≤ m(α, ν) ≤ m(α′, ν) ≤ m(∞, ν) = 2
π

for 0 ≤ α ≤ α′, ν ≥ 0.

(monotonicity of n(α, ν)): n(α, ν) is a nonincreasing function of α ≥ 0 for fixed ν ≥ 0, and a nondecreasing
function of ν ≥ 0 for fixed α ≥ 0, namely:

0 = n(∞, ν) ≤ n(α′, ν) ≤ n(α, ν) ≤ n(0, ν) = tanh(ν) for 0 ≤ α ≤ α′, ν ≥ 0,
0 = n(α, 0) ≤ n(α, ν) ≤ n(α, ν′) ≤ n(α,∞) = 1 for 0 ≤ ν ≤ ν′, α ≥ 0.

Proof. By using the identities of hyperbolic functions and expectations in Subsection A.1, and noting that
1−t2

1−r2t2 ,
t

1−r2t2 are nonincreasing and nondecreasing respectively in t ∈ [0, 1] for r ∈ [0, 1] and rt ̸= 1, we have

m(α, ν) ≤ m(α′, ν), m(α, ν) ≥ m(α, ν′) for 0 ≤ α ≤ α′, 0 ≤ ν ≤ ν′

n(α, ν) ≤ n(α′, ν), n(α, ν) ≥ n(α, ν′) for 0 ≤ α ≤ α′, 0 ≤ ν ≤ ν′

Moreover, we can invoke the dominated convergence theorem to exchange the order of taking limit and
taking the expectations (see Theorem 1.5.8, page 24 of Durrett (2019)), since 1−x2

1−r2x2 ≤ 1, x
1−r2x2 ≤ 1

1−r2 are
bounded in x ∈ [0, 1] and therefore integrable. Note that E[|X|] = 2

π , X ∼
K0(|x|)

π in Subsection A.1, we have

m(∞, ν) = lim
α→∞

E[tanh(αX + ν)X] = E[ lim
α→∞

tanh(αX + ν)X] = E[|X|] = 2
π

n(α,∞) = lim
ν→∞

E[tanh(αX + ν)] = E[ lim
ν→∞

tanh(αX + ν)] = E[1] = 1

Similarly, we have

m(α,∞) = lim
ν→∞

E[tanh(αX + ν)X] = E[ lim
ν→∞

tanh(αX + ν)X] = E[X] = 0

n(∞, ν) = lim
α→∞

E[tanh(αX + ν)] = E[ lim
α→∞

tanh(αX + ν)] = E[sgn(X)] = 0

Also, we have m(0, ν) = tanh(ν)E[X] = 0, n(0, ν) = E[tanh(ν)] = tanh(ν), n(α, 0) = E[tanh(αX)] = 0 and

m(α, 0) = E[tanh(αX)X] ≤ E[αX2] = αE[X2] = α, ∀α ≥ 0.

Therefore, we have completed the proof by combining the above results.

Theorem B.3. (Fact 4.3 in Section 4: Nonincreasing and Bounded)

Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-th
iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the population level, then βt ·β0 ≥ 0, αt ≤ 2/π,
and {αt}∞

t=0 and {|βt|}∞
t=0 are non-increasing.
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Proof. Note that X ∼ K0(|x|)
π is a symmetric random variable, we have that m(α, ν) = m(α,−ν) = m(α, |ν|)

is an even function of ν and n(α, ν) = −n(α,−ν) = sgn(ν)n(α, |ν|) is an odd function of ν. By the recurrence
relation of EM updates equation 10, we have αt+1 = m(αt, νt), βt+1 = n(αt, νt) with βt = tanh(νt).

By applying the previous proved monotonicity of m(α, ν), n(α, ν) (Fact 4.2 in Section 4), we have

βt+1 · βt = [sgn(νt)]2n(αt, |νt|) tanh |νt| ≥ 0, |βt+1| = n(αt, |νt|) ≤ n(0, |νt|) = tanh |νt| = |βt|

Therefore, by induction, we have βt · β0 ≥ 0 and {|βt|}∞
t=0 is non-increasing. By the monotonicity of m(α, ν),

0 ≤ αt+1 = m(αt, νt) = m(αt, |νt|) ≤ m(αt, 0) ≤ αt, αt+1 = m(αt, |νt|) ≤ m(αt,∞) = 2
π

Therefore, we have αt ≤ 2/π for all t ∈ Z+ and {αt}∞
t=0 is non-increasing.

B.3 Proof for Approximate Dynamic Equations

Theorem B.4. (Proposition 4.4 in Section 4: Approximate Dynamic Equations)

Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-
th iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the population level, then the series
approximations for EM update rules are

αt+1 = αt(1− [βt]2) +O([αt]3),
βt+1 = βt(1− αtαt+1) +O([αt]4).

Proof. By applying the recurrence relation equation 10, namely αt+1 = m(αt, νt), βt+1 = n(αt, νt), and
invoking the lower/upper bounds for m(α, ν) and n(α, ν) in Subsection A.3, we show that

αt+1 = αt(1− [βt]2) +O([αt]3)
βt+1 = βt{1− [αt]2(1− [βt]2)}+O([αt]4)

Therefore, αt(αt+1 − αt(1− [βt]2)) = αtO([αt]3) = O([αt]4), and

βt+1 = βt(1− αtαt+1) +O([αt]4)

Remark. When αt is sufficiently small, by the proven Lemma of series approximations of m(α, ν) and n(α, ν)
in Subsection H.1, we have

αt+1 = m(αt, νt) = E[tanh(αtX + νt)X] = αt(1− [βt]2) + (1− [βt]2)O([αt]3),
βt+1 = n(αt, νt) = E[tanh(αtX + νt)] = βt{1− [αt]2(1− [βt]2)}+ βt(1− [βt]2)O([αt]4)

= βt(1− αtαt+1) + βt(1− [βt]2)O([αt]4)

Hence, we have these approximations when αt ̸= 0 and βt ̸= 0 respectively (see Lemmas in Appendix C):
αt+1

αt(1− [βt]2) = 1 +O([αt]2), αt+1 − αt

αt
= −[βt]2 + (1− [βt]2)O([αt]2)

βt+1 − βt

βt
= −αtαt+1 + (1− [βt]2)O([αt]4) = −(1− [βt]2)([αt]2 +O([αt]4))

In the special case of balanced mixing weights, namely βt = tanh νt = 0, then by using the bounds for
αt+1 = m(αt, νt) = m(αt, 0) = m0(αt) in Subsubsection A.3, for sufficiently small αt, we have

αt − 3[αt]3 ≤ αt+1 ≤ αt − 3[αt]3
1 + 8[αt]

The above upper bound still holds when βt ̸= 0, since αt+1 = m(αt, νt) = m(αt, |νt|) ≤ m(αt, 0) = m0(αt) ≤
αt − 3[αt]3/(1 + 8[αt]) by using the monotonicity of m(α, ν) (Fact 4.2 in Section 4).
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C Lemmas in Proofs for Results of Population Level Analysis

Lemma C.1. Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ ∈ (0, 0.1], βt := tanh(νt) = N(θt−1, νt−1),∀t ∈ Z+ be
the t-th iteration of the EM update rules ∥M(θ, ν)∥/σ,N(θ, ν) at population level, then

0.97 ≤ αt+1

αt(1− [βt]2) ≤ 1− 5
3 [αt]2 + 9.53[αt]2[βt]2, −3[αt]2 − [βt]2 ≤ αt+1 − αt

αt
≤ −5

3 [αt]2 − 4
5 [βt]2.

Proof. By applying equation 10 αt+1 = m(αt, νt), βt+1 = n(αt, νt), invoking the lower/upper bounds for the
expectation of m,n in Subsection A.3, and noting that max

0≤αt≤0.1,0≤βt≤1
9[αt]2

[ 1
3 − [βt]2

]
+225[αt]4[βt]2 = 0.03,

1200(1+ 25
48 [αt])[αt]3

(1+16[αt])(1− 25
3 [αt]2) ≤

1200(1+ 25
48 ·0.1)0.13

(1+16·0.1)(1− 25
3 0.12) ≈ 0.52972 < 0.53, we obtain the following lower/upper bounds.

αt+1

αt(1− [βt]2) ≥ 1− 9[αt]2
[

1
3 − [βt]2

]
− 225[αt]4[βt]2 ≥ 1− 0.03 = 0.97

αt+1

αt(1− [βt]2) ≤ 1− 9[αt]2
[ 1

3
1 + 8[αt] − [βt]2

]
+ [αt]5[βt]2

1200(1 + 25
48 [αt])

(1 + 16[αt])
(
1− 25

3 [αt]2
)

≤ 1− 9[αt]2
[ 1

3
1 + 8 · 0.1 − [βt]2

]
+ 0.53[αt]2[βt]2 = 1− 5

3 [αt]2 + 9.53[αt]2[βt]2

By dropping out the term of [αt]2[βt]4 and using αt ≤ 0.1, the upper bound for αt+1/αt is established.

αt+1

αt
≤ (1− [βt]2)

(
1− 5

3 [αt]2 + 9.53[αt]2[βt]2
)
≤ 1− 5

3 [αt]2 − 0.888[βt]2 ≤ 1− 5
3 [αt]2 − 4

5 [βt]2

By applying the lower bound for αt+1 = m(αt, νt) in Subsection A.3, when αt ∈ (0, 0.1],

αt+1

αt
≥ (1− [βt]2)

(
1− 3[αt]2 + 9[αt]2[βt]2(1− 25[αt]2)

)
≥ 1− 3[αt]2 − [βt]2

Lemma C.2. Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ ∈ (0, 0.1], βt := tanh(νt) = N(θt−1, νt−1) ∈
(0,
√

2
5 ],∀t ∈ Z+ be the t-th iteration of EM update rules ∥M(θ, ν)∥/σ,N(θ, ν) at population level, then

−[αt]2 ≤ −[αt]2(1− [βt]2) ≤ βt+1 − βt

βt
≤ −0.94[αt]2(1− [βt]2) ≤ −1

2 [αt]2.

Proof. By applying equation 10 αt+1 = m(αt, νt), βt+1 = n(αt, νt), invoking the lower/upper bounds for the
expectation of n in Subsection A.3, and noting that 6(1−[βt]2)

1+8[αt] − 9[βt]2 + [αt]2[βt]2 300
1+16[αt] ≥ 0 holds by using

[βt]2 ≤ 2
5 ≤

128[αt]2+104αt+6
428[αt]2+248αt+15 for αt ≥ 0, we have

βt+1

βt
≥ 1− [αt]2(1− [βt]2) + [αt]4

[
6(1− [βt]2)

1 + 8[αt] − 9[βt]2
]

+ [αt]6[βt]2 300
1 + 16[αt] ≥ 1− [αt]2(1− [βt]2)

βt+1

βt
≤ 1− [αt]2(1− 6[αt]2)(1− [βt]2) ≤ 1− 0.94[αt]2(1− [βt]2)

By applying (1− [βt]2) ≤ 1 and 0.94(1− [βt]2) ≥ 1
2 for βt ∈ (0,

√
2
5 ], we obtain the following bounds.

−[αt]2 ≤ −[αt]2(1− [βt]2) ≤ βt+1 − βt

βt
≤ −0.94[αt]2(1− [βt]2) ≤ −1

2 [αt]2
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D Proofs for Results of Population Level Analysis

D.1 Proof for Sublinear Convergence Rate
Theorem D.1. (Proposition 5.3 in Section 5: Sublinear Convergence Rate)

Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ, βt := tanh(νt) = N(θt−1, νt−1),∀t ∈ Z+ be the t-th iteration of
the EM update rules ∥M(θ, ν)∥/σ,N(θ, ν) at population level. Suppose that α0 ∈ (0, 0.31), then

αt ≤ 1√
6t+

{
8 + 1

α0

}2 − 8
∀t ∈ Z≥0;

when the initial guess of mixing weights is balanced π0 =
( 1

2 ,
1
2
)
, namely β0 = tanh ν0 = ∥π0 − 1

2∥1 = 0,
then

αt ≥ 1√
6t+ 22 ln(1.2t+ 1) + ( 1

α0 )2
∀t ∈ Z≥0.

Proof. By invoking the bound for expectation m0(α) = m(α, 0) = E[tanh(αX)X] under the density function
X ∼ K0(|x|)/π in Subsection A.3, the EM update rule αt+1 = m(αt, νt) = E[tanh(αtX+νt)X] in equation 10,
and the monotonicity of m(α, ν) in Fact 4.2 in Section 4, we have

αt+1 = m(αt, νt) = m(αt, |νt|) ≤ m(αt, 0) ≤ αt − 3[αt]3
1 + 8[αt] ≤ α

t < 0.31

Regarding the upper bound on the right side, we view it as the discretized version of a differential inequality
dα ≤ −3[α]3dt. By the method of "variable separation", we conclude the following upper bound. Hence, by
using 0 < αt+1 ≤ αt, we obtain 1 ≤ 1

2

(
αt

αt+1

)2
+ 1

2

(
αt

αt+1

)
and 1 ≤

(
αt

αt+1

)
T =

T −1∑
t=0

1 ≤
T −1∑
t=0

αt − αt+1

3[αt]3

1+8[αt]

=
T −1∑
t=0

{
1
3 [αt]−3 + 8

3[αt]−2
}
{αt − αt+1}

≤
T −1∑
t=0

{
1
3 [αt]−3

[
1
2

(
αt

αt+1

)2

+ 1
2

(
αt

αt+1

)]
+ 8

3[αt]−2
(

αt

αt+1

)}
{αt − αt+1}

= 1
6

T −1∑
t=0
{[αt+1]−2 − [αt]−2}+ 8

3

T −1∑
t=0
{[αt+1]−1 − [αt]−1}

=
{

1
6 [αT ]−2 + 8

3[αT ]−1
}
−
{

1
6 [α0]−2 + 8

3[α0]−1
}

By substituting t → T , namely [αt]−2 + 16[αt]−1 ≥ 6t + [α0]−2 + 16[α0]−1, and solving for αt, the upper
bound for αt is established.

Let’s provide a matching lower bound to justify the sublinear convergence rate for the worst case of a balanced
initial guess π0 = ( 1

2 ,
1
2 ), namely β0 = tanh ν0 = π0(1) − π0(2) = 0. By applying Fact 4.3 in Section 4,

{|βt|}∞
t=0 = {tanh |νt|}∞

t=0 is nonincreasing, therefore, νt = 0,∀t ∈ Z≥0 given the initial guess is balanced.

Again, by invoking the bounds for expectations in Subsection A.3, and the EM update rule αt+1 = m(αt, νt) =
E[tanh(αtX + νt)X] in equation 10, we obtain the following lower bounds for αt := ∥θt∥/σ ∈ (0, 0.31).

αt − 3[αt]3 ≤ m0(αt) = m(αt, 0) = m(αt, νt) = αt+1

Regarding the lower bound on the left-hand side, multiplying by 12αt on both sides and defining At :=
6[αt]2 ≤ 6[αt]2 < 2

3 for ease of analysis, and applying the AM-GM inequality
√
AtAt+1 ≤ (At +At+1)/2, then

2At − [At]2 ≤ 2
√
AtAt+1 ≤ At +At+1
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Hence, At −At+1 ≤ [At]2 and dividing by AtAt+1 on both sides,

1
At+1 −

1
At
≤ At

At − (At −At+1) ≤
At

At − [At]2 = 1 + 1
1

At − 1

To obtain the lower bound for 1
At = 1

6 [αt]−2, we use the upper bound for αt which has been obtained:
[αt]−2 + 16[αt]−1 ≥ 6t + [α0]−2 + 16[α0]−1; also apply the AM-GM inequality [αt]−2 + 9 ≥ 6[αt]−1, and
[α0]−2 + 16[α0]−1 ≥ 32 + 16× 3 = 57.

11
3 [αt]−2 + 24 = [αt]−2 + 16

6 × ([αt]−2 + 9) ≥ 6t+ 57

Therefore, we have shown the lower bound for 1
At .

1
At

= 1
6[αt]−2 ≥ 3

11 t+ 3
2

Hence, the use of telescoping summations and bounding a summation by an integral
∑t−1

τ=0
1

τ+ 11
6
≤
∫ t+ 5

6
5
6

dτ
τ =

ln( t+ 5
6

5
6

) = ln(1.2t+ 1) gives the following upper bound for 1
At − 1

A0 .

1
At
− 1
A0 =

t−1∑
τ=0

( 1
Aτ+1 −

1
Aτ

) ≤
t−1∑
τ=0

1 +
t−1∑
τ=0

1
3

11τ + 1
2
≤ t+ 11

3 ln(1.2t+ 1)

Consequently, we obtain the following lower bound for αt by substituting At = 6[αt]2, A0 = 6[α0]2.

αt ≥ 1√
6t+ 22 ln(1.2t+ 1) + ( 1

α0 )2

By combining the upper/lower bounds for αt := ∥θt∥/σ in the worst case of balanced initial guess π0 = ( 1
2 ,

1
2 ),

1√
6t+ 22 ln(1.2t+ 1) + ( 1

α0 )2
≤ αt ≤ 1√

6t+ (8 + 1
α0 )2 − 8

which justifies the sublinear convergence rate, as t ≳ ln(1.2t+ 1).

Remark. For a finer analysis, we can establish a tighter upper bound for αt+1 by starting from the series
expansion of tanh(αtX) and using the fact that E[X2n] = [(2n− 1)!!]2 for X ∼ K0(|x|)

π :

αt+1 = E[tanh(αtX + νt)X] ≤ E[tanh(αtX)X]

≤ αtE[X2]− 1
3 [αt]3E[X4] + 2

15 [αt]5E[X6]− 17
315 [αt]7E[X8] + 62

2835 [αt]9E[X10]

= αt − 3[αt]3 + 30[αt]5 − (17× 35)[αt]7 + (62× 315)[αt]9 ≤ αt − 3[αt]3/(1 + 10[αt]2)

where the last line holds for αt ∈ [0, 0.13] is sufficiently small, which is tighter than the upper bound
αt+1 ≤ αt − 3[αt]3/(1 + 8[αt]) (since 8[αt] ≥ 10[αt]2 for αt ∈ [0, 0.13]). By applying the same method of
“variable separation”, and noting that (αt−αt+1)/αt ≤ ln(αt/αt+1) (since x/(1 + x) ≤ ln(1 + x),∀x ≥ 0), we
can establish the following relation for αt:

6T ≤ 6
T −1∑
t=0

αt − αt+1

3[αt]3/(1 + 10[αt]2) ≤
{(

1
αT

)2
+ 20 ln

(
1
αT

)}
−

{(
1
α0

)2
+ 20 ln

(
1
α0

)}
By solving the above inequality and introducing Lambert W function (see Section 4.13 Lambert W-Function
of Olver et al. (2010)) and noting ln x− ln ln x ≤W (x),∀x ≥ e, we obtain the following upper bound for αt

when α0 ∈ (0, 0.13]:

αt ≤ 1√
10W

(
1

10[α0]2 e
1

10[α0]2 exp(0.6t)
) ≤ 1√

6t+ ( 1
α0 )2 − 10 ln(6[α0]2t− 10[α0]2 ln(10[α0]2) + 1)
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D.2 Proof for Initialization at Population Level
Theorem D.2. (Fact 5.2 in Section 5: Initialization at Population Level)

Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-th
iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the population level. If we run EM at the
population level for at most T0 = 36 iterations, then αT0 < 0.1.

Proof. By the recurrence relation of EM updates equation 10, we have αt+1 = m(αt, νt). Futhermore, by
applying the monotonicity of m(α, ν) (Fact 4.2 in Section 4), we have

αt+1 = m(αt, νt) = m(αt, |νt|) ≤ m(αt, 0) = m0(αt)

In three iterations of EM updates, by numerical evaluations of m0(·) and noting that m0(∞) = 2
π , applying

the monotonicity of m0(·) (Fact 4.2 in Section 4), we have

α3 ≤ m0(α2) ≤ m0(m0(α1)) ≤ m0(m0(m0(α0))) ≤ m0(m0(m0(∞))) = m0

(
m0

(
2
π

))
≈ 0.305 < 0.31

Note that αt+1 ≤ αt and αt is nonincreasing (Fact 4.3 in Section 4), we justify that αt ≤ α3 < 0.31,∀t ≥ 3. By
applying the sublinear convergence rate guarantee in Proposition 5.3, selecting T0 = 36 and using α3 < 0.31,

αT0 ≤ 1√
6× (T0 − 3) +

{
8 + 1

α3

}2 − 8
< 0.1

Therefore, we have completed the proof.

Remark. In the worst case of balanced initial guess π0 = ( 1
2 ,

1
2 ), and α0 → ∞, then by applying α3 =

m0(m0(m0(∞))) ≈ 0.305 > 0.3, the matching lower bound in Proposition 5.3, then for any t ∈ Z≥0, 3 ≤ t ≤ 9,

αt ≥ 1√
6(t− 3) + 22 ln(1.2(t− 3) + 1) + ( 1

α3 )2
≥ 1√

6× 6 + 22 ln(1.2× 6 + 1) + ( 1
0.3 )2

≈ 0.103 > 0.1

Therefore, in the above worst case, αt > 0.1,∀t ∈ Z≥0, t ≤ 9 is shown. By numerical evaluations in the worst
case, we have α20 = m0(m0(m0(· · ·m0(∞))))︸ ︷︷ ︸

20 times

≈ 0.1 as shown in Fig. 1b. As 9 < 20 < 36, our theoretical

conclusions based on the matching lower bound and the upper bound for αt in Proposition 5.3 are verified.

D.3 Proof for Contraction Factor of Linear Convergence
Theorem D.3. (Proposition 5.4 in Section 5: Contraction Factor for Linear Convergence)

Let αt := ∥θt∥/σ = ∥M(θt−1, νt−1)∥/σ and βt := tanh(νt) = N(θt−1, νt−1) for all t ∈ Z+ be the t-th
iteration of the EM update rules ∥M(θ, ν)∥/σ and N(θ, ν) at the population level. Then β∞ := limt→∞ βt

exists and

(i) if β0 = 0, then β∞ = 0,

(ii) if β0 > 0, then 0 < β∞ ≤ βt ≤ β0,

(iii) if β0 < 0, then 0 > β∞ ≥ βt ≥ β0.

Suppose that αt ∈ (0, 0.1), then
αt+1

αt
≤ 1− 4

5 [β∞]2

Proof. Using Fact 4.3, we have shown that βt · β0 ≥ 0 and {|βt|}∞
t=0 is non-increasing, namely |βt| ≤

|βt−1|,∀t ∈ Z+. By the monotone convergence theorem of a sequence in Rudin (1976), β∞ := limt→∞ βt

exists. Hence, if β0 > 0, then 0 ≤ β∞ ≤ · · · ≤ βt ≤ βt−1 ≤ · · · ≤ β0 for any ∀t ∈ Z+. Conversely, if
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β0 < 0, then 0 ≥ β∞ ≥ · · · ≥ βt ≥ βt−1 ≥ · · · ≥ β0 for any ∀t ∈ Z+. And if β0 = 0, then β∞ = · · · = βt =
βt−1 = · · · = β0 = 0 for any ∀t ∈ Z+. Furthermore, we will show β∞ ̸= 0 when β0 ̸= 0 in the proof of this
proposition 5.4, thereby the results in Proposition 5.4 (i) - (iii) hold for all t ∈ Z+.

For brevity, we show that β∞ > 0 when β0 > 0 in the following steps; similarly, we can validate that
β∞ < 0 when β0 < 0 by following the same procedure. If all βt ≥

√
2
5 for ∀t ≥ 0, we must have β∞ ≥

√
2
5 .

Otherwise, we have βt <
√

2
5 , starting from t ≥ t0 for some t0. Without loss of generality, we may assume

t0 = 0, 0 ≤ β0 <
√

2
5 , 0 ≤ α0 < 0.1 and continue our discussion below. We begin with the proven Lemmas in

Appendix C, which impplies the following inequalities:

lnαt+1 − lnαt ≤ αt+1 − αt

αt
≤ −5

3 [αt]2 − 4
5 [βt]2 ≤ −4

5 [βt]2

ln βt+1 − ln βt ≥ 1.006β
t+1 − βt

βt
≥ −1.006[αt]2

where the first inequality is from ln(1 + x) ≤ x, ∀x ≥ 0, ln(1− x) ≥ −1.006x,∀x ∈ [0, 0.01] and the second
inequality is from Lemma C. We first give a rough upper bound for [αt]2, t ∈ Z+ by applying the upper
bound of Proposition 5.3 in Subsection D.1, namely [αt]2

1+16αt ≤ 1
6t+{8+ 1

α0 }2−82
.

[αt]2 ≤ 1 + 16αt

6t+
{

8 + 1
α0

}2 − 82
≤ 1 + 16 · 0.1

6(t+ 1) = 2.6
6 (t+ 2)−1

Based on that rough upper bound, we have the following inequality to establish the lower bound for βt:

ln βt+1 − ln βt ≥ −1.006[αt]2 ≥ −1.006 · 2.6
6 (t+ 1)−1 ≥ − 9

20(t+ 2)−1, ∀t ∈ Z≥0

By taking the telescoping sum of the above inequality and taking the exponential, we have

βt ≥ β0 exp
(
− 9

20

t−1∑
τ=0

(τ + 2)−1

)
≥ β0 exp

(
− 9

20

∫ t+1

1
τ−1dτ

)
= β0 exp

(
− 9

20 ln(t+ 1)
)

= β0(t+ 1)− 9
20

where the first inequality is from the telescoping sum of the above inequality and the second inequality is
from the fact that

∑t−1
τ=0(τ + 2)−1 ≤

∫ t+1
1 τ−1dτ = ln(t+ 1).

By the above rough lower bound for βt, we can establish the other upper bound for αt via using the proven
inequality lnαt+1 − lnαt ≤ − 4

5 [βt]2.

αt ≤ α0 exp
(
−4

5 [β0]2
t−1∑
τ=0

(τ + 1)− 9
10

)
≤ α0 exp

(
−4

5 [β0]2
∫ t+1

1
τ− 9

10 dτ
)

= α0 exp
(
−8[β0]2

(
(t+ 1) 1

10 − 1
))

where the first inequality is from the telescoping sum of the above inequality and the second inequality is
from the fact that

∑t−1
τ=0(τ + 1)− 9

10 ≤
∫ t+1

1 τ− 9
10 dτ = 10[(t+ 1) 1

10 − 1].

By applying the above upper bound for αt, telescoping the inequality of ln βt+1 − ln βt ≥ −1.006[αt]2, taking
the limit of t→∞ and noting that

∑∞
t=0 exp(−16[β0]2(t+ 1) 1

10 ) ≤
∫∞

0 exp(−16[β0]2t 1
10 )dt = 10!

(16[β0]2)10 and
1.006 · exp(16[β0]2) ≤ 1.006 · exp(16 · 2

5 ) ≤ 103, we have

ln β∞ − ln β0 ≥ −1.006
∞∑

t=0
[αt]2 ≥ −[α0]2 103 × (10!)

(16[β0]2)10 ≥ −
1

300
[α0]2
[β0]20 > −∞.

Therefore, we have shown that β∞ > 0 when β0 > 0. By the same procedure, we have β∞ < 0 when β0 < 0.
Consequently, when β0 ̸= 0, the contraction factor for linear convergence of αt is bounded by

αt+1

αt
≤ 1− 4

5 [βt]2 ≤ 1− 4
5 [β∞]2
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where the first inequality is from the above upper bound for (αt+1 −αt)/αt and the second inequality is from
the fact of |β∞| ≤ |βt| which is shown earlier.

Remark. By applying the upper bound for the contraction factor, we have αt ≤ α0 (1− 4
5 [β∞]2

)t. To
estimate the upper bound for β∞, we start with the following proven inequalities from Appendix C:

lnαt+1 − lnαt ≥ 1.006α
t+1 − αt

αt
≥ −1.006

(
3[αt]2 + [βt]2

)
≥ − 1

20(27(t+ 2)−1 + 21[β0]2)

ln βt+1 − ln βt ≤ βt+1 − βt

βt
≤ −1

2 [αt]2 ≤ −1
2 [α0]2(t+ 1)− 27

10 exp
(
−21

10 [β0]2t
)

where bounds for (αt+1−αt)/αt, (βt+1−βt)/βt are from lemmas in Appendix C, and the first inequality leads
to lower bound for αt, aka αt ≥ α0 exp

(
−
∑t−1

τ=0
1

20 (27(τ + 2)−1 + 21[β0]2)
)
≥ α0(t+ 1)− 27

20 exp
(
− 21

20 [β0]2t
)
.

By applying the above lower bound for αt, then for given β0 <
√

2
5 , we have

ln β∞ − ln β0 ≤ −1
2 [α0]2

∫ ∞

0
(t+ 1)− 27

10 exp
(
−21

10 [β0]2t
)

dt ≤ −1
2 [α0]2

∫ ∞

0
(t+ 1)− 27

10 e− 21
25 tdt ≤ − [α0]2

4
where the first inequality is from the telescoping sum of the above inequality.

D.4 Proof for Convergence Rate at Population Level
Theorem D.4. (Theorem 5.1 in Section 5: Convergence Rate at Population Level)

Suppose a 2MLR model is fitted to the overspecified model with no separation θ∗ = 0⃗, then for any
ϵ ∈ (0, 2

π ]:

(unbalanced) if π0 ≠
( 1

2 ,
1
2
)
, population EM takes at most T = O

(
log 1

ϵ

)
iterations to achieve ∥θT ∥/σ ≤ ϵ,

(balanced) if π0 =
( 1

2 ,
1
2
)
, population EM takes at most T = O(ϵ−2) iterations to achieve ∥θT ∥/σ ≤ ϵ.

Proof. If θ0 = 0, then θt= 0 ≤ ϵ,∀t ∈ Z≥0; otherwise, by invoking the fact for initialization at population
level in Subsection D.2, then αT0 = ∥θT0∥/σ < 0.1 after running population EM for at most T0 = O(1)
iterations.

Without loss of generality, we may assume α0 = ∥θ0∥/σ ∈ (0, 0.1) in the following discussions.

Let’s prove the cases of (i) π0 =
( 1

2 ,
1
2
)

and (ii) π0 ̸=
( 1

2 ,
1
2
)
, separately.

Proof for Unbalanced Case π0 ̸=
( 1

2 ,
1
2
)

Note that |β0| =
∥∥π0 − 1

2
∥∥

1 ≠ 0, then by using the proposition for contraction factor in Subsection D.3, the
limit β∞ := limt→∞ βt ̸= 0, and for α0 ∈ (0, 0.1), 0 < αt+1 < αt

αt+1

αt
≤ 1− 4

5 [β∞]2

Therefore, by taking T = ⌈ log 1
ϵ −log 10

− log(1− 4
5 [β∞]2)⌉+ = Θ

(
log 1

ϵ

)
, then for αT := ∥θT ∥/σ, we have

αT ≤ (1− 4
5 [β∞]2)Tα0 ≤ 0.1

Proof for Balanced Case π0 =
( 1

2 ,
1
2
)

By applying the proposition for sublinear convergence in Subsection D.1, for α0 ∈ (0, 0.1) and t ∈ Z≥0

αt ≤ 1√
6t+ {8 + 1/α0}2 − 8

Hence, by taking T = ⌈(ϵ−2 + 16ϵ−1 − [α0]−2 − 16[α0]−1)/6⌉+ = Θ(ϵ−2), we have αT := ∥θT ∥/σ ≤ ϵ.
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E Lemmas in Proofs for Results of Finite-Sample Level Analysis

E.1 Modified Log-Sobolev Inequality

The following definition and logarithmic Sobolev inequality are on Page 91, Chapter 5 Entropy and Concen-
tration, (Ledoux, 2001) by Michel Ledoux.

Definition E.1. Entropy of non-negative measurable function f given a probability measure µ is defined
as

Entµ[f ] =
{ ∫

f log fdµ−
(∫
fdµ

)
log
(∫
fdµ

)
=
∫
f log f∫

fdµ
dµ if

∫
f log(1 + f)dµ <∞

∞ otherwise

Remark. Since f log f ≤ f log(1 + f) ≤ 1 + f log f and 0 ≤ f log(1 + f),
∫

dµ = 1, then

−1 ≤ −1 +
∫
f log(1 + f)dµ ≤

∫
f log fdµ ≤

∫
f log(1 + f)dµ

If
∫
f log(1 + f)dµ < ∞, then −1 ≤

∫
f log fdµ < ∞; note f

(
2− 4

f

)
≤ f

(
2− 2

1+ f
2

)
= f

(
f

1+ f
2

)
≤

f log(1 + f)

0 ≤
∫
fdµ ≤ 1

2

{
4 +

∫
f log(1 + f)dµ

}
<∞

Hence, Entµ[f ] is bounded if
∫
f log(1 + f)dµ <∞.

Definition E.2 (Equation (5.1) in Ledoux (2001): Logarithmic Sobolev Inequality). A probability measure
µ on Rd is said to satisfy a logarithmic Sobolev inequality if for some constant c > 0 and all smooth enough
functions f on Rd,

Entµ[f2] ≤ cEµ[|∇f |2].

Remark. Let f2 = exp(ψ) and ψ : R→ R be a Lipschitz function such that |ψ(x)− ψ(x′)| ≤ λ|x− x′|, then
the “modified logarithmic Sobolev inequality” becomes

Entµ[exp(ψ)] ≤ cEµ[[ψ′]2 exp(ψ)] ≤ cλ2Eµ[exp(ψ)].

Lemma E.3. (Bounds for Bessel Function, see Chapter 10 Bessel Function of Olver et al. (2010))

Let K0 be the modified Bessel function with parameter 0, then for x > 0√
1

2π
exp(−x)√
x+ 1

≤
K0(x)
π

≤
√

1
2π

exp(−x)√
x

Proof. By invoking the monotonicity property of Kν , namely |Kν(x)| ≤ |Kν′(x)| for 0 ≤ ν ≤ ν′,∀x > 0,
in Section 10.37 Inequalities; Monotonicity, and K 1

2
(x) =

√
π
2

exp(−x)√
x

in Section 10.39 Relation to Other
Functions, Chapter 10 Bessel Function of Olver et al. (2010).

K0(x)
π

≤
K 1

2
(x)
π

=
√

1
2π

exp(−x)√
x

For the lower bound of K0(x)
π , noting that K0(x) and

√
π
2

exp(−x)√
x+1 are monotonically decreasing, it can be

confirmed through numerical validation that√
π

2
exp(−x)√
x+ 1

<

√
π

2 < 1.26 < 1.54 < K0

(
1
4

)
< K0(x)

for x ∈ (0, 1
4 ). Hence, we focus on the case of x ≥ 1

4 in the following discussion.
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By applying 1 < (1 − 1
8 ×

1
x )2(1 + 1

x ) for 1
x ∈ (0, 4], hence 1√

x+1 < (1 − 1
4 ×

1
2x )x− 1

2 , invoking
√
πx− 1

2 =
2x
∫
R+

exp(−xy)√ydy =
∫
R+

exp(−xy)/√ydy, and using 1− y/4 < 1/
√

1 + y/2 for y > 0√
π

2
exp(−x)√
x+ 1

<
exp(−x)√

2

(
1− 1

4 ×
1

2x

)√
πx− 1

2 = exp(−x)√
2

∫
R+

(
1− y

4

) exp(−xy)
√
y

dt <
∫
R+

exp(−x[1 + y])√
y(2 + y)

dy

Namely, noting that
∫
R+

exp(−x[1+y])√
y(2+y)

dy =
∫
R+

exp(−x cosh t)dt by substituting y = cosh t− 1, and invoking∫
R+

exp(−x cosh t)dt = K0(x) (Equation 10.32.8) in Section 10.32 Integral Representations, Chapter 10 Bessel
Function of Olver et al. (2010). √

π

2
exp(−x)√
x+ 1

≤ K0(x)

Lemma E.4. (Modified Logarithmic Sobolev Inequality) Let ψ : R→ R be a function such that |ψ(x)| ≤ λ|x|
for ∀x ∈ R, and 0 ≤ λ ≤ 1

2 < 1; the probability measusre µ is induced by a density function dµ
dx = K0(|x|)

π ,
then for any c ≥ 7,

Entµ[exp(ψ)] ≤ cλ2Eµ[exp(ψ)] = cλ2
∫

exp(ψ(x))dµ.

Proof. Step 1. Upper-bound for Entµ[exp(ψ)]

Note that t log t− t+ 1 ≥ 0, and let t← Eµ[exp(ψ)] =
∫

exp(ψ)dµ.

Then, we apply ψ− 1 + exp(−ψ) ≤ 1
2ψ

2, dµ = K0(|x|)
π dx and K0(x)

π ≤
√

1
2π

exp(−x)√
x

proved in previous Lemma.

Finally, we adopt the assumpton 0 ≤ λ ≤ 1
2 < 1,

Entµ[exp(ψ)] ≤ Eµ[ψ exp(ψ)− exp(ψ) + 1] = Eµ[{ψ − 1 + exp(−ψ)} exp(ψ)]

≤ 1
2Eµ[ψ2 exp(ψ)] ≤ λ2

2 Eµ[x2 exp(λ|x|)]

≤
√

1
2πλ

2
∫
R+

x
3
2 exp(−[1− λ]x)dx = 3

4
√

2
λ2

(1− λ) 5
2
≤ 3λ2

Step 2. Lower-bound for Eµ[exp(ψ)]

We apply K0(x)
π ≥

√
1

2π
exp(−x)√

x+1 in previous Lemma, and use the assumption 0 ≤ λ ≤ 1
2 < 1.

Eµ[exp(ψ)] ≥ Eµ[exp(−λ|x|)] ≥
√

2
π

∫
R+

exp(−[1 + λ]x)√
x+ 1

dx

≥
√

2
π

∫
R+

exp
(
− 3

2x
)

√
x+ 1

dx = 2e 3
2
√

3
erfc

(√
3
2

)
Step 3. Estimate for c

Entµ[exp(ψ)]
λ2Eµ[exp(ψ)] ≤ 3λ2

2e
3
2√
3 erfc

(√
3
2

)
λ2

= 3
√

3e− 3
2

2erfc
(√

3
2

) ≈ 6.9622594 < 7

By choosing c ≥ 7, the proof is complete.

Entµ[exp(ψ)] ≤ cλ2Eµ[exp(ψ)] = cλ2
∫

exp(ψ(x))dµ
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We could derive the concentration inequality based on the previous Lemma (modified log-Sobolev inequality),
see also section 5.3 modified logarithmic Sobolev inequalities in Ledoux (2001).

Theorem E.5. (Concentration Inequality with Exponential Tail)

Let F : R→ R be a function such that |F (x)| ≤ |x| for ∀x ∈ R;

the probability measusre µ is induced by a density function {xi}n
i=1

iid∼ dµ
dx = K0(|x|)

π , let Fi := F (xi), F =
F (x), then for any t ≥ 0 and c ≥ 7,

P

(∣∣∣∣∣
n∑

i=1
(Fi − Eµ[Fi])

∣∣∣∣∣ ≥ nt
)
≤ 2 exp

{
−n4 min

(
t,
t2

c

)}
.

Proof. Step 1. Estimate the Chernoff bound for F for t ≥ 0, and by the independence of Fi

P

(
n∑

i=1
(Fi − Eµ[Fi]) ≥ nt

)
= P

(
exp(λ[

n∑
i=1

Fi − Eµ[Fi]]) ≥ exp(nλt)
)

≤ inf
λ>0

Eµ [exp(λ[
∑n

i=1 Fi − Eµ[Fi]])]
exp(nλt)

= exp
{
n inf

λ>0
λ

[
logEµ[exp(λF )]

λ
− Eµ[F ]− t

]}
Step 2. Upper-bound for ζ(λ) := log Eµ[exp(λF )]

λ for 0 < λ ≤ 1
2 < 1

We study the evolution of ζ(λ) by taking the derivative of ζ(λ).

d
dλζ(λ) =

λEµ[F exp(λF )]
Eµ[exp(λF )] − logEµ[exp(λF )]

λ2 = Entµ[exp(λF )]
λ2Eµ[exp(λF )]

By using the previous Lemma, Entµ[exp(λF )]
λ2Eµ[exp(λF )] ≤ c for 0 ≤ λ ≤ 1

2 < 1 and c ≥ 7.

d
dλζ(λ) ≤ c ζ(0) = lim

λ→0

logEµ[exp(λF )]
λ

= lim
λ→0

Eµ[F exp(λF )]
Eµ[exp(λF )]

1 = Eµ[F ]

Hence, we show the following upper-bound for ζ(λ),∀λ ∈ (0, 1
2 ].

ζ(λ) = ζ(0) +
∫ λ

0
ζ(λ′)dλ′ ≤ Eµ[F ] + cλ

Step 3. Obtain the concentration inequality for F when t ≥ 0

Note that log Eµ[exp(λF )]
λ − Eµ[F ]− t = ζ(λ)− Eµ[F ]− t ≤ cλ− t, and − t

2 + c
4 ≤ −

t
4 ,∀t ≥ c

P

(
n∑

i=1
(Fi − Eµ[Fi]) ≥ nt

)
≤ exp

{
inf

λ∈(0, 1
2 ]
nλ

[
logEµ[exp(λF )]

λ
− Eµ[F ] + t

]}

≤ exp
{
n inf

λ∈(0, 1
2 ]
λ(cλ− t)

}
= exp

(
nλ(cλ− t)λ=min( 1

2 , t
2c )
)

≤ exp
{
n

{
− t4

}
1t≥c + n

{
− t

2

4c

}
10≤t<c

}
= exp

{
−n4 min

(
t,
t2

c

)}
Let F ← −F in the above expression, we obtain the upper-bound for the probablity measure

P

(
n∑

i=1
(Fi − Eµ[Fi]) ≤ −nt

)
≤ exp

{
−n4 min

(
t,
t2

c

)}
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Combine the above two cases, we conclude the following for ∀t ≥ 0 and c ≥ 7,

P

(∣∣∣∣∣
n∑

i=1
(Fi − Eµ[Fi])

∣∣∣∣∣ ≥ nt
)
≤ 2 exp

{
−n4 min

(
t,
t2

c

)}
.

E.2 Azuma-Hoeffding Inequality and Elementary Inequality of tanh

Lemma E.6. (Azuma-Hoeffding Inequality, Corollary 2.20 on page 36 in Wainwright (2019))

Let ({(Dk,Fk)}∞
k=1) be a martingale difference sequence for which there are constants {(ak, bk)}n

k=1 such
that Dk ∈ [ak, bk] almost surely for all k = 1, . . . , n. Then, for all t ≥ 0,

P

[∣∣∣∣∣
n∑

k=1
Dk

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

Lemma E.7. (Upper Bound for tanh) For ∀t, ν ∈ R, we have

| tanh(t+ ν)− tanh ν| ≤ 1 + tanh |ν| ≤ 2

and
| tanh(t+ ν)− tanh ν| ≤ 1 + tanh |ν|

1 + |ν| × |t| ≤ 2|t|
1 + |ν| .

Proof. The first inequality is proved by applying |a+ b| ≤ |a|+ |b| and tanh |ν| ≤ 1.

Let’s prove the second inequality by discussing these two cases t ≤ 0 and t > 0. Without loss of generality,
we assume ν ≥ 0 in following discussions, since we can always let −ν → ν,−t→ t for ν < 0.

(i) If t ≤ 0, then by noting that g(t) := min{tanh(t+ν), t+ν} is a concave function of t, the straight line which
connects these two points g(t) |t=−(1+ν) and g(t) |t=0 must be not greater than g(t) for ∀t ∈ [−(1 + ν), 0].

g(t) ≥ g(t) |t=0 +
g(t) |t=0 −g(t) |t=−(1+ν)

1 + ν
× t ∀t ∈ [−(1 + ν), 0]

Namely,

tanh(t+ ν) ≥ g(t) := min{tanh(t+ ν), t+ ν} ≥ tanh ν + 1 + tanh ν
1 + ν

t ∀t ∈ [−(1 + ν), 0]

Note that
tanh(t+ ν) ≥ −1 > tanh ν + 1 + tanh ν

1 + ν
t ∀t < −(1 + ν)

By applying tanh(t+ ν)− tanh ν ≤ 0 and 1 + tanh ν ≤ 2, we validate the second inequality for the case of
t ≤ 0.

(ii) If t > 0, by applying the identity tanh(t) = (tanh(t+ ν)− tanh ν)/(1− tanh(t+ ν) tanh ν) and tanh t <
t, 0 ≤ tanh ν < tanh(t+ ν)

tanh(t+ ν)− tanh ν ≤ (1− tanh2 ν)× t ∀t > 0

Then, by invoking ν
1+ν ≤ tanh ν ≤ 1, we have

tanh(t+ ν)− tanh ν ≤ 1 + tanh ν
1 + ν

t ≤ 2t
1 + ν

∀t > 0
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E.3 Bounds for Statstics

Lemma E.8. (Operator Norm Bounds for Gaussian Ensemble, see Example 6.2 of Wainwright (2019))

Let {x⃗i}n
i=1

iid∼ N (0, Id) and d ≤ n, then for the minimal eigenvalue γmin and maximal eigenvalue γmax∥∥∥∥∥∥
[

1
n

n∑
i=1

x⃗ix⃗
⊤
i

]−1
∥∥∥∥∥∥

− 1
2

2

=

γmax

[ 1
n

n∑
i=1

x⃗ix⃗
⊤
i

]−1
− 1

2

=

√√√√γmin

(
1
n

n∑
i=1

x⃗ix⃗⊤
i

)
≥ 1− t−

√
d

n
∀t ≥ 0

and the ℓ2-operator norm ∥ · ∥2∥∥∥∥∥ 1
n

n∑
i=1

x⃗ix⃗
⊤
i − Id

∥∥∥∥∥
2

≤ 2
(
t+

√
d

n

)
+
(
t+

√
d

n

)2

with probability greater than 1− 2 exp(−nt2/2).
Lemma E.9. (Upper Bound for Chi-square r.v., see Lemma 1, page 1325 in Laurent & Massart (2000))

Let Z ∼ χ2(n), then for t ≥ 0
P
(
Z ≥ n+ 2

√
nt+ 2t

)
≤ exp(−t)

Lemma E.10. (Upper-Bound for Weighted Sum of Gaussian Vectors)

Let {xi}n
i=1

iid∼ N (0, 1) and {x⃗i}n
i=1

iid∼ N (0, Id), then∥∥∥∥∥
n∑

i=1
xi
−→xi

∥∥∥∥∥
2

≤ 2
√
nd+ 2 log 2

δ
+ 2(
√
n+
√
d)
√

log 2
δ

with probability at least 1− δ, namely, if n ≥ d∥∥∥∥∥ 1
n

n∑
i=1

xi
−→xi

∥∥∥∥∥
2

= O

√ d

n
∨

log 1
δ

n
∨

√
log 1

δ

n


Proof. By using the rotational invariance of Gaussians, we can rewrite the ℓ2 norm as the geometrical mean
of two Chi-square random variables Z1 ∼ χ2(n), Z2 ∼ χ2(d).∥∥∥∥∥

n∑
i=1

xi
−→xi

∥∥∥∥∥
2

=
√
Z1Z2

By using the concentration inequality for Chi-square distribution (see Lemma 1, page 1325 in Laurent &
Massart (2000)), then with at least probability at least 1− δ,

Z1 ≤

(
√
n+

√
log 2

δ

)2

+ log 2
δ
, Z2 ≤

(
√
d+

√
log 2

δ

)2

+ log 2
δ

Therefore √
Z1Z2 ≤ 2

(
√
n+

√
log 2

δ

)(
√
d+

√
log 2

δ

)
= 2
√
nd+ 2 log 2

δ
+ 2(
√
n+
√
d)
√

log 2
δ

If n ≥ d, we have ∥∥∥∥∥ 1
n

n∑
i=1

xi
−→xi

∥∥∥∥∥
2

= O

√ d

n
∨

log 1
δ

n
∨

√
log 1

δ

n


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Lemma E.11. (Upper Bound for Norm of Sum of r.v., Corollary 38 on page 55 of (Ahle et al., 2020)) Let
p ≥ 2, C > 0 and α ≥ 1. Let (Xi)i∈[n] be iid. mean 0 random variables such that ∥Xi∥p ∼ (Cp)α, then
∥
∑n

i=1 Xi∥p
∼ Cα max

{
2α√pn, (n/p)1/ppα

}
.

Lemma E.12. (Upper-Bound for Cubic of Exp r.v.)Suppose {Zi}n
i=1

iid∼ exp(−z)Iz≥0, then we have

1
n

n∑
i=1

Z3
i = O

√ log 1
δ

n
∨

log3 1
δ′

n
∨ 1


with probability at least 1− (δ + δ′).

Proof. Noting Khintchine’s inequality ∥Z3
i ∥p = Γ(3p+1)1/p ≲ p3 and E[Z3

i ] = 6, ∥Z3
i −E[Z3

i ]∥p ≲ 6+p3 ≲ p3

for p ≥ 2, applying Corollary 38 on page 55 of Ahle et al. (2020) in the second step.

P

{
1
n

n∑
i=1

Z3
i ≥ E[Z3

i ] + ε

}
≤ inf

p>0
(nε)−pE

[
n∑

i=1
(Z3

i − E[Z3
i ])
]p

= inf
p>0

(nε)−p

∣∣∣∣∣
n∑

i=1
Z3

i − E[Z3
i ]
∣∣∣∣∣
p

p

≲ inf
p≥2

(nε)−p max
{√

pn, (n/p)1/pp3
}p

≤ inf
p≥2

(√
nε
√
p

)−p

+ inf
p≥2

n

p

(
nε

p3

)−p

≤ exp
(
−nε

2

2e

)
+ 1
ε

(
(nε) 1

3

)2
exp

(
1− 3(nε) 1

3

e

)

The last step is achieved by taking p = nε2

e , p = (nε)
1
3

e for these two above terms respectively, and ε ≥
max

{√
2e
n ,

(2e)3

n

}
.

Note that inequality ε ≥
√

2e
n , then 1

ε ≤ (2e)− 1
2 ×
√
n and nε ≥ (2en) 1

2 , therefore 5
e (nε) 1

3 ≥ 5
e (2en) 1

6 ≥ logn,
namely

√
n exp(− 5

2e (nε) 1
3 ) ≤ 1 for ∀n ≥ 1

P

{
1
n

n∑
i=1

Z3
i ≥ E[Z3

i ] + ε

}
≲ exp

(
−nε

2

2e

)
+
( e

2

) 1
2
(

(nε) 1
3

)2
exp

(
− (nε) 1

3

2e

)
≲ exp

(
−nε

2

2e

)
+exp

(
− (nε) 1

3

4e

)

By letting ε = Θ
(√

log 1
δ

n ∨ log3 1
δ′

n

)
, then with probability at least 1− (δ + δ′)

1
n

n∑
i=1

Z3
i ≤ E[Z3

i ] + ε = Θ

√ log 1
δ

n
∨

log3 1
δ′

n
∨ 1


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E.4 Bounds for Sum of Functions with tanh

Lemma E.13. (Upper-Bound for [tanh(αx+ ν)− tanh ν]x) Suppose {xi}n
i=1

iid∼ K0(|x|)/π, α ≥ 0, then we
have ∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh ν]xi

∣∣∣∣∣ = α

1 + |ν|Θ

√ log 1
δ

n
∨

log2 1
δ′

n


with probability at least 1− (δ + δ′).

Proof. By invoking the upper bound for tanh in proven Lemma in Subsection E.2,

|[tanh(αxi + ν)− tanh ν]xi| ≤
2α

1 + |ν|x
2
i

If α = 0, then Lemma is valid, let’s assume α > 0 and define Zi := [tanh(αxi + ν)− tanh ν]xi/
(

2α
1+|ν|

)
, with

|Zi| ≤ x2
i .

By using the expectation with x2p and K0(x) in Lemma of Subsection A.1, we obtain Khintchine’s inequality
∥Zi∥p ≤ ∥x2

i ∥p ≤ 22Γ(2p+ 1
2 )1/pΓ

( 1
2
)−1/p

≲ p2 and |E[Zi]| ≤ E|Zi| ≤ E[x2
i ] = 1, ∥Zi−E[Zi]∥p ≲ p2 + 1 ≲ p2

for p ≥ 2, applying Corollary 38 on page 55 of (Ahle et al., 2020) int the second step.

P

{
1
n

n∑
i=1

Zi ≥ E[Zi] + ε

}
≤ inf

p>0
(nε)−pE

[
n∑

i=1
(Zi − E[Zi])

]p

= inf
p>0

(nε)−p

∣∣∣∣∣
n∑

i=1
Zi − E[Zi]

∣∣∣∣∣
p

p

≲ inf
p≥2

(nε)−p max
{√

pn, (n/p)1/pp2
}p

≤ inf
p≥2

(√
nε
√
p

)−p

+ inf
p≥2

n

p

(
nε

p2

)−p

≤ exp
(
−nε

2

2e

)
+ (nε) 1

2 exp
(

1− 2(nε) 1
2

e

)

The last step is achieved by taking p = nε2

e , p = (nε)
1
2

e for these two above terms respectively, and ε ≥
max

{√
2e
n ,

(2e)2

n

}
.

By letting ε = Θ
(√

log 1
δ

n ∨ log2 1
δ′

n

)
, taking the bounds for two sides, then with probability at least 1− (δ+δ′)

∣∣∣∣∣
(

1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh ν]xi

∣∣∣∣∣ = 2α
1 + |ν|

∣∣∣∣∣
(

1
n

n∑
i=1
−E

)
Zi

∣∣∣∣∣ ≤ α

1 + |ν|Θ

√ log 1
δ

n
∨

log2 1
δ′

n



Lemma E.14. Let {xi}n
i=1

iid∼ N (0, 1), {x′
i}n

i=1
iid∼ N (0, 1), {x⃗i}n

i=1
iid∼ N (0, Id), and α ≥ 0,

then for n ≳ d ∨ log 1
δ , with probability at least 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

tanh(αxix
′
i + ν)xix⃗i

∥∥∥∥∥
2

= O

√ d

n
∨

√
log 1

δ

n


and for n ≳ d ∨ log 1

δ ∨ log3 1
δ′ , with probability at least 1− (δ + δ′)∥∥∥∥∥ 1

n

n∑
i=1

tanh(αxix
′
i + ν)xix⃗i

∥∥∥∥∥
2

=
{

tanh |ν|+ α

1 + |ν|

}
O

√ d

n
∨

√
log 1

δ

n


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Proof. We decompose the sum of vectors into two parts.

1
n

n∑
i=1

tanh(αxix
′
i + ν)xix⃗i = tanh(ν)

[
1
n

n∑
i=1

xix⃗i

]
+ 1
n

n∑
i=1

[tanh(αxix
′
i + ν)− tanh(ν)]xix⃗i

By the previous Lemma of bound for weighted Gaussian vectors in Subsection E.3, we upper-bound the ℓ2
norm of first term by

tanh |ν| ·
∥∥∥∥∥ 1
n

n∑
i=1

xix⃗i

∥∥∥∥∥
2

≤ tanh |ν| · O

√ d

n
∨

log 1
δ

n
∨

√
log 1

δ

n


with probability at least 1− δ/2.

Let (x⃗1, · · · , x⃗n) = (x⃗′
1, · · · , x⃗′

d−1)⊤, γ⃗ := {[tanh(αxix
′
i + ν)− tanh(ν)]xi}n

i=1, then
{

γ⃗⊤x⃗′
j

∥γ⃗∥2

}d−1

j=1
∼ N (0, Id−1)

∥∥∥∥∥ 1
n

n∑
i=1

[tanh(αxix
′
i + ν)− tanh(ν)]xix⃗i

∥∥∥∥∥
2

= 1
n
∥γ⃗∥2 ·

∥∥∥∥∥∥
{
γ⃗⊤x⃗′

j

∥γ⃗∥2

}d−1

j=1

∥∥∥∥∥∥
2

Hence,
∥∥∥∥∥
{

γ⃗⊤x⃗′
j

∥γ⃗∥2

}d−1

j=1

∥∥∥∥∥
2

2

∼ χ2(d), and by applying the upper bound for Chi-square r.v.
∥∥∥∥∥
{

γ⃗⊤x⃗′
j

∥γ⃗∥2

}d−1

j=1

∥∥∥∥∥
2

=

O
(√

d ∨
√

log 1
δ

)
with probability 1− δ/4, and invoking the bound for tanh in proven Lemma in Subsec-

tion E.2. ∥∥∥∥∥ 1
n

n∑
i=1

[tanh(αxix
′
i + ν)− tanh(ν)]xix⃗i

∥∥∥∥∥
2

= 1
n
∥γ⃗∥2 · O

(
√
d ∨

√
log 1

δ

)

=

√√√√ 1
n

n∑
i=1
| tanh(αxix′

i + ν)− tanh(ν)|2x2
i · O

√ d

n
∨

√
log 1

δ

n


Note that

∑n
i=1 x

2
i ∼ χ2(n), then by applying the upper bound for Chi-square r.v. again, and using n ≳ log 1

δ ,
we have 1

n

∑n
i=1 x

2
i = O(1) with probability at least 1− δ/4, and∥∥∥∥∥ 1

n

n∑
i=1

[tanh(αxix
′
i + ν)− tanh(ν)]xix⃗i

∥∥∥∥∥
2

= O

√ d

n
∨

√
log 1

δ

n


Let Zi := x2

i +(x′
i)2

2
iid∼ exp(−z)1≥0, then x2

i ≤ 2Zi and [xix
′
i]2 ≤ Z2

i

1
n

n∑
i=1

x2
i ·
(

α

1 + |ν|

)2
[xix

′
i]2 ≤ 2

(
α

1 + |ν|

)2
× 1
n

n∑
i=1

Z3
i

By invoking the upper-bound for cubic of Exp r.v. in Lemma of Subsection E.3 and n ≳ d ∨ log 1
δ ∨ log3 1

δ′ ,
then 1

n

∑n
i=1 Z

3
i = O(1) with probability at least 1− (δ/4 + δ′) and∥∥∥∥∥ 1
n

n∑
i=1

[tanh(αxix
′
i + ν)− tanh(ν)]xix⃗i

∥∥∥∥∥
2

≤ α

1 + |ν| · O

√ d

n
∨

√
log 1

δ

n


Combine the bound for two terms, we conclude that∣∣∣∣∣ 1n

n∑
i=1

tanh(αxix
′
i + ν)xix⃗i

∣∣∣∣∣
2

≤ O

√ d

n
∨

√
log 1

δ

n


∣∣∣∣∣ 1n

n∑
i=1

tanh(αxix
′
i + ν)xix⃗i

∣∣∣∣∣
2

≤
{

tanh |ν|+ α

1 + |ν|

}
O

√ d

n
∨

√
log 1

δ

n


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hold with probability at least 1− δ and 1− (δ + δ′) respectively.

Lemma E.15. Let {xi}n
i=1

iid∼ K0(|x|)/π and α ≥ 0, then for n ≳ log 1
δ , with probability at least 1− δ,∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)

∣∣∣∣∣ = O

√ log 1
δ

n


and ∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)

∣∣∣∣∣ = α

1 + |ν|O

√ log 1
δ

n


Proof. Note that tanh(αxi + ν) ∈ [−1, 1] is bounded, then by applying the Lemma of Azuma-Hoeffding
Inequality in Subsection E.2, ∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)

∣∣∣∣∣ = O

√ log 1
δ

n


We can rewite (

1
n

n∑
i=1
−E

)
tanh(αxi + ν) =

(
1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh ν]

By invoking the Upper Bound for tanh in proven Lemma in Subsection E.2, | tanh(αxi+ν)−tanh ν| ≤ 2α
1+|ν| |xi|,

applying Concentration Inequality with Exponential Tail in proven Lemma in Subsection E.1 and n ≳ log 1
δ .∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh ν]

∣∣∣∣∣ = α

1 + |ν|O

√ log 1
δ

n



Lemma E.16. Let {xi}n
i=1

iid∼ K0(|x|)/π and α ≥ 0,

then for n ≳ log 1
δ , with probability at least 1− δ,∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)xi

∣∣∣∣∣ = O

√ log 1
δ

n


and for n ≳ log 1

δ ∨ log2 1
δ′ , with probability at least 1− (δ + δ′),∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)xi

∣∣∣∣∣ =
{

tanh |ν|+ α

1 + |ν|

}
O

√ log 1
δ

n

 .

Proof. We decompose the sum of vectors into two parts, and note that E[xi] = 0(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)xi = tanh(ν) 1

n

n∑
i=1

xi +
(

1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh(ν)]xi

The first term is bounded
∣∣ 1

n

∑n
i=1 xi

∣∣ = O
(√

log 1
δ

n

)
with probability at least 1− δ/2, by invoking Concen-

tration Inequality with Exponential Tail in proven Lemma in Subsection E.1 and n ≳ log 1
δ .∣∣∣∣∣tanh(ν) 1

n

n∑
i=1

xi

∣∣∣∣∣ ≤ tanh |ν| · O

√ log 1
δ

n


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By [tanh(αxi + ν)− tanh(ν)]xi ≤ 2|xi|, the second term is is bounded with probability at least 1− δ/2∣∣∣∣∣
(

1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh(ν)]xi

∣∣∣∣∣ = O

√ log 1
δ

n


By invoking the bound for [tanh(αx + ν) − tanh ν]x in proven Lemma in this Subsection E.4 and n ≳
log 1

δ ∨ log2 1
δ′ , with probability at least 1− (δ/2 + δ′)∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
[tanh(αxi + ν)− tanh ν]

∣∣∣∣∣ = α

1 + |ν|O

√ log 1
δ

n


Combine the bound for two terms, we conclude that∣∣∣∣∣

(
1
n

n∑
i=1
−E

)
tanh(αxi + ν)xi

∣∣∣∣∣ = O

√ log 1
δ

n


∣∣∣∣∣
(

1
n

n∑
i=1
−E

)
tanh(αxi + ν)xi

∣∣∣∣∣ =
{

tanh |ν|+ α

1 + |ν|

}
O

√ log 1
δ

n


hold with probability at least 1− δ and 1− (δ + δ′) respectively.
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F Bounds for Statistical Errors of Finite-Sample Level Analysis

F.1 Proof for Statistical Error of Mixing Weights

Theorem F.1. (Proposition 6.3 in Section 6: Statistical Error of Mixing Weights)

Let N(θ, ν) and Nn(θ, ν) be the EM update rules for mixing weights tanh(ν) := π(1)−π(2) at the population
level and finite-sample level with n samples, and n ≳ log 1

δ , δ ∈ (0, 1), then

|Nn(θ, ν)−N(θ, ν)| = min
{
∥θ∥/σ
1 + |ν| , 1

}
O

√ log 1
δ

n


with probability at least 1− δ.

Proof. Since Nn(θ, ν) := 1
n

∑n
i=1 tanh

(
yi⟨xi,θ⟩

σ2 + ν
)

and N(θ, ν) := Es∼p(s|θ∗,π∗) tanh
(

y⟨x,θ⟩
σ2 + ν

)
, then let

α := ∥θ∥/σ, note that yi/σ ∼ N (0, 1), ⟨xi, θ⟩/∥θ∥ ∼ N (0, 1), then Normal Product Distribution is

Zi := yi

σ
× ⟨xi, θ⟩
∥θ∥

∼ K0(|z|)
π

see also Page 50, Section 4.4 Bessel Function Distributions, Chapter 12 Continuous Distributions (General)
of Johnson et al. (1970) for more information. Hence, we can rewrite the error as

Nn(θ, ν)−N(θ, ν) =
(

1
n

n∑
i=1
−E

)
tanh(αZi + ν) {Zi}n

i=1
iid∼ K0(|z|)

π

By invoking upper bound for sum of tanh in Subsection E.4, using α = ∥θ∥/σ, n ≳ log 1
δ , the proof is

complete.

F.2 Proof for Projected Error of Regression Parameters

Theorem F.2. (Projected Error of Regression Parameters)

Let M(θ, ν) be the EM update rule for regression parameters θ at population level, M easy
n (θ, ν) be the

easy version of finite-sample EM update rule for θ with n samples, and if n ≳ log 1
δ , δ ∈ (0, 1), then with

probability at least 1− δ, the projection on span{θ} for the statistical error satisfies

∣∣∣∣〈 θ

∥θ∥
,M easy

n (θ, ν)−M(θ, ν)
〉∣∣∣∣ /σ = O

√ log 1
δ

n

 ,

and if n ≳ log 1
δ ∨ log2 1

δ′ , δ
′ ∈ (0, 1), then with probability at least 1− (δ + δ′),

∣∣∣∣〈 θ

∥θ∥
,M easy

n (θ, ν)−M(θ, ν)
〉∣∣∣∣ /σ =

{
tanh |ν|+ ∥θ∥/σ1 + |ν|

}
O

√ log 1
δ

n

 .

Proof. Since M easy
n (θ, ν) := 1

n

∑n
i=1 tanh

(
yi⟨xi,θ⟩

σ2 + ν
)
yixi,M(θ, ν) := Es∼p(s|θ∗,π∗) tanh

(
y⟨x,θ⟩

σ2 + ν
)
yx,

then let α := ∥θ∥/σ, note that yi/σ ∼ N (0, 1), ⟨xi, θ⟩/∥θ∥ ∼ N (0, 1), then Normal Product Distribution is

Z := yi

σ
× ⟨xi, θ⟩
∥θ∥

∼ K0(|z|)
π
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see also Page 50, Section 4.4 Bessel Function Distributions, Chapter 12 Continuous Distributions (General)
of for more information. Hence, we can rewrite the projected statistical error as〈

θ

∥θ∥
,Mn(θ, ν)−M(θ, ν)

〉
/σ =

(
1
n

n∑
i=1
−E

)
tanh(αZi + ν)Zi {Zi}n

i=1
iid∼ K0(|z|)

π

Apply the upper bound for sum of tanh(αZi + ν)Zi in Subsection E.2, the proof is complete.

F.3 Proof for Statistical Error of Regression Parameters for Easy EM
Theorem F.3. (Statistical Error of Regression Parameters for Easy EM)

Let M(θ, ν) be the EM update rule for regression parameters θ at population level, M easy
n (θ, ν) be the easy

version of finite-sample EM update rule for θ with n samples, and if n ≳ d ∨ log 1
δ , δ ∈ (0, 1), then with

probability at least 1− δ,

∥M easy
n (θ, ν)−M(θ, ν)∥/σ = O

√d ∨ log 1
δ

n

 ,

and if n ≳ d ∨ log 1
δ ∨ log3 1

δ′ , δ
′ ∈ (0, 1), then with probability at least 1− (δ + δ′),

∥M easy
n (θ, ν)−M(θ, ν)∥/σ =

{
tanh |ν|+ ∥θ∥/σ1 + |ν|

}
O

√d ∨ log 1
δ

n

 .

Proof. Since M easy
n (θ, ν) := 1

n

∑n
i=1 tanh

(
yi⟨xi,θ⟩

σ2 + ν
)
yixi,M(θ, ν) := Es∼p(s|θ∗,π∗) tanh

(
y⟨x,θ⟩

σ2 + ν
)
yx,

then let α := ∥θ∥/σ, and decompose xi = Ziθ+P⊥
θ Z⃗i into two parts in two subspaces span{θ} and span{θ}⊥,

where Zi ∼ N (0, 1),−→Zi ∼ N (0, Id−1), and the orthogonal projection matrix P⊥
θ satisfies span(P⊥

θ ) = span{θ}⊥.
The projection matrix has the following properties: P⊥

θ θ = 0⃗, (P⊥
θ )2 = P⊥

θ = (P⊥
θ )⊤.

(M easy
n (θ, ν)−M(θ, ν))/σ =

[〈
θ

∥θ∥
,M easy

n (θ, ν)−M(θ, ν)
〉
/σ

]
θ

∥θ∥
+ P⊥

θ (M easy
n (θ, ν)−M(θ, ν))/σ

The ℓ2 norm of the first term (projected statistical error) is bounded in Proposition of of the projected
statistical error. Let’s focus on the second term, and use the notation α := ∥θ∥/σ, y/σ = Z ′

i ∼ N (0, 1), then

P⊥
θ (M easy

n (θ, ν)−M(θ, ν))/σ = P⊥
θ

(
1
n

n∑
i=1
−E

)
tanh(αZiZ

′
i + ν)ZiZ⃗i

where {Zi}n
i=1, {Z ′

i}n
i=1

iid∼ N (0, 1),−→Zi ∼ N (0, Id−1) are independent of each other.

By applying ∥P⊥
θ ∥2 = 1 and the upper bound for sum of tanh(αZiZ

′
i + ν)ZiZ⃗i in proven Lemma in

Subsection E.4, we complete the proof.
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F.4 Proof for Statistical Error of Regression Parameters
Theorem F.4. (Proposition 6.4 in Section 6: Statistical Error of Regression Parameters)

Let M(θ, ν) and Mn(θ, ν) be the EM update rules for regression parameters θ at the population level and
finite-sample level with n samples, and if n ≳ d ∨ log 1

δ , δ ∈ (0, 1), then with probability at least 1− δ,

∥Mn(θ, ν)−M(θ, ν)∥/σ = O

√d ∨ log 1
δ

n

 ,

and if n ≳ d ∨ log 1
δ ∨ log3 1

δ′ , δ
′ ∈ (0, 1), then with probability at least 1− (δ + δ′),

∥Mn(θ, ν)−M(θ, ν)∥/σ = {tanh |ν|+ ∥θ∥/σ}O

√d ∨ log 1
δ

n

 .

Proof. By using the connection between Mn and M easy
n , and decomposing the error into two terms,

(Mn(θ, ν)−M(θ, ν))/σ =
(∑n

i=1 xix
⊤
i

n

)−1

(M easy
n (θ, ν)−M(θ, ν))/σ

−
(∑n

i=1 xix
⊤
i

n

)−1(∑n
i=1 xix

⊤
i

n
− Id

)
M(θ, ν)/σ

By using Operator norm bounds for the standard Gaussian ensemble in Lemma of Subsection E.3, and
n ≳ d ∨ log 1

δ ∥∥∥∥∥
(∑n

i=1 xix
⊤
i

n

)−1∥∥∥∥∥
2

= O(1)
∥∥∥∥∑n

i=1 xix
⊤
i

n
− Id

∥∥∥∥
2

= O

√d ∨ log 1
δ

n


By invoking the proven upper bound of Statistical Error of Regression Parameters for Easy EM, and using
the facts that ∥M(θ, ν)∥ ≤ ∥θ∥ is nonincreasing and bounded ∥M(θ, ν)∥/σ = O(1) in Subsection B.2, the
bounds in this proposition are established.
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G Proofs for Results of Finite-Sample Level Analysis

G.1 Proof for Initialization at Finite-Sample Level
Theorem G.1. (Fact 6.2 in Section 6: Initialization at Finite-Sample Level)

Let αt := ∥θt∥/σ = ∥Mn(θt−1, νt−1)∥/σ and βt := tanh(νt) = Nn(θt−1, νt−1) for all t ∈ Z+ be the t-th
iteration of the EM update rules ∥Mn(θ, ν)∥/σ and Nn(θ, ν) at the finite-sample level. If we run EM at the
finite-sample level for at most T0 = O(1) iterations with n = Ω

(
d ∨ log 1

δ

)
samples, then αT0 < 0.1 with

probability at least 1− δ.

Proof. For brevity, we write ᾱt := ∥M(θt−1, νt−1)∥/σ for the EM update rule at population level. By
invoking the bound for the statistical error of regression parameters in Subsection F.4, and selecting
n ≥ (2000C)2 [d ∨ log 1

δ

]
for some constant C

|αt − ᾱt| ≤ C

√
d ∨ log 1

δ

n
≤ 1

2 × 10−3

If αt < 0.1, then it satisfies the condition; otherwise, by invoking the population EM update rule ᾱt+1 =
m(αt, νt) = E[tanh(αtX + νt)X] in equation 10, and the monotonicity of m(α, ν) in Fact 4.2 of Section 4,

αt+1 ≤ ᾱt+1 + |αt+1 − ᾱt+1| = m(αt, νt) + 1
2 × 10−3 ≤ m(αt, 0) + 1

2 × 10−3 = m0(αt) + 1
2 × 10−3

Applying the monotonicity of m(α, ν) in Fact 4.2 of Section 4, which is also applicable to m0(α) = m(α, 0)

α1 ≤ m0(α0) + 1
2 × 10−3 ≤ m0(∞) + 1

2 × 10−3 = 2
π

+ 1
2 × 10−3 < 0.64

α2 ≤ m0(α1) + 1
2 × 10−3 ≤ m0 (0.64) + 1

2 × 10−3 < 0.4

α3 ≤ m0(α2) + 1
2 × 10−3 ≤ m0 (0.4) + 1

2 × 10−3 < 0.31

Furthermore, by applying the upper bound for expectation m0(α) = m(α, 0) = E[tanh(αX)X] under the
density function X ∼ K0(|x|)/π in Subsection A.3 for t ≥ 3

αt+1 ≤ m0(αt) + 1
2 × 10−3 ≤ αt − 3[αt]3

1 + 8[αt] + 1
2 × 10−3

By using αt ≥ 0.1, then rt := αt − 1
20 ≥

1
20 and

rt+1 ≤ rt − 5
3

[
rt + 1

20

]3
+ 1

2 × 10−3 < rt − 5
3 [rt]3 < rt − [rt]3

Hence, by using 0 < rt+1 ≤ rt, we obtain 2 ≤
(

rt

rt+1

)2
+
(

rt

rt+1

)

2(T0 − 3) ≤
T0−1∑
t=3

rt − rt+1

1
2 [rt]3

≤
T0−1∑
t=3

{
[rt]−3

[(
rt

rt+1

)2

+
(

rt

rt+1

)]}
{rt − rt+1} = [rT0 ]−2 − [r3]−2

By selecting T0 = 196 = O(1) and using r3 := α3 − 1
20 < 0.31− 1

20 , we have

αT0 = rT0 + 1
20 ≤

1√
2(T0 − 3) + [r3]−2

+ 1
20 <

1
20 + 1

20 = 0.1

By substituting δ/T0 → δ in the above expressions, then αT0 < 0.1 with probability at least 1− δ.
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G.2 Proof for Convergence Rate at Finite-Sample Level
Theorem G.2. (Theorem 6.1 in Section 6: Convergence Rate at Finite-Sample Level for Fixed Mixing
Weights) Suppose a 2MLR model is fitted to the overspecified model with no separation θ∗ = 0⃗, given
mixing weights πt = π0 and n = Ω

(
d ∨ log 1

δ ∨ log3 1
δ′

)
samples:

(sufficiently unbalanced) if
∥∥π0 − 1

2
∥∥

1 ≳
[

d∨log 1
δ

n

] 1
4 , finite-sample EM takes at most T =

O
(∥∥π0 − 1

2
∥∥−2

1 log n
d∨log 1

δ

)
iterations to achieve ∥θT ∥/σ = O

(∥∥π0 − 1
2
∥∥−1

1

[
d∨log 1

δ

n

] 1
2
)

,

(sufficiently balanced) if
∥∥π0 − 1

2
∥∥

1 ≲
[

d∨log 1
δ

n

] 1
4 , finite-sample EM takes at most T = O

([
n

d∨log 1
δ

] 1
2
)

iterations to achieve ∥θT ∥/σ = O
([

d∨log 1
δ

n

] 1
4
)

, with probability at least 1− T (δ + δ′).

Proof. By invoking the fact for initialization at finite-sample level in Subsection G.1, then αT0 = ∥θT0∥/σ < 0.1
after running population EM for at most T0 = O(1) iterations. Without loss of generality, we may assume
α0 = ∥θ0∥/σ ∈ (0, 0.1) in the following discussions.

For brevity, we write the output of the EM update rule for regression parameters at Population level as
ᾱt+1 = ∥M(θt, νt)∥/σ = ∥M(θt, ν0)∥/σ, and output of the EM update rules for regression parameters at
Finite-smaple level as αt+1 = ∥θt+1∥/σ = ∥Mn(θt, νt)∥/σ = ∥Mn(θt, ν0)∥/σ.

Without the loss of generality, we assume βt = πt(1) − πt(2) ≥ 0, then by invoking the inequality in
Appendix C for αt ≤ 0.1

ᾱt+1

αt(1− [βt]2) ≤ 1− 5
3 [αt]2 + 9.53[αt]2[βt]2

and the upper bound for statistical error in Subsection F.4, namely |αt+1 − ᾱt+1| ≤ c2(βt + αt)
√

d∨log 1
δ

n for
some univeral constant c when n ≳ d ∨ log 1

δ ∨ log3 1
δ′ , we have

αt+1 ≤ |αt+1 − ᾱt+1|+ ᾱt+1

≤ αt(1− [βt]2)
(

1− 5
3 [αt]2 + 9.53[αt]2[βt]2

)
+ c2(βt + αt)

√
d ∨ log 1

δ

n

= αt

1− [βt]2 + c2

√
d ∨ log 1

δ

n

+ c2βt

√
d ∨ log 1

δ

n
− [αt]3(1− [βt]2)

(
5
3 − 9.53[βt]2

)

with the probability at least 1− (δ + δ′).

48



Published in Transactions on Machine Learning Research (01/2026)

Proof for part a) (sufficiently unbalanced)
∥∥π0 − 1

2
∥∥

1 ≳
[

d∨log 1
δ

n

] 1
4

Consider the following two cases.

(i) if |βt| = |β0| =
∥∥π0 − 1

2
∥∥

1 ≥ 2c
[

d∨log 1
δ

n

] 1
4 , |βt| > 0.4, by invoking −(1− [βt]2)

( 5
3 − 9.53[βt]2

)
< 5

3 , |β
t| ≤ 1

αt+1 ≤ αt

1− 0.42 + c2

√
d ∨ log 1

δ

n
+ 5

3[αt]2
+ c2

√
d ∨ log 1

δ

n

By selecting n ≥ (5c)4 [d ∨ log 1
δ

]
, then 1− 0.42 + c2

√
d∨log 1

δ

n + 5
3 [αt]2 < 0.9 for αt ≤ 0.1, therefore

αt+1 − 10c2

√
d ∨ log 1

δ

n
≤ 0.9

αt − 10c2

√
d ∨ log 1

δ

n


Furthermore, by letting n ≥ (10c)4 [d ∨ log 1

δ

]
, then 10c2

√
d∨log 1

δ

n ≤ 0.1 and αt+1 ≤ 0.1, hence

αT ≤ 10c2

√
d ∨ log 1

δ

n
+ 0.9T

α0 − 10c2

√
d ∨ log 1

δ

n

 ≤ 10c2

√
d ∨ log 1

δ

n
+ 0.1× 0.9T

Let’s choose T = ⌈
1
2 log n

d∨log 1
δ

−2 log c−log 10

log 1
0.9

⌉+ = Θ
(

log n
d∨log 1

δ

)
, then

αT ≤ 10c2

√
d ∨ log 1

δ

n
+ c2

√
d ∨ log 1

δ

n
= 11c2

√
d ∨ log 1

δ

n
= Θ

√d ∨ log 1
δ

n


(ii) if |βt| = |β0| =

∥∥π0 − 1
2
∥∥

1 ≥ 2c
[

d∨log 1
δ

n

] 1
4 , |βt| ≤ 0.4, by invoking −(1 − [βt]2)

( 5
3 − 9.53[βt]2

)
<

−0.1, |βt| ≤ 0.4

αt+1 ≤ αt

(
1− 3

4 [βt]2
)

+ c2βt

√
d ∨ log 1

δ

n
− 0.1[αt]3

Hence,

αt+1 − 4
3
c2

β0

√
d ∨ log 1

δ

n
≤
(

1− 3
4 [β0]2

)αt − 4
3
c2

β0

√
d ∨ log 1

δ

n


Furthermore, by letting n ≥

( 20
3 c
)4 [

d ∨ log 1
δ

]
, then 4

3
c2

β0

√
d∨log 1

δ

n ≤ 2
3c
[

d∨log 1
δ

n

] 1
4 ≤ 0.1

αT ≤ 4
3
c2

β0

√
d ∨ log 1

δ

n
+ 0.1

(
1− 3

4 [β0]2
)T

Let’s choose T = ⌈
1
2 log n

d∨log 1
δ

−log 1
β0 +log 3

2c2

− log(1− 3
4 [β0]2) ⌉+ = Θ

(
[β0]−2 log n

d∨log 1
δ

)
for |β0| ≤ 0.4, here we use that fact

− log(1− 3
4 [β0]2) = Θ([β0]2) for small β0, then

αT ≤ 4
3
c2

β0

√
d ∨ log 1

δ

n
+ 2

3
c2

β0

√
d ∨ log 1

δ

n
= 2c2

β0

√
d ∨ log 1

δ

n

To sum up, by combining case (i) and case (ii), we show that with n = Ω
(
d ∨ log 1

δ ∨ log3 1
δ′

)
and

|β0| =
∥∥π0 − 1

2
∥∥

1 ≥ 2c
[

d∨log 1
δ

n

] 1
4
, α0 = ∥θ0∥/σ ≤ 0.1, if we run finite-sample EM for at most

T = O
(

[β0]−2 log n
d∨log 1

δ

)
iterations, then αT = ∥θT ∥/σ = O

(
1

β0

√
d∨log 1

δ

n

)
with probability at least

1− T (δ + δ′).
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Proof for part b) (sufficiently balanced)
∥∥π0 − 1

2
∥∥

1 ≲
[

d∨log 1
δ

n

] 1
4

If |βt| = |β0| =
∥∥π0 − 1

2
∥∥

1 ≤ 2c
[

d∨log 1
δ

n

] 1
4 , let n ≥ (10c)4 [d ∨ log 1

δ

]
, then βt ≤ 1

5 , 1 + 1
4(1−[βt]2) <

5
3 − 9.53[βt]2,

αt+1 ≤ αt

c2

√
d ∨ log 1

δ

n
− [αt]2

4 + (1− [αt]2)(1− [βt]2)

+ c2βt

√
d ∨ log 1

δ

n

If αt ≤ 2c
[

d∨log 1
δ

n

] 1
4 , then the goal αt = O

([
d∨log 1

δ

n

] 1
4
)

is achieved; otherwise, we have αt > 2c
[

d∨log 1
δ

n

] 1
4 ,

αt+1 ≤ (1− [βt]2)αt(1− [αt]2) + c2βt

√
d ∨ log 1

δ

n

(i) if αt > 2c2

β0

√
d∨log 1

δ

n , note that αt(1− [αt]2) ≥ αt

2 for αt ≤ 0.1 <
√

2
2 , then

αt+1 ≤ αt(1− [αt]2)

(ii) if αt ≤ 2c2

β0

√
d∨log 1

δ

n , then by invoking 1− [βt]2 ≤ 1 and αt > 2c
[

d∨log 1
δ

n

] 1
4 , we have

αt+1 ≤ αt(1− [αt]2) + 2c4

αt

d ∨ log 1
δ

n
≤ αt(1− [αt]2) + 2c3

[
d ∨ log 1

δ

n

] 3
4

≤ αt

(
1− 3

4 [αt]2
)

To sum up, by combining case (i) and case (ii), the following inequality holds for αt > 2c
[

d∨log 1
δ

n

] 1
4

αt+1 ≤ αt

(
1− 3

4 [αt]2
)

Hence, by using 0 < αt+1 ≤ αt, we obtain 1 ≤ 1
2

(
αt

αt+1

)2
+ 1

2

(
αt

αt+1

)
and

T =
T −1∑
t=0

1 ≤
T −1∑
t=0

αt − αt+1

3
4 [αt]3

≤ 4
3 ×

1
2

T −1∑
t=0

αt + αt+1

[αt]2[αt+1]2 (αt − αt+1)

= 2
3

T −1∑
t=0

([αt+1]−2 − [αt]−2) = 2
3([αT ]−2 − [α0]−2)

Namely,
αT ≤ 1√

3
2T + [α0]−2

≤ 1√
3
2T

Let’s choose T = ⌈ 1
6c2

[
n

d∨log 1
δ

] 1
2 ⌉+ = Θ

([
n

d∨log 1
δ

] 1
2
)

, then

αT ≤ 1√
3
2T
≤ 2c

[
d ∨ log 1

δ

n

] 1
4

Therefore, we show that with n = Ω
(
d ∨ log 1

δ ∨ log3 1
δ′

)
and |β0| =

∥∥π0 − 1
2
∥∥

1 ≤ 2c
[

d∨log 1
δ

n

] 1
4
, α0 =

∥θ0∥/σ ≤ 0.1, if we run finite-sample EM for at most T = O
([

n
d∨log 1

δ

] 1
2
)

iterations, then αT = ∥θT ∥/σ =

O
([

d∨log 1
δ

n

] 1
4
)

with probability at least 1− T (δ + δ′).

50



Published in Transactions on Machine Learning Research (01/2026)

H Extension to Finite Low SNR Regime

H.1 Series Expansions for Expectations

In this section, we provide series expansions for several expectations involving the hyperbolic tangent function.
These expansions are crucial for analyzing the behavior of EM updates in the low SNR regime.
Lemma H.1 (Derivative Polynomials for tanh). Let Pn(t) = dn

dZn tanh(Z) for any n ∈ Z≥0 and t := tanh(Z),
then

P0(t) = tanh(Z) = t, Pn+1(t) = (1− t2) d
dtPn(t),

and Pn(t) ∈ Z[t] are polynomials in t for any n ∈ Z≥0, and we have:

deg(Pn(t)) = n+ 1, max
t∈[−1,1]

|Pn(t)| ≤ n ! .

Proof. Let Pn(t) = dn

dZn tanh(Z) for any n ∈ Z≥0 and t := tanh(Z), then by the chain rule:

P0(t) = tanh(Z) = t ∈ Z[t], Pn+1(t) = dt
dZ ·

d
dtPn(t) = (1− t2) d

dtPn(t).

Thus, by the induction, we have Pn(t) ∈ Z[t] are polynomials in t for any n ∈ Z≥0, and we have:

deg(P0(t)) = 1, deg(Pn+1(t)) = 2 + [deg(Pn(t))− 1] =⇒ deg(Pn(t)) = n+ 1.

By Bernstein’s inequality (see section 7, page 91 of Cheney (1966) and Shadrin (2004)), we have
maxt∈[−1,1] |

√
1− t2[ d

dtp(t)]| ≤ deg(p(t)) maxt∈[−1,1] |p(t)| for any polynomial p(t):

max
t∈[−1,1]

|Pn+1(t)| ≤ max
t∈[−1,1]

∣∣∣∣√1− t2
[

d
dtPn(t)

]∣∣∣∣ ≤ deg(Pn(t)) max
t∈[−1,1]

|Pn(t)| = (n+ 1) max
t∈[−1,1]

|Pn(t)|.

Therefore, by the above recurrence relation, we have:

max
t∈[−1,1]

|Pn(t)| ≤ (n !) max
t∈[−1,1]

|P0(t)| = (n !) max
t∈[−1,1]

|t| = n ! .

Lemma H.2 (Reexpressions of Expectations). Let X ∼ fX(x) = K0(|x|)
π be a random variable with probability

density involving the Bessel function K0, and β = tanh(ν). Then for any n ∈ Z≥0: If 0 ≤ α < 1/2, then:

E[tanh(αX + ν)X2n] = βE[X2n]− β(1− β2)E
[
tanh2(αX)X2n

]
+(1− β2)β3O(α4),

E[tanh(αX + ν)X2n+1] = (1− β2)E[tanh(αX)X2n+1]
+(1− β2)β2E[tanh3(αX)X2n+1]
+(1− β2)β4O(α5).

If 0 ≤ α < 1/4, then:

E[tanh2(αX + ν)X2n] = β2E[X2n] + (1− β2)(1− 3β2)E
[
tanh2(αX)X2n

]
+(1− β2)β2O(α4),

E[tanh2(αX + ν)X2n+1] = 2(1− β2)βE[tanh(αX)X2n+1]
+2(1− β2)(−1 + 2β2)βE[tanh3(αX)X2n+1]
+(1− β2)β3O(α5).
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Proof. We have the following facts for tanh(αX + ν) and β = tanh(ν):

tanh(αX + ν) + tanh(−αX + ν) = 2β − 2β(1− β2) · tanh2(αX)
1− β2 tanh2(αX)

= 2β − 2β(1− β2) tanh2(αX)

−2β(1− β2) · β2 tanh4(αX)
1− β2 tanh2(αX)

,

tanh(αX + ν)− tanh(−αX + ν) = 2(1− β2) · tanh(αX)
1− β2 tanh2(αX)

= 2(1− β2) · tanh(αX)
+2(1− β2) · β2 tanh3(αX)

+2(1− β2) · β4 · tanh5(αX)
1− β2 tanh2(αX)

,

tanh2(αX + ν) + tanh2(−αX + ν) = 2β2 + 2(1− β2) · (1− 3β2) tanh2(αX)
+2(1− β2) · β2[(1− 3β2)(2− β2 tanh2(αX))

+(1 + β2)] tanh4(αX)
[1− β2 tanh2(αX)]2

,

tanh2(αX + ν)− tanh2(−αX + ν) = 4β(1− β2) · tanh(αX)(1− tanh2(αX))
[1− β2 tanh2(αX)]2

= 4β(1− β2) · tanh(αX)
+4β(1− β2) · (−1 + 2β2) tanh3(αX)
+4β(1− β2) · β2[(−1 + 2β2)(2− β2 tanh2(αX))

−β2] tanh5(αX)
[1− β2 tanh2(αX)]2

.

Since X ∼ fX(x) = K0(|x|)
π is a symmetric random variable, we have:

E[f(X)] = E[f(−X)] = E[[f(X) + f(−X)]1X≥0] = 1
2E[[f(X) + f(−X)]].

By substituting f(X) with tanh(αX + ν)X2n, tanh(αX + ν)X2n+1, tanh2(αX + ν)X2n, tanh2(αX +
ν)X2n+1, n ∈ Z≥0, we only have to consider the upper bounds for the absolute values of the remainder terms
in the above equalities.

For the remainder terms of E[tanh(αX + ν)X2n] and E[tanh(αX + ν)X2n+1], suppose that for a fixed α0
and 0 ≤ α ≤ α0 < 1/2, we have:

E
[

tanh4(αX)
1− β2 tanh2(αX)

X2n

]
≤ α2E[sinh2(αX)X2n+2] ≤ α4(E[sinh2(α0X)X2n+2]/α2

0) = O(α4),

E
[

tanh5(αX)
1− β2 tanh2(αX)

X2n+1
]
≤ α3E[sinh2(αX)X2n+4] ≤ α5(E[sinh2(α0X)X2n+4]/α2

0) = O(α5).

Note that the coefficients of the remainder for E[tanh2(αX+ν)X2n] and E[tanh2(αX+ν)X2n+1] are bounded
by:

|(1− 3β2)(2− β2 tanh2(αX)) + (1 + β2)| ≤ 3,
|(−1 + 2β2)(2− β2 tanh2(αX))− β2| ≤ 2.
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Suppose that for a fixed α0 and 0 ≤ α ≤ α0 < 1/4, we have:

E
[

tanh4(αX)
[1− β2 tanh2(αX)]2

X2n

]
≤ E[sinh4(αX)X2n] ≤ α4(E[sinh4(α0X)X2n]/α4

0) = O(α4),

E
[

tanh5(αX)
[1− β2 tanh2(αX)]2

X2n+1
]
≤ αE[sinh4(αX)X2n+2] ≤ α5(E[sinh4(α0X)X2n+2]/α4

0) = O(α5).

These remainder terms are bounded by O(α4) and O(α5) respectively, we have proved the lemma.

Lemma H.3 (Series Expansions for Expectations of tanh). Let X ∼ fX(x) = K0(|x|)
π be a random variable

with probability density involving the Bessel function K0, and β = tanh(ν). Then for 0 ≤ α < 1/2:

E[tanh(αX + ν)X2] = β − 9α2β(1− β2) + (1− β2)βO(α4),
E[tanh(αX + ν)X] = α(1− β2)− 3α3(1− β2)(1− 3β2) + (1− β2)O(α5),
E[tanh(αX + ν)] = β − α2β(1− β2) + (1− β2)βO(α4).

Proof. We start by defining these expectations w.r.t the distribution with a density fX(x) = K0(|x|)
π :

l(α, ν) = E[tanh(αX + ν)X2], m(α, ν) = E[tanh(αX + ν)X], n(α, ν) = E[tanh(αX + ν)].

By Lemma H.1 and chain rule, and let Z := αX + ν, t = tanh(Z) = tanh(αX + ν), then:∣∣∣∣ ∂n

∂αn
[tanh2(αX + ν)]

∣∣∣∣ =
∣∣∣∣[ ∂n

∂Zn
tanh2(Z)

]
Xn

∣∣∣∣ = |Pn(t)| · |Xn| ≤ n ! |Xn| .

Since E|X|n < ∞,∀n ∈ Z≥0, we can invoke the dominated convergence theorem to exchange the order of
taking limit and taking the expectations (see Theorem 1.5.8, page 24 of Durrett (2019)):

∂nl(α, ν)
∂αn

= E[Pn(t)Xn+2], ∂nm(α, ν)
∂αn

= E[Pn(t)Xn+1], ∂nn(α, ν)
∂αn

= E[Pn(t)Xn].

By using the fact that Pn(t) |α=0= Pn(β) with β = tanh(ν), we have:[
∂nl(α, ν)
∂αn

]
α=0

= Pn(β)E[Xn+2],
[
∂nm(α, ν)

∂αn

]
α=0

= Pn(β)E[Xn+1],
[
∂nn(α, ν)
∂αn

]
α=0

= Pn(β)E[Xn].

Since m(α, ν) and n(α, ν) have infinitely many derivatives, we can use the Taylor expansion at α = 0 (see
5.15 Theorem, pages 110-111 of Rudin (1976)) to approximate l(α, ν),m(α, ν), n(α, ν):

l(α, ν) =
3∑

n=0
Pn(β)E[Xn+2]α

n

n! + E[P4(t) |α=α′ X4+2]α
4

4! =
3∑

n=0
Pn(β)E[Xn+2]α

n

n! +O(α4),

m(α, ν) =
4∑

n=0
Pn(β)E[Xn+1]α

n

n! + E[P5(t) |α=α′′ X5+1]α
5

5! =
4∑

n=0
Pn(β)E[Xn+1]α

n

n! +O(α5),

n(α, ν) =
3∑

n=0
Pn(β)E[Xn]α

n

n! + E[P4(t) |α=α′′′ X4]α
4

4! =
3∑

n=0
Pn(β)E[Xn]α

n

n! +O(α4),

where α′, α′′, α′′′ are some values between 0 and α, and coefficients of remainders are bounded by:∣∣E[P4(t) |α=α′ X4+2]/4!
∣∣ ≤ ∣∣E[X4+2]

∣∣ · 4 !/4 ! = E[X6] = (5!!)2 = 225,∣∣E[P5(t) |α=α′′ X5+1]/5!
∣∣ ≤ ∣∣E[X5+1]

∣∣ · 5 !/5 ! = E[X6] = (5!!)2 = 225,∣∣E[P4(t) |α=α′′′ X4]/4!
∣∣ ≤ ∣∣E[X4]

∣∣ · 4 !/4 ! = E[X4] = (3!!)2 = 9.

By the recurrence relation Pn+1(t) = (1− t2) d
dtPn(t), P0(t) = t in Lemma H.1, we have

P1(β) = 1− β2, P2(β) = (1− β2) · (−2β), P3(β) = (1− β2) · 2(−1 + 3β2), P4(β) = (1− β2) · 8β(2− 3β2).
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Note that E[X2k] = [(2k − 1)!!]2,E[X2k−1] = 0 for any k ∈ Z+, then:

l(α, ν) = P0(β) + 9
2P2(β)α2 +O(α4) = β − 9α2β(1− β2) +O(α4)

m(α, ν) = P1(β)α+ 3
2P3(β)α3 +O(α5) = α(1− β2)− 3α3(1− β2)(1− 3β2) +O(α5)

n(α, ν) = P0(β) + 1
2P2(β)α2 +O(α4) = β − α2β(1− β2) +O(α4)

By invoking Lemma H.2 for 0 ≤ α < 1/2 and the fact that E[X2k] = [(2k − 1)!!]2 for any k ∈ Z+

E[P4(t) |α=α′ X4+2]α
4

4! = −β(1− β2)E[(tanh2(αX)− (αX)2)X2] + (1− β2)β3O(α4),

E[P5(t) |α=α′′ X5+1]α
5

5! = (1− β2)E[(tanh(αX)− [(αX)− (αX)3/3])X]

+(1− β2)β2E[(tanh3(αX)− (αX)3)X] + (1− β2)β4O(α5),

E[P4(t) |α=α′′′ X4]α
4

4! = −β(1− β2)E[(tanh2(αX)− (αX)2)] + (1− β2)β3O(α4).

By t− t3

3 ≤ tanh(t) ≤ t− t3

3 + 2t5

15 , t
2 − 2t4

3 ≤ tanh2(t) ≤ t2, t3 − t5 ≤ tanh3(t) ≤ t3,∀t ≥ 0, we have:∣∣∣∣E[P4(t) |α=α′ X4+2]α
4

4!

∣∣∣∣ ≤ (1− β2)|β|
(∣∣∣∣α4 · 2

3E[X4+2]
∣∣∣∣+ β2|O(α4)|

)
= (1− β2)|β|O(α4),∣∣∣∣E[P5(t) |α=α′′ X5+1]α

5

5!

∣∣∣∣ ≤ (1− β2)
(∣∣∣∣α5 · 2

15E[X5+1]
∣∣∣∣+ β2 ∣∣α5E[X5+1]

∣∣+ β4|O(α5)|
)

= (1− β2)O(α5),∣∣∣∣E[P4(t) |α=α′′′ X4]α
4

4!

∣∣∣∣ ≤ (1− β2)|β|
(∣∣∣∣α4 · 2

3E[X4]
∣∣∣∣+ β2|O(α4)|

)
= (1− β2)|β|O(α4).

Lemma H.4 (Series Expansions for Expectations of tanh Squared). Let X ∼ fX(x) = K0(|x|)
π be a random

variable with probability density involving the Bessel function K0, and β = tanh(ν). Then for 0 ≤ α < 1/4:

E[tanh2(αX + ν)X2] = β2 + 9α2(1− β2)(1− 3β2) + (1− β2)O(α4),
E[tanh2(αX + ν)X] = 2αβ(1− β2)− 12α3β(1− β2)(2− 3β2) + (1− β2)βO(α5).

Proof. We start by defining these expectations w.r.t the distribution with a density fX(x) = K0(|x|)
π :

m(α, ν) = E[tanh(αX + ν)X], n(α, ν) = E[tanh(αX + ν)].

As shown in the proof of Lemma H.3, we can invoke the dominated convergence theorem to exchange the
order of taking limit and taking the expectations (see Theorem 1.5.8, page 24 of Durrett (2019)):

∂n

∂αn
m(α, ν) = E[Pn(t)Xn+1], ∂n

∂αn
n(α, ν) = E[Pn(t)Xn].

When n = 1, by P1(t) = 1− t2 from Lemma H.1 and E[X2] = 1,E[X] = 0, we have:

E[tanh2(αX + ν)X2] = E[(1− P1(t))X2] = E[X2]− E[P1(t)X2] = 1− ∂m(α, ν)
∂α

,

E[tanh2(αX + ν)X] = E[(1− P1(t))X] = E[X]− E[P1(t)X] = −∂n(α, ν)
∂α

.
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Note that E[X2k] = [(2k − 1)!!]2,E[X2k−1] = 0 for any k ∈ Z+, and since m(α, ν) and n(α, ν) have infinitely
many derivatives, we can use the Taylor expansion at α = 0 (see 5.15 Theorem, pages 110-111 of Rudin
(1976)) to approximate ∂

∂αm(α, ν) and ∂
∂αn(α, ν):

∂m(α, ν)
∂α

=
4∑

n=1
Pn(β)E[Xn+1]

(n− 1)! · α
n−1 + E[P5(t) |α=α′ X5+1]α

4

4! = P1(β) + 9
2P3(β)α2 +O(α4),

∂n(α, ν)
∂α

=
5∑

n=1
Pn(β) E[Xn]

(n− 1)! · α
n−1 + E[P6(t) |α=α′′ X6]α

5

5! = P2(β)α+ 3
2P4(β)α3 +O(α5).

where α′, α′′ are some values between 0 and α, and the coefficients of remainders are bounded by:∣∣E[P5(t) |α=α′ ·X5+1]/4 !
∣∣ ≤ E[X6] · 5 !/4 ! = 5 · (5!!)2,∣∣E[P6(t) |α=α′′ ·X6]/5 !
∣∣ ≤ E[X6] · 6 !/5 ! = 6 · (5!!)2.

By the recurrence relation Pn+1(t) = (1− t2) d
dtPn(t) with P0(t) = t from Lemma H.1, we have

P1(β) = 1− β2, P2(β) = (1− β2) · (−2β), P3(β) = (1− β2) · 2(−1 + 3β2), P4(β) = (1− β2) · 8β(2− 3β2).

Hence, by substituting the values of Pn(β), we have:

E[tanh2(αX + ν)X2] = β2 + 9α2(1− β2)(1− 3β2) +O(α4)
E[tanh2(αX + ν)X] = 2αβ(1− β2)− 12α3β(1− β2)(2− 3β2) +O(α5).

By invoking Lemma H.2 for 0 ≤ α < 1/4 and the fact that E[X2k] = [(2k − 1)!!]2 for any k ∈ Z+

−E[P5(t) |α=α′ X5+1]α
4

4! = (1− β2)(1− 3β2)E[(tanh2(αX)− (αX)2)X2] + (1− β2)β2O(α4),

−E[P6(t) |α=α′′ X6]α
5

5! = 2(1− β2)βE[(tanh(αX)− ((αX)− (αX)3/3))X]

+2(1− β2)(−1 + 2β2)βE[(tanh3(αX)− (αX)3)X] + (1− β2)β2O(α5).

By t− t3

3 ≤ tanh(t) ≤ t− t3

3 + 2t5

15 , t
2 − 2t4

3 ≤ tanh2(t) ≤ t2, t3 − t5 ≤ tanh3(t) ≤ t3,∀t ≥ 0, we have:∣∣∣∣E[P5(t) |α=α′ X5+1]α
4

4!

∣∣∣∣ ≤ (1− β2)
(∣∣∣∣α4 · 2 · 2

3E[X4+2]
∣∣∣∣+ β2|O(α4)|

)
= (1− β2)O(α4),∣∣∣∣E[P6(t) |α=α′′ X6]α

5

5!

∣∣∣∣ ≤ (1− β2)|β|
(∣∣∣∣α5 · 2 · 2

15E[X5+1]
∣∣∣∣+
∣∣α5 · 2 · E[X5+1]

∣∣+ β2|O(α5)|
)

= (1− β2)|β|O(α5).

Lemma H.5 (Expectations w.r.t Gaussian Distribution). Let X ∼ fX(x) = K0(|x|)
π be a random variable

with probability density involving the Bessel function K0, and Z1, Z2
i.i.d.∼ N (0, 1). Then:

E[tanh(αX + ν)X2] = E[tanh(αZ1Z2 + ν)Z2
2 ] + E[tanh′(αZ1Z2 + ν)αZ1Z

3
2 ],

E[tanh(αX + ν)X] = E[tanh(αZ1Z2 + ν)Z1Z2] = E[tanh′(αZ1Z2 + ν)αZ2
2 ],

E[tanh(αX + ν)] = E[tanh(αZ1Z2 + ν)],
−αE[tanh2(αX + ν)X] = E[tanh′(αZ1Z2 + ν)αZ1Z2],

where tanh′(·) is the derivative of tanh(·).

Proof. For α = 0, We can justify the above identities by E[X2] = E[Z2
2 ] = 1,E[X] = E[Z1Z2] = 0, therefore,

we only need to prove the identities for α ̸= 0. By applying Stein’s lemma (see Lemma 2.1 of Ross (2011))
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with respect to Z1, and noting the fact that X := Z1Z2 ∼ fX(x) = K0(|x|)
π for any Z1, Z2

i.i.d.∼ N (0, 1) (see
page 50, section 4.4 of chapter 12 in Johnson et al. (1970)), we have:

E[tanh(αZ1Z2 + ν)Z2
2 ] = 1

α
E
[
∂ ln cosh(αZ1Z2 + ν)Z2

∂Z1

]
= 1
α
E[ln cosh(αZ1Z2 + ν)Z2 × Z1],

= 1
α
E[ln cosh(αX + ν)X],

E[tanh′(αZ1Z2 + ν)αZ2
2 ] = E

[
∂ tanh(αZ1Z2 + ν)Z2

∂Z1

]
= E[tanh(αZ1Z2 + ν)Z2 × Z1],

= E[tanh(αX + ν)X],

E[tanh′(αZ1Z2 + ν)αZ1Z
3
2 ] = E

[
∂ tanh(αZ1Z2 + ν)Z1Z

2
2

∂Z1
− tanh(αZ1Z2 + ν)Z2

2

]
,

= E[tanh(αX + ν)X2]− 1
α
E[ln cosh(αX + ν)X].

By combining the above equations, the first two identities are proved. For the last two identities, we note
that E[X] = 0, tanh′(·) = 1− tanh2(·), then:

E[tanh′(αZ1Z2 + ν)αZ1Z2] = −αE[tanh2(αX + ν)X],
E[tanh(αZ1Z2 + ν)] = E[tanh(αX + ν)].
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H.2 Approximations of EM Update Rules in Finite Low SNR Regime

Theorem H.6 (Approximations of EM Update Rules in Finite Low SNR Regime). In the finite low SNR
regime where η = ∥θ∗∥/σ ≲ 1, the EM update rules are:

M(θ, ν)/σ = e⃗1
[
E[tanh(αX + ν)X] + ηβ∗ρE[tanh(αX + ν)X2] +O(η2α)

]
+ e⃗2

[
ηβ∗

√
1− ρ2

(
E[tanh(αX + ν)]− αE[tanh2(αX + ν)X]

)
+O(η2α)

]
,

N(θ, ν) = E[tanh(αX + ν)] + ηβ∗ρE[tanh(αX + ν)X] +O(η2α2),

where X ∼ fX(x) = K0(|x|)
π is a random variable with probability density involving the Bessel function

K0, β∗ = tanh ν∗ = π∗(1) − π∗(2), ρ = ⟨θ,θ∗⟩
∥θ∥·∥θ∗∥ is the cosine of angle between θ and θ∗, e⃗1 = θ/∥θ∥ and

e⃗2 = θ∗−⟨θ∗,e⃗1⟩e⃗1
∥θ∗−⟨θ∗,e⃗1⟩e⃗1∥ form an orthonormal basis, and α = ∥θ∥/σ, β = tanh ν = π(1)− π(2).

Proof. We start by viewing the response variable y = ε + ∆ε as pure noise ε ∼ N (0, σ2) with some small
perturbation ∆ε := (−1)z+1⟨θ∗, x⟩, where x ∼ N (0, Id). To simplify our analysis, we introduce several
notations. First, let ρ := ⟨θ,θ∗⟩

∥θ∥·∥θ∗∥ denote the cosine of angle between θ and θ∗. Next, we define a pair of
orthonormal vectors: e⃗1 := θ/∥θ∥ and e⃗2 := θ∗−⟨θ∗,e⃗1⟩e⃗1

∥θ∗−⟨θ∗,e⃗1⟩e⃗1∥ . For the noise terms, we introduce three independent
standard Gaussians: Z1 := ε/σ ∼ N (0, 1) and Z2 := ⟨x, e⃗1⟩ = ⟨x, θ⟩/∥θ∥ ∼ N (0, 1), Z3 := ⟨x, e⃗2⟩ ∼ N (0, 1).
Finally, for the low SNR regime where η := ∥θ∗∥/σ ≲ 1, we define α := ∥θ∥/σ and β := tanh ν = π(1)− π(2).
Then, we can express ∆Z1 := ∆ε/σ as:

∆Z1 = ∆ε/σ = (−1)z+1⟨θ∗, x⟩/σ = (−1)z+1η(ρZ2 +
√

1− ρ2Z3) ∼ N (0, η2)

Then, we can define F,G as the following functions:

F (Z) := tanh(αZ2Z + ν)Z, G(Z) := tanh(αZ2Z + ν).

Consequently, we can express the EM update rules M(θ, ν), N(θ, ν) at population level as:

M(θ, ν)/σ = E
[
tanh

(
y⟨x, θ⟩
σ2 + ν

)
yx

]
/σ = E[F (Z1 + ∆Z1)(e⃗1Z2 + e⃗2Z3)],

N(θ, ν) = E
[
tanh

(
y⟨x, θ⟩
σ2 + ν

)]
= E[G(Z1 + ∆Z1)].

By introducing the derivative of tanh in Lemma H.1 and invoking Taylor’s theorem with remainder (see 5.15
Theorem, pages 110-111 of Rudin (1976)), we have:

F (Z1 + ∆Z1) = F (Z1) + F ′(Z1)∆Z1 + 1
2F

′′(Z1 + ξ∆Z1)(∆Z1)2,

G(Z1 + ∆Z1) = G(Z1) +G′(Z1)∆Z1 + 1
2G

′′(Z1 + ζ∆Z1)(∆Z1)2,

where ξ, ζ ∈ (0, 1), remainders are bounded by (use maxt∈[−1,1] |P2(t)| ≤ 2,maxt∈[−1,1] |P1(t)| ≤ 1):

|F ′′(Z1 + ξ∆Z1)| = |(αZ2)2(Z1 + ξ∆Z1)P2(G(Z1 + ξ∆Z1)) + 2(αZ2)P1(G(Z1 + ξ∆Z1))|
≤ 2α2Z2

2 (|Z1|+ |∆Z1|) + 2α|Z2|,
|G′′(Z1 + ζ∆Z1)| = |(αZ2)2P2(G(Z1 + ζ∆Z1))| ≤ 2α2Z2

2 .
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and by the orthogonality of e⃗1, e⃗2 and |∆Z1|3 ≤ 4η3(|Z2|3 + |Z3|3), (∆Z1)2 ≤ 2η2(|Z2|2 + |Z3|2):∣∣∣∣E〈1
2F

′′(Z1 + ξ∆Z1)(∆Z1)2(e⃗1Z2 + e⃗2Z3), e⃗1

〉∣∣∣∣ ≤ 1
2E
∣∣F ′′(Z1 + ξ∆Z1)(∆Z1)2Z2

∣∣
≤ E[[α2Z2

2 (|Z1|+ |∆Z1|) + α|Z2|](∆Z1)2|Z2|]
≤ 2η2E[(α2|Z1||Z2|3 + α|Z2|2)(|Z2|2 + |Z3|2)] + 4η3α2E[|Z2|3(|Z2|3 + |Z3|3)]

= 8η2α(1 + 5
π
α) + 4 · (15 + 8

π
)η3α2 = O(η2α),∣∣∣∣E〈1

2F
′′(Z1 + ζ∆Z1)(∆Z1)2(e⃗1Z2 + e⃗2Z3), e⃗2

〉∣∣∣∣ ≤ 1
2E
∣∣F ′′(Z1 + ζ∆Z1)(∆Z1)2Z3

∣∣
≤ E[[α2Z2

2 (|Z1|+ |∆Z1|) + α|Z2|](∆Z1)2|Z3|]
≤ 2η2E[(α2|Z1||Z2|2|Z3|+ α|Z2||Z3|)(|Z2|2 + |Z3|2)] + 4η3α2E[|Z2|2|Z3|(|Z2|3 + |Z3|3)]

= 16
π
η2α(1 + 5

4α) + 4 · (3 + 16
π

)η3α2 = O(η2α),

∣∣∣∣E [1
2G

′′(Z1 + ζ∆Z1)(∆Z1)2
]∣∣∣∣ ≤ 1

2E
∣∣G′′(Z1 + ζ∆Z1)(∆Z1)2∣∣ ≤ E

[
α2Z2

2 (∆Z1)2]
≤ 2η2α2E[|Z2|2(|Z2|2 + |Z3|2)] = 8η2α2 = O(η2α2).

Note E[Z3] = 0,E[Z2
3 ] = 1 and Z1, Z2, Z3 are independent and E[(−1)z+1] = β∗ = tanh ν∗, then:

M(θ, ν)/σ = E[(F (Z1) + F (Z1)∆Z1)(e⃗1Z2 + e⃗2Z3)] + e⃗1O(η2α) + e⃗2O(η2α)
= e⃗1

[
E[F (Z1)Z2] + ηβ∗ρE[F ′(Z1)Z2

2 ] +O(η2α)
]

+ e⃗2

[
ηβ∗

√
1− ρ2E[F ′(Z1)] +O(η2α)

]
,

N(θ, ν) = E[G(Z1) +G′(Z1)∆Z1] +O(η2α)
= E[G(Z1)] + ηβ∗ρE[G′(Z1)Z2] +O(η2α2).

Let X := Z1Z2 ∼ fX(x) = K0(|x|)
π , by invoking Lemma H.5 for expectations w.r.t Gaussians, then:

E[F (Z1)Z2] = E[tanh(αZ1Z2 + ν)Z1Z2] = E[tanh(αX + ν)X],
E[F ′(Z1)Z2

2 ] = E[tanh(αZ1Z2 + ν)Z2
2 ] + E[tanh′(αZ1Z2 + ν)αZ1Z

3
2 ] = E[tanh(αX + ν)X2],

E[F ′(Z1)] = E[tanh(αZ1Z2 + ν)] + E[tanh′(αZ1Z2 + ν)αZ1Z2]
= E[tanh(αX + ν)]− αE[tanh2(αX + ν)X],

E[G(Z1)] = E[tanh(αZ1Z2 + ν)] = E[tanh(αX + ν)],
E[G′(Z1)Z2] = E[tanh′(αZ1Z2 + ν)αZ2

2 ] = E[tanh(αX + ν)X].

Substituting the above results into the EM update rules, we have:

M(θ, ν)/σ = e⃗1
[
E[tanh(αX + ν)X] + ηβ∗ρE[tanh(αX + ν)X2] +O(η2α)

]
+ e⃗2

[
ηβ∗

√
1− ρ2

(
E[tanh(αX + ν)]− αE[tanh2(αX + ν)X]

)
+O(η2α)

]
,

N(θ, ν) = E[tanh(αX + ν)] + ηβ∗ρE[tanh(αX + ν)X] +O(η2α2).

Therefore, we have established exact expressions of the EM update rules M(θ, ν) and N(θ, ν) for the
regression parameters θ and the mixing weight imbalance tanh ν = π(1) − π(2) in the low SNR regime
where η = ∥θ∗∥/σ ≲ 1. These expressions involve expectations with respect to the random variable
X ∼ fX(x) = K0(|x|)

π , where K0 is the modified Bessel function of the second kind.

Remark. When |ρ| = 1, (∆Z1)|ρ|=1 = (−1)z+1ηZ2 is independent of Z3, the remainder satisfies:

E
〈

1
2F

′′(Z1 + ξ∆Z1)(∆Z1)2(e⃗1Z2 + e⃗2Z3), e⃗2

〉
|ρ|=1

= E
[

1
2F

′′(Z1 + ∆Z1)(∆Z1)2
]

|ρ|=1
E[Z3]︸ ︷︷ ︸

=0

= 0.
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H.3 Approximate Dynamic Equations in Finite Low SNR Regime
Theorem H.7. For the EM iterations of αt := ∥θt∥/σ, βt := tanh νt, ρt := ⟨θt, θ∗⟩/∥θt∥∥θ∗∥, given
αt < 1/4 and η = ∥θ∗∥/σ ≲ 1 in low SNR regime, we have the approximate equations for αt+1, βt+1:

αt+1 = E[tanh(αtX + νt)X] + ηβ∗ρtE[tanh(αtX + νt)X2] + η2O
(

[β∗]2[βt]2/(1− [βt]2) ∨ [αt]2
αt

)
,

βt+1 = E[tanh(αtX + νt)] + ηβ∗ρtE[tanh(αtX + νt)X] + η2O([αt]2).

Furthermore, with the notations Cη = αt (1−[βt]2)
|βt·β∗| , C

′
η =

√
1− [βt]2, when η ≲ Cη ∧ C ′

η, we have:

ρt+1 = ρt + (1− [ρt]2) · ηβ∗(E[tanh(αtX + νt)]− αtE[tanh2(αtX + νt)X])/E[tanh(αtX + νt)X]

+ O

((
η

C ′
η

)2
)

+ ρtO

((
η

Cη

)2
)

+ (1− [ρt]2) · O
((

η

Cη

)3
)
,

where X is a random variable with the density function X ∼ fX(x) = K0(|x|)/π involving the Bessel
function K0.

Proof. To simplify the notations, we let αt, βt, ρt, e⃗t
1, e⃗

t
2 denote α, β, ρ, e⃗1, e⃗2 at iteration t. We start by using

Lemma H.3 and Lemma H.4, we define st := [αt]2(1− [βt]2), then:

It
0 := E[tanh(αtX + νt)] = βt(1− st[1 +O([αt]2)]),
It

1 := E[tanh(αtX + νt)X] = (st/αt)[1− 3[αt]2(1− 3[βt]2) +O([αt]4)],
It

2 := E[tanh(αtX + νt)X2] = βt(1− 9st[1 +O([αt]2)]),
J t := E[tanh(αtX + νt)]− αtE[tanh2(αtX + νt)X] = βt(1− 3st[1 +O([αt]2)]).

In the low SNR regime where η = ∥θ∗∥/σ ≲ 1, by invoking the proven Theorem in Subsection H.2, we have:

M(θt, νt)/σ = e⃗t
1
[
It

1 + ηβ∗ρtIt
2 +O(η2αt)

]
+ e⃗t

2

[
ηβ∗

√
1− [ρt]2J t +O(η2αt)

]
,

N(θt, νt) = It
0 + ηβ∗ρtIt

1 +O(η2[αt]2).

For αt+1 = ∥M(θt, νt)∥/σ, βt+1 = N(θt, νt), by applying the triangle inequality, we have:

αt+1 =
√

(It
1 + ηβ∗ρtIt

2)2 + (1− [ρt]2)(ηβ∗J t)2 +O(η2αt),

βt+1 = It
0 + ηβ∗ρtIt

1 +O(η2[αt]2).

The cosine ρt+1 of angle between θt+1 and θ∗ is determined by the inner product of M(θt, νt)/σ and
θ∗/∥θ∗∥ = ρte⃗t

1 +
√

1− [ρt]2e⃗t
2:

ρt+1αt+1 =
〈
M(θt, νt)/σ, θ∗/∥θ∗∥

〉
= ρtIt

1 + ηβ∗[ρt]2It
2 + ηβ∗(1− [ρt]2)J t +O(η2αt).

To derive the approximation for αt+1 when η is small enough, we first note that following inequality:

r + ϵ cos γ ≤
√
r2 + ϵ2 + 2rϵ cos γ ≤ r + ϵ cos γ + ϵ2

2r = r + ϵ cos γ +O
(
ϵ2

r

)
.

By letting r = It
1 + ηβ∗ρt(It

2 − J t), ϵ = ηβ∗J t, cos γ = ρt, we have:

αt+1 = It
1 + ηβ∗ρtIt

2 + η2O
(

[β∗]2[βt]2/(1− [βt]2) ∨ [αt]2
αt

)
.

where It
2 − J t = −6βtst[1 +O([αt]2)], and r = O(st/αt) = (1− [βt]2)O(αt) when η ≤ O(1) ≤ 1/(αt|βtρtβ∗|),

namely I1 ≳ η|β∗ρt(It
2 − J t)|.
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Furthurmore, when η
αt ≲ (1−[βt]2)

|βt·β∗| , we have It
1 ≳ η|β∗ρtIt

2|∨η2[β∗]2[βt]2/(αt(1− [βt]2)); when η ≲
√

1− [βt]2,
we have It

1 ≳ η2αt. Therefore, if η ≲ min
(
αt (1−[βt]2)

|βt·β∗| ,
√

1− [βt]2
)

= αt (1−[βt]2)
|βt·β∗| ∧

√
1− [βt]2, we have

It
1 + ηβ∗ρtIt

2 = O(It
1) = O(st/αt) = (1− [βt]2)O(αt), αt+1 = O(It

1) = O(st/αt) = (1− [βt]2)O(αt).

For the simplicity of notations, we define Cη := αt (1−[βt]2)
|βt·β∗| , C

′
η :=

√
1− [βt]2, then our assumptions on

η can be rewritten as η ≲ Cη ∧ C ′
η. By using such fact 1/(1 + x) = 1 + O(|x|),∀x ∈ [−1/2, 1/2] and

It
1 + ηβ∗ρtIt

2 = (1− [βt]2)O(αt), then:

(It
1 + ηβ∗ρtIt

2)/αt+1 = 1 +O
((

η

Cη

)2
∨
(
η

C ′
η

)2
)
,

Similary, by letting x = (αt+1 − It
1)/It

1 and note that It
1 = (1− [βt]2)O(αt), It

2 = O(βt), J t = O(|βt|), then:

1/αt+1 = 1
It

1

[
1 + ρtO

(
η

Cη

)
+O

((
η

Cη

)2
∨
(
η

C ′
η

)2
)]

,

ηβ∗J t/αt+1 = ηβ∗J t/It
1 + ρtO

((
η

Cη

)2
)

+O
((

η

Cη

)[(
η

Cη

)2
∨
(
η

C ′
η

)2
])

.

Note that αt+1 = O(It
1) = O(st/αt) = (1− [βt]2)O(αt), therefore we have:

O(η2αt)/αt+1 = O
((

η

C ′
η

)2
)
.

Note the following relation that we obtained earlier:

ρt+1 = ρt · (It
1 + ηβ∗ρtIt

2)/αt+1 + (1− [ρt]2) · (ηβ∗J t/αt+1) +O(η2αt)/αt+1,

by combining the above results and invoking the assumption η ≲ Cη ∧ C ′
η, then we have:

ρt+1 = ρt + (1− [ρt]2) · ηβ∗J t/It
1 +O

((
η

C ′
η

)2
)

+ ρtO

((
η

Cη

)2
)

+ (1− [ρt]2) · O
((

η

Cη

)3
)
.

In summary, with the notations Cη = αt (1−[βt]2)
|βt·β∗| , C

′
η =

√
1− [βt]2, given αt < 1/4, η ≲ 1, we have:

αt+1 = It
1 + ηβ∗ρtIt

2 + αt(1− [βt]2)O
((

η

Cη

)2
∨
(
η

C ′
η

)2
)
,

βt+1 = It
0 + ηβ∗ρtIt

1 +O(η2[αt]2),

with the assumption η ≲ Cη ∧ C ′
η, we also have:

ρt+1 = ρt + (1− [ρt]2) · ηβ∗J t/It
1 +O

((
η

C ′
η

)2
)

+ ρtO

((
η

Cη

)2
)

+ (1− [ρt]2) · O
((

η

Cη

)3
)
.

Remark. When |ρt| = 1, by noting the remark in Subsection H.2, the remainder term of the EM update
rules in the direction of e⃗t

2 is exactly zero, namely [e⃗t
2O(η2αt)]|ρt|=1 = 0⃗, thus we have:[

M(θt, νt)/σ
]

|ρt|=1 = e⃗t
1
[
It

1 + ηβ∗ρtIt
2 +O(η2αt)

]
.

Therefore, we have |ρt+1| = 1 if |ρt| = 1 since θ∗/∥θ∗∥ = sgn(ρt)e⃗t
1 when |ρt| = 1 and

|ρt+1| = |⟨M(θt, νt)/∥M(θt, νt)∥, θ∗/∥θ∗∥⟩| = |⟨e⃗t
1, sgn(ρt)e⃗t

1⟩| = |⟨e⃗t
1, e⃗

t
1⟩| = 1.
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Theorem H.8 (Dynamic Equations of EM Update Rules in Low SNR Regime). For the EM iterations of
αt := ∥θt∥/σ, βt := tanh νt, ρt := ⟨θt, θ∗⟩/∥θt∥∥θ∗∥, given αt < 1/4 and η = ∥θ∗∥/σ ≲ 1 in low SNR regime,
we have the approximate dynamic equations for αt+1, βt+1:

αt+1 = αt(1− [β2]) + ηβ∗ρtβt(1− 9(1− [βt]2)[αt]2)

+ (1− [β2])O([αt]3) + η2O
(

[β∗]2[βt]2/(1− [βt]2) ∨ [αt]2
αt

)
,

βt+1 = βt(1− (1− [β2])[αt]2) + ηβ∗ρtαt(1− [βt]2) + (1− [β2])O([αt]3) + η2O
(
[αt]2

)
Furthermore, with the notations Cη = αt (1−[βt]2)

|βt·β∗| , C
′
η =

√
1− [βt]2, when η ≲ Cη ∧ C ′

η, we have:

ρt+1 = ρt + (1− [ρt]2) · ηβ∗ β
t(1− 6[αt]2[βt]2)
αt(1− [βt]2)

+ (1− [ρt]2) · ηβ∗βt(1/(1− [βt]2) + 1)O([αt]3)

+ O

((
η

C ′
η

)2
)

+ ρtO

((
η

Cη

)2
)

+ (1− [ρt]2) · O
((

η

Cη

)3
)
,

Proof. By using Lemma H.3 and Lemma H.4 and defining st := [αt]2(1− [βt]2), we have:

It
0 := E[tanh(αtX + νt)] = βt(1− st[1 +O([αt]2)]),
It

1 := E[tanh(αtX + νt)X] = αt(1− [βt]2)[1− 3[αt]2(1− 3[βt]2) +O([αt]4)],
It

2 := E[tanh(αtX + νt)X2] = βt(1− 9st[1 +O([αt]2)]),
J t := E[tanh(αtX + νt)]− αtE[tanh2(αtX + νt)X] = βt(1− 3st[1 +O([αt]2)]).

By substituting the above results into the approximate dynamic equations in proven Theorem H.7, note that
(1− [β2])O([αt]3) + ηβ∗ρtβt(1− [βt]2)O([αt]4) = (1− [βt]2)O([αt]3), we have:

αt+1 = αt(1− [β2]) + ηβ∗ρtβt(1− 9(1− [βt]2)[αt]2)

+ (1− [β2])O([αt]3) + η2O
(

[β∗]2[βt]2/(1− [βt]2) ∨ [αt]2
αt

)
.

Note that βt(1− [βt]2)O([αt]4) + ηβ∗ρt(1− [βt]2)O([αt]3) = (1− [βt]2)O([αt]3), we have:

βt+1 = βt(1− (1− [β2])[αt]2) + ηβ∗ρtαt(1− [βt]2) + (1− [β2])O([αt]3) + η2O
(
[αt]2

)
.

Furthermore, with the notations Cη = αt (1−[βt]2)
|βt·β∗| , C

′
η =

√
1− [βt]2, when η ≲ Cη ∧ C ′

η, we have:

J t/It
1 = βt/(1− [βt]2)

αt
· 1

1− 3[αt]2(1− 3[βt]2) +O([αt]4) − 3αtβt 1 +O([αt]2)
1− 3[αt]2(1− 3[βt]2) +O([αt]4)

=
(
βt/(1− [βt]2)

αt
+ 3 αtβt

1− [βt]2 − 9 αt[βt]3
1− [βt]2 + βt

1− [βt]2O([αt]3)
)
− 3αtβt + βtO([αt]3)

= βt(1− 6[αt]2[βt]2)
αt(1− [βt]2) + βt(1/(1− [βt]2) + 1)O([αt]3),

hence,

ρt+1 = ρt + (1− [ρt]2) · ηβ∗ β
t(1− 6[αt]2[βt]2)
αt(1− [βt]2)

+ (1− [ρt]2) · ηβ∗βt(1/(1− [βt]2) + 1)O([αt]3)

+ O

((
η

C ′
η

)2
)

+ ρtO

((
η

Cη

)2
)

+ (1− [ρt]2) · O
((

η

Cη

)3
)
.
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