
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS GENERALIZATION UNDER TOPOLOGICAL
SHIFTS: A DIFFUSION PDE PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

The capability of generalization is a cornerstone for the success of modern learning
systems. For non-Euclidean data that particularly involves topological features,
one important aspect neglected by prior studies is how learning-based models
generalize under topological shifts. This paper makes steps towards understanding
the generalization of graph neural networks operated on varying topologies through
the lens of diffusion PDEs. Our analysis first reveals that the upper bound of
the generalization error yielded by local diffusion equation models, which are
intimately related to message passing over observed structures, would exponentially
grow w.r.t. topological shifts. In contrast, extending the diffusion operator to a non-
local counterpart that learns latent structures from data can in principle control the
generalization error under topological shifts even when the model accommodates
observed structures. On top of these results, we propose Advective Diffusion
Transformer inspired by advective diffusion equations serving as a physics-inspired
continuous model that synthesizes observed and latent structures for graph learning.
The model demonstrates superiority in various downstream tasks across information
networks, molecular screening and protein interactions.

1 INTRODUCTION

Learning representations for non-Euclidean data is essential for geometric deep learning. Graph-
structured data in particular has attracted increasing attention, as graphs are a very popular mathe-
matical abstraction for systems of relations and interactions that can be applied from microscopic
scales (e.g. molecules) to macroscopic ones (social networks). The most common framework for
learning on graphs is graph neural networks (GNNs) (Scarselli et al., 2008; Gilmer et al., 2017; Kipf
& Welling, 2017), which operate by propagating information between adjacent nodes of the graph
networks. GNNs are intimately related to diffusion equations on graphs (Atwood & Towsley, 2016;
Klicpera et al., 2019; Chamberlain et al., 2021a) and can be seen as discretized versions thereof.
Considering GNNs as diffusion equations offers powerful tools from the domain of partial differential
equations (PDEs), allowing us to study the expressive power (Bodnar et al., 2022), behaviors such
as over-smoothing (Rusch et al., 2023) and over-squashing (Topping et al., 2022), the settings of
missing features (Rossi et al., 2022), and guide architectural choices (Di Giovanni et al., 2022).

While significant efforts have been devoted to understanding the expressive power of GNNs and
similar architectures for graph learning, the generalization capabilities of such methods are largely an
open question. Recent works attempt to analyze GNNs’ generalization from various perspectives
such as extrapolation in feature space (Xu et al., 2021), subgroup fairness (Ma et al., 2021), causal
invariance principle (Wu et al., 2022), and random graph models (Baranwal et al., 2023). However,
most of these works study the distribution shifts of features and labels. In many critical real-world
settings, the training and testing graph topologies can be generated from different distributions (e.g.,
molecular structures with diverse drug likeness) (Koh et al., 2021; Hu et al., 2021; Bazhenov et al.,
2023; Zhang et al., 2023), a phenomenon we refer to as “topological distribution shift”. This can
be a predominant nature of non-Euclidean data in contrast with commonly studied feature and label
shifts in Euclidean space. Despite its practical significance, how GNNs generalize under topological
shifts still remains unclear.

In this paper, we aim to study the generalization limits of GNNs under topological shifts from
the perspective of diffusion PDEs. We show that current models which rely on message passing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

over observed structures and are related to local diffusion equations would lead to the upper bound
of generalization error exponentially growing w.r.t. the variation magnitude of graph topologies.
Extending the local diffusion operator to a non-local one that generalizes message passing to latent
fully-connected graphs can in principle control the generalization error under topological shifts.

advection: local message passing
diffusion: global attention

latent spaceobserved
space

Graph Advective Diffusion

Figure 1: Illustration of ADiT.

Built upon these results, we introduce a physics-
inspired continuous model for learning graph repre-
sentations derived from advective diffusion equations.
We connect advective diffusion with a Transformer-
like architecture for generalization against topolog-
ical shifts (as illustrated in Fig. 1): the non-local
diffusion term (instantiated as global attention) aims
to capture latent interactions learned from observed
data; the advection term (instantiated as local mes-
sage passing) accommodates the topological patterns
specific to the observed data at hand. We prove that
the closed-form solution of this diffusion system pos-
sesses the capability to control the generalization
error caused by topological shifts to arbitrary orders, which further produces a guarantee of the
desired level of generalization.

For implementation, we resort to numerical scheme based on the Padé-Chebyshev theory (Golub &
Van Loan, 1989) for efficiently computing the PDE’s closed-form solution. Experiments show that
our model, which we call Advective Diffusion Transformer (ADiT), offers superior generalization
performance across various downstream tasks in diverse domains, including information networks,
molecular screening, and protein interactions.

2 BACKGROUND AND PRELIMINARIES

We recapitulate diffusion equations on manifolds (Freidlin & Wentzell, 1993; Medvedev, 2014) and
their connection with graph learning.

Diffusion on Riemannian manifolds. Let Ω denote an abstract domain, which we assume here to be
a Riemannian manifold (Eells & Sampson, 1964). A key feature distinguishing an n-dimensional
Riemannian manifold from a Euclidean space is the fact that it is only locally Euclidean, in the sense
that at every point u ∈ Ω one can construct n-dimensional Euclidean tangent space TuΩ ∼= Rn that
locally models the structure of Ω. The collection of such spaces (referred to as the tangent bundle
and denoted by TΩ) is further equipped with a smoothly-varying inner product (Riemannian metric).

Now consider some quantity (e.g., temperature) as a function of the form q : Ω → R, which we
refer to as a scalar field. Similarly, we can define a (tangent) vector field Q : Ω → TΩ, associating
to every point u on a manifold a tangent vector Q(u) ∈ TuΩ, which can be thought of as a local
infinitesimal displacement. We use Q(Ω) and Q(TΩ) to denote the functional spaces of scalar and
vector fields, respectively. The gradient operator ∇ : Q(Ω) → Q(TΩ) takes scalar fields into vector
fields representing the local direction of the steepest change of the field. The divergence operator is
the adjoint of the gradient and maps in the opposite direction, ∇∗ : Q(TΩ) → Q(Ω).

A manifold diffusion process models the evolution of a quantity (e.g., chemical concentration) due to
its difference across spatial locations on Ω. Denoting by q(u, t) : Ω× [0,∞) → R the quantity over
time t, the process is described by a PDE (diffusion equation) (Romeny, 2013):

∂q(u, t)

∂t
= ∇∗ (S(u, t)⊙∇q(u, t)) , t ≥ 0, u ∈ Ω, with initial conditions q(u, 0) = q0(u),

and possibly additional boundary conditions if Ω has a boundary. S denotes the diffusivity of
the domain. It is typical to distinguish between an isotropic (location-independent diffusivity),
non-homogeneous (location-dependent diffusivity S = s(u) ∈ R), and anisotropic (location- and
direction-dependent S(u) ∈ Rn×n) settings. In the cases studied below, we assume the dependence
of diffusivity on locations is via a function of the quantity itself, i.e., S = S(q(u, t)).

Diffusion on Graphs. Recent works adopt diffusion equations as a foundation principle for graph
representation learning (Chamberlain et al., 2021a;b; Thorpe et al., 2022; Bodnar et al., 2022; Choi

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023; Rusch et al., 2023), employing analogies between calculus on manifolds and graphs. Let
G = (V, E) be a graph with nodes V and edges E , represented by the |V| × |V| adjacency matrix A.
Let X = [xu]u∈V denote a |V| ×D matrix of node features, analogous to scalar fields on manifolds.
The graph gradient (∇X)uv = xv − xu defines edge features for (u, v) ∈ E , analogous to vector
fields on manifolds. Similarly, the graph divergence of edge features E = [euv](u,v)∈E , defined as the
adjoint (∇∗E)u =

∑
v:(u,v)∈E euv , produces node features. Diffusion models replace discrete GNN

layers with continuous time-evolving node embeddings Z(t) = [zu(t)], where zu(t) : [0,∞) → Rd

driven by the diffusion equation:
∂Z(t)

∂t
= ∇∗ (S(Z(t);A)⊙∇Z(t)) , t ≥ 0, with initial conditions Z(0) = ϕenc(X), (1)

where ϕenc is a node-wise MLP encoder and w.l.o.g., the diffusivity S(Z(t);A) over the graph
can be defined as a |V| × |V| matrix-valued function dependent on A, which measures the rate of
information flows between node pairs. With the graph gradient and divergence, Eqn. 1 becomes

∂Z(t)

∂t
= (C(Z(t);A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X), (2)

where C(Z(t);A) is a |V| × |V| coupling matrix associated with the diffusivity. Eqn. 2 yields a dy-
namics from t = 0 to an arbitrary given stopping time T , where the latter yields node representations
for prediction, e.g., Ŷ = ϕdec(Z(T)). The coupling matrix determines the interactions between
different nodes in the graph, and its common instantiations include normalized graph adjacency
(non-parametric) and learnable attention matrix (parametric), in which cases the finite-difference
numerical iterations for solving Eqn. 2 correspond to the discrete propagation layers of common
GNNs (Chamberlain et al., 2021a) and Transformers (Wu et al., 2023) (see Appendix A for details).

It is typical to tacitly make a closed-world assumption, i.e., the graph topologies of training and
testing data are generated from the same distribution. However, the challenge of generalization arises
when the testing topology is different from the training one. In such an open-world regime, it still
remains unclear how graph diffusion equations and, more broadly, learning-based models on graphs
(e.g., GNNs) extrapolate and generalize to new unseen structures.

3 CAN GRAPH DIFFUSION GENERALIZE?

As a prerequisite for analyzing the generalization behaviors of graph learning models, we need to
characterize how topological shifts occur in nature. In general sense, extrapolation is impossible
without any exposure to the new data or prior knowledge about the data-generating mechanism.
In our work, we assume testing data is strictly unknown during training, in which case structural
assumptions become necessary for authorizing generalization.

3.1 PROBLEM FORMULATION: GRAPH DATA GENERATION

Figure 2: The data-generating causal
mechanism with topological shifts
caused by environment E. The solid
(resp. dashed) nodes represents observed
(resp. latent) random variables.

We present the causal mechanism of graph data gener-
ation in Fig. 2 as a hypothesis, inspired by the graph
limits (Lovász & Szegedy, 2006; Medvedev, 2014) and
random graph models (Snijders & Nowicki, 1997). In
graph theory, the topology of a graph G = (V, E) can
be assumed to be generated by a graphon (or continu-
ous graph limit), a random symmetric measurable func-
tion W : [0, 1]2 → [0, 1], which is an unobserved latent
variable. In our work, we generalize this data-generating
mechanism to include alongside graph adjacency also node
features and labels:

i) Each node u ∈ V has a latent i.i.d. variable Uu ∼
U [0, 1]. The node features are a random variable X =
[Xu] generated from each Uu through a certain node-wise function Xu = g(Uu;W). We denote by
matrix X a particular realization of the random variable X .

ii) Similarly, the graph adjacency A = [Auv] is a random variable generated through a pairwise
function Auv = h(Uu, Uv;W,E) additionally dependent on the environment E. The change of E

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

happens when it transfers from training to testing, resulting in a different distribution of A. We denote
by A a particular realization of the adjacency matrix.

iii) The label Y can be specified in certain forms. As we assume in below, Y is generated by a
function over sets, Y = r({Uv∈V}, A;W). Denote by Y a realization of Y .

The above process formalizes the data-generating mechanism behind various data of inter-dependent
nature, where the graph data (X,A,Y) is generated from the joint distribution p(X,A, Y |E) with
a specific environment. The learning problem boils down to finding parameters θ of a parametric
function Γθ(A,X) that establishes the predictive mapping from observed node features X and graph
adjacency A to the label Y. Γθ is typically implemented as a GNN, which is expected to possess
sufficient expressive power (in the sense that ∃θ such that Γθ(A,X) ≈ Y) as well as generalization
capability under topological shifts (i.e., when the observed graph topology varies from training to
testing, which in our model amounts to the change in E). While significant attention in the literature
has been devoted to the former property (Morris et al., 2019; Xu et al., 2019; Bouritsas et al., 2023;
Papp et al., 2021; Balcilar et al., 2021; Bodnar et al., 2022); the latter is largely an open question.

3.2 GENERALIZATION ANALYSIS WITH TOPOLOGICAL SHIFTS

Building upon the connection between GNNs and diffusion, we next study the extrapolation behavior
of diffusion equations under topological shifts, which will shed light on how GNNs generalize. We
are interested in the generalization error of Γθ instantiated as the continuous diffusion model in
Eqn. 2, when transferring from training data generated with the environment Etr to testing data
generated with Ete. The latter causes varied graph topologies as stipulated in Sec. 3.1.

We denote by {(X(i),A(i),Y(i))}Ntr
i the training data set sized Ntr generated from p(X,A, Y |E =

Etr), and l(·, ·) any bounded loss function. The training error (i.e., empirical risk) can be defined as

Remp(Γθ;Etr) ≜
1

Ntr

∑Ntr

i=1
l(Γθ(X

(i),A(i)),Y(i)). (3)

Our target is to reduce the generalization error on testing data generated from p(X,A, Y |E = Ete):

R(Γθ;Ete) ≜ E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)]. (4)

Particularly, if Ete = Etr, the learning setting degrades to the standard one commonly studied in the
closed-world assumption, wherein the in-distribution generalization error has an upper bound (Shalev-
Shwartz & Ben-David, 2014):

R(Γθ;Etr)−Remp(Γθ;Etr) ≤ Din(Γθ, Etr, Ntr) = 2H(Γθ) +O
(√

log(1/δ)/Ntr

)
, (5)

where H(Γθ) denotes the Rademacher complexity of the function class induced by Γθ, and
Din(Γθ, Etr, Ntr) is determined by the size of the training set and the complexity of the model.

When Ete ̸= Etr that occurs in the open-world regime, i.e., our focused learning setting, the analysis
becomes more difficult due to the topological shifts. In the diffusion equation Eqn. 2, the change of
graph topologies leads to the change of node representations (solution of the diffusion equation Z(T))
because of the effect of the coupling matrix C(Z(t);A) associated with A. Thereby, the output of
the diffusion process can be expressed as Z(T ;A) = f(Z(0),A). Our first result below decouples
the out-of-distribution generalization gap R(Γθ;Ete)−Remp(Γθ;Etr) into three error terms.
Theorem 3.1. Assume l and ϕdec are Lipschitz continuous. For any graph data generated with the
mechanism of Sec. 3.1, it holds with the probability 1− δ that the generalization gap of Γθ satisfies
|R(Γθ;Ete)−Remp(Γθ;Etr)| ≤ Din(Γθ, Etr, Ntr) +Dood−model(Γθ, Etr, Ete) +Dood−label(Etr, Ete),

where Dood−model(Γθ, Etr, Ete) = O(EA∼p(A|Etr),A′∼p(A|Ete)[∥Z(T ;A
′)− Z(T ;A)∥2]),

Dood−label(Etr, Ete) = O(E(A,Y)∼p(A,Y |Etr),(A′,Y′)∼p(A,Y |Ete)

[
∥Y′ −Y∥2

]
).

Remark. Since Din is independent of the testing data generated with Ete ̸= Etr, the impact of
topological shifts on the out-of-distribution generalization error is largely dependent on Dood−model

and Dood−label: the former reflects the variation magnitude of Z(T ;A) yielded by Γθ w.r.t. varying
topologies; the latter measures the difference of labels generated with different environments. Notice
that Dood−label is fully determined by the data-generating mechanism, while Dood−model is mainly
dependent on the model Γθ, particularly the sensitivity of node representations w.r.t. topological shifts.
We thus next study two specific diffusion models and discuss how their yielded node representations
change with input graphs to dissect their generalization with topological shifts.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.1 PITFALL OF LOCAL DIFFUSION

We first consider a typical model instantiation, i.e., local diffusion equation on graphs, wherein the
coupling matrix in Eqn. 2 is dependent on A and the propagation of node signals is constrained within
connected neighbored nodes. The common choice for the coupling matrix can be the normalized
graph adjacency matrix Ã = D−1/2AD−1/2 (or Ã = D−1A), where D denotes the diagonal
degree matrix associated with A. In this case, the finite-difference iteration for solving Eqn. 2 would
induce the discrete propagation layers akin to the message passing rule of SGC (Wu et al., 2019) and
GCN (Kipf & Welling, 2017) if the feature transformation and non-linearity are neglected (see more
illustration in Appendix A). Given the constant coupling matrix C, Eqn. 2 has a closed-form solution
Z(t) = e−(I−C)tZ(0). We can derive the change rate of Z(T ;A) w.r.t. variation of graph topologies
∆Ã = Ã′ − Ã as stated in the following proposition.

Proposition 3.2. For local diffusion with the coupling matrix C = D−1/2AD−1/2 or C = D−1A,
the yielded node representation satisfies ∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2T)).

As a consequence, the label prediction Ŷ = ϕdec(Z(T ;A)) could be highly sensitive to the change of
the graph topology. Pushing further, we have the following corollary on the generalization capability
of local diffusion models under topological shifts.
Corollary 3.3. Under the same condition as in Theorem 3.1, for diffusion models Eqn. 2 with
the normalized graph adjacency as the coupling matrix, the model-dependent generalization error
on testing data generated with Ete ̸= Etr has an upper bound: Dood−model(Γθ, Etr, Etr) =

O(EA∼p(A|Etr),A′∼p(A|Ete)[∥∆Ã∥2 exp (∥∆Ã∥2T)]).

By definition in Sec. 3.1, the graph adjacency is a realization of a random variable A =
h(Uu, Uv;W,E) dependent on a varying environment E. The corollary suggests that even a small
topological shift caused by different distributions of A’s between training and testing environments
may result in large Dood−model. 1 This result together with Theorem 3.1 suggests that local diffusion-
based GNNs may struggle to generalize in cases where models are expected to be insensitive to the
perturbation of topologies. For example, for situations where the ground-truth labels do not dramati-
cally change with topological shifts (i.e., Dood−label is small), GNNs may induce large Dood−model

that prejudices generalization. The above conclusion can be extended to models with layer-wise
feature transformations and non-linearity (see Appendix B.4 for illustration).

3.2.2 POTENTIAL OF NON-LOCAL DIFFUSION

We proceed to analyze another class of diffusion models that resort to non-local diffusion operators
allowing instantaneous information flows among arbitrary locations (Chasseigne et al., 2006). In
the context of learning on graphs, the non-local diffusion can be seen as generalizing the feature
propagation to a complete or fully-connected (latent) graph (Wu et al., 2023), in contrast with common
GNNs that allow message passing only between neighboring nodes. Formally speaking, we can
define the gradient and divergence operators on a complete graph: (∇X)uv = xv − xu (u, v ∈ V)
and (∇∗E)u =

∑
v∈V euv (u ∈ V). The corresponding diffusion equation still exhibits the form of

Eqn. 2. Nevertheless, unlike the models studied in Sec. 3.2.1 assuming that the non-zero entries of
the coupling matrix only lie in connected node pairs, the non-local diffusion model allows non-zero
coefficients for arbitrary (u, v)’s to accommodate the all-pair information flows. In particular, the
coupling matrix can be instantiated as the learnable attention matrix C(Z(t)) = [cuv(t)]u,v∈V with
cuv(t) = η(zu(t),zv(t))∑

w∈V η(zu(t),zw(t)) , where η denotes a pairwise similarity function. In this case, the
finite-difference iteration of the diffusion equation induces a Transformer layer (Vaswani et al., 2017)
(see details in Appendix A).

Through above definitions, the non-local diffusion model aims to learn latent interaction graphs from
data. Then we can derive an intuitive result that shows the generalization capability of the non-local
diffusion model under the data generation hypothesis in Sec. 3.1 along with an extra assumption that
Y is conditionally independent from A.

1The influence of topology variation is inherently associated with h. For example, if one considers h as the
stochastic block model (Snijders & Nowicki, 1997), then the change of E may lead to generated graph data
with different edge probabilities. In the case of real-world data with intricate topological patterns, the functional
forms of h can be more complex, consequently inducing different types of topological shifts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 3.4. Suppose the label Y is conditionally independent from A with given {Uu}u∈V in
the data generation hypothesis of Sec. 3.1, then for diffusion models Eqn. 2 with the attention-based
coupling matrix, it holds with the probability 1− δ that the generalization gap of Γθ satisfies

R(Γθ;Ete)−Remp(Γθ;Etr) ≤ Din(Γθ, Etr, Ntr). (6)

The assumption of conditional independence between Y and A, however, can be violated in many
situations where labels strongly correlate with observed graph structures. Furthermore, the perfor-
mance on testing data (i.e., what we care about) depends on both the model’s expressiveness and
generalization. The non-local diffusion alone, discarding any observed topology, has insufficient
expressiveness for capturing the structural information. In the next section, we will introduce a new
diffusion-based model for generalization under topological shifts. And, we will show that the pro-
posed model can provably generalize under topological shifts without the conditional independence
assumption (required by Prop. 3.4) even when the model accommodates the observed structures.

4 GENERALIZATION WITH ADVECTIVE DIFFUSION

To deal with the dilemma as discussed in Sec. 3, we next present a new graph diffusion model offering
a provable level of generalization in the general data-generating situation as described in Sec. 3.1.
The model is inspired by a more general class of diffusion equations, called advective diffusion.

4.1 PROPOSED MODEL: ADVECTIVE DIFFUSION TRANSFORMERS

Advective Diffusion Equations. We first introduce the classic advective diffusion commonly used
for characterizing physical systems with convoluted quantity transfers, where the term advection
refers to the evolution caused by the movement of the diffused quantity (Chandrasekhar, 1943).
Consider the abstract domain Ω of our interest defined in Sec. 2, and assume V (u, t) ∈ TuΩ (a vector
field in Ω) to denote the velocity of the particle at location u and time t. The advective diffusion of
the physical quantity q on Ω is governed by the PDE as (Leveque, 1992):

∂q(u, t)

∂t
= ∇∗ (S(u, t)⊙∇q(u, t)) + β∇∗ (V (u, t) · q(u, t)) , t ≥ 0, u ∈ Ω, (7)

where β ≥ 0 is a weight for the advection term. For example, if we consider q(u, t) as the water
salinity in a river, then Eqn. 7 describes the temporal evolution of salinity at each location that equals
to the spatial transfers of both diffusion process (caused by the concentration difference of salt and S
reflects the molecular diffusivity in the water) and advection process (caused by the movement of the
water and V characterizes the flowing directions).

Graph Advective Diffusion. Similarly, on a graph G = (V, E), we can define the velocity for
each node u as a |V|-dimensional vector-valued function V(t) = [vu(t)]. We thus have (∇∗(V(t) ·
Z(t)))u =

∑
v∈V vuv(t)zv(t) and the advective diffusion equation on graphs:

∂Z(t)

∂t
= [C(Z(t)) + βV(t)− I]Z(t), 0 ≤ t ≤ T. (8)

We next instantiate the coupling matrix C and the velocity V to endow the model with desired
generalizability under topological shifts, by drawing inspirations from physical phenomenons.

◦ Non-local diffusion as global attention. The diffusion process led by the concentration gradient
acts as an internal driving force, where the diffusivity keeps invariant across environments (e.g., the
molecular diffusivity stays constant in different rivers). This resonates with the latent interactions
among nodes, determined by the underlying data manifold, that induce all-pair information flows over
a complete graph and stay invariant w.r.t. the change of E. We thus follow Sec. 3.2.2 and instantiate
C as a global attention that computes the similarities between arbitrary node pairs.

◦ Advection as local message passing. The advection process driven by the directional movement
belongs to an external force, with the velocity depending on contexts (e.g., different rivers). This is
analogous to the environment-sensitive graph topology that is informative for prediction in specific
environments. We instantiate the velocity as the normalized graph adjacency reflecting observed
structural information. Then our graph advective diffusion model can be formulated as:

∂Z(t)

∂t
= [C+ βV − I]Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X), (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where C = [cuv]u,v∈V , cuv = η(zu(0),zv(0))∑
w∈V η(zu(0),zw(0)) , V = D−1/2AD−1/2, β ∈ [0, 1] is a weight

hyper-parameter, and η is a learnable pairwise similarity function. The integration of non-local
diffusion (implemented through attention akin to Transformers) and advection (implemented as
MPNNs) give rise to a new architecture, which we call Advective Diffusion Transformer (ADIT).

Remark. Eqn. 9 has a closed-form solution Z(t) = e−(I−C−βV)tZ(0). A special case of β = 0
(no advection) can be used in situations where the graph structure is not useful. Moreover, one can
extend Eqn. 9 to a non-linear equation with time-dependent C(Z(t)), in which case the equation has
no closed-form solution and needs numerical schemes for solving. Similarly to Di Giovanni et al.
(2022), we found in our experiments a simple linear diffusion to be sufficient to yield promising
performance. We therefore leave the study of the non-linear variant for the future.

4.2 THEORETICAL JUSTIFICATION

We proceed to analyze the generalization capability of our proposed model w.r.t. topological distribu-
tion shifts by comparing these models along the theoretical discussions in Sec. 3.2. Our first result is
derived based on the universal approximation power of neural networks.
Theorem 4.1. For any graph data generated with the mechanism of Sec. 3.1, if g is bijective, then the
model Eqn. 9 can reduce the variation magnitude of the node representation ∥Z(T ;A′)−Z(T ;A)∥2
to any order O(ψ(∥∆Ã∥2)) where ψ denotes an arbitrary polynomial function.

This suggests that the advective diffusion model with observed structural information incorporated is
capable of controlling the sensitivity of node representations w.r.t. topological shifts to arbitrary rates.
Applying Theorem 3.1 we have the generalization error of the advective diffusion model.
Corollary 4.2. On the same condition of Theorem 3.1 and 4.1, the model-dependent generalization
error bound of Eqn 9 can be reduced to arbitrary polynomial orders w.r.t. topological shifts, i.e.,
Dood−model(Γθ, Etr, Etr) = O(EA∼p(A|Etr),A′∼p(A|Ete)[ψ(∥∆Ã∥2)]).

This implies that the out-of-distribution generalization error of the model in Eqn. 9 can be controlled
within an adaptive rate w.r.t. variation of topologies. The model has provable potential for achieving
a desired level of generalization with topological shifts. Furthermore, in consideration of practical
implementation, the model only requires trainable parameters for two shallow MLPs ϕenc and ϕdec
and the attention network η, which is highly parameter-efficient and reduces the model complexity.

4.3 MODEL IMPLEMENTATION WITH PDE SOLVERS

For solving Eqn. 9, one can harness the scheme adopted by Chen et al. (2018) for back-propagation
through PDE dynamics. However, since it is known that the equation has a closed-form solution
e−(I−C−βV)t, we resort to a implementation-wise simpler method by computing the solution in-
stead of solving the equation. Nevertheless, direct computation of the matrix exponential through
eigendecomposition is computationally intractable for large matrices. As an alternative, we leverage
numerical techniques based on series expansion that produces two model versions. Due to space
limit, we describe the main ideas in this subsection and defer details on model implementation to
Appendix D.1.

ADIT-INVERSE uses a numerical method based on the extension of Padé-Chebyshev theory to
rational fractions (Golub & Van Loan, 1989; Gallopoulos & Saad, 1992), which has shown empirical
success in 3D shape analysis (Patané, 2014). The matrix exponential is approximated by solving
multiple linear systems (see more details and derivations in Appendix C) and we generalize it as a
multi-head network where each head propagates in parallel:

Z(T) ≈
∑H

h=1
ϕ
(h)
FC(linsolver(Lh,Z(0))), where Lh = (1 + θ)I−Ch − βV, (10)

where the linsolver computes the matrix inverse Zh = (Lh)
−1Z(0) and can be efficiently

implemented via torch.linalg.solve() that supports automated differentiation. Each head
contributes to propagation with the pre-computed attention Ch and node-wise transformation ϕ(h)FC .

ADIT-SERIES resorts to approximation by finite geometric series (see Appendix C for derivations):

Z(T) ≈
∑H

h=1
ϕ
(h)
FC([Z(0),PhZ(0), · · · , (Ph)

KZ(0)]), where Ph = Ch + βÃ. (11)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60
||ΔA||2

0.01
0.02
0.03
0.04
0.05
0.06

M
ea

n
Sq

ua
re

 E
rro

r

(a) Homophily Shift
Diff− Linear Diff−MultiLayer Diff− Time Diff−NonLocal ADiT− Inverse ADiT− Series

60 70 80 90 100 110 120
||ΔA||2

0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
ea

n
Sq

ua
re

 E
rro

r

(b) Density Shift

0 20 40 60 80 100
||ΔA||2

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

 E
rro

r

(c) Block Shift

Figure 3: Testing errors (y-axix) w.r.t. differences in graph topologies (x-axis) on synthetic datasets
that simulate the topological distribution shifts according to the data generation hypothesis of Fig. 2.

This model resorts to aggregation of K-order propagated results with the propagation matrix Ph in
each head. One advantage of this model version lies in its good scalability with linear complexity w.r.t.
the number of nodes in the feed-forward computation (see detailed illustration in Appendix D.1.2).

5 EXPERIMENTS

To evaluate our model, we consider a wide variety of graph-based downstream tasks of disparate
scales and granularities that involve topological distribution shifts led by distinct factors. Due to the
diversity of datasets and tasks, the competing models that are applicable to specific cases can vary
case by case, so the goal of our experiments is to showcase the wide applicability and superiority
of ADIT against commonly used GNNs as well as several powerful bespoke methods tailored for
specific tasks. In the following, we delve into each case separately with the overview of experimental
setup and discussions. More detailed dataset information is provided in Appendix E.1. Details on
baselines and hyper-parameters are deferred to Appendix E.2 and E.3, respectively.

5.1 SYNTHETIC DATASETS

To validate our proposed model and theoretical analysis, we create synthetic datasets simulating the
data generation hypothesis in Sec. 3.1. We instantiate h as a stochastic block model which generates
edges Auv according to block numbers (b), intra-block edge probability (p1) and inter-block edge
probability (p2). Then we study three types of topological distribution shifts: homophily shift
(changing p2 with fixed p1); density shift (changing p1 and p2); and block shift (varying b). The
predictive task is node regression. More details on data generation are presented in Appendix E.1.1.

Fig. 3 plots the testing error (i.e., Mean Square Error) w.r.t. differences in graph topologies ∥∆A∥2
(i.e., the gap between training and testing graphs) in three cases. We compare our model (ADIT-
INVERSE and ADIT-SERIES) with other diffusion-based models as competitors. The latter includes
Diff-Linear (graph diffusion with constant C), Diff-MultiLayer (the extension of Diff-Linear with
intermediate feature transformations), Diff-Time (graph diffusion with time-dependent C(Z(t))) and
Diff-NonLocal (non-local diffusion with the global attention-based C(Z(t))). The results show that
three local graph diffusion models exhibit clear performance degradation, i.e., the regression error
grows sub-linearly w.r.t. topological shifts, while our two models yield consistently low error across
environments. In contrast, the non-local diffusion model produces comparably stable performance yet
inferior to our models due to its ignorance of the useful information in input graphs. These empirical
observations are consistent with our theoretical results presented in Sec 3.2 and 4.2.

5.2 REAL-WORLD DATASETS

We next evaluate ADIT on real-world datasets with more complex distribution shifts concerning
non-Euclidean data in diverse applications. Due to space limit, we defer more results such as ablation
studies and hyper-parameter analysis (for β, θ and K) to Appendix F.2.

Information Networks. We first consider citation networks Arxiv (Hu et al., 2020) and social
networks Twitch (Rozemberczki et al., 2021) with graph sizes ranging from 2K to 0.2M, where
we use the scalable version ADIT-SERIES. To introduce topological shifts, we partition the data
according to publication years and geographic information for Arxiv and Twitch, respectively.
The predictive task is node classification, and we follow the common practice comparing Accuracy
(resp. ROC-AUC) for Arxiv (resp. Twitch). We compare with three types of state-of-the-art

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on Arxiv and Twitch, where we use time and spatial contexts for data splits,
respectively. We report the Accuracy (↑) for three testing sets of Arxiv and average ROC-AUC (↑)
for all testing graphs of Twitch (results for each case are reported in Appendix F.1). Top performing
methods are marked as first/second/third. OOM indicates out-of-memory error.

Arxiv (2018) Arxiv (2019) Arxiv (2020) Twitch (avg)
MLP 49.91 ± 0.59 47.30 ± 0.63 46.78 ± 0.98 61.12 ± 0.16
GCN 50.14 ± 0.46 48.06 ± 1.13 46.46 ± 0.85 59.76 ± 0.34
GAT 51.60 ± 0.43 48.60 ± 0.28 46.50 ± 0.21 59.14 ± 0.72
SGC 51.40 ± 0.10 49.15 ± 0.16 46.94 ± 0.29 60.86 ± 0.13
GDC 51.53 ± 0.42 49.02 ± 0.51 47.33 ± 0.60 61.36 ± 0.10
GRAND 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24 61.65 ± 0.23
A-DGNs 50.91 ± 0.41 47.54 ± 0.61 45.79 ± 0.39 60.11 ± 0.09
CDE 50.54 ± 0.21 47.31 ± 0.52 45.32 ± 0.26 60.69 ± 0.10
GraphTrans OOM OOM OOM 61.65 ± 0.23
GraphGPS 51.11 ± 0.19 48.91 ± 0.34 46.46 ± 0.95 62.13 ± 0.34
DIFFormer 50.45 ± 0.94 47.37 ± 1.58 44.30 ± 2.02 62.11 ± 0.11
ADIT-SERIES 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54 62.51 ± 0.07

Table 2: Results of three predictive tasks (node regression, edge regression and link predictive) on
dynamic protein interaction networks DPPIN with splits by different protein identification methods.

Node Regression (RMSE) (↓) Edge Regression (RMSE) (↓) Link Prediction (ROC-AUC) (↑)
Valid Test Valid Test Valid Test

MLP 2.44 ± 0.02 2.34 ± 0.03 0.163 ± 0.004 0.185 ± 0.003 0.658 ± 0.014 0.616 ± 0.117
GCN 3.74 ± 0.01 3.40 ± 0.01 0.170 ± 0.004 0.184 ± 0.004 0.673 ± 0.088 0.683 ± 0.062
GAT 3.10 ± 0.09 2.86 ± 0.06 0.164 ± 0.001 0.176 ± 0.001 0.765 ± 0.023 0.687 ± 0.031
SGC 3.66 ± 0.00 3.40 ± 0.02 0.177 ± 0.016 0.190 ± 0.004 0.658 ± 0.044 0.775 ± 0.042
GraphTrans OOM OOM OOM OOM OOM OOM
GraphGPS 1.80 ± 0.01 1.65 ± 0.02 0.165 ± 0.016 0.159 ± 0.007 0.604 ± 0.029 0.673 ± 0.068
DIFFormer 2.06 ± 0.04 2.04 ± 0.02 0.173 ± 0.012 0.155 ± 0.002 0.935 ± 0.030 0.902 ± 0.054
ADIT-INVERSE 1.83 ± 0.02 1.75 ± 0.02 0.146 ± 0.002 0.147 ± 0.002 0.946 ± 0.027 0.957 ± 0.018
ADIT-SERIES 1.56 ± 0.02 1.49 ± 0.03 0.146 ± 0.002 0.144 ± 0.001 0.828 ± 0.026 0.866 ± 0.036

baselines: (i) classical GNNs (GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018) and
SGC (Wu et al., 2019)); (ii) diffusion-based GNNs (GDC (Klicpera et al., 2019), GRAND (Cham-
berlain et al., 2021a), A-DGNs (Gravina et al., 2023) and CDE (Zhao et al., 2023)), and (iii) graph
Transformers (GraphTrans (Wu et al., 2021), GraphGPS (Rampásek et al., 2022), and the diffusion-
based DIFFormer (Wu et al., 2023)). Appendix E.2 presents detailed descriptions for these models.
Table 1 reports the results, showing that our model offers significantly superior generalization for
node classification.

Protein Interactions. We then test on protein-protein interactions of yeast cells (Fu & He, 2022).
Each node denotes a protein with a time-aware gene expression value and the edges indicate co-
expressed protein pairs at each time. The dataset consists of 12 dynamic networks each of which is
obtained by one protein identification method and records the metabolic cycles of yeast cells. The
networks have distinct topological features (e.g., distribution of cliques) as observed by (Fu & He,
2022), and we use 6/1/5 networks for train/valid/test. To test the generalization of the model across
different tasks, we consider: i) node regreesion for gene expression values (measured by RMSE); 2)
edge regression for predicting the co-expression correlation coefficients (measured by RMSE); 3)
link prediction for identifying co-expressed protein pairs (measured by ROC-AUC). Table 2 shows
that our models yield the first-ranking results in three tasks. In contrast, ADIT-SERIES performs
better in node/edge regression tasks, while ADIT-INVERSE exhibits better competitiveness for link
prediction. The possible reason might be that ADIT-INVERSE can better exploit high-order structural
information as the matrix inverse can be treated as ADIT-SERIES with K → ∞.

Molecular Mapping Operator Generation. Finally we investigate on the generation of molecular
coarse-grained mapping operators, an important step for molecular dynamics simulation, aiming to
find a representation of how atoms are grouped in a molecule (Li et al., 2020). The task is a graph
segmentation problem which can be modeled as predicting edges that indicate where to partition
the graph. We use the relative molecular mass to split the data and test how the model extrapolates
to larger molecules. Fig. 4 compares the testing cases (with more cases shown in Appendix F.1)
generated by different models, which shows the more accurate estimation of our model (we use
ADIT-SERIES for experiments) that demonstrates desired generalization performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ADiT (0.697) GCN (0.685)Ground Truth GAT (0.664) GraphGPS (0.694) Difformer (0.674)

Figure 4: Testing cases for molecular mapping operators generated by different models with averaged
testing Accuracy (↑) reported. The task is to generate subgraph-level partitions (marked by different
colors) resembling the ground-truth. Due to space limit, we defer more results to Appendix F.1.

0 0.2 0.5 0.8 1.0 1.5 2.0 5.0 10.0
β

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

0 0.3 0.5 0.8 1.0
β

1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58

RM
SE

DDPIN-nr

0 0.3 0.5 0.8 1.0
β

0.140

0.145

0.150

0.155

RM
SE

DDPIN-er

Figure 5: Analysis of β on Arxiv and node regression (nr) and edge regression (er) tasks on DPPIN.

Impact of β. The hyper-parameter β controls the importance weight for the advection term. Fig. 5
shows the model performance of ADIT-SERIES on Arxiv and DPPIN with different β’s. We found
that the optimal settings for β can be different across datasets and tasks. For node classification on
Arxiv, the model gives the best performance with β ∈ [0.7, 1.0]. The performance degrades when
β is too small (<0.5) or too large (>2.0). The reason could be that the graph structural information
is useful for the predictive task on Arxiv yet too much emphasis on the graph structure can lead
to undesired generalization. Differently, for DPPIN, we found that using smaller β can bring up
more satisfactory performance across node regression and edge regression tasks. In particular, setting
β = 0, in which case the advection term is completely dropped, can yield optimal performance for
the node regression task. This is possibly because the graph structure is uninformative and pure
global attention can learn generalizable topological patterns from latent interactions.

6 CONCLUSIONS AND DISCUSSIONS

Conclusions. This paper harnesses diffusion PDEs as a mathematical tool for studying the general-
ization capabilities of graph neural networks under topological shifts. The latter remains a largely
open question, and the insights in this work open new possibilities of leveraging PDE techniques
for analyzing existing methods and navigating generalizable model architectures. Our proposed
solution, inspired by principled diffusion equations, has provable potentials for generalization and
shows superior performance in various graph learning tasks across different scales.

Current Limitations and Future Works. The generalization analysis in the current work focuses on
the data-generating mechanism as described in Fig. 2 which is inspired and generalized by the random
graph model. While this mechanism can in principle reflect real-world data generation process
in various graph-structured data, in the open-world regime, there could exist situations involving
topological distribution shifts by diverse factors or their combination. Future works can extend our
framework for such cases where inter-dependent data is generated with different causal mechanisms.
Another future research direction lies in the instantiation of the diffusion and advection operators
in our model. Besides our choice of MPNN architecture to implement the advection process, other
possibilities include structural and positional embeddings. We leave this line of exploration for the
future, along with the analysis for the generalization capabilities of more general (e.g., non-linear)
versions of the advective diffusion equation and other architectural choices.

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 1993–2001, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
International Conference on Learning Representations, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions in
multi-layer networks. In International Conference on Learning Representations, 2023.

Gleb Bazhenov, Denis Kuznedelev, Andrey Malinin, Artem Babenko, and Liudmila Prokhorenkova.
Evaluating robustness and uncertainty of graph models under structural distributional shifts. arXiv
preprint arXiv:2302.13875, 2023.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:18527–18541, 2022.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach.
Intell., 45(1):657–668, 2023.

Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael M. Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: graph neural diffusion. In International Conference on Machine
Learning (ICML), pp. 1407–1418, 2021a.

Benjamin Paul Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael M. Bronstein. Beltrami flow and neural diffusion on graphs. In Advances in
Neural Information Processing Systems (NeurIPS), 2021b.

Subrahmanyan Chandrasekhar. Stochastic problems in physics and astronomy. Reviews of modern
physics, 15(1):1, 1943.

Emmanuel Chasseigne, Manuela Chaves, and Julio D Rossi. Asymptotic behavior for nonlocal
diffusion equations. Journal de mathématiques pures et appliquées, 86(3):271–291, 2006.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, 2018.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
diffusion equations. In International Conference on Machine Learning, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
International Conference on Learning Representations, 2021.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, and
Michael M Bronstein. Graph neural networks as gradient flows: understanding graph convolutions
via energy. 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020.

James Eells and Joseph H Sampson. Harmonic mappings of riemannian manifolds. American journal
of mathematics, 86(1):109–160, 1964.

Mark I Freidlin and Alexander D Wentzell. Diffusion processes on graphs and the averaging principle.
The Annals of probability, pp. 2215–2245, 1993.

Dongqi Fu and Jingrui He. Dppin: A biological repository of dynamic protein-protein interaction
network data. In 2022 IEEE International Conference on Big Data (Big Data), pp. 5269–5277.
IEEE, 2022.

Efstratios Gallopoulos and Yousef Saad. Efficient solution of parabolic equations by krylov ap-
proximation methods. SIAM journal on scientific and statistical computing, 13(5):1236–1264,
1992.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

Gene H Golub and Charles F Van Loan. Matrix computations. John Hopkins University Press, 1989.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric DGN: a stable architecture
for deep graph networks. In International Conference on Learning Representations, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems, 2019.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning
(ICML), pp. 5637–5664, 2021.

Randall J Leveque. Numerical methods for conservation laws, volume 214. Springer, 1992.

Zhiheng Li, Geemi P Wellawatte, Maghesree Chakraborty, Heta A Gandhi, Chenliang Xu, and
Andrew D White. Graph neural network based coarse-grained mapping prediction. Chemical
science, 11(35):9524–9531, 2020.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. In Advances in Neural Information Processing Systems, 2021.

Georgi S Medvedev. The nonlinear heat equation on dense graphs and graph limits. SIAM Journal on
Mathematical Analysis, 46(4):2743–2766, 2014.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, pp. 4602–4609, 2019.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Advances in Neural Information
Processing Systems, pp. 21997–22009, 2021.

Giuseppe Patané. Laplacian spectral distances and kernels on 3d shapes. Pattern Recognition Letters,
47:102–110, 2014.

Ladislav Rampásek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in Neural
Information Processing Systems, pp. 5998–6008, 2022.

Bart M Haar Romeny. Geometry-driven diffusion in computer vision, volume 1. Springer Science &
Business Media, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. In Learning on Graphs Conference, pp. 11–1. PMLR, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2), 2021.

T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations, 2023.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of classification, 14(1):75–100, 1997.

Matthew Thorpe, Hedi Xia, Tan Nguyen, Thomas Strohmer, Andrea L. Bertozzi, Stanley J. Osher, and
Bao Wang. GRAND++: graph neural diffusion with a source term. In International Conference on
Learning Representations (ICLR), 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Charles Van Loan. The sensitivity of the matrix exponential. SIAM Journal on Numerical Analysis,
14(6):971–981, 1977.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer:
Scalable (graph) transformers induced by energy constrained diffusion. In International Conference
on Learning Representations, 2023.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In Advances in
Neural Information Processing Systems, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. In International
Conference on Learning Representations (ICLR), 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? In Advances in Neural
Information Processing Systems, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph neural convection-
diffusion with heterophily. In International Joint Conference on Artificial Intelligence, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CONNECTION BETWEEN DIFFUSION EQUATIONS AND MESSAGE PASSING

In this section, we provide a systematically introduction on the fundamental connections between
graph diffusion equations and neural message passing, as supplementary technical background for
our analysis and methodology presented in the main text. Consider graph diffusion equations of the
generic form

∂Z(t)

∂t
= (C(Z(t);A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X). (12)

As demonstrated by existing works, e.g., Chamberlain et al. (2021a), using finite-difference numerical
schemes for solving Eqn. 12 would induce the message passing neural networks of various forms.
The latter is recognized as the common paradigm in modern graph neural networks and Transformers
whose layer-wise updating aggregates the embeddings of other nodes to compute the embeddings for
the next layer.

A.1 GRAPH NEURAL NETWORKS AS LOCAL DIFFUSION

Consider the explicit Euler’s scheme as the commonly used finite-difference method for approximately
solving the differential equations, and Eqn. 12 will induce the discrete iterations with step size τ :

Z(k+1) − Z(k)

τ
≈ (C(Z(k);A)− I)Z(k). (13)

With some re-arranging we have

Z(k+1) = (1− τ)Z(k) + τC(Z(k);A)Z(k), (14)

with the initial states Z(0) = ϕenc(X). The above updating equation gives one-layer update through
residual connection and propagation with C(Z(k);A). There are some well-known graph neural
network architectures that can be derived with different instantiations of the coupling matrix.

Simplifying Graph Convolution (SGC). If one considers C(Z(k);A) = Ã = D−1/2AD−1/2,
then we will get the one-layer updating rule:

Z(k+1) = (1− τ)Z(k) + τD−1/2AD−1/2Z(k). (15)

This can be seen as one-layer propagation of SGC (Wu et al., 2019) with residual connection, and when
τ = 1 it becomes exactly the SGC layer. Since SGC model does not involve feature transformation
layers and non-linearity throughout the message passing, one often uses a pre-computed propagation
matrix for one-step convolution that is much faster than the multi-layer convolution:

Z(K) = PKZ(0), P = (1− τ)I+ τD−1/2AD−1/2. (16)

Graph Convolution Networks (GCN). The GCN network inserts feature transformation layers in-
between the propagation layers. This can be achieved by considering K stacked piece-wise diffusion
equations, where the k-th dynamics is given by the differential equation with time boundaries:

∂Z(t; k)

∂t
= (C−I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k−1)),

(17)
where ϕ

(k)
int denotes the node-wise feature transformation of the k-th layer. Assume C =

D−1/2AD−1/2. Then consider one-step feed-forward of the explicit Euler scheme for Eqn. 17,
and one can obtain the updating rule at the k-th layer:

Z(k+1) = ϕ
(k+1)
int

(
(1− τ)Z(k) + τD−1/2AD−1/2Z(k)

)
. (18)

This corresponds to one GCN layer (Kipf & Welling, 2017) if one considers ϕ(k+1)
int as a fully-

connected neural layer with ReLU activation and simply sets τ = 1.

High-Order Propagation. Besides the explicit numerical scheme, one can also utilize the implicit
scheme and multi-step schemes (e.g., Runge-Kutta) for solving the diffusion equation, and the
induced updating form will involve high-order information (Chamberlain et al., 2021a).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 TRANSFORMERS AS NON-LOCAL DIFFUSION

The original architectures of Transformers (Vaswani et al., 2017) involve self-attention layers as the
key module, where the attention measures the pairwise influence between arbitrary token pairs in
the input. There are recent works, e.g., Dwivedi & Bresson (2020); Ying et al. (2021); Wu et al.
(2021); Rampásek et al. (2022) transferring the Transformer architectures originally designed for
sequence inputs into graph-structured data, and the attention is computed for arbitrary node pairs in
the graph, which can be seen as a counterpart of non-local diffusion (Wu et al., 2023). In specific, the
coupling matrix allows non-zero entries for arbitrary location pairs and can be instantiated as a global
attention network. Then using the explicit Euler’s scheme as Eqn. 14 we can obtain the self-attention
propagation layer of common Transformers:

Z(k+1) = (1− τ)Z(k) + τC(k)Z(k), c(k)uv =
η(z

(k)
u , z

(k)
v)∑

w∈V η(z
(k)
u , z

(k)
w)

. (19)

For obtaining the fully-connected layers and non-linear activations adopted in Transformers, one can
inherit the spirit of GCN and extend the diffusion model to K piece-wise equations as Eqn. 17.

B PROOFS FOR TECHNICAL RESULTS

B.1 PROOF FOR THEOREM 3.1

According to the data generation hypothesis in Fig. 2, for given node latents Uu’s, we can decompose
the joint distribution into

p(X,A, Y |E) = p(X|E)p(A|E)p(Y |A,E). (20)
Also, by definition in Sec. 3.1 we have

p(X|E = Etr) = p(X|E = Ete), (21)
p(Y |A,E = Etr) = p(Y |A,E = Ete). (22)

Therefore we have p(X,A, Y |E) = p(X)p(A|E)p(Y |A). We next consider the gap between
R(Γθ;Etr) and R(Γθ;Ete):

|R(Γθ;Ete)−R(Γθ;Etr)|
=

∣∣E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)]− E(X,A,Y)∼p(X,A,Y |E=Etr)[l(Γθ(X,A),Y)]

∣∣
=

∣∣EX′∼p(X),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X
′,A′),Y′)]

− EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A))[l(Γθ(X,A),Y)]
∣∣

≤
∣∣EX′∼p(X),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X

′,A′),Y′)]

− EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)]
∣∣

+
∣∣EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)]

− EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A))[l(Γθ(X,A),Y)]
∣∣

=
∣∣EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A′),Y′)− l(Γθ(X,A),Y′)]

∣∣
+

∣∣EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))[l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)]
∣∣

≤ EX∼p(X),A∼p(A|E=Etr),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))

[
|l(Γθ(X,A′),Y′)− l(Γθ(X,A),Y′)|

]
+ EX∼p(X),A∼p(A|E=Etr),Y∼p(Y |A=A),A′∼p(A|E=Ete),Y′∼p(Y |A=A′))

[
|l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)|

]
.

(23)

Moreover, due to the Lipschitz continuity of l and ϕdec, we have
|l(Γθ(X,A

′),Y′)− l(Γθ(X,A),Y′)| ≤ L1 · ∥Z(T ;A′)− Z(T ;A)∥2 , (24)
|l(Γθ(X,A),Y′)− l(Γθ(X,A),Y)| ≤ L2 · ∥Y′ −Y∥2 , (25)

where L1 and L2 denote the Lipschitz constants. Combing Eqn. 24 and Eqn. 25 with Eqn. 23, we
have

|R(Γθ;Ete)−R(Γθ;Etr)| ≤ L1 · EA∼p(A|Etr),A′∼p(A|Ete) [∥Z(T ;A
′)− Z(T ;A)∥2]

+ L2 · E(A,Y)∼p(A,Y |Etr),(A′,Y′)∼p(A,Y |Ete) [∥Y
′ −Y∥2] .

(26)

The conclusion for the main theorem can be obtained via combining Eqn. 26 and Eqn. 5 using the
triangle inequality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 PROOF FOR PROPOSITION 3.2

The diffusion equation with the constant coupling matrix C has a closed-form solution Z(t) =

e−(I−C)tZ(0), t ≥ 0. To prove the proposition, we need to derive the bound of ∥e−(I−C′)T −
e−(I−C)T ∥2 for any C′ ̸= C. According to the result (3.5) of Van Loan (1977) we have

∥e−(I−C′)T − e−(I−C)T ∥2 ≤ T∥C′ −C∥2∥e−(I−C)T ∥2e∥(C
′−C)T∥2 . (27)

Given the fact C′ −C = Ã′ − Ã = ∆Ã, we have

∥e−(I−C′)T − e−(I−C)T ∥2 = O(∥∆Ã∥2 exp(∥∆Ã∥2T)). (28)

This gives rise to the conclusion that

∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp(∥∆Ã∥2T)), (29)

and we conclude the proof for the proposition.

B.3 PROOF FOR COROLLARY 3.3

By combing the results of Theorem 3.1 and Proposition 3.2, we have

Dood−model(Γθ, Etr, Ete) = O(EA∼p(A|Etr),A′∼p(A|Ete)[∥Z(T ;A
′)− Z(T ;A)∥2])

≤ O(EA∼p(A|Etr),A′∼p(A|Ete)[∥∆Ã∥2 exp(∥∆Ã∥2T)]).
(30)

B.4 EXTENSION WITH FEATURE TRANSFORMATIONS

The conclusion of Proposition 3.2 and Corollary 3.3 can be extended to the cases incorporating
feature transformations and non-linear activation in-between propagation layers used in common
GNNs, like GCN Kipf & Welling (2017). In particular, the diffusion model becomes the piece-wise
diffusion equations with K dynamics components as defined by Eqn. 17:

∂Z(t; k)

∂t
= (C−I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k−1)),

(31)
where ϕ(k)int denotes the node-wise feature transformation of the k-th layer. Based on this, can re-use
the reasoning line of proofs for Proposition 3.2 to each component, and arrive at the exponential
bound of node representation within the k-th dynamics:

∥Z(tk;A′, k)− Z(tk;A, k)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2(tk − tk−1))). (32)

By stacking the results for each component, one can obtain the variation magnitude of the node
representation yielded by the whole trajectory

∥Z(T ;A′)− Z(T ;A)∥2 = O(∥∆Ã∥2 exp (∥∆Ã∥2T)). (33)

B.5 PROOF FOR PROPOSITION 3.4

Since the generation of the label Y is assumed to be independent from A (i.e., the dependence path
from A to Y is cut off in Fig. 2), we therefore have the following two properties:

p(X,Y |E = Etr) = p(X,Y |E = Ete), (34)

p(X,A, Y |E) = p(X,Y |E)p(A|E). (35)
The node features X and labels Y can be treated as generated from an identical distribution shared
by training and testing sets. Moreover, since the non-local diffusion model as defined in Sec. 3.2.2
does not leverage any information of input graphs A, we have the following result

l(Γθ(X,A),Y) = l(Γθ(X,A
′),Y), ∀A,A′. (36)

Then consider the expectation of the error on testing data

R(Γθ;E) = E(X,A,Y)∼p(X,A,Y |E) [l(Γθ(X,A),Y)] . (37)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For any graph adjacency matrix A∗ ∈ supp(p(A)) from the support of p(A), we have the relationship

E(X′,A′,Y′)∼p(X,A,Y |E=Ete) [l(Γθ(X
′,A′),Y′)]

= E(X′,Y′)∼p(X,Y |E=Ete),A′∼p(A|Ete) [l(Γθ(X
′,A′),Y′)]

= E(X′,Y′)∼p(X,Y |E=Ete) [l(Γθ(X
′,A∗),Y′)]

= E(X′,Y′)∼p(X,Y |E=Etr) [l(Γθ(X
′,A∗),Y′)]

= E(X,Y)∼p(X,Y |E=Etr),A∼p(A|Etr) [l(Γθ(X,A),Y)]

= E(X,A,Y)∼p(X,A,Y |E=Etr) [l(Γθ(X,A),Y)] .

(38)

The above result indicates R(Γθ;Etr) = R(Γθ;Ete), and the proposition follows by combing this
relationship with Eqn. 5.

B.6 PROOF FOR THEOREM 4.1

For the advective diffusion equation with the coupling matrix C pre-computed by attention network
η(zu(0), zv(0)) and fixed velocity V = D−1/2AD−1/2, we have its closed-form solution

Z(t) = e−(I−C−βV)tZ(0), t ≥ 0. (39)

Again, using the result (3.5) of Van Loan (1977) we have

∥e−(I−C′−βV′)T − e−(I−C−βV)T ∥2
≤ T∥(C′ + βV′)− (C+ βV)∥2∥e−(I−C−βV)T ∥2e∥[(C

′+βV′)−(C+βV)]T∥2 .
(40)

We next conclude the proof by construction. Notice that the initial states are given by the encoder
MLP: Z(0) = ϕenc(X). According to our data generation hypothesis in Fig. 2, we know that
node embeddings are generated from the latents of each node (we use uu to denote the realization
of Uu), i.e., xu = g(uu;W) and the graph adjacency is generated through a pair-wise function
auv = h(uu,uv;W,E). Since g is bijective, we assume g−1 as its inverse mapping. We define by
η ◦ ϕenc the function composition of η and ϕenc that establishes a mapping from input node features
X to the attention-based coupling C. According to the universal approximation results that hold for
MLPs on the compact set (Hornik et al., 1989), we can construct a mapping induced by η ◦ ϕenc to
obtain a propagation matrix in the form of C = C− (β + ϵ)V, where C is independent from A and
ϵ > 0 is an arbitrary small number. To be specific, the construction of the mapping can be achieved
by η ◦ ϕenc = m ◦ h ◦ g−1:

• g−1 maps the input feature xu to uu;

• h maps (uu,uv) to auv;

• m maps auv to cuv , where cuv denotes the (u, v)-th entry of C.

Then consider the difference of node representations under topological shifts and we have ∥(C′ +

βV′)− (C+ βV)∥2 = ϵ ·O(∥∆Ã∥2). Since ∥∆Ã∥2 is bounded, for any positive integer m, there
exists ϵ > 0 such that exp (ϵ · ∥∆Ã∥2) ≤ ∥∆Ã∥m2 . Therefore, we have the conclusion

e∥(C
′+βV′)−(C+βV)∥2 ≤ O(∥∆Ã∥m2), (41)

and the theorem can be concluded by combining the result of Eqn. 40.

B.7 PROOF FOR COROLLARY 4.2

Similar to Corollary 3.3, the conclusion follows by combing the results of Theorem 3.1 and 4.1.

C APPROXIMATION STRATEGIES FOR DIFFUSION PDE SOLUTIONS

The closed-form solutions of linear diffusion equations often involve the form of matrix exponential
e−Lt, which is intractable for computing its exact value. There are many established techniques

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

based on numerical approximations, e.g., series expansion, in this fundamental challenge. In our
presented model in Sec. 4.3, we propose two implementation versions based on two approximation
ways for handling the closed-form solution of the advective diffusion equations on graphs.

Approximation with Linear Systems. One scalable scheme proposed by Gallopoulos & Saad (1992)
is via the extension of the minimax Padé-Chebyshev theory to rational fractions (Golub & Van Loan,
1989). This approximation technique has been utilized by Patané (2014) as an effective and efficient
method for spectrum-free computation of the diffusion distances in 3D shape analysis. In specific, the
matrix exponential of the form e−Lt is approximated by the combination of multiple matrix inverses:

exp (−Lt) ≈ −
r∑

i=1

αi(L+ θiI)
−1, (42)

where αi and θi can be pre-defined parameters Gallopoulos & Saad (1992). To unleash the capacity
of neural networks, in Sec. 4.3, our model implementation (ADIT-INVERSE) extends this scheme to
a multi-head network where each head contributes to propagation with independently parameterized
attention networks. The matrix inverse is computed with the linear system solver that is available in
common deep learning tools (e.g., PyTorch) and supports automatic differentiation.

Approximation with Geometric Series. When the graph sizes become large, the matrix inverse
can be computationally expensive. For better scalability, we can use the geometric series for
approximation:

(L+ θiI)
−1 =

∞∑
k=0

(−1)kθ
−(k+1)
i Lk ≈

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (43)

In this way, the matrix exponential can be approximately computed via a combination of finite series:

exp (−Lt) ≈ −
r∑

i=1

αi

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (44)

In our model, the closed-form solution for the PDE induces L = (I−C− βV), and the summation
in Eqn. 44 can be expressed as a weighted sum of Pk = (C+ βV)k for k = 0, · · · ,K. Our model
implementation (ADIT-SERIES) proposed in Sec. 4.3 generalizes the weighted sum to a one-layer
neural network.

D MODEL IMPLEMENTATIONS AND ALGORITHMS

In this section, we provide detailed and self-contained descriptions about our model architectures in
Appendix D.1. Then in Appendix D.2, we discuss how to apply our model to various graph-structured
data with additional input information. To make the presentation clear and focused on the model
implementation side, we will re-define some notations that are originally defined in Sec. 4, where we
formulate the model with the terminology of the PDE domain.

D.1 MODEL ARCHITECTURES

The model takes a graph G = (V, E ,X,A) as input, and output prediction in the downstream tasks.
We assume the number of nodes in the graph |V| = N , node feature matrix X ∈ RN×D and
graph adjacency matrix A ∈ {0, 1}N×N . We use D to denote the diagonal degree matrix of A. The
normalized adjacency is denoted by Ã = D−1/2AD−1/2, and 1 is an all-oneN -dimensional column
vector. In this subsection, we assume G has no edge weight or edge feature for presentation, and with
loss of generality, we will discuss how to incorporate these additional attributes in Appendix D.2.

D.1.1 INSTANTIATIONS AND PARAMETERIZATIONS

Our model is comprised of three modules: the encoder ϕenc, the decoder ϕdec, and the propagation
network in-between the first two.

Encoder: The node features X = [xu]u∈V ∈ RN×D are first mapped to embeddings in the latent
space Z(0) = [z

(0)
u]u∈V ∈ RN×d via the encoder: Z(0) = ϕenc(X). The encoder ϕenc(·) is

instantiated as a shallow MLP with non-linear activation (e.g., ReLU).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Propagation: The propagation network converts the initial node embeddings Z(0) to the node
representations Z = [zu]u∈V ∈ RN×d (where Z(0) and Z are the re-defined counterparts of Z(0) and
Z(T), respectively, presented in Sec. 4). The propagation network is implemented via a multi-head
network with H heads involving the attention network η(h)(·, ·) and feature transformation network
ϕ
(h)
FC(·). The latter is instantiated as a fully-connected layer WO,h, and the attention network is

instantiated as a normalized dot-product positive similarity function:

η(h)(z(0)u , z(0)v) = 1 +

(
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

)⊤(
WK,hz

(0)
v

∥WK,hz
(0)
v ∥2

)
,

Ch = {c(h)uv }, c(h)uv =
η(h)(z

(0)
u , z

(0)
v)∑

w∈V η
(h)(z

(0)
u , z

(0)
w)

,

(45)

where WQ,h ∈ Rd×d and WK,h ∈ Rd×d are trainable weights for query and key, respectively, of
the h-th head. Then the node representations will be computed in different ways by two models.

• For ADIT-INVERSE, the node representations are calculated via

Lh = (1 + θ)I−Ch − βÃ,

Zh = linsolver(Lh,Z
(0)),

Z =

H∑
h=1

ZhWO,h,

(46)

where WO,h ∈ Rd×d is a trainable weight matrix. Alg. 1 summarizes the feed-forward
computation of ADIT-INVERSE.

• For ADIT-SERIES, the node representations are computed by

Ph = Ch + βÃ,

Z(k) = PhZ
(k−1), for k = 1, · · ·K,

Z =

H∑
h=1

[Z(0),Z(1), · · · ,Z(K)]WO,h,

(47)

where WO,h ∈ R(K+1)d×d is a trainable weight matrix. To accelerate the computation of
Eqn. 47, we can inherit the strategy used in Wu et al. (2023) and alter the order of matrix
products, which reduces the time and space complexity to O(N) (see Appendix D.1.2 for
detailed illustration). Alg. 2 presents the feed-forward computation of ADIT-SERIES that
only requires O(N) algorithmic complexity.

Decoder: The decoder ϕdec(·) transforms the node representations into prediction. Depending on the
specific downstream tasks, the decoder can be implemented in different ways:

(node-level prediction): ŷu = MLP(zu)
(graph-level prediction): ŷ = MLP(SumPooling({zu}u∈V))

(edge-level prediction): ŷuv = MLP([zu, zv]).
(48)

In particular, the softmax activation is used for output in classification tasks. For training, we adopt
standard loss functions, i.e., cross-entropy for classification and mean square loss for regression.

D.1.2 ACCELERATION OF ADIT-SERIES WITH LINEAR COMPLEXITY

We illustrate how to achieve the propagation of ADIT-SERIES in Eqn. 47 with O(N) complexity. With

the query and key matrices defined by ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

and ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

,

the attention matrix Ch in Eqn. 45 is computed by (in the matrix form used for implementation)

Ch = diag−1
(
N + ZQ,h (ZK,h)

⊤
1
)(

11⊤ + ZQ,h (ZK,h)
⊤
)
. (49)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Feed-Forward of the Model ADIT-INVERSE.

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Uh = 11⊤ + ZQ,h(ZK,h)
⊤

Ch = diag−1 (Uh1)Uh

Lh = (1 + θ)I− Sh − βÃ
Zh = linsolver(Lh,Z)

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

Algorithm 2 Feed-Forward of the Model ADIT-SERIES (with O(N) complexity).

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Nh = diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

Z
(0)
h = Z(0)

for k = 1, · · · ,K do
Z

(k)
h = Nh ·

[
1
(
1⊤Z

(k−1)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k−1)
h

)]
+ βÃZ

(k−1)
h

Zh = [Z
0)
h ,Z

(1)
h , · · · ,Z(K)

h]

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

Computing the above result requires O(N2) time and space complexity. Still, if we consider the
feature propagation with Ch, we have

ChZ
(k)
h = diag−1

(
N + ZQ,h (ZK,h)

⊤
1
)
·
(
11⊤ + ZQ,h (ZK,h)

⊤
)
· Z(k)

h

= diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

·
[
1
(
1⊤Z

(k)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k)
h

)]
,

(50)

where the equality is achieved by altering the order of matrix products. The above computation only
requires O(N) time and space complexity. The feed-forward computation of ADIT-SERIES with
O(N) acceleration is summarized in Alg. 2.

D.2 APPLICABILITY OF OUR MODEL

In the main paper, we assume unweighted graphs without edge attribute features for model formulation.
Without loss of generality, we next discuss how to extend our model to handle the edge weights and
edge features.

Edge Weights. For weighted graphs, the adjacency matrix A would become a real matrix where the
entry auv denotes the weight on the edge (u, v) ∈ E . In this situation, we still have the corresponding
normalized adjacency Ã = D−1A or Ã = D−1/2AD−1/2, where D = diag([du]u∈V) and
du =

∑
v,(u,v)∈E auv . Our model implementations can be trivially generalized to this case by using

Ã as the propagation matrix for local message passing.

Edge Features. If the graph contains edge features, denoted by E = [euv](u,v)∈E ∈ R|E|×D′
, we

introduce an encoding layer WE ∈ RD′×d for mapping the edge features into embeddings in the
latent space and then incorporate them with node embeddings. In specific, we first compute the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

edge-to-node signals:

M = [mu]u∈V , mu =
∑

v,(u,v)∈E

Ãu,vWEeuv. (51)

• For ADIT-INVERSE, we can modify Eqn. 46 as

Lh = (1 + θ)I−Ch − βÃ,

Zh = linsolver
(
Lh, (Z

(0) +M)
)
,

Z =

H∑
h=1

ZhWO,h.

(52)

• For ADIT-SERIES, we can modify Eqn. 47 to be

Ph = Ch + βÃ,

Z(k) = Ph(Z
(k−1) +M), k = 1, · · ·K,

Z =

H∑
h=1

[Z(0),Z(1), · · · ,Z(K)]WO,h.

(53)

E EXPERIMENT DETAILS

We supplement details for our experiments, regarding datasets, competitors, and implementations, for
facilitating the reproducibility.

E.1 DATASETS

The datasets we use for the experiments in Sec. 5 span diverse domains and learning tasks. We
summarize the statistics and brief descriptions for each dataset in Table 3, with the detailed information
presented in the following subsections.

Table 3: Statistics and descriptions for experimental datasets.

Dataset #Nodes #Edges #Graphs Train/Val/Test Split Task Metric

Synthetic-h 1,000 14,064 - 32,066 12 SBM (Homophily) Node Regression RMSE
Synthetic-d 1,000 7,785 - 13,912 12 SBM (Density) Node Regression RMSE
Synthetic-b 1,000 14,073 - 59,936 12 SBM (Block Number) Node Regression RMSE

Twitch 1,912 - 9,498 31,299 - 153,138 7 Geographic Domain Node Classification ROC-AUC
Arxiv 169,343 1,166,243 1 Publication Time Node Classification Accuracy

OGB-BACE 10 - 97 10 - 101 1,513 Molecular Scaffold Graph Classification ROC-AUC
OGB-SIDER 1 - 492 0 - 505 1,427 Molecular Scaffold Graph Classification ROC-AUC

DPPIN-nr 143 - 5,003 22 - 25,924 12 Protein Identification Method Node Regression RMSE
DPPIN-er 143 - 5,003 22 - 25,924 12 Protein Identification Method Edge Regression RMSE
DPPIN-lp 143 - 5,003 22 - 25,924 12 Protein Identification Method Link Prediction ROC-AUC

HAM 8 - 25 7 - 29 1,987 Relative Molecular Mass Edge Classification Accuracy

E.1.1 SYNTHETIC DATASETS

The synthetic datasets used in Sec. 5.1 simulate the graph data generation in Sec. 3.1, where the
topological distribution shifts are caused by the difference of environments across training and testing
data. In specific, we generate graphs of |V| = 1000 nodes, with the node features X, graph adjacency
matrix A and labels Y generated by the following process.

• Each node u ∈ V is assigned with a scalar uu randomly sampled from the uniform distribu-
tion U [0, 1].

• For the generation of node features X = [xu]u∈V , we instantiate the node-wise function g
as a 2-layer MLP with ReLU activation and 4-dimensional output. Then the node feature
xu is generated through xu = MLP(uu).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• For the generation of graph adjacency A = [auv]u,v∈V , we instantiate the pairwise function
h as the stochastic block model (Snijders & Nowicki, 1997) which generates edges according
to the intra-block edge probability (p1) and the inter-block edge probability (p2). We map
the nodes into b blocks by the following rule: for node u ∈ V , we assign it to the k-th block
if vu ∈ [k−1

b , kb) (where 1 ≤ k ≤ b). Then the edge auv is randomly generated from a
bernoulli distribution with p1 if u and v are in the same block, and p2 otherwise.

• For the generation of labels Y, we consider the regression tasks and each node has a
label yu generated through an ensemble model of a 2-layer GCN and a 1-layer DIFFormer
(without using the graph-based propagation) with random initializations: Y = gcn(U,A) +
difformer(U,A), where U = [uu]u∈V .

Using the above data generation, we create 12 graphs with the indices #1∼ #12, and use the graph
#1 for training, the graph #2 for validation, and the graphs #3∼ #12 for testing. The topological
distribution shifts are introduced in three different ways as described in Sec. 5.1, where in each case,
the detailed configurations for p1, p2 and b are illustrated below.

• Homophily Shift: p1 = 0.1, b = 5 and p2 = 0.01 + 0.05 ∗ 1
12 ∗ (i− 1) for the graph #i.

• Density Shift: b = 5, p1 = 0.1 + 0.1 ∗ 1
12 ∗ (i− 1) and p2 = 0.01 + 0.1 ∗ 1

12 ∗ (i− 1) for
the graph #i.

• Block Shift: p1 = 0.1, p2 = 0.01 and b = 5 + (i− 1) for the graph #i.

E.1.2 INFORMATION NETWORKS

The citation network Arxiv provided by Hu et al. (2020) consists of a single graph with 0.16M
nodes, where each node represents a paper with the publication year (ranging from 1960 to 2020) and
a subarea id (from 40 different subareas in total). The node attribute features are 128-dimensional
obtained by averaging the word embeddings of the paper’s title and abstract. The edges are given
by the citation relationship between papers. The predictive task is to estimate the paper’s subarea.
We use the publication years to split the data: papers published before 2014 for training, within
the range from 2014 to 2017 for validation, and on 2018/2019/2020 for testing. Since there is a
single graph, to increase the difficulty of generalization, we consider the inductive setting: the testing
nodes are not contained in the training graph. Table 5 demonstrates the dissimilar statistics for
training/validation/testing graphs, manifesting the existence of topological shifts. Following the
common practice, we use Accuracy as the evaluation metric.

Table 4: Statistics for training/validation/testing graphs on Arxiv. There is a single citation network
that augments with time evolving, and with the data splits in the inductive setting, the previous graph
is contained by the subsequent one.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)
Target Nodes 41,125 49,816 29,799 39,711 8,892
All Nodes 41,125 90,941 120,740 160,451 169,343
All Edges 102,316 374,839 622,466 1,061,197 1,166,243
Max Degrees 275 3,036 6,251 12,006 13,161
Avg Degrees 4.98 8.24 10.31 13.23 13.77

Twitch (Rozemberczki et al., 2021) is comprised of seven dis-connected graphs, where each node
represents a Twitch user and edges indicate the friendship. Each graph is collected from the social
newtork in a particular region, including DE, ENGB, ES, FR, PTBR, RU and TW. The node features
are multi-hot with 2,545 dimensions indicating the user’s profile. The predictive task is to classify the
gender of the user. The seven networks with sizes ranging from 2K to 9K have distinct structural
characteristics (such as densities and maximum degrees) as observed by Wu et al. (2022). We
therefore split the data according to the geographic information: use the network DE for training,
ENGB for validation, and the remaining networks for testing. The evaluation metric is ROC-AUC for
binary classification.

E.1.3 BIOLOGICAL PROTEIN INTERACTIONS

DPPIN (Fu & He, 2022) contains 12 individual dynamic network datasets at different scales, and each
dataset is a dynamic protein-protein interaction network that describes the protein-level interactions

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

of yeast cells. Each graph dataset is obtained by one protein identification method and consists
of 36 graph snapshots, wherein each node denotes a protein that has a sequence of 1-dimensional
continuous features with 36 time stamps. This records the evolution of gene expression values within
metabolic cycles of yeast cells. The edges in the graph are determined by co-expressed protein pairs
at one time, and each edge is associated with a co-expression correlation coefficient.

We consider the predictive tasks within each graph snapshot and ignore the temporal evolution
between different snapshots. In specific, we use the graph topology of each snapshot as the observed
graph adjacency A and use the gene expression values at the previous 10 time steps as node
features X. On top of this, we consider three different predictive tasks: 1) node regression for
gene expression value at the current time (measured by RMSE); 2) edge regression for predicting
the co-expression correlation coefficient (measured by RMSE); 3) link prediction for identifying
co-expressed protein pairs (measured by ROC-AUC). Given the fact that each graph dataset has
distinct sizes (ranging from 143 to 5,003 nodes) and distributions of 3-cliques and 4-cliques (ranging
from 0 to hundreds) (Fu & He, 2022), we consider the dataset-level data splitting and use 6/1/5 graph
datasets for training/validation/testing, which introduces topological distribution shifts.

E.1.4 MOLECULAR MAPPING OPERATOR GENERATION

The Human Annotated Mappings (HAM) dataset (Li et al., 2020) consists of 1,206 molecules with
expert annotated mapping operators, i.e., a representation of how atoms are grouped in a molecule.
The latter segments the atoms of a molecule into groups of varying sizes. As an important step in
molecular dynamics simulation, generating coarse-grained mapping operators aims to reproduce
the mapping operators produced by experts. This task can be modeled as a graph segmentation
problem (Li et al., 2020) which takes a molecule graph as input and outputs the labels for each edge
that indicates if there is cut needed to partition the source and end atoms into different groups.

For data splits, we calculate the relative molecular mass of each molecule using the RDKit package2,
and rank the molecules with increasing mass. Then we use the first 70% molecules for training,
the following 15% for validation, and the remaining for testing. This splitting protocol partitions
molecules with different weights, and requires generalization from small molecules in the training set
to larger molecules in the testing set.

Table 5: The range of relative molecular mass for training/validation/testing molecules in HAM.

Train Valid Test
Relative Molecular Mass 108.18 ∼ 273.34 273.34 ∼ 311.14 311.14 ∼ 762.94

E.2 COMPETITORS

In our experiments, we compare with peer encoder backbones for graph learning tasks. The competi-
tors span three aspects: 1) classical GNNs, 2) diffusion-based GNNs, and 3) graph Transformers. We
briefly introduce the competitors and illuminate their connections with our model.

• GCN (Kipf & Welling, 2017) is a popular model that propagates node embeddings over
observed graphs for computing node representations, which can be seen as the discretized
version of graph diffusion equations with feature transformations.

• GAT (Velickovic et al., 2018) introduces attention networks for computing pairwise weights
for neighboring nodes in the graph and propagates node signals with adaptive strengths
given by the attention weights. GAT can be seen as the discretized version of the graph
diffusion equation with time-dependent coupling matrices.

• SGC (Wu et al., 2019) proposes to simplify the GCN architecture by removing the feature
transformations in-between propagation layers, reducing multi-layer propagation to one-
layer. This brings up significant acceleration for training and inference. SGC can be seen as
the discretization of the linear diffusion equation on graphs.

2https://github.com/rdkit/rdkit

24

https://github.com/rdkit/rdkit

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• GDC (Klicpera et al., 2019) extends the graph convolution operator to graph diffusion
convolution derived from the linear diffusion equation on graphs. We use its implementation
version based on the heat kernel for diffusion coefficients.

• GRAND (Chamberlain et al., 2021a) proposes graph neural diffusion, a continuous PDE
model, that generalizes manifold diffusion to graphs and then uses numerical schemes to
solve the PDE. We compare with its linear version that implements the linear graph diffusion
equation.

• A-DGNs (Gravina et al., 2023) is a stable graph neural architecture inspired by ODE on
graphs that has provable capability to preserve long-range information between nodes and
avoid gradient vanishing or explosion in training.

• CDE (Zhao et al., 2023) is a recently proposed continuous model derived from convection
diffusion equations that is designed for addressing heterophilic graphs.

• GraphTrans (Wu et al., 2021) is a recently proposed Transformer for graph-structured
data that satisfies the permutation-invariant property. The model architecture sequentially
combines GNNs and Transformers in order, where the GNN can learn local, short-range
structures and the Transformer can capture global, long-range relationships.

• GraphGPS (Rampásek et al., 2022) introduces a scalable and powerful Transformer model
class for graph data and achieves state-of-the-art results on molecular property predic-
tion benchmarks. We use its scalable implementation version with the Performer atten-
tions (Choromanski et al., 2021).

• DIFFormer (Wu et al., 2023) is a scalable Transformer inspired by diffusion on graphs. The
model is comprised of principled attention layers, which implements the diffusion iterations
minimizing a global energy. The architecture integrates graph-based feature propagation and
global attention in each layer. We use its version with simple diffusivity that only requires
linear complexity and yields state-of-the-art results on some large-graph benchmarks.

E.3 IMPLEMENTATION DETAILS

Computation Systems. All the experiments are run on NVIDIA 3090 with 24GB memory. The
environment is based on Ubuntu 18.04.6, Cuda 11.6, Pytorch 1.13.0 and Pytorch Geometric 2.1.0.

Evaluation Protocol. For all the experiments, we run the training and evaluation of each model with
five independent trials, and report the mean and standard deviation results in our tables and figures.
In each run, we train the model with a fixed budget of epochs and record the testing performance
produced by the epoch where the model yields the best performance on validation data.

Hyper-Parameters. We use the grid search for hyper-parameter tuning on the validation dataset with
the searching space described below.

• For information networks, hidden size d ∈ {32, 64, 128}, learning rate ∈ {0.0001, 0.001},
head number H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.2, 0.5, 0.8, 1.0},
and the order of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 4}.

• For molecular datasets, hidden size d = 256, learning rate ∈
{0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}, dropout ∈ {0.0, 0.1, 0.3, 0.5}, head
number H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.5, 0.75, 1.0}, the
coefficient for identity matrix (only used for ADIT-INVERSE) θ ∈ {0.5, 1.0}, and the order
of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 3, 4}.

• For protein interaction networks, hidden size d ∈ {32, 64}, learning rate ∈
{0.01, 0.001, 0.0001}, head number H ∈ {1, 2, 4}, the weight for local message passing
β ∈ {0.3, 0.5, 0.8, 1.0}, the coefficient for identity matrix (only used for ADIT-INVERSE)
θ ∈ {0.5, 1.0}, and the order of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 3, 4}.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we supplement more experimental results including additional results for main
experiments, ablation studies and hyper-parameter analysis.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
K

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

1 2 3 4 5 6
K

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

RM
SE

DDPIN-nr

1 2 3 4 5 6
K

0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165

RM
SE

DDPIN-er

Figure 6: Model performance on Arxiv and DPPIN with different settings of K. The latter involves
node regression (nr) and edge regression (er) tasks.

F.1 SUPPLEMENTARY RESULTS FOR MAIN EXPERIMENTS

In Table 6, we present the ROC-AUC for each graph of Twitch. In Fig. 7 and 8, we show the
generated results for more testing cases of molecular mapping operators in HAM.

Table 6: Result of ROC-AUC for each graph on Twitch where we use nodes in different networks
to split the training, validation and testing data.

Train (DE) Valid (ENGB) Test 1 (ES) Test 2 (FR) Test 3 (PTBR) Test 4 (RU) Test 5 (TW)
MLP 75.26 ± 1.49 63.48 ± 0.15 65.19 ± 0.37 62.25 ± 0.28 65.01 ± 0.19 54.92 ± 0.33 58.23 ± 0.13
GCN 69.55 ± 0.34 60.76 ± 0.21 63.75 ± 0.44 61.56 ± 0.56 63.26 ± 0.42 54.51 ± 0.21 55.72 ± 0.28
GAT 69.28 ± 1.14 59.80 ± 0.42 62.81 ± 1.16 60.65 ± 0.92 63.13 ± 1.25 53.80 ± 0.27 55.31 ± 0.94
SGC 71.68 ± 0.33 61.98 ± 0.07 65.12 ± 0.15 63.06 ± 0.12 64.14 ± 0.19 55.17 ± 0.06 56.83 ± 0.20
GDC 80.73 ± 1.69 62.14 ± 0.30 66.33 ± 0.25 60.70 ± 0.51 64.21 ± 0.23 56.60 ± 0.24 58.97 ± 0.37
GRAND 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
A-DGNs 78.91 ± 0.52 61.52 ± 0.34 65.82 ± 0.21 60.59 ± 0.56 63.49 ± 0.63 55.74 ± 0.32 58.31 ± 0.53
CDE 80.21 ± 0.35 62.51 ± 0.21 65.62 ± 0.17 60.93 ± 0.55 63.92 ± 0.57 55.79 ± 0.31 58.42 ± 0.42
GraphTrans 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
GraphGPS 74.49 ± 1.35 63.40 ± 0.31 66.85 ± 0.32 63.74 ± 0.37 65.03 ± 0.58 56.39 ± 0.39 58.63 ± 0.83
DIFFormer 73.12 ± 0.52 63.06 ± 0.09 66.68 ± 0.15 64.44 ± 0.13 65.23 ± 0.20 55.75 ± 0.12 58.91 ± 0.37
ADIT-SERIES 75.46 ± 0.28 63.53 ± 0.14 66.78 ± 0.14 63.35 ± 0.10 65.68 ± 0.06 56.27 ± 0.06 60.48 ± 0.21

F.2 ABLATION STUDIES AND HYPER-PARAMETER ANALAYSIS

We next conduct more analysis on our proposed model by ablation studies on some key components
and investigating the impact of hyper-parameters.

Diffusion and Advection. We conduct ablation studies on the advection term (i.e., the local message
passing) and the diffusion term (i.e., the global attention). In Table 7 we report the results for
ADIT-SERIES on Arxiv, which shows that the two modules are indeed effective for producing
superior generalization on node classification tasks.

Table 7: Ablation studies for ADIT-SERIES on Arxiv.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)
ADIT 63.79 ± 0.66 55.25 ± 0.14 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54
ADIT w/o diffusion 64.65 ± 1.10 55.00 ± 0.12 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24
ADIT w/o advection 61.84 ± 0.79 54.31 ± 0.24 51.64 ± 0.59 49.65 ± 0.53 47.06 ± 0.69

Impact of K. The hyper-parameter K (used for ADIT-SERIES) controls the number of propagation
orders in the model. In fact, the value of K would impact how the structural information is utilized
by the model. If K is small, the model only utilizes the low-order structure, and large K enables the
usage of high-order structural information. Fig. 6 presents the model performance on Arxiv and
DPPIN with K ranging from 1 to 6. We observe that the optimal settings for K are different across
cases, and using larger K can not necessarily yield better performance. This is because in these cases,
the low-order structural information is informative enough for desired generalization.

Impact of θ. Finally, we study the impact of θ used for computing Lh in ADIT-INVERSE. Table 8
shows the performance of ADIT-INVERSE on DPPIN with different θ’s. We found that using θ close
to 1 can bring up stably good performance, which is consistently manifested by experiments on other

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

cases. Still, if θ is too small, e.g., close to 0, it would sometimes lead to numerical instability. This is
due to that, in such a case, the matrix Lh could become a singular matrix.

Table 8: Testing accuracy of ADIT-INVERSE with different θ’s in the edge regression task on DPPIN.

θ 0 0.5 1.0 2.0

Accuracy 0.241 0.154 0.147 0.149

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ground Truth ADiT (1.00) GCN (1.00) GAT (0.69) GraphGPS (0.92) Difformer (0.92)

(a)

Ground Truth ADiT (1.00) GCN (0.22) GAT (0.22) GraphGPS (0.22) Difformer (0.22)

(b)

Ground Truth ADiT (1.00) GCN (1.00) GAT (0.89) GraphGPS (0.86) Difformer (0.86)

(c)

Ground Truth ADiT (0.90) GCN (0.54) GAT (0.87) GraphGPS (0.74) Difformer (0.74)

(d)

Ground Truth ADiT (0.83) GCN (0.70) GAT (0.70) GraphGPS (0.63) Difformer (0.60)

(e)

Figure 7: Additional testing cases for molecular mapping operators generated by different models
and the expert annotations (ground-truth). For each case, we report the score (the higher is better)
that measures the closeness between the generated results and the expert annotations.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Ground Truth ADiT (1.00) GCN (0.87) GAT (0.77) GraphGPS (0.85) Difformer (0.87)

(a)

Ground Truth ADiT (1.00) GCN (0.84) GAT (0.76) GraphGPS (0.70) Difformer (0.64)

(b)

Ground Truth ADiT (1.00) GCN (0.72) GAT (0.74) GraphGPS (0.56) Difformer (0.57)

(c)

Ground Truth ADiT (1.00) GCN (0.77) GAT (0.77) GraphGPS (0.77) Difformer (0.89)

(d)

Ground Truth ADiT (1.00) GCN (0.64) GAT (0.51) GraphGPS (0.51) Difformer (0.51)

(e)

Figure 8: Additional testing cases for molecular mapping operators generated by different models
and the expert annotations (ground-truth). For each case, we report the score (the higher is better)
that measures the closeness between the generated results and the expert annotations.

29

	Introduction
	Background and Preliminaries
	Can Graph Diffusion Generalize?
	Problem Formulation: Graph Data Generation
	Generalization Analysis with Topological Shifts
	Pitfall of Local Diffusion
	Potential of Non-Local Diffusion

	Generalization with Advective Diffusion
	Proposed Model: Advective Diffusion Transformers
	Theoretical Justification
	Model Implementation with PDE Solvers

	Experiments
	Synthetic Datasets
	Real-World Datasets

	Conclusions and Discussions
	Connection between Diffusion Equations and Message Passing
	Graph Neural Networks as Local Diffusion
	Transformers as Non-Local Diffusion

	Proofs for Technical Results
	Proof for Theorem 3.1
	Proof for Proposition 3.2
	Proof for Corollary 3.3
	Extension with Feature Transformations
	Proof for Proposition 3.4
	Proof for Theorem 4.1
	Proof for Corollary 4.2

	Approximation Strategies for Diffusion PDE Solutions
	Model Implementations and Algorithms
	Model Architectures
	Instantiations and Parameterizations
	Acceleration of ADiT-series with Linear Complexity

	Applicability of Our Model

	Experiment Details
	Datasets
	Synthetic Datasets
	Information Networks
	Biological Protein Interactions
	Molecular Mapping Operator Generation

	Competitors
	Implementation Details

	Additional Experimental Results
	Supplementary Results for Main Experiments
	Ablation Studies and Hyper-Parameter Analaysis

