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Abstract

Despite the ability of text-to-image models to generate high-quality, realistic, and diverse
images, they face challenges in compositional generation, often struggling to accurately
represent details specified in the input prompt. A prevalent issue in compositional generation
is the misalignment of spatial relationships, as models often fail to faithfully generate images
that reflect the spatial configurations specified between objects in the input prompts. To
address this challenge, we propose a novel probabilistic framework for modeling the relative
spatial positioning of objects in a scene, leveraging the concept of Probability of Superiority
(PoS). Building on this insight, we make two key contributions. First, we introduce a novel
evaluation metric, PoS-based Evaluation (PSE), designed to assess the alignment of 2D
and 3D spatial relationships between text and image, with improved adherence to human
judgment. Second, we propose PoS-based Generation (PSG), an inference-time method
that improves the alignment of 2D and 3D spatial relationships in T2I models without
requiring fine-tuning. PSG employs a PoS-based reward function that can be utilized in two
distinct ways: (1) as a gradient-based guidance mechanism applied to the cross-attention
maps during the denoising steps, or (2) as a search-based strategy that evaluates a set of
initial noise vectors to select the best one. Extensive experiments demonstrate that the
PSE metric exhibits stronger alignment with human judgment compared to traditional
center-based metrics, providing a more nuanced and reliable measure of complex spatial
relationship accuracy in text-image alignment. Furthermore, PSG significantly enhances
the ability of text-to-image models to generate images with specified spatial configurations,
outperforming state-of-the-art methods across multiple evaluation metrics and benchmarks.

1 Introduction

Recent advancements in computational power and large multimodal datasets have led to the development of
powerful text-to-image (T2I) models, such as Stable Diffusion (2; 1) and DALL-E (3; 4), which generate high-
quality and diverse images from text descriptions. However, concerns have arisen regarding their reliability
in generating images that align with the specific details in input prompts, leading to well-known failures
referred to as compositional generation issues.

These failures can be categorized into four main types (5): object missing, where the generated image
omits one or more objects explicitly mentioned in the prompt (6; 7; 8; 9); incorrect attribute binding, where
attributes are not correctly associated with entities (10; 11; 12); incorrect spatial relationships, where the
spatial arrangement of objects in the image does not match the description (13; 14); and numeracy-related
issues, where the model fails to represent the exact specified number of entities in the prompt (15; 16).
This work addresses the challenge of 2D and 3D spatial relationships in T2I models, focusing on overcoming
two key hurdles: generating all specified objects without omission and demonstrating a robust geometric
understanding to accurately interpret relative positions and orientations.

Improving compositional generation in T2I models can be achieved through fine-tuning on large multimodal
datasets (17; 14; 18), a process that is costly, time-consuming, and infeasible in resource-limited settings.
Alternatively, training-free methods (19; 12; 6; 11; 10; 7; 20; 21) have gained popularity for adjusting latent
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Figure 1: Qualitative comparison of our proposed method, PSG, using SDXL (1) as the backbone with the
baseline on a variety of complex prompt with one or more 2D and 3D spatial relationships. Our method
generates images with accurate spatial relations even for prompts defining several relations between objects.

embeddings during inference without modifying model parameters, thereby preserving model integrity and
preventing overfitting. Another approach involves incorporating supplementary inputs, such as layouts and
scene graphs, alongside text prompts (20; 22; 23; 24). However, these methods can be impractical, as they
often require detailed supplementary inputs that place a burden on users, may involve the costly integration
of large language models, and can introduce undesirable biases in generation.

Hence, a training-free method that does not require additional inputs could be ideal for addressing compo-
sitional generation challenges. However, no such solution currently exists for managing spatial relationships
in T2I models, despite spatial alignment being a well-explored area. Previous studies have primarily used
a center-based approach to model spatial relationships, which assesses image-text alignment by focusing on
the centers of detected bounding boxes (13; 25; 26; 27). This approach ignores factors such as the over-
all shape and size of objects, leading to inaccuracies. Additionally, center-based methods rely on discrete
spatial inference, which is incompatible with the continuous and differentiable reward functions required for
training-free guided generation.

This study introduces a novel probabilistic framework for analyzing spatial relationships between objects
using the Probability of Superiority (PoS) concept (28), enabling a more human-like interpretation of spa-
tial relationships by accounting for the overall characteristics of objects. Hence, this work presents two
main contributions: (1) PoS-based Evaluation (PSE), a novel evaluation metric that reliably assesses 2D
and 3D spatial relationship alignment between image and text, and (2) PoS-based Generation (PSG), an
inference-time method that enhances T2I models’ ability to generate images with specified 2D and 3D spatial
relationships by incorporating a PoS-based reward function, without modifying model parameters. Following
established paradigms in the field, PSG can be implemented in both gradient-based and search-based forms.

Comprehensive experiments demonstrate that PSE aligns more closely with human judgment than commonly
used evaluation metrics such as VISOR (13), T2I-CompBench (25), HRS-Benchmark (26), CLIP Score (29),
XVLM (30), and Image Reward (31), as measured by Spearman, Kendall, and Pearson correlations. Notably,
PSE achieves an improvement of approximately 0.2 in Spearman correlation over VISOR, highlighting that a
probabilistic perspective on spatial relationships provides a more reliable assessment than traditional center-
based and object detection-based methods.
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Figure 2: Qualitative comparison with the state-of-the-art SDXL model (1) and the fine-tuning-based model
Getting it Right (14), on prompts with spatial instructions.

Additionally, PSG outperforms state-of-the-art methods, including fine-tuning-based approaches, across mul-
tiple benchmarks and model backbones (fig. 1 and fig. 2). Using the VISOR metric (13), a standard for
evaluating spatial relationships in T2I models, PSG achieves a significant 32% performance improvement
over the leading competitor, while introducing minimal bias, as assessed by quality and diversity evaluations.

Finally, a major challenge in text-image alignment research is the high computational cost of model eval-
uation, as most compositional metrics require numerous samples for reliable results. This poses difficulties
for large-scale models like Stable Diffusion XL (1) and DALL-E 3 (4), underscoring the need for an efficient
evaluation metric that reduces sample requirements. Inspired by the approach introduced by (32), we pro-
pose Online PSE (OPSE), an online version of the PSE metric to reliably detect the superior model using
only a limited number of samples.

2 Related Work

Spatial Relationship Generation. In recent years, various methods have been introduced to address the
problem of incorrect spatial relationships in T2I models. The fine-tuning-based approach Getting it Right (14)
highlights the underrepresentation of spatial relationships in standard vision-language datasets. To address
this, the authors fine-tuned diffusion-based T2I models on a dataset they created by re-captioning six million
images from CC-12M (33), Segment Anything (SA) (34), COCO (35), and LAION-Aesthetic (36). Moreover,
several fine-tuning methods enhance text-image alignment in T2I models by incorporating additional inputs,
such as layouts (37; 38; 39; 40; 41; 42; 43; 44). Since fine-tuning approaches are computationally intensive
and prone to overfitting, a line of research has introduced training-free methods that use inference-time
approaches to enhance model performance on spatial relationships, often incorporating supplementary inputs
(45; 46; 47; 48; 49; 20; 22; 50; 30). These approaches typically adjust intermediate latent embeddings during
the denoising process without modifying the model’s parameters. To the best of our knowledge, no training-
free method currently addresses the spatial relationship problem in T2I models without requiring additional
inputs.

Spatial Relationships Evaluation. Most evaluation metrics specialized in spatial relationship alignment
are center-based, meaning they infer spatial relationships based on the bounding box centers of objects. For
example, (13) propose a meric called VISOR which employs the open vocabulary object detector OWL-VIT
(51) to assess the spatial relationship alignment by comparing the center points of object bounding boxes
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identified by the object detector. Moreover, T2I-CompBench (25) and HRS-Benchmark (26), two well-
known benchmarks for compositional generation, assess spatial relationships using object centers obtained
by UniDet (52). However, center-based approaches have critical limitations as they do not account for the
overall characteristics of objects. Additionally, there are also embedding-based and VQA-based evaluation
metrics, such as (53) and (54), that address the spatial relationship problem in T2I models.

3 Probabilistic Viewpoint to Spatial Relationship
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Figure 3: Process of PSE metric for the prompt “A cat to the right of a bowl”. The depth detection is only
applied for 3D relations.

To quantify spatial relationships from a probabilistic perspective, we start with a simple case. Consider two
distributions, A and B, which, with probability 1, take on single point values x and y, respectively. In this
scenario, determining whether A is to the right of B reduces to evaluating the condition x > y. This can
be formally expressed using the indicator function I(x > y), where I returns 1 if the condition holds. This
indicator function can be reformulated as shown in eq. (1).

I(x, y) = EX∼A,Y ∼B [I(X > Y )]
= PX∼A,Y ∼B(X > Y )

(1)

With this intuition, for a more general case, let A and B represent two probability density distributions
defined over a one-dimensional space. The concept of distribution A being positioned to the right of distri-
bution B can be quantified by eq. (1) as the likelihood that a randomly selected sample from distribution
A is greater than a randomly selected sample from distribution B. The formal definition which is known as
Probability of Superiority (PoS) (28) is expressed in eq. (2).

PoS(A, B) = PX∼A,Y ∼B(X > Y )

=
∫ ∞

−∞

∫ ∞

y

PA(x)PB(y)dxdy
(2)

In a bounded discrete space, given that the range of A is [sA, tA] and the range of B is [sB , tB ], we derive
eq. (3).

PoS(A, B) =
tB∑

j=sB

tA∑
i=j

PA(i)PB(j). (3)
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Thus, A is considered to be positioned to the right of B when PoS(A, B) ≈ 1, indicating that the probability
of a point in A being to the right of a point in B is nearly 1. Similarly, A is to the left of B if PoS(B, A) ≈ 1.

To extend beyond one-dimensional distributions, we use normalized projections onto a vector v, denoted as
ΠvA and ΠvB. These one-dimensional distributions capture spatial relationships along v, such as left-right or
above-below positioning. Thus, we define PoS on these projections to assess spatial alignment. For example,
in 2D, with v⃗ = (0,−1), A is above B if PoS(Πv(B), Πv(A)) ≈ 1 and below B if PoS(Πv(A), Πv(B)) ≈ 1.
To simplify notation, we define the Projected-Pos for vector v⃗ as described in eq. (4).

PoSv(A, B) = PoS(Πv(A), Πv(B)) (4)

To quantify common directions such as left, top, or in front, we use the standard XYZ axes. The reverse
of each relation is modeled by swapping A and B or equivalently using −v⃗. More complex directions, like
top-right or between, can be captured by combining the Projected-PoS of each component.

Including Distance. As shown in appendix B.4, eq. (2) can be extended to account for distance, enabling
the representation of relations such as close and far.

Building on the proposed PoS-based framework, we introduce a more reliable evaluation metric for text-image
alignment and a training-free method to improve spatial relationship modeling in T2I models.

3.1 Evaluating Spatial Relationships Alignment using PoS

Using the concept of Projected-PoS (eq. (4)), we introduce a novel evaluation metric, PSE (PoS-based
Evaluation), to assess the spatial relationship alignment between text and image. Given a pair of text and
image, we first extract the object names and their spatial relationships from the text. The image, along
with the extracted object names, is then input into Grounded SAM (55), which integrates the Segment
Anything Model (SAM) (34) with Grounding DINO (56) to detect and segment the regions related to the
objects. For 2D relationships, the Projected-PoS is directly applied between the segmentation outputs. For
3D relationships, a monocular depth map detector is first used to estimate the relative depth of objects.
The depth values for each segment are then quantized to determine the z⃗-related values. Thus, for both 2D
and 3D cases, the PSE evaluation metric for a text-image pair containing objects A and B and their spatial
relationship r is defined as eq. (5).

PSE(A, B; r) = [PoSvr
(A, B)− PoS−vr

(A, B)]+ (5)

Note that the negative projection vector gives us the Projected-PoS for the inverse relation, such as “left" for
“right". For example, if object A is entirely to the right of object B, meaning all of its points are positioned
to the right of B’s points, the PoSvright(A, B) would be close to 1, while PoSvleft(A, B) would approach 0.
As a result, the assigned score, PSE(A, B; Right), would be nearly 1, indicating a true alignment. For a
visual representation, refer to fig. 3.

The modification in PSE to the absolute PoS value provides benefits in ambiguous scenarios, where one
object is positioned near the middle of another. In such cases, the values for PoSvright and PoSvleft are
nonzero but close, leading to a PSE score near zero, which aligns more closely with human evaluation. In
contrast, center-based evaluation metrics like VISOR (13) focus solely on the positions of object centers,
leading to a rigid scoring of 1 or 0, which favors one object being definitively to the right or left of the other.

PSE also offers greater reliability than center-based methods in scenarios where the relative center positions
of objects contradict the spatial arrangement that humans intuitively interpret as correct, particularly for
objects that can span across the scene, such as trees, as demonstrated in fig. 4.

Hence, PSE provides a human-like measure of confidence in spatial relation evaluation. If all points of one
object lie to the right of all points of another, PSE confidently assigns a score of PSE = 1, indicating that
one object is to the right of the other. Moreover, this confidence does not increase further by moving the
object farther to the right.
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Figure 4: Inconsistency of center-based evaluation with human perception of spatial relationships for the
prompt “a dog to the right of a tree”. Even though the dog is not positioned to the right of the tree, the
tree’s horizontal expansion causes the VISOR metric to inaccurately label the relationship between the dog
and the tree as true.

Notably, PSE assigns a continuous score between 0 and 1, allowing for the application of a threshold to
determine the presence of a specified relationship. Based on our experiments in appendix A.1, we found that
a threshold of 0.5 closely aligns with the original PSE score, offering an effective binary evaluation method.

3.2 Improving Spatial Relationships Alignment using PoS

Building upon the PSE metric introduced in section 3.1, we now leverage this metric as a reward function to
guide image generation. Specifically, we propose PSG (PoS-based Generation), an inference-time alignment
enhancement method that steers the generation process to produce images that conform to the spatial
configurations described in the input prompt. PSG operates without requiring any training or fine-tuning of
the underlying generative model. Consistent with established practices in the field, the PoS-based guidance
can be implemented through either gradient-based optimization or search-based strategies.

D
og

C
at

PoS Value ↑ 0.73 0.90 0.92 0.95 0.93

SD 1.4 + PSG

0 8 15 30 50

0.73 0.70 0.62 0.60 0.54

SD 1.4

Denoising Step0 8 15 30 50

Figure 5: Results of applying gradient-based PSG to Stable Diffusion 1.4 on cross-attention maps of dog
and cat for the prompt “A dog to the left of a Cat”. The distribution of attention of each object is gradually
shifted to its correct relative position.

Gradient-Based PSG (Generative Semantic Nursing). Gradient-based PSG can be viewed as
a continuous optimization over the latent representations, where the core objective is defined by a PoS-
based reward (or loss) function that encourages spatial alignment. This reward can be computed either
on the final generated image or on intermediate cross-attention maps extracted during inference; in this
work, we primarily focus on the latter. Notably, in T2I models such as U-Net-based architectures (e.g.,
Stable Diffusion) or DiT-based models, 2D cross-attention maps offer approximate object segmentations
before image synthesis is complete. These normalized cross-attention maps can be interpreted as probability
distributions over spatial locations, indicating the likelihood that a given object is associated with each region
of the image. Given this probabilistic interpretation, the PoS-based formulation (eq. (3)) can be directly
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applied to cross-attention maps, enhancing the alignment of 2D spatial relationships during the generation
process.

More precisley, consider one of the extracted relations named r (like “being to the left of") between tokens
i and j (object associated with token i is to the left of object associated to token j). We then use the
Projected-PoS of the attention maps Ai and Aj on the vector of relation r namely v⃗r as described in the
previous subsection. This term now defines a loss l for how much the relation r is established. We employ this
loss function to use the concept of generative semantic nursing (6) and update the latent zt at the denoising
step t using eq. (6), where L is equal to the −PoS2

v⃗r
(Ai, Aj). The square is due to practical performance.

zt ← zt − αt · ∇zt
L (6)

Notably, fig. 5 depicts the changes in the value of the PoSv⃗r
(Ai, Aj) with and without applying eq. (6) to the

latent, along with the projected cross-attention maps of entities onto the x-axis. It is apparent that as long
as the entities are in an incorrect spatial layout, the value of the proposed PoS-based metric remains low.
Combined and more complex form of relationships can be created by merging these losses. For example, by
shifting the latent once using the leftward loss and once using the top-ward loss, one can guide towards the
top-left relation as presented in fig. 1 . More exemplary instances are provided in appendix B.3.

Search-Based PSG (Inference-time Scaling). In this context, search-based refers to a discrete search
over the initial noise vectors of a diffusion model, serving as an inference-time scaling method. Diffusion
models inherently incorporate stochasticity, and prior works (57; 58; 59) have demonstrated that generation
quality can be improved by selecting more favorable initial noises. One widely adopted technique for such
inference-time enhancement is the Best-of-N strategy.

We adopt this approach by using the PSE score as a reward function to guide the selection process. Specif-
ically, we generate N = 32 samples per prompt and select the image that achieves the highest PSE score,
as computed by the evaluation pipeline described in section 3.1. While 2D cross-attention maps offer useful
spatial cues, they do not inherently capture 3D spatial relationships. In contrast, the final generated images
contain sufficient structural and depth information to support 3D-aware evaluation. Consequently, search-
based PSG is particularly well-suited for enhancing 3D spatial alignment, and it offers a model-agnostic
solution that does not require access to the internal architecture or training process of the diffusion model.

4 Experiments

We begin by conducting a thorough evaluation of our method’s effectiveness in assessing spatial accuracy
in images, followed by an analysis of how PSG improves alignment with spatial instructions across various
benchmarks.

4.1 Experiments of PoS-based Evaluation (PSE)

We evaluate the performance of our PoS-based evaluation metric, PSE, against other established embedding-
based and detection-based metrics.

We use images generated by models: SDXL (1), Kandinsky 3 (60), PixArt-α (61), and SDXL+PSG to
compare the effectiveness of the evaluation metrics on generated images.

Alignment to Human Judgment. Using the four aforementioned models, we randomly selected 500
prompts from a 5,000-prompt sub-dataset, yielding a total of 2,000 generated images. Three human eval-
uators, randomly selected from a pool of volunteers, assessed these images. A custom user interface (UI)
was developed to present image-prompt pairs in random order, and evaluators were instructed to assign one
of the following labels to each pair: (1) object missing, (2) object present but relationally incorrect, or (3)
correctly aligned. To mitigate potential bias, we intentionally refrained from providing strict definitions for
relational correctness, allowing evaluators to apply their own judgment. The aggregated annotations were
subsequently used to compute correlation metrics and analyze the optimism of each scoring method. As
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Table 1: Correlations on the 2K images of the human evaluation between the evaluators and the human
ground truth demonstrates that PSE is better correlated with human judgments compared to other metrics.
PSE (0.5) represents a binary version of PSE with a threshold of 0.5.

Model Spearman (↑) Kendall (↑) Pearson (↑)
VISOR (13) 0.551 0.551 0.551
T2I-CompBench (25) 0.437 0.423 0.439
HRS-Bench (26) 0.383 0.364 0.384
Clip Score (29) 0.269 0.220 0.268
XVLM (30) 0.113 0.092 0.134
Image Reward (31) 0.326 0.266 0.349
PSE 0.726 0.642 0.778
PSE (0.5) 0.755 0.755 0.755

presented in table 1, rank correlation analysis indicates that the PSE metric achieves the highest alignment
with human judgments.

Moreover, PSE is specifically designed to handle cases where objects are not well-separated. To evaluate its
effectiveness in such scenarios, we selected a subset of images generated by the SDXL model that exhibited
higher levels of object occlusion, as identified in a human study. On this challenging subset, PSE achieved
a substantial improvement in Pearson correlation with human judgments, rising from 0.241 (VISOR metric)
to 0.582, demonstrating its superior alignment with human perception compared to center-based metrics,
even on difficult samples.

Reliability Test. An effective evaluation metric should precisely discern whether a relationship is present
or absent in an image. Inaccuracies in the detection of incorrect relationships can lead to overly optimistic
assessments. To assess this issue, we evaluated the performance of four metrics -VISOR, T2I-CompBench,
HRS-Benchmark, and PSE - using Precision, Recall, Accuracy, Specificity, and the F1 Score, with human
assessments serving as the ground truth.

In this comparison, we used binary outcomes to score individual image-prompt pairs. VISOR inherently
provides binary scores, whereas PSE requires thresholding; we classified relationships as correct when the
PSE score was 0.5 or higher. Similarly, for T2I-CompBench, a threshold of 0.1 was applied to produce
binary outputs. As shown in table 2, PSE outperforms other metrics in Accuracy, Recall, and F1 Score,
indicating it provides more reliable assessments of true relationships. VISOR’s low Recall suggests that
it tends to overestimate correctness, scoring images too optimistically. In contrast, T2I-CompBench and
HRS-Benchmark are overly restrictive, while PSE achieves a better balance in this trade-off. The threshold
of 0.5 for PSE was chosen based on an analysis of the distance between the thresholded and original PSE
scores on real datasets introduced by (62). Detailed plots for the hyperparameter selection are provided in
Appendix appendix B.1.

Table 2: Comparison of the reliability of binary predictions for spatial relationships. The table shows that
VISOR tends to misclassify images with incorrect relationships, while HRS and T2I-CompBench tend to
misclassify images with correct relationships. In contrast, PSE provides a more balanced evaluation.

Model Precision (↑) Recall (↑) Accuracy (↑) Specificity (↑) F1 Score (↑)
VISOR (13) 86.53 62.26 76.5 90.49 72.42
HRS (26) 40.67 72.14 73.25 73.53 52.02
T2I-Compbench (25) 33.23 88.43 74.65 72.52 48.32
PSE (0.5) 78.82 88.78 88.9 88.95 83.51
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Online PoS-based Evaluation (OPSE). Both VISOR and PSE metrics rely on datasets with a large
number of generated images to provide robust assessments of generative models, using 30k and 5k prompts,
respectively. However, when selecting the model with the highest PSE value among multiple candidates,
acquiring the necessary number of prompts can be costly, particularly due to the API expenses of large-scale
models. To reduce this cost, rather than performing batch sampling—which risks allocating resources to
suboptimal models—we propose leveraging the Multi-Armed Bandit approach (63), as suggested by (32; 64),
for model selection. As shown in fig. 6, employing the UCB algorithm (65; 66) effectively converges to
sampling from the optimal model based on the ranking in table 3. Further details on the algorithm are
provided in Appendix appendix A.6.

0 20 40 60 80
Steps

0

10

20

30

40

S
te

p
s

C
h

os
en

OPSE Choice of Models

Models
Kandinsky

SDXL

SDXL + PSG

Figure 6: Number of times each model is chosen by the OPSE algorithm for 100 rounds. The models are
SDXL, Kandinsky, and SDXL + PSG. We observe that OPSE can accurately find the best model and sample
from it.

Table 3: Comparison of PSE 2D and 3D scores of models used for our human experiment. (This is not a
performance validation for PSG as it uses the same measure).

Model PSE2D (%) ↑ PSE3D (%) ↑
PixArt-α 17.20 27.21
Kandinsky 3 26.07 28.52
SDXL 20.34 28.60
SDXL+PSG 65.89 78.10

4.2 Experiments of PoS-based Generation (PSG)

Experimental Setup. We evaluated PSG on two backbone models: Stable Diffusion 1.4 (2), a lightweight
model with limited capacity, and Stable Diffusion XL (1), a more advanced and computationally powerful
model. For Stable Diffusion 1.4, PSG was applied during the first 25 steps of the denoising process, using an
initial step factor of 20. In contrast, for Stable Diffusion XL, the loss function was applied over the first 10
steps, with a larger initial step factor of 1000. The impact of these hyperparameter choices is further analyzed
in appendix B.1. We used an NVIDIA A100 GPU for the experiments. Three well-known compositional
generation benchmarks were adopted for comparisons.

VISOR Benchmark. VISOR (13) is a widely used benchmark framework for assessing spatial relation-
ships in T2I models. It comprises using 30,000 prompts based on the objects of COCO (35) to test object
positioning in four key directions: left, right, top, and bottom. 5,000 prompts with four random seeds to
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Table 4: Quantitative comparison of our gradient-based PSG, compared to baselines using VISOR metrics
on VISOR dataset.

Model OA (%) ↑ VISORuncond (%) ↑ VISORcond (%) ↑ VISOR1 (%) ↑ VISOR2 (%) ↑ VISOR3 (%) ↑ VISOR4 (%) ↑
GLIDE (67) 3.4 1.9 55.96 6.36 1.06 0.16 0.02
GLIDE + CDM (19) 9.96 6.33 63.47 19.7 4.6 0.88 0.12
DALLE-mini (68) 27.24 16.21 59.53 39 17.5 6.42 1.94
CogView2 (69) 18.86 12.31 65.26 33.78 11.6 3.4 0.44
DALLE-v2 (70) 63.59 37.42 58.85 72.78 46.16 23.08 7.66
SD 1.4 + CDM 23.24 15.02 64.63 38.98 14.62 5.22 1.26
SD 1.4 (2) 29.6 18.84 63.65 46.16 20.12 7.26 1.82
SD 2.1 (2) 48.66 30.9 63.5 65.2 36.5 17.1 4.8
Getting it Right (14) 60.55 44.05 72.75 71.14 52.66 33.92 18.48
SD XL (1) 65.74 45.01 68.46 78.52 55.38 32.98 13.16
SD 1.4 + PSG (1) 35.29 30.0 85.0 60.48 34.74 18.32 6.46
SD 1.4 + PSG (2) 44.92 39.98 89.0 71.58 47.72 28.56 12.06
SDXL + PSG (1) 76.8 74.8 97.4 93.52 84.72 70.88 50.08
SDXL + PSG (2) 80.02 77.35 96.6 94.98 87.02 74.36 53.04

where used compare PSG with re-evaluated baseline models. The detailed explanation of the benchmark is
postponed to appendix A.4. Notably, table 4 shows that PSG not only enhances spatial relationship accuracy
but also improves Object Accuracy (OA) by mitigating object overlap issues. Based on VISORuncond metric,
our method achieves a 30% increase over prior methods and models. Moreover, on VISORcond, it attains an
impressive 97%, highlighting consistent spatial alignment. Additionally, it improves VISOR1/2/3/4 by 20%,
surpassing baseline methods by achieving a higher probability of spatial accuracy across different random
seeds. We further tested a prompt-simplified PSG variant (“(2) versions in table 4") that replaces explicit
spatial terms with “and". This modification boosted OA by 9% for SD 1.4 and 3% for SDXL. Notably, PSG
on SD 1.4 outperformed SD 2.1, despite SD 2.1’s overall advantage on VISOR metrics.

T2I-CompBench and HRS-Benchmark. We further evaluated PSG using T2I-CompBench (25) and
HRS-Benchmark (26), focusing on their spatial relationship assessment. As shown in table 5, PSG improves
SDXL’s spatial alignment on T2I-CompBench by 15% over standard SDXL and 8% over DALLE-3. Results
for SD 1.4 are deferred to appendix B.2. Similarly, table 6 shows that PSG enhances spatial accuracy on HRS-
Benchmark, outperforming layout-guided generative models. T2I-CompBench evaluates 3D spatial relations
using detection scores and IoU constraints in addition to comparing the depth center of objects. However,
as we focus on evaluating the generation of correct relative 3D positions, in addition to T2I-CompBench, we
used specified experiments for this matter. We used Grounded SAM and Depth Anything as more recent
detectors to extract depth center of objects. We then evaluate the spatial accuracy by comparing the center
points. In another experiment, we also included an IoU constraint similar to T2I-CompBench. We used a
threshold of 0.5 for the object detection and N = 32 (section 3.2) for applying PSG. As shown in table 7, our
method not only improves SDXL’s performance on T2I-CompBench but also achieves gains in depth-focused
3D spatial assessments.

Table 5: Quantitative comparison of baselines using T2I-CompBench spatial benchmark for gradient-based
PSG on SDXL backbone.

Model T2I Spatial Score (%) ↑
GORS (25) 0.1815
Getting it Right (14) 0.2133
PixArt-α (61) 0.2064
Kandinsky v2.2 (71) 0.1912
SD-XL (1) 0.2133
DALLE-3 (4) 0.2865
SDXL + PSG 0.3601
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Table 6: Quantitative comparison of gradient-based PSG, compared to baselines with Stable Diffusion back-
bone using HRS spatial benchmark (scores of other models are adopted from GrounDiT (72)). This bench-
mark consists of prompts that establish relationships among multiple objects within each prompt.

Model Spatial (%) ↑
Stable Diffusion (2) 8.48
PixArt-α (61) 17.86
Layout-Guidance (20) 16.47
Attention-Refocusing (49) 24.45
BoxDiff (48) 16.31
R&B (50) 30.14
SDXL + PSG (ours) 34.33

Table 7: Quantitative comparison of search-based PSG method with the SDXL baseline in generating 3D
spatial relationships.

Model T2I-CB 3D (%) ↑ Depth w/ IoU (0.2) (%) ↑ Depth w/o IoU (%) ↑
SDXL 35.66 28.46 43.10
SDXL + PSG 37.13 33.15 63.67

Embedding-based Alignment Analysis. Beyond object detector-based metrics, which primarily assess
object presence in generated images, we also evaluated text-image alignment using the embedding-based
CLIP Score. This metric measures the similarity between a generated image and its corresponding prompt
within the CLIP model’s embedding space (73). Applying the PSG to SDXL on the COCO dataset captions
(35) improves the CLIP Score from 0.313 to 0.316, underscoring PSG’s effectiveness in enhancing alignment.

Quality and Diversity Results. Controlling generation in diffusion models by modifying latent em-
beddings during denoising often degrades image quality (74). To evaluate these side effects, we selected
20,000 image-caption pairs from MS-COCO 2017, ensuring that each pair contained at least one distinct
spatial relationship between two objects, identified via bounding box annotations. The captions were then
augmented to explicitly specify object positioning. We generated images using SDXL alone and SDXL with
PSG, comparing their quality and diversity metrics against COCO images as the reference (table 8). For
feature extraction, we used DINOv2-ViT-L/14 (75). Additionally, FID scores were reported using Inception-
V3. Results indicate a slight quality reduction in FID (76) and CMMD (77) scores, aligning with PSG’s
emphasis on spatial alignment rather than pure image quality. Given the known concerns associated with
the FID metric (1), we also evaluated Precision and Recall (78) metrics, both of which demonstrated perfor-
mance levels close to the baseline. Additionally, the RKE metric (79), a reference-free measure of diversity,
indicated a higher mode count with PSG compared to SDXL alone, confirming that PSG enhances mode
diversity.

Table 8: Quality and diversity comparison of our proposed evaluation method, PSG, with baseline SDXL on
COCO dataset.

Quality Diversity
Model CMMD (↓) FID (↓) Precision (↑) Recall (↑) RKE(↑)
SDXL 0.77 221.07/20.23 0.85 0.59 401.63
SDXL + PSG 0.79 238.05/21.52 0.83 0.60 412.73
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Diversity of Bounding Boxes. Layout-guided generative models, while capable of placing objects in
specific positions, rely on manually defined layouts, introducing significant bias into the generated images.
To examine this phenomenon, we analyzed the template of RealCompo (80) for bounding box generation
in appendix B.5. The experiments demonstrate that methods relying on LLM-generated layouts exhibit
limited spatial diversity in object position and size. In contrast, our proposed approach (PSG) produces
significantly more diverse and natural layouts in the final images, better reflecting real-world variability.

Generalization to Other Backbones. We also applied our gradient-based PSG method on top of trans-
former architecture and search-based PSG, i.e., Best-of-N PSG, on various state-of-the-art models which
demonstrated that the improvements are not limited to the choice of the model. The results are postponed
to appendix B.2.

5 Conclusion

This work introduces a novel probabilistic framework for modeling spatial relationships between objects,
inspired by the concept of Probability of Superiority (PoS). The main contributions are as follows: (1)
PSE (PoS-based Evaluation), which provides smoother and more human-aligned assessments of 2D and
3D spatial relations than conventional center-based metrics by accounting for the holistic characteristics of
objects; (2) PSG (PoS-based Generation), a training-free method that utilizes a PoS-based reward function,
applied either through a continuous gradient-based approach or a discrete search-based strategy, resulting in
superior spatial relation alignment in both 2D and 3D compared to state-of-the-art methods; and (3) OPSE,
an online variant of PSE, which enables efficient and reliable evaluation of T2I models using a minimal
number of samples. The limitations of both contributions are discussed in appendix A.5 and appendix B.8.

12



Under review as submission to TMLR

References
[1] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,

and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023.

[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10684–10695, 2022.

[3] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning,
pages 8821–8831. Pmlr, 2021.

[4] James Betker, Gabriel Goh, Li Jing, † TimBrooks, Jianfeng Wang, Linjie Li, † LongOuyang, † Jun-
tangZhuang, † JoyceLee, † YufeiGuo, † WesamManassra, † PrafullaDhariwal, † CaseyChu, † YunxinJiao,
and Aditya Ramesh. Improving image generation with better captions.

[5] Arash Marioriyad, Parham Rezaei, Mahdieh Soleymani Baghshah, and Mohammad Hossein Rohban.
Diffusion beats autoregressive: An evaluation of compositional generation in text-to-image models.
arXiv preprint arXiv:2410.22775, 2024.

[6] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-
based semantic guidance for text-to-image diffusion models. ACM Transactions on Graphics (TOG),
42:1 – 10, 2023.

[7] Aishwarya Agarwal, Srikrishna Karanam, K J Joseph, Apoorv Saxena, Koustava Goswami, and Bal-
aji Vasan Srinivasan. A-star: Test-time attention segregation and retention for text-to-image synthesis.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 2283–
2293, October 2023.

[8] Yang Zhang, Teoh Tze Tzun, Lim Wei Hern, Tiviatis Sim, and Kenji Kawaguchi. Enhancing se-
mantic fidelity in text-to-image synthesis: Attention regulation in diffusion models. arXiv preprint
arXiv:2403.06381, 2024.

[9] Kota Sueyoshi and Takashi Matsubara. Predicated diffusion: Predicate logic-based attention guidance
for text-to-image diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8651–8660, 2024.

[10] Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. Linguis-
tic binding in diffusion models: Enhancing attribute correspondence through attention map alignment.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[11] Yumeng Li, Margret Keuper, Dan Zhang, and Anna Khoreva. Divide & bind your attention for improved
generative semantic nursing. In 34th British Machine Vision Conference 2023, BMVC 2023, 2023.

[12] Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Pradyumna Narayana, Sugato
Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for composi-
tional text-to-image synthesis. In The Eleventh International Conference on Learning Representations,
2023.

[13] Tejas Gokhale, Hamid Palangi, Besmira Nushi, Vibhav Vineet, Eric Horvitz, Ece Kamar, Chitta Baral,
and Yezhou Yang. Benchmarking spatial relationships in text-to-image generation. arXiv preprint
arXiv:2212.10015, 2022.

[14] Agneet Chatterjee, Gabriela Ben Melech Stan, Estelle Aflalo, Sayak Paul, Dhruba Ghosh, Tejas Gokhale,
Ludwig Schmidt, Hannaneh Hajishirzi, Vasudev Lal, Chitta Baral, et al. Getting it right: Improving
spatial consistency in text-to-image models. arXiv preprint arXiv:2404.01197, 2024.

[15] Oz Zafar, Lior Wolf, and Idan Schwartz. Iterative object count optimization for text-to-image diffusion
models. arXiv preprint arXiv:2408.11721, 2024.

13



Under review as submission to TMLR

[16] Lital Binyamin, Yoad Tewel, Hilit Segev, Eran Hirsch, Royi Rassin, and Gal Chechik. Make it count:
Text-to-image generation with an accurate number of objects. arXiv preprint arXiv:2406.10210, 2024.

[17] Arman Zarei, Keivan Rezaei, Samyadeep Basu, Mehrdad Saberi, Mazda Moayeri, Priyatham Kat-
takinda, and Soheil Feizi. Understanding and mitigating compositional issues in text-to-image generative
models. arXiv preprint arXiv:2406.07844, 2024.

[18] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 22500–22510, 2023.

[19] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional visual
generation with composable diffusion models, 2023.

[20] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention guid-
ance. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
5343–5353, 2024.

[21] Taihang Hu, Linxuan Li, Joost van de Weijer, Hongcheng Gao, Fahad Shahbaz Khan, Jian Yang,
Ming-Ming Cheng, Kai Wang, and Yaxing Wang. Token merging for training-free semantic binding in
text-to-image synthesis. Advances in Neural Information Processing Systems, 37:137646–137672, 2024.

[22] Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and Jun-Yan Zhu. Dense text-to-image generation
with attention modulation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 7701–7711, 2023.

[23] Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng Liu,
Ce Liu, Michael Zeng, et al. Reco: Region-controlled text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14246–14255, 2023.

[24] Sherwin Bahmani, Jeong Joon Park, Despoina Paschalidou, Xingguang Yan, Gordon Wetzstein,
Leonidas Guibas, and Andrea Tagliasacchi. Cc3d: Layout-conditioned generation of compositional
3d scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7171–
7181, 2023.

[25] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
benchmark for open-world compositional text-to-image generation. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

[26] Eslam Mohamed Bakr, Pengzhan Sun, Xiaoqian Shen, Faizan Farooq Khan, Li Erran Li, and Mohamed
Elhoseiny. Hrs-bench: Holistic, reliable and scalable benchmark for text-to-image models, 2023.

[27] Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
evaluating text-to-image alignment, 2023.

[28] Douglas A. Wolfe and Robert V. Hogg. On constructing statistics and reporting data. The American
Statistician, 25(4):27–30, 1971.

[29] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

[30] Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts
with visual concepts. In International Conference on Machine Learning, 2021.

[31] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Informa-
tion Processing Systems, volume 36, pages 15903–15935. Curran Associates, Inc., 2023.

14



Under review as submission to TMLR

[32] Xiaoyan Hu, Ho fung Leung, and Farzan Farnia. An optimism-based approach to online evaluation of
generative models, 2024.

[33] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale
image-text pre-training to recognize long-tail visual concepts. In CVPR, 2021.

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment
anything, 2023.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in
context, 2015.

[36] LAION. Laion-coco 600m. https://laion.ai/blog/laion-coco, 2022.

[37] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models, 2023.

[38] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and
Yong Jae Lee. Gligen: Open-set grounded text-to-image generation, 2023.

[39] Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
Controllable diffusion model for layout-to-image generation, 2024.

[40] Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani Lischin-
ski, Ohad Fried, and Xi Yin. Spatext: Spatio-textual representation for controllable image generation. In
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page 18370–18380.
IEEE, June 2023.

[41] Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffu-
sion: Instance-level control for image generation, 2024.

[42] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-a-
scene: Scene-based text-to-image generation with human priors, 2022.

[43] Jiaxin Cheng, Xiao Liang, Xingjian Shi, Tong He, Tianjun Xiao, and Mu Li. Layoutdiffuse: Adapting
foundational diffusion models for layout-to-image generation, 2023.

[44] Gwanghyun Kim, Hayeon Kim, Hoigi Seo, Dong Un Kang, and Se Young Chun. Beyondscene: Higher-
resolution human-centric scene generation with pretrained diffusion, 2024.

[45] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
controlled image generation, 2023.

[46] Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-to-
image diffusion: Recaptioning, planning, and generating with multimodal llms, 2024.

[47] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
understanding of text-to-image diffusion models with large language models, 2024.

[48] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and Mike Zheng
Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion, 2023.

[49] Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded text-to-image synthesis with attention
refocusing, 2023.

[50] Jiayu Xiao, Henglei Lv, Liang Li, Shuhui Wang, and Qingming Huang. R&b: Region and boundary
aware zero-shot grounded text-to-image generation, 2023.

15

https://laion.ai/blog/laion-coco


Under review as submission to TMLR

[51] Neil Houlsby Matthias Minderer, Alexey Gritsenko. Scaling open-vocabulary object detection. NeurIPS,
2023.

[52] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Simple multi-dataset detection. In CVPR, 2022.

[53] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial reasoning
capabilities, 2024.

[54] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation, 2024.

[55] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing Jiang, and
Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks, 2024.

[56] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. In European Conference on Computer Vision, pages 38–55. Springer, 2024.

[57] Yujian Liu, Yang Zhang, Tommi Jaakkola, and Shiyu Chang. Correcting diffusion generation through
resampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8713–8723, 2024.

[58] Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. If at first you don’t
succeed, try, try again: Faithful diffusion-based text-to-image generation by selection. arXiv preprint
arXiv:2305.13308, 2023.

[59] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

[60] Vladimir Arkhipkin, Andrei Filatov, Viacheslav Vasilev, Anastasia Maltseva, Said Azizov, Igor Pavlov,
Julia Agafonova, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky 3.0 technical report, 2024.

[61] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-\α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

[62] Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s “up” with vision-language models? investi-
gating their struggle with spatial reasoning. In EMNLP, 2023.

[63] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952.

[64] Parham Rezaei, Farzan Farnia, and Cheuk Ting Li. Be more diverse than the most diverse: Optimal
mixtures of generative models via mixture-UCB bandit algorithms. In The Thirteenth International
Conference on Learning Representations, 2025.

[65] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2/3):235–256, 2002.

[66] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[67] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided
diffusion models, 2022.

16



Under review as submission to TMLR

[68] Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saifullah, Tanishq Abraham, Phuc Le Khac, Luke
Melas, and Ritobrata Ghosh. Dall·e mini, 7 2021.

[69] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image
generation via hierarchical transformers, 2022.

[70] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv, abs/2204.06125, 2022.

[71] Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, V.Ya. Arkhipkin, Igor Pavlov, Ilya
Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky:
an improved text-to-image synthesis with image prior and latent diffusion. In Conference on Empirical
Methods in Natural Language Processing, 2023.

[72] Phillip Y. Lee, Taehoon Yoon, and Minhyuk Sung. Groundit: Grounding diffusion transformers via
noisy patch transplantation, 2024.

[73] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning, 2021.

[74] Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for
diffusion models: An optimization perspective, 2024. URL https://arxiv. org/abs/2404.14743, 10.

[75] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[76] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

[77] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation, 2024.

[78] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision
and recall metric for assessing generative models, 2019.

[79] Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. An information-theoretic evaluation of generative
models in learning multi-modal distributions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[80] Xinchen Zhang, Ling Yang, Yaqi Cai, Zhaochen Yu, Kaini Wang, Jiake Xie, Ye Tian, Minkai Xu,
Yong Tang, Yujiu Yang, and Bin Cui. Realcompo: Balancing realism and compositionality improves
text-to-image diffusion models. Advances in Neural Information Processing Systems, 2024.

[81] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Doso-
vitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua
Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detection with vision transform-
ers, 2022.

[82] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, March 1963.

[83] OpenAI. Gpt-4 technical report, 2024.

17



Under review as submission to TMLR

A PSE

A.1 PSE Threshold Hyper-parameter

What’sUp (62) introduces several dataset of images labeled according to the spatial relationships between
objects depicted in the images. To compare PSE with other evaluators using metrics such as Precision, Recall,
Accuracy, Specificity, and F1 Score, we need to determine an appropriate threshold. For this purpose, we
analyze the performance of both the default PSE and its thresholded version on two real-world datasets from
What’sUp. The first dataset is What’sUp Section A, which consists of 408 images with 2D spatial relationship
captions. The second dataset is COCO-Spatial, containing 2,687 images with spatial relationship captions.
As shown in appendix A.2, in the first experiment, thresholds of 0.4 and 0.5 yield results closest to the
non-thresholded version of PSE, while in the second experiment, thresholds of 0.5 and 0.6 provide the closest
results. Based on these observations, we select 0.5 as the threshold for the thresholded version of PSE.
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(a) The results of thresholded version of PSE for dif-
ferent threshold values on the COCO-Spatial dataset.
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Figure 7: Thresholded version of PSE for different threshold values on the COCO-Spatial and What’sUp
datasets.

A.2 Visual Clarification of Ineffectiveness of Using Centers

fig. 4 illustrates that relying on the center of bounding boxes, as done by other detection-based evaluators,
can lead to approving incorrect relationships. Even using the mask centers of each object does not resolve
this issue. For example, the x-coordinates of the mask centers for the dog and tree are 612.0 and 599.8,
respectively, which again results in the dog being incorrectly identified as to the right of the tree.
Another challenge arises when an object is neither to the right nor the left from a human perspective. For
instance, in fig. 8, we observe that the chair is neither to the right nor the left of the TV. The centers of
the bounding boxes and masks for the TV and chair are detailed in table 9. The x-coordinate of the chair’s
bounding box center is less than that of the TV’s bounding box center. Consequently, metrics based on
center-based directional relationships, such as those used by VISOR and HRS-Benchmark, would incorrectly
classify the chair as being to the left of the TV. Similarly, segmentation-based mask centers fail to address
this issue, as the chair’s mask center is also positioned to the left of the TV’s center.
In contrast, PSE evaluates this scenario more accurately. The PSE values for both left and right relationships
are notably low for the image, indicating that it does not consider either relationship a valid description of
the scene.
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Figure 8: A failure case of VI-
SOR metric. VISOR incorrectly
determines the chair to the left
of the TV, while the chair is nei-
ther to the right nor left of the
TV.

Table 9: Centers of bounding boxes and masks for the TV and
chair. The PSE Left score is also reported.

Object Box Center X Box Center Y Mask Center X Mask Center Y PSE LEFT
Chair 507.68 729.54 507.86 693.94 0.01
TV 512.71 454.53 510.91 446.20 0

A.3 Robustness of Detector

Grounded-SAM was selected for its reported superior performance over commonly used models (55). How-
ever, to make sure that our score is robust enough to use on segmentations extracted from models like
Grounded-SAM, we used 100 randomly selected VISOR prompts and generated images using SDXL back-
bone. We (1) apply three mask corruptions and observe minimal impact on PSE (table 10); (2) perform PSG
(inference time scaling) with N = 4 and PSE across multiple detectors, noting consistent scores (table 11).
These results show that first, PSE is robust to common corruptions of the mask and also the type of detector
used for mask extraction.

Table 10: Dropout removes x% of the mask, Jitter randomly moves the mask x pixels, and Morph erodes
and dilates with a 3x3 kernel.

Dropout Jitter Morph (Opening)
Corruption 10% 30% 50% 80% 5px 20px 50px 100px 1 it 2 it 5 it 10 it
PSE Score 29.40 29.39 29.40 29.37 29.75 29.83 29.77 31.32 29.40 29.41 29.50 30.44

Table 11: PSE and PSG best-of-N (N = 4) with combination of various detectors. * indicates a non-PSE,
over-optimistic metric.

Model SDXL +Grounded-SAM (PSG) +ClipSeg (PSG) +Mask2Former(PSG)
Grounded-SAM (PSE) 29.39 53.71 48.86 45.07
CLIPSeg (PSE) 30.68 44.78 52.04 42.31
Mask2Former (PSE) 26.43 41.23 40.45 46.79
*Gounding-Dino (Box Center) 43.00 77.50 63.00 62.75

In addition, we note that the baseline spatial detection metric (VISOR) uses OWL-ViT. As our goal is to
detect objects in generated images, we compared how OWL-ViT performs in comparison to Grounded-SAM
on generated images on 500 SDXL generated images. We used the prompts from our human evaluation
experiment. We compared how many times each detector missed an object which was labeled as presented
by the human evaluators. Grounded-SAM showed a 5.8% detection miss rate, which was significantly lower
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than OWL-ViT at 11%. Therefore, Grounded-SAM is a reasonable choice for a detector. Even though, by
advancements in object segmentation, our method can be applied on top of any other detector too.

A.4 Center-based Evaluation Metrics

Center-based evaluation metrics assess the alignment of spatial relationships between the generated image
and the input prompt by analyzing the bounding box centers of objects identified by an object detector. For
instance, if the center of one object’s bounding box is positioned to the right of another, these metrics infer
that the first object is located to the right of the second. However, unlike our proposed PoS-based evaluation
metric (PSE), center-based metrics fail to account for critical factors such as object shape and size. This
limitation often leads to inaccuracies, particularly in complex scenes with intricate spatial relationships.

Through this work, we evaluated the performance of the PSE in comparison to three center-based evaluation
metrics as follows.

VISOR metrics. The VISOR benchmark introduces six evaluation metrics to assess spatial relationship
alignment in generated images. Among these, the VISORuncond metric evaluates spatial accuracy by deter-
mining whether both objects are accurately generated and positioned as specified in the prompt. In contrast,
the VISORcond metric measures spatial accuracy conditional on the correct generation of both entities. An-
other key metric, VISORn, calculates the success rate of generating n out of 4 images (where n ranges from
1 to 4) that adhere to the spatial relationships described in the prompt. To score spatial relationship align-
ment, the VISOR benchmark utilizes the open vocabulary object detector OWL-ViT (81), which identifies
objects in the image and compares the center points of their bounding boxes to assess compliance with the
spatial relationships specified in the textual input.

T2I-CompBench and HRS-Bench Metrics. T2I-CompBench and HRS-Benchmark are two prominent
benchmarks designed to evaluate compositional generation tasks in text-to-image (T2I) models. In order to
assess the spatial relationship alignment between the generated image and the input prompt, both bench-
marks utilize center-based evaluation metrics by employing UniDet (52) as the object detector to extract
the bounding boxes of objects. Spatial relationship accuracy is then determined by comparing the relative
positions of the bounding box or depth centers, providing a measure of how well the generated images adhere
to the specified spatial relationships in the input prompts.

A.5 Limitations

Our proposed PoS-based evaluation metric (PSE) offers a smoother and more nuanced assessment of spatial
relationships compared to center-based approaches by adopting a probabilistic perspective that accounts for
the overall shape and size of objects. However, similar to center-based methods, PSE is inherently influenced
by the performance of the depth estimation or segmentation model it relies on. Specifically, PSE determines
an object’s mask in the generated image using segmentation outputs provided by models such as SAM.
Consequently, any limitations or inaccuracies in these tools can propagate through the evaluation process,
potentially affecting the reliability of the overall assessment.

A.6 Online PoS-based Evaluation Details

As discussed in the main paper, one drawback of using VISOR or our sub-dataset for PSE evaluation is the
need to generate thousands of images for each model to conduct a reliable comparison. For users seeking
to identify the best-performing model among several candidates, this can be prohibitively expensive due to
the current API costs associated with image generation. To address this issue, we suggest a technique for
evaluating models in an online manner, which avoids the need for generating large batches of images. This
approach reduces the computational burden of sampling from suboptimal models.

We adopt a framework similar to that introduced in (32). Let the set of generative T2I models be denoted
as G := [G], where each generator g ∈ G produces images distributed according to pg over a dataset D. The
evaluation process is carried out over T steps, where, at each step, the algorithm selects a generator gt from
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G and collects a set of samples xt ∼ pg generated by the chosen model. The goal is to design an algorithm
that effectively balances exploration and exploitation to identify the optimal model (i.e., the one with the
highest PSE score).

A notable feature of PSE is its linearity—scores for individual samples are independent and additive. This
property enables the use of established methods for optimizing the selection process. Specifically, the score of
a generator g can be expressed as Ex∼pg

[PSE(x)], allowing the application of tools like Hoeffding’s inequality
(82) to compute optimistic bounds. In this context, PSE(x) is the PSE score for individual samples, and
the mean of the IID samples serves as an empirical estimate of the generator’s true score. Using these
properties, we employ the Upper Confidence Bound (UCB) algorithm, a well-established approach in the
multi-armed bandit framework, to dynamically identify the best-performing model. The IID property of the
samples arises from the use of random seeds and prompts for image generation.

During each step of sampling, the model with the highest upper confidence bound for its empirical PSE
score is selected. Let nt(gi) denote the number of times model i has been chosen up to step t. The upper
confidence bound for the i-th model at step t is defined as:

PSEUCB(gi; t) =
∑

x∈Dt(gi) PSE(x)
nt(gi)

+ α

√
ln(t)

nt(gi)
(7)

where α controls the probability of failure (selecting a suboptimal model with a lower true score). Based on
empirical observations, we set α = 2 in our experiment. At each step t, the generative model with the highest
PSEUCB(gi; t) value is selected. This strategy minimizes the risk of excessive sampling from suboptimal
models, ensuring a more efficient and accurate evaluation process.
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B PSG

B.1 Hyper-parameters

Our Generative Semantic Nursing method involves two key hyperparameters: the number of denoising steps
during which noise optimization is applied and the scaling factor of the loss function. To determine optimal
values for these hyperparameters and ensure fairness in our main experiments, we employed a set of ten
objects not included in the COCO dataset. From this set, 100 pairs were randomly selected and assigned
random spatial relationships. Images were then generated using the PSG method, implemented on both the
Stable Diffusion 1.4 and Stable Diffusion XL backbones.

For PSG applied to Stable Diffusion XL, we experimented with scaling factors ranging from 100 to 2500 in
increments of 900 and optimization step counts ranging from 4 to 22 in increments of 6. The VISOR metric
was used to evaluate spatial accuracy. Our results indicate that increasing the scale factor and step count
generally improves adherence to the specified spatial relationships. However, beyond certain thresholds,
these increases lead to a degradation in the quality of the generated images. For instance, a low scale
factor provides insufficient guidance, resulting in outputs resembling SD-XL’s default behavior, as shown in
fig. 9. Through experimentation, we determined that a configuration of (10 steps, 1000 scale factor) offered
an optimal balance, achieving better spatial relationship adherence without compromising image quality.
Illustrative examples of the effects of high and low step counts and scale factors are provided in fig. 9, fig. 11,
and fig. 12.

For PSG applied to Stable Diffusion 1.4, optimal performance was achieved with approximately 20 steps and
a considerably smaller scale factor. After experimenting with scale factors and step counts ranging from 10
to 25, we identified the best configuration as 20 steps and a scale factor of 25. In contrast, applying PSG
to Stable Diffusion XL required significantly fewer steps (at most 10) keeping the time overhead of PSG
relatively low. On an NVIDIA A100 GPU, applying PSG during the first 10 steps resulted in less than a
20% increase in processing time of SD1.4. Further reducing the number of steps can decrease this overhead
even more, maintaining the method’s efficiency. Figure 10 illustrates the scalability of our methods based
on PoS when additional computation is available. It further shows that gradient-based latent optimization
is generally more effective, while search-based methods provide a way to exploit unbounded computation for
continued performance gains.

Furthermore, we apply Gradient-Based PSG using the 32× 32 cross-attention maps, based on the analysis
in table 12 (on 500 sample prompts), which demonstrates their superiority.

Table 12: Comparison of different U-Net layers for Gradient-Based PSG shows the superiority of the 32×32
cross-attention maps of SDXL.

Metric Without PSG 32×32 Maps PSG 64×64 Maps PSG

VISOR 44.0 74.4 48.2
PSE 21.0 62.0 32.0

B.2 Further Quantitative Results

The overall spatial score, as evaluated using the HRS-Benchmark (26), is presented in table 6. Additionally,
the score, segmented by prompt difficulty, is shown in table 13. Scores for other models are taken from the
supplementary materials of the HRS-Benchmark. The T2I-CompBench 2D spatial score for SD 1.4 is also
reported in table 14.

Generalization to Other Backbones. For inference time scaling PSG, we additionally used 100 ran-
domly selected prompts from the VISOR prompts and up to 1.6K images to analyze the behavior when
apllied on different models. Table table 16 shows that models with various architectures can use our method
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Table 13: Quantitative assessment of our proposed generative semantic nursing method PSG on top of
SDXL, based on the HRS-Spatial benchmark split on the prompt difficulty.

Model Easy Medium Hard
SDV1 21.75 0 0
SDV2 1.19 0 0
Glide 2.49 0 0
CogView 2 8.88 0 0
DALL-E V2 28.34 0 0
Paella 8.78 0 0
minDALL-E 4.29 0 0
DALL-EMini 15.17 0 0
PSG 68.56 28.44 5.98

to improve their alignment to spatial constraint defined in the prompt. Furthermore, table 16 also suggests
that by using more compute (increasing N), we can consistently achieve better performance.

Generative Semantic Nursing On Transformer Architecture. We applied PSG on the average
cross-attention maps of PixArt-α as a transformer-based model. We used a scale 10 and applied guidance

Low Scale

High Scale

Few Steps Many Steps

Figure 9: Qualitative analysis of the effect of the scale factor of PSG’s loss function and the number of
denoising steps it is applied, for the prompt “a dog to the left of a cat”.
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(a) Scaling VISOR Score (b) Scaling PSE Score

Figure 10: Scaling behavior of search-based and gradient-based PSG by scaling the number of images in
Best-of-N and increasing the number of time-steps during which the latent optimization is applied.

(a) Scale 10 (b) Scale 16 (c) Scale 4 (d) Scale 10

Figure 11: The effect of the scale factor in the PSG method. As the scale increases, the generated images can
become more distorted. Using a medium scale instead of a very small one can prevent incomplete images.

(a) 1000 steps (b) 1900 steps

Figure 12: The effect of optimization step counts in the PSG method. A higher number of steps distorts the
images more, resulting in lower quality.

for 20 steps. Using the same prompts as the previous experiment, PSE improved from 28.50 to 57.87, and
center-direction accuracy increased from 40% to 68%. This indicates that our method is not limited by the
U-Net architecture and can also be applied on transformer-based generative models.
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Table 14: Quantitative comparison of baselines using T2I-CompBench spatial benchmark for PSG on SD
1.4 backbone.

Model T2I Spatial Score(%) ↑
SD 1.4 (2) 0.1246
SD 2 (2) 0.1342
Composable v2 (19) 0.0800
Structured v2 (12) 0.1386
Attn-Exct v2 (6) 0.1455
DALLE-2 (70) 0.1283
SD 1.4 + PSG 0.2349

Table 15: Quantitative comparison of SDXL and SDXL+PSG on PSE and VISOR metrics (average score
of the relationships) for 100 prompts with three and four objects.

# Objects Model PSE VISOR

3 SDXL 30.8 57.0
SDXL+PSG 63.8 72.5

4 SDXL 31.5 54.0
SDXL+PSG 68.4 58.0

Table 16: PSE/(center position accuracy) of PSG inference time scaling. This table demonstrates the
effectiveness of our method for different models. Increasing N , shows that by using more compute we can
get consistently better alignment. We observe that applying PSG, even with small N , has a noticeable effect
on the accuracy of position of objects.

Model w/o PSG ↑ PSG N=2 ↑ PSG N=4 ↑ PSG N=8 ↑ PSG N=16 ↑
FLUX 45.52 / 60 56.85 / 73 72.05 / 82 83.60 / 91 93.59 / 96
SANA1.5 72.62 / 82 80.31 / 89 87.81 / 95 90.58 / 97 93.71 / 99
SD3 47.41 / 52 64.29 / 70 75.36 / 86 82.58 / 91 88.13 / 94
SDXL 29.39 / 43 40.07 / 64 55.56 / 76 67.14 / 86 78.23 / 93
SD2.1 16.07 / 32 29.25 / 50 43.70 / 75 60.94 / 89 77.52 / 95

Additional Complex Prompts. Beyond table 6, which includes prompts with multiple relationships, we
evaluate PSG on two sets of 100 prompts. The first set contains three objects with two spatial relationships
(e.g. “a balloon on the bottom of a chicken and on the left of a lamp"), following the VISOR multi-object
template. The second set contains four objects with three relationships (e.g. “a cup on the right of a dog
and a bicycle on the left of a man"). Table 15 demonstrates the effectiveness of PSG on these more complex
prompts.

Search-Based VISOR. Since the search-based variant of PSG can also be applied with alternative center-
based verifiers such as VISOR, we conducted a direct comparison between the two. Specifically, we used
Best-of-16 SDXL-generated images on a subset of 100 prompts from table 1. In table 17, we report both the
PSE and VISOR scores for these images. Because using the same verifier for both generation and evaluation
risks reward hacking (i.e., each method achieves its highest score under its own verifier), we additionally
performed human evaluation. Annotators assigned a score of 1 if all objects were present and their spatial
relationships correct, and 0 otherwise. Table 17 shows that PSG consistently outperforms VISOR as a
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search-based method. This result aligns with our earlier finding that PSE correlates more strongly with
human judgments.

Table 17: Quantitative comparison of search-based methods on VISOR, PSE, and Human evaluation.

Method VISOR ↑ PSE ↑ Human ↑
Search-Based-VISOR 92.0 33.8 22.0
Search-Based-PSG 72.0 77.5 61.0

B.3 Further Qualitative Results

Figures 15 and 16 provide a visualization of the effectiveness of the PSG method compared to the baseline
model (Stable Diffusion XL) and the fine-tuning method (“Getting it Right"). The similarity in the overall
appearance of the images for each prompt between the baseline model and the PSG-applied version can be
attributed to the use of the same seed for generating images across all models. fig. 17 further illustrates
the accuracy of spatial relationships demonstrating that PSG maintains correct spatial relationships while
adhering to the stylistic features specified in the text prompt.

Additionally, fig. 18 presents a qualitative assessment of PSG’s performance on combined spatial relation-
ships. The results demonstrate that PSG accurately infers spatial relationships, even in complex scenarios
involving combinations of primary directions. For prompts that focus on providing 3D instructions, please
refer to fig. 19.

B.4 Incorporating Distance

Distance can be incorporated into PoS to model proximity (e.g., close or surrounding) and separation (e.g.,
far). eq. (2) can be extended by introducing a threshold c, which defines a distance constraint, resulting in
the following PoS variation:

PoSd(A, B; c) = PX∼A,Y ∼B(X > Y + c) (8)

where c controls the degree of separation, either as a fixed constant or a function of object sizes. Summing
projected PoSd across the four principal directions yields:

PoSdistance(A, B; c) =PoSd
right(A, B; c)+

PoSd
left(A, B; c)+

PoSd
top(A, B; c)+

PoSd
bottom(A, B; c)

(9)

This formulation rewards or penalizes deviations beyond c pixels (by inverting the loss sign), effectively
incorporating distance modeling. Notably, summing over all four directions dissipates directional effects,
making it roughly equivalent to the IoU loss used for attention binding (7). To evaluate this modification,
we conducted experiments on 100 multi-object prompts with fixed random seeds and c = 5 (corresponding
to an attention-map resolution of 16 by 16). The far loss increased the average L2 norm distance between
object mask centers from 102.5 pixels to 130.8, while the close loss reduced it to 90.7 pixels, demonstrating
that this approach effectively improves distance-based 2D relations.

B.5 Diversity of Bounding Boxes.

The dependency of Layout-guided generative models, not only undermines the model’s autonomy but also
fails to address the core goal of understanding and correctly applying relational positions directly from
the prompt without external input. As the text is informative enough about the spatial relationships. In
contrast, our model uses the prompt itself to guide the diffusion process, ensuring spatial relationships are
applied naturally during generation.
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We explored an automated alternative where Large Language Models (LLMs) suggest layouts based on
prompts (47; 80). However, in an experiment generating 50 images from 4 prompt sets (e.g., “an object to
the right of another”), LLM-generated bounding boxes exhibited low diversity, with bounding box centers
and sizes frequently clustering. This lack of variation reduces the natural diversity expected in real-world
scenarios. In contrast, our approach with SDXL + PSG, driven purely by the prompt, produces significantly
more diverse bounding boxes compared to RealCompo’s template (80) for bounding box generation using
GPT-4o (83), as confirmed by table 18.

Table 18: Variance of center and size of boxes for SDXL + PSG (Generative Semantric Nursing) and
RealCompo (80) shows that our method’s effect has better diversity of size and position of objects compared
to using LLM guided bounding box for objects.

Model Center A (↑) Center B (↑) Size A (↑) Size B (↑)

1 SDXL + PSG 0.127 0.095 0.109 0.063
RealCompo 0.036 0.07 0.041 0.025

2 SDXL + PSG 0.092 0.111 0.169 0.291
RealCompo 0.036 0.042 0.037 0.059

3 SDXL + PSG 0.088 0.056 0.125 0.161
RealCompo 0.05 0.051 0.058 0.174

4 SDXL + PSG 0.081 0.159 0.129 0.281
RealCompo 0.043 0.038 0.068 0.09

B.6 Ablation Studies

Super-category Pairs Split Score. In fig. 14, we visualize the performance of our method, PSG, along-
side the baseline backbones, based on the super-category pairs of objects. The super-categories are derived
from the COCO dataset. It is evident that our models consistently improve the VISOR score. The poor
performance on the “person-person" pair is due to the fact that, in the VISOR dataset, there is only one
“person-relation-person" pair. Additionally, we observe that the performance of our method is also depen-
dent on the initial performance of the backbone. When the backbone performs better initially, our method
approaches optimal accuracy.

Order Bias. fig. 13 suggests that the accuracy of backbones for the first and second objects is not consis-
tent. In our experiment, both Stable Diffusion 1.4 and XL demonstrate higher accuracy for the first object.
While our method primarily focuses on enhancing spatial relationships, we observe that it consistently im-
proves the overall accuracy of object generation. Notably, in Stable Diffusion XL, which already exhibits
good accuracy in generation, our method reduces the number of missing objects for each generated image.

Relation Split Scores. We have presented the Object Accuracy and VISOR score for each relation type
in Table table 19. Our method has improved both object accuracy and VISOR score across all relationships.
Additionally, it is worth noting that the performance of our model on Left and Right relationships is somewhat
better than on Top and Bottom relationships. We hypothesize that this difference is due to the relative rarity
of Top and Bottom relationships in the VISOR dataset. This effect of rarity is further illustrated in fig. 14,
where we observe lower performance on pairs of outdoor objects when compared to indoor objects and
appliances, as these pairs are less likely to appear together in real image datasets.

B.7 Using LLMs for Spatial Relationship Extraction

We suggest using the following prompt, which is specifically engineered to output the object and relationship
pairs for our loss function. Additionally, a code is provided to identify the tokens associated with the objects
using Stable Diffusion’s tokenizer.
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Figure 13: Order bias in generated images with PSG variants applied on SD 1.4 and SDXL backbones. In
all experiments, Object A refers to the first object and Object B refers to the second object.

Example LLM Instruction

Analyze the provided input text to extract spatial relationships between objects, then output these
relationships in a structured format. Follow these steps precisely:
1. Identify Spatial Relationships: Locate any spatial relationships, either explicitly stated or
implicitly conveyed. Possible relationships are “left,” “right,” “top,” “bottom,” “behind,” or “in
front.” Note relationships that may be implied by context as well.
Example:
Input: “A horse is running to the left of a car.”
Relationship: left
2. Identify Related Objects: For each spatial relationship, determine the two objects involved.
Example:
Object 1: horse
Object 2: car
3. Format the Output: Present each object pair and their spatial relationship in the format
(object1, object2, relationship), with each pair on a new line.
Example:
Input: “The man is reading a book while sitting. A dog is sitting to the right of his chair.”
Output:
(man, chair, top)
(dog, chair, right)
Task: Apply this process to the following text and provide only the final output in the specified
format. Use step-by-step reasoning but keep the format of the final response.
Input Text:

B.8 Limitations

Our proposed training-free method provides a computationally efficient, on-the-fly solution for addressing
spatial relationship challenges in T2I models. However, it is important to acknowledge certain limitations
that can be explored and addressed in future research.

Limitations of the training dataset of T2I models. Spatial relationship-related examples are often
underrepresented in large-scale multi-modal datasets. Additionally, these datasets may contain various
spatial relationship-based biases. Such issues are likely key contributors to the poor performance of T2I
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Table 19: Comparison of Visor and Object Accuracy scores of our models and the backbones split by
relationship type shows that our method consistently improve the accuracy of prompts with each direction.

Models VISOR (%) (↑) Object Accuracy (%) (↑)
Left Right Top Bottom Left Right Top Bottom

SD 1.4 18.71 18.23 22.01 16.26 29.32 28.9 33.31 26.68
SD 1.4 + PSG 30.64 31.4 34.36 23.54 34.25 34.86 41.08 30.71
SD 1.4 + PSG (and) 41.52 39.7 40.31 38.4 44.89 44.06 45.1 45.59
SD XL 43.14 45.53 46.74 44.55 62.56 64.7 67.43 68.06
SD XL + PSG 77.29 77.18 72.75 72.25 78.29 78.15 75.5 75.44
SD XL + PSG (and) 82.18 80.83 74.16 72.67 83.46 82.09 77.42 77.41

models on spatial relationship benchmarks. Consequently, training-free generation methods that guide the
diffusion model during inference may not offer a comprehensive solution to the spatial relationship problem,
particularly for complex text prompts involving numerous entities. In such cases, extensive fine-tuning of
T2I models on carefully curated datasets tailored to specific domains may be necessary to achieve optimal
performance. However, this fine-tuning process typically demands substantial computational resources and
time, highlighting the need for future research to strike a balance between training-free methods and fine-
tuning-based approaches.

Limitations of the CLIP text encoder. The limited capability of the CLIP text encoder to accurately
understand and represent objects and their spatial relationships may significantly affect the performance of
T2I models in generating spatially coherent images. As most T2I models rely on the CLIP text encoder as
the backbone for processing textual inputs, any deficiencies in the encoder’s ability to capture and encode
spatial relationships can propagate through the denoiser, resulting in suboptimal outputs or outright failures
in the generated images. Surprisingly, much of the existing research has overlooked this potential root cause,
often attributing these failures to other factors without adequately considering the inherent limitations of
the CLIP text encoder. To address this gap, our future work will focus on enhancing the text encoding
capabilities of T2I models, leveraging the PoS-based perspective proposed in this study.

Memory Usage and Computation Time. The amount of available information for aspects such as
spatial relationships depends on the generative model used. For instance, standard 2D text-to-image diffusion
models, such as Stable Diffusion, do not provide information about the third axis—depth—in an image.
We proposed a method for generative semantic nursing, which introduces minimal overhead to the model.
However, in cases where the model does not inherently provide 3D spatial relationships, we employ initial
noise search using PoS. This approach requires segmentation and/or depth estimation models, introducing
some computational and memory overhead. Our experiments show that the time overhead is negligible, but
as models scale, higher GPU memory will be required. However, the significant improvement in compositional
generation achieved by PSG justifies this trade-off. Importantly, PSG’s reliance on external estimators is
not intrinsic; for instance, in 2D spatial relationships, it can directly leverage the architecture of T2I models,
eliminating the need for additional estimators.
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(c) SD 1.4 + PSG
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(d) SD XL + PSG
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(e) SD 1.4 + PSG (and)
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(f) SD 1.4 + PSG (and)

Figure 14: VISOR unconditional scores of our models and baselines split by super-category pairs. We observe
that our models consistently achieve better VISOR unconditional scores.
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Under review as submission to TMLR

SDXL + PSG SDXL Getting it Right

a
strawberry
on top of a

donut

a table 
bottom of
a bicycle

a car on top
of a

hamburger

Figure 15: Qualitative comparison of our proposed method, PSG, versus Stable Diffusion XL and Getting
it Right on spatial relationship-related prompts.

SDXL + PSG SDXL Getting it Right

a man
riding a
horse to

the right of
a tree

a bird to
the right of

a wine
glass

a dog to
the left of

a car

Figure 16: Qualitative comparison of our proposed method, PSG, versus Stable Diffusion XL and Getting
it Right on spatial relationship-related prompts.
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Under review as submission to TMLR

SD XL

SDXL
+

PSG

SD XL

SD XL

SDXL
+

PSG

SDXL
+

PSG

a cat top of a bus, in a pink colored anime style

a green cat to the left of a bottle, detailed

a man standing to the right of a woman, in an anime goth style

a somber painting of a car bottom of an elephant

SD XL

SDXL
+

PSG

Figure 17: Qualitative comparison of our proposed method, PSG, versus Stable Diffusion XL on artistic
prompts.
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Under review as submission to TMLR

SDXL + PSG SDXL Getting it Right

a bird top
right of a

donut

a 
seagull 

top left of
an umbrella

a potted
plant

bottom left
of a chair

Figure 18: Qualitative comparison of our proposed method, PSG, versus Stable Diffusion XL and Getting
it Right on prompts with combined spatial relationships,

SDXL + PSG

A chicken in front of a bowl.

SDXL SDXL + PSGSDXL

A chair behind a desk. A dog hidden by a frog.

SDXL SDXL + PSG

Figure 19: Qualitative comparison of our proposed method, PSG, versus Stable Diffusion XL on 3D instruc-
tions. Similar to T2I-CompBench, “hidden" is treated as equivalent to “behind".

Without Guidance Far Guidance Close Guidance

A black and white photo of a horse and a barn A photo of a dog and a ball

Without Guidance Far Guidance Close Guidance

Without Guidance

A zoomed out photo of a car and a plane

Far Guidance (9) Far Guidance (15)

Figure 20: Illustration of close vs. far guidance using PoS with the distance loss described in appendix B.4.
The hyperparameter c (e.g., 9 or 15 in the bottom figure) specifies the threshold for what is considered far.
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