Hypergraph Multi-modal Large Language Model: Exploiting EEG
and Eye-tracking Modalities to Evaluate Heterogeneous
Responses for Video Understanding

Minghui Wu* T Donglin Di Min He
Chenxu Zhao Tianyu Fu hemin@mininglamp.com
Anyang Su’ Da An Mininglamp Technology
wuminghui@mininglamp.com donglin.ddl@gmail.com Beijing, China
zhaochenxu@mininglamp.com futianyu0514@126.com
suanyang@mininglamp.com anda93456@gmail.com

Mininglamp Technology
Beijing, China

Shanghai Artificial Intelligence Lab
Shanghai, China

Ya Gao Meng Ma Kun Yan*
gaoya@stu.pku.edu.cn mameng@pku.edu.cn Ping Wangi
Peking University Peking University kyan2018@pku.edu.cn
Beijing, China Beijing, China pwang@pku.edu.cn
Peking University

Abstract

Understanding of video creativity and content often varies among
individuals, with differences in focal points and cognitive levels
across different ages, experiences, and genders. There is currently
a lack of research in this area, and most existing benchmarks suf-
fer from several drawbacks: 1) a limited number of modalities
and answers with restrictive length; 2) the content and scenar-
ios within the videos are excessively monotonous, transmitting
allegories and emotions that are overly simplistic. To bridge the
gap to real-world applications, we introduce a large-scale Video
Subjective Multi-modal Evaluation dataset, namely Video-SME.
Specifically, we collected real changes in Electroencephalographic
(EEG) and eye-tracking regions from different demographics while
they viewed identical video content. Utilizing this multi-modal
dataset, we developed tasks and protocols to analyze and evaluate
the extent of cognitive understanding of video content among dif-
ferent users. Along with the dataset, we designed a Hypergraph
Multi-modal Large Language Model (HMLLM) to explore the as-
sociations among different demographics, video elements, EEG
and eye-tracking indicators. HMLLM could bridge semantic gaps
across rich modalities and integrate information beyond different
modalities to perform logical reasoning. Extensive experimental
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evaluations on Video-SME and other additional video-based gen-
erative performance benchmarks demonstrate the effectiveness of
our method. The code and dataset are available at this url.
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1 Introduction

With the advancement of Large Language Models (LLMs) [72] and
Multi-modal Large Language Models [11, 32, 45, 46], the field of
video understanding has entered a new era. The advanced logi-
cal reasoning abilities of multi-modal LLMs facilitate a thorough
analysis of explicit elements within videos. Moreover, these models
can deduce the underlying implicit content of these explicit fac-
tors, leveraging the knowledge and experience acquired by LLMs.
Existing benchmarks for video content question-and-answering,
such as [31, 53, 75, 75, 79], provide a rich set of instruction labels.
Alternatively, they exhibit several deficiencies as illustrated in Ta-
ble 1: 1) the video content itself is overly simplistic, often only
involving objective, explicit factors, which does not support the
exploration of deeper levels of video creativity and implicit factors.
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Table 1: Comparison of existing VideoQ&A datasets with ours (OE: open-ended, MC: multiple-choice, AP: Audience Profiles).

Datasets ‘ Video source Q&A generation Q&A tasks Modality Videos Q&A pairs AvgAnsLen MedScene
MSVD-QA [75] MSVD Auto OE Video 1,970 50,505 1.0 2
MSRVTT-QA [75] MSRVTT Auto OE Video 10,000 243,680 1.0 3
TGIF-QA [31] TGIF Auto&Human OE & MC Frame/Video 56,720 103,919 1.5 1
ActivityNet-QA [79] | ActivityNet =~ Human OE Video 5,800 58,000 1.3 7
Video-ChatGPT [53] | ActivityNet  Auto&Human OE Video 200 2,994 51.0 6
Video-SME-QA (ours) ‘ Custom Auto&Human MC & OE  Video/EEG/EMR/AP 498 178,547 99.6 11
T ey board? " EBe P:}‘;_]‘L‘:‘:?p) in multi-n.lodalldata analysis héve upderscored Fhe‘ in.lportance
> What does this storyboard describe overall? [ Engagement&Emotion [ Gender Age of leveraging diverse physiological signals to gain insights into
Video Clps | [ar [ am [ amn ] | Video 0% | the cognitive and emotional states of viewers [37]. Among these,

> This scene depicts a woman
with a focused and confident
expression. Some Chinese
characters appear above the
screen, seemingly emphasizing

certain information or slogans.
This may be a crucial part of
an advertisement or
promotional video to convey
information about beauty, age,
and self-identity.

> This video shot shows a
woman admiring her long
hair. Her hair looks smooth,
healthy, and presents a natural
shine. Women close their eyes,
seemingly enjoying the
sensation of touching their
hair. The video also includes

the logo of the brand L'Or é al
Paris, ing that it may
be an advertisement for a hair
care product.

Figure 1: Our proposed Video Subjective Multi-modal Evalua-
tion (Video-SME) dataset for Subjective Response Indicators
(SRI). Real-time signals captured by electroencephalographic
(EEG) and eye-tracking devices reveal that Audience Profiles
(AP) of varying genders and ages exhibit distinct engage-
ments, emotions, and eye motion ratios (EMR) when exposed
to various scenes and elements within the same advertise-
ment video.

We utilize the MedScene metric to evaluate this issue, where Med-
Scene denotes the median number of scene across all videos in the
dataset. A higher number of scenes indicates greater complexity
in video content; 2) the number of modalities included in these
datasets are limited, generally confined to videos and frames; 3) the
instruction labels concerning the length of answers are restricted to
certain predetermined options, failing to assess the divergent and
analytical abilities of LLMs. We utilize the AvgAnsLen to evaluate
this issue, where AvgAnsLen represents the average text length of
the answer portion across all Q&A pairs in the dataset. To address
the issues mentioned above, we have prepared an extensive collec-
tion of content-rich advertisement videos, accompanied by a more
comprehensive set of modality labels.

In the burgeoning field of cognitive neuroscience, the exploration
of how individuals perceive and interpret video content has opened
new avenues for understanding the intricate interplay between
brain activity and media interaction [67]. Recent advancements

Electroencephalographic (EEG) signals with their high temporal
resolution, provide a direct measure of brain activity [59], capturing
the nuanced and dynamic changes in cognitive states as individuals
engage with video content. These signals embody the electrical
manifestations of the brain’s complex neural dynamics, offering
insights into the emotional and cognitive processes underpinning
video content interpretation [58].

Inspired by the aforementioned context, we have utilized EEG
and eye-tracking apparatus to collect and record the EEG and eye
movement responses of individuals across various ages, genders,
and professions while watching the same advertisement video. We
aggregated this information into modality labels, introducing a
novel, large-scale benchmark: Video Subjective Multi-modal Evalu-
ation dataset, namely Video-SME. As illustrated in Figure 1, our
proposed dataset captures the subjective reactions of individuals
watching videos through EEG and eye-tracking devices, fills the
gaps in the video understanding domain regarding the assessment
of video appeal and implicit factors. How to effectively leveraging
these multi-modal labels to uncover the latent associations among
the modalities becomes the cornerstone for addressing deeper chal-
lenges in video understanding.

Graph-based methodologies exhibit superiority in exploring the
associations among features, particularly hypergraphs, extending
beyond traditional graph theory, offer a powerful framework for
representing complex relationships in data [6]. In the context of
video content analysis, hypergraphs can encapsulate the intricate
associations among video elements, EEG signals, and eye-tracking
data, allowing for the modeling of higher-order interactions that
are not capturable through simple pairwise connections.

Utilizing the multi-modal information of the Video-SME dataset,
coupled with the superiority of constructing associative features
through hypergraph, we proposed a Hypergraph Multi-modal Large
Language Model (HMLLM), integrating information from disparate
modalities to perform logical reasoning and semantic analysis. By
leveraging the rich information encoded in video content, along
with EEG and eye-tracking data, HMLLM can bridge semantic gaps
across modalities, offering a comprehensive understanding of the
cognitive processes involved in video content interpretation.

The main contributions can be summarized as follows:

1. Introduction of a novel large-scale benchmark dataset: the
Video Subjective Multi-modal Evaluation (Video-SME) dataset, a
large-scale benchmark that captures real-time EEG and eye-tracking
data from a diverse demographic while they watch advertisement
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videos. This dataset fills a significant gap in the field of video un-
derstanding by providing rich modality information and a compre-
hensive set of question-and-answer (Q&A) pairs that allow for the
assessment of video creativity and implicit factors.

2. Development of the Hypergraph Multi-modal Large Language
Model (HMLLM): we have developed a novel HMLLM that leverages
the complex relationships among video elements, EEG signals, and
eye-tracking data encapsulated in hypergraphs.

3. Extensive experimental evaluations demonstrating our method’s
effectiveness: through rigorous experimental evaluations conducted
on the Video-SME dataset and additional video Q&A datasets, we
have demonstrated the effectiveness of our HMLLM.

2 Preliminaries
2.1 Video Understanding

Video understanding aims to create algorithms that allow machines
to interpret videos with the same expertise as humans. Meanwhile,
video emotion recognition [44, 57, 84] emphasizes the interplay
between the emotions conveyed by the video and the viewer re-
sponses, collectively forming a critical component of video un-
derstanding. Most existing works focus on modeling objective
and tangible visual properties of videos [16], particularly in ac-
tion recognition [3, 7, 10, 17, 19, 20, 54, 61, 69, 71] and temporal
action localization/detection [18, 49, 86]. However, the need for
content recommendation systems has spurred research into sub-
jective and intangible aspects (e.g. the appeal and memorability
of content [14]), where various semantically rich information are
considered [5, 13, 29, 55, 85].

Compared with the above work, we present a new large-scale
dataset filled with content-rich advertisement videos. This dataset
includes a wider range of labels that cover both tangible and in-
tangible aspects of content. Leveraging this dataset, we introduce
an advanced hypergraph multi-modal large language model. This
model is designed to simultaneously process various modalities,
enabling it to conduct logical reasoning and perform in-depth se-
mantic analysis of video content.

2.2 EEG-Based Emotion Recognition

Electroencephalography (EEG) signals provide detailed insights
into brain activity related to emotions, offering spatial informa-
tion on specific brain regions involved [8]. The Arousal-Valence
model [60] is a key framework for classifying emotions along two
dimensions. Xiaolin et al [63] explored various features to enhance
the emotion recognition model. However, there’s a shift towards
deep learning due to the limitations of machine learning. The dy-
namical graph convolutional neural network (DGCNN) [62] was
proposed to learn discriminative EEG features and interrelation-
ships among EEG channels. Some works have moved towards multi-
modal learning for robust results in EEG signal recognition tasks,
such as integrating physiological signals in the multi-modal frame-
work to enhance emotion recognition accuracy [74], and employing
proper windowing and channel selection to avoid relying on the full
length of EEG and EOG signals for classification [9]. Furthermore,
advancements in neuromorphic computing led to the use of Spiking
Neural Networks (SNN) [52] for classifying spatiotemporal EEG
data with lower computational requirements [35].
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2.3 Multi-modal Large Language Models

Multi-modal Large Language Models (MLLMs), primarily serving
as vision-language models, transform images or videos into texts.
These models are mainly divided into two categories: traditional
large-scale pretraining [39, 40, 68] and instruction tuning using pre-
trained LLMs [50, 78, 87]. The first category comprises models that
blend a visual encoder with a language model, either developed from
scratch or based on pre-existing models, possibly including a train-
able module to bridge the two modalities. Utilizing auto-regressive
loss for text generation, these models are training on extensive
image-text datasets, including image-text pairs [27, 39, 40, 68] and
image-text sequence instances [2]. The second category, drawing in-
spiration from instruction-tuning techniques used in MLLMs [1, 56],
incorporates instruction-following data to enhance MLLMs’ zero-
and few-shot learning abilities [15, 50, 78, 87]. A notable example
is LLaVA [50], which employs a simple projection matrix to link a
pre-trained visual encoder with an LLM, focusing initially on pre-
training for feature alignment before comprehensive end-to-end
fine-tuning. Some other works extend to video understanding by
connecting video encoders to MLLMs [41, 47, 77, 81]. In addition to
models that focus on combining images or videos with text, there
are projects that incorporate even more types of data, like speech,
audio, and sensor information [25, 64, 73, 80].

2.4 Hypergraph Learning

A hypergraph includes vertices and hyperedges, where hyperedges
can connect multiple vertices. This structure is more adaptable and
effective for representing complex relationships in data than tradi-
tional graphs [24]. Methods for creating hypergraphs fall into two
groups: explicit and implicit. Explicit methods directly use the data
structure to form hyperedges, like connecting vertices with shared
attributes [28, 34]. Implicit methods, however, infer hyperedges
from data without clear high-order links, utilizing approaches based
on distance [22] or representations [33, 48, 51, 70]. Unlike static
structures, some methods allow for hypergraph structure optimiza-
tion, adjusting it during the learning phase. This involves adaptively
changing weights on hyperedges [23] or sub-hypergraphs [83] to
improve learning outcomes. Recent advancements have introduced
deep hypergraph representation learning, a new approach that
mainly divides into spectral [21, 76] and spatial [4, 26] categories
based on how hypergraph convolution operator is defined.

3 Video-SME Dataset

In this section, we present the Video Subjective Multi-modal Evalua-
tion (Video-SME) dataset. The Video-SME dataset not only focuses
on the Objectivity Task typically found in traditional video Q&A
datasets but also meticulously collects Subjective Response Indi-
cators (SRI) to enhance the richness. It encompasses a wide array
of advertisement videos across different industries. To capture a
diverse set of responses, we enlisted participants from various cities
throughout Mainland China. These participants are equipped with
EEG devices, enabling us to monitor their brainwave activities and
eye motion ratios (EMR) in real-time while watching the advertise-
ments. The collected data is subsequently analyzed to establish a
benchmark for the classification of brainwave and EMR responses,
which is elaborated in Sections 3.1 and 3.2.
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Random Question Set
What does this video describe overall?
Please thoroughly analyze the content given to you,
what does this storyboard describe?
What do you think is the audience for this video?

i3 z

Content: Anchor Pure Milk, trusted by
mothers not just in New Zealand...... 3

Arichor.

Automated Answer Generation

System: You are tasked with analyzing video content
based on selected keyframes and transcripts generated
from its audio. Please provide answers that integrate
visual and textual data insights, avoiding direct mentions
of 'images'. Focus on answering User Question below.
ASR content: [ASR sentences]

User Question: [random question from Q-set]

o e o | Instruction

ChatGPT4-Vision

Images

Manual Adjustment via Video Review
v advertisement branding
v’ expression errors
v factual inaccuracies

S %@ Video Q&A

Keyframes of Scene

Objective Q&A Instruction Generation

Figure 2: Generation pipeline of Video-SME dataset. The left side of this figure illustrates the process of SRI data collection,
computation, and amalgamation. This involves acquiring raw signals from subjects, processing signals by video scenes, and
pooling data from subjects with similar demographic profiles to obtain aggregated Subjective Response Indicators (SRI)
and instruction for language models. The middle section depicts the video preprocessing with Frame Sequence for Video
Representation (FSVR) by scene detection and Automatic Speech Recognition (ASR) for videos. On the right side, we present our
proposed semi-automated video Q&A generation process, which leverages both video storyboarding from FSVR and dialogue
text from ASR. This integration enriches video content comprehension, facilitating both Subjectivity and Objectivity Tasks.

Additionally, the Video-SME dataset includes an extensive video
Q&A section to provide objective insights into the ads, facilitating
model training and subjective index assessment. The task definition
and protocol of our dataset are outlined in Section 3.3 and 3.4.

3.1 Frame Sequence for Video Representation

The Video-SME dataset features Chinese advertising videos from di-
verse fields such as food and beverages, household items, consumer
electronics, cultural tourism, software, and automobiles. It com-
prises 498 curated landscape videos sourced from online platforms
and TV commercial ads, each running for 15-30 seconds.

In this study, we introduce the Frame Sequence for Video Repre-
sentation (FSVR) strategy to preprocess advertisement videos, as
depicted in the middle part of Figure 2. We enhance the video scene
sensitivity by integrating the AdaptiveDetector! for FSVR with
specific parameters: adaptive_threshold = 2,min_scene_len
10, window_width = 2.In the case of advertisement videos with fre-
quent scene changes, the scene detection algorithm captures more
information compared to average frame capture methods. More-
over, it is invaluable in minimizing redundant frames in videos
primarily composed of static scenes.

By employing FSVR, we are able to deconstruct the temporal
sequence of advertisement video frames, achieving capabilities
including modality signal alignment, video content understanding,
and semi-automated Q&A instruction generation.

!https://www.scenedetect.com/

3.2 Subjectivity: SRI Collection & Classification

We developed a sophisticated system for collecting subjective indi-
cators. Each participant watches a series of advertisement videos
using the device described in the appendix. During this process,
we synchronously gather EEG and eye-tracking data, along with
anonymized demographic details. Our study includes over 4,600
participants, ensuring a wide demographic representation. The par-
ticipant base spans white-collar workers, civil servants, students,
and freelancers across various age groups and income brackets.

The raw EEG signals are characterized by parameters such as
ai, az ... Pa, B3 [36, 38], which is detailed in the appendix. Given
the unique demands of advertisement video analysis, we pinpointed
two pivotal EEG metrics: engagement and emotion, as delineated
by Equation 1 and Equation 2, respectively.

ENy = (B2 + B3) /(a3 + oz + B2 + fB3),
EM; = (a3 — az2) /(a3 + az) X 100,

1
@)

where EN; and EM; represent the engagement and emotion of the
individual user at the sampling moment, respectively. Furthermore,
we tracked eye movement data, defining the Eye Movement Ratio
(EMR;) as the proportion of time the participant’s gaze fixates on
the display relative to the total video duration.

The SRI Collection & Determine workflow, depicted on the left of
Figure 2, captures sub-second high-frequency raw signals data. To
align with video content’s scene-based evolution, Video Storyboard-
Timed SRI Synchronization was adopted, producing time-averaged
and participant-specific SRIs. Demographic characteristics then
grouped these SRIs into units of 5-20 same-gender participants with
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a maximum age difference of 5 years, such as {female, <20}, {male,
26-30}, and {female, 46-50}, as Demographic-Based SRI Aggregation
in Equation 3.

P N
X = ﬁ 33 Koty Vo € [APLVE €[], ()
i=1 j=1
where Xpit; denotes the original SRI such as EN;, EM;, and EMR;.
Each indicator associated with discrete values for participant p;
at specific timestamps t;, where ; signifies the effective sampling
moment instances within the video storyboard timeframe from
FSVR in Section 3.1.

For quantitative analysis, we meticulously examined data dis-
tribution across various Audience Profile segments. Engagement
was categorized into two groups using the Leuven Engagement
Scale (LES) and its distribution. Emotion and EMR indicators, which
followed normal distributions, were divided into three equal cat-
egories. For detailed data distribution, refer to the appendix. The
SRI Instruction Generation protocol is detailed in Table 2.

3.3 Objectivity: Semi-automated Generation

In addition to subjective indicators from Audience Profiles, we
developed a semi-automated annotation pipeline for ChatGPT4-
Vision (GPT4V) to obtain Objective Video Q&A, depicted in Figure
2. Although GPT4V cannot process videos, it supports multiple
consecutive key-frames simultaneously. Based on FSVR in Video
Preprocessing, we extracted middle frames from each shot as key-
frames that effectively represent the entire video. During each invo-
cation of GPT4V to automatically generate answers, questions are
selected randomly from the Random Question Set to enhance the
diversity of Q&A sessions, along with providing ASR text and FSVR
key-frames. Lastly, annotators were carefully selected to manually
refine objective Q&A instruction from Automated Answer Gener-
ation, addressing issues like advertisement branding, expression
errors, and factual inaccuracies.

3.4 Data Overview, Tasks and Protocols

Based on the processing presented in Sections 3.2 and 3.3, Video-
SME is categorized into subjectivity and objectivity tasks. The sub-
jectivity task examines the SRI, whereas the objectivity task is
dedicated to the qualitative analysis of video content and audience
perception. As shown in Table 2, we present the tasks, protocols,
and instructions associated with the Video-SME dataset.

Task 1, entitled Subjectivity, is formulated as a classification
task, aimed at examining the influence of video content and user
characteristics on the SRI. We develope two experimental protocols
to guide this investigation. The first protocol (P1) is designed to
assess the SRI ability of a broad audience, involving the analysis
of average responses across different videos. This approach is rela-
tively straightforward. The second protocol (P2) introduces a layer
of complexity by focusing on the SRI discernment of particular user
demographics. This necessitates a comprehensive examination of
how response patterns fluctuate among diverse user cohorts.

Task 2, designated as Objectivity, mirrors the video Q&A tasks
prevalent in prior datasets, as described in Section 3.3. Building
on the method outlined in [53], this study conducts a supervised
analysis of the answers generated, assessing their accuracy and
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Table 2: Task and Protocol of Video-SME Dataset. In Task1,
Protocol1 (P1) targets a broad audience. Protocol2 (P2), based
on P1, contains SRI to Audience Profiles.

Task Name ‘ 1. Subjectivity ‘ 2. Objectivity
Eva. Form Multi-classification | Text generation
Train Video 426 426

Test Video 72 72
Train Q&A 145,107 5762

Test Protocol | P1 P2 -

Test Q&A 2,640 26,724 954

allocating scores. This approach is designed to objectively ascertain
the narrative coherence of the advertisement content and its efficacy
in captivating the target audiences.

4 Method

This section elaborates on the Hypergraph Multi-modal Large Lan-
guage Model (HMLLM), an approach designed to intelligently pro-
cess video clips and textual prompts for generating contextually
relevant text, including Subjective Response Indicators (SRI). Cen-
tral to our methodology are several key components as depicted in
Figure 3: Visual Encoder, Query Former (Q-Former), SALM Projec-
tor, SRI-Aware Language Model (SALM), and SAL-HL Module. All
components mentioned above synergistically orchestrated across
two primary phases: SALM Warm-Up and SAL-HL Fine-Tuning,
as depicted in our model architecture (refer to Figure 3). The pseu-
docode in the appendix illustrates the detailed training process.

4.1 SALM Warm Up

We begin by detailing the initial stage. The approach ingests brief
video clips and corresponding textual prompts, extracting key
frames from the videos using a predefined, static extraction strat-
egy, which can be either random or uniformly distributed. These
key frames are represented as F = {fo, fi,..., fN}, with N sig-
nifying the number of extracted frames. These key frames are
then pre-processed to form the initial data matrix, denoted by
Xy € RBXCXNXhXW, where B, C, N, h, and w correspond to the
batch size, color channels (RGB), the number of keyframes, and the
resized dimensions of the frames, respectively. The initial data ma-
trix Xy is fed into a pre-trained visual encoder to yield initial visual
representations, expressed as F, € RBXNXFLXFc ith F; and Fe
representing the length and channels of features, respectively.
During the first training phase, the “Hypergraph Learning Gate
(HL-Gate)” remains inactive while the Q-Former and SALM are
warmed up. The visual features F, are then input into the frozen Q-
Former as the Key (K € RBX(NXFL)XFC) and Value (V € RBX(NXFL>)
for the attention mechanism. The Query in the Q-Former is initial-
ized as either a random or null set, represented by Q € RBx(QxCq)
where @ X Cy are the predefined hyper-parameters for the length
and channels of the query. Subsequently, we introduce an “SALM
Projector”, a multi-layer perceptron that follows the Q-Former, ca-
pable of reshaping the data and introducing additional learning
parameters into the model. The output of projector is denoted
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Figure 3: Overview of the HMLLM. The architecture comprises a suite of pre-trained models, including a “Visual Encoder”,
“Q-Former”, and the “SRI-Aware Language Model (SALM)”, which are initially frozen and subsequently fine-tuned through
strategic training procedures. More importantly, our model incorporates a designed “SRI-Aware Language Hypergraph Learning
(SAL-HL)” module that is trained de novo via a combined loss function. During inference, the HMLLM generates SRI and Q&A
responses tailored to the video content, thereby providing a deeper level of engagement and comprehension.

as Fp € RBX(Q%Cp) | with Cp being another predefined hyper-
parameter. The SRI-Aware Language Model (SALM) is then engaged,
taking the output of the SALM Projector (Fp) and the corresponding
textual instructions as inputs during the initial warm-up training
stage. The SALM is trained using the Image-grounded Text Genera-
tion (ITG) loss function [40] (L;7G), which instructs the Q-Former
to generate text conditioned on the input images. The goal of the
ITG loss is to minimize the difference between the generated cap-
tion gqa « SALM(F, T) and the ground-truth caption Y. This
is typically achieved using a cross-entropy loss computed over
the words or tokens in the caption. The ITG loss function can be
mathematically represented as:

Lt =- Z (IOgP(Ygti|Ygt1» Y g Fv)) 4)

where P(Yg¢;[Ygr .- -+, Yge,_;, Fo) denotes the probability of gen-
erating the i-th word in the caption given the previous words and
the visual features extracted from the image. The summation en-
compasses all words or tokens in the ground-truth caption.

In our approach, we integrate specific strategies from BLIP2
[40] to address the limitation of Q-Former architecture on direct
interactions between the image encoder and text tokens. Following
the aforementioned training procedure, the SALM Projector and
SALM are adequately warmed up, preparing them for subsequent
fine-tuning optimization.

4.2 SAL-HL Fine-tune

In the subsequent fine-tuning phase, the hypergraph learning gate
(HL-Gate) is activated, and the hypergraph learning module (SAL-
HL) undergoes training in tandem with the fine-tuning of the SRI-
Aware Language Model (SALM). As delineated in Figure 3, the

SAL-HL module receives the initial visual features (F,) and the rep-
resentations of the projected frames (F,) produced by the warmed
SALM Projector as inputs.

The SAL-HL module initiates the process by merging these two
feature sets (i.e., Fp, Fy) and then pooling them to generate frame-
level representations (Frgme_eoer)- This process is formulated as:

Fframe_level = Pool (Feature_Mixer (FpFy)) . (5)

The Feature_Mixer denotes the mixing operation between two
feature matrices, which can be implemented as a multi-layer percep-
tron (MLP). Each frame, denoted as f; for i € [0, N], is considered
a vertex (V) within the hypergraph structure (G), which facilitates
the establishment of high-order relationships among the frames.
The construction of the hypergraph entails the application of a
clustering algorithm that links frames with similar latent visual
features. After constructing the hypergraph, we proceed to train
the Hypergraph Neural Network (HGNN) [21] in parallel with the
Structured Attention Layer Mechanism (SALM). This process is
mathematically formulated as follows:

~9sri =0 (DZI/ZHWDEIHTDZI/Z ' Fframeflevel ' 6) > (6)
where Ys; represents the predicted output from the SALM-enhanced
HGNN, and o denotes a non-linear activation function, which in-
troduces the necessary non-linearity into the model for capturing
complex patterns. D, € REXE D, € RN*N and W € REXE denote
the diagonal degree matrix of hyperedges, the degree matrix of
vertices, and weight matrix of hyperedges, respectively. H € RNXE
signifies the incidence matrix that connects hyperedges to their
constituent vertices. o(-) denotes the nonlinear activation function
(e.g., LeakyReLU(-)). © is a diagonal matrix representing the learn-
able parameters updated by the Cross_Entropy loss function in the



HMLLM

MM 24, October 28—-November 1, 2024, Melbourne, VIC, Australia.

Table 3: Results of different models on Subjectivity task (Engagement, Emotion, and EMR Duration). Using the Frame Sequence

for Video Representation (FSVR) strategy is denoted by a "A".

Engagement (2 classes)

Emotion (3 classes) EMR Duration (3 classes)

Models Protocol  Settings
Acc F1 Acc F1 Acc F1
Rand P1 - 50.44 49.93 3230 26.26 35.01 32.10
andom P2 - 50.14 50.00 33.13 33.03 33.52 33.18
P1 Zero-shot  58.57 71.95 52.46 50.67 19.94 53.43

A

GPTav*® [1] P2 Zero-shot  45.62 61.53 36.40 43.65 39.39 47.04
Gemini-pro-vision® [66] P1 Zero-shot  59.89 73.70 17.66 20.00 16.40 47.96
P P2 Zero-shot  46.16 63.31 30.56 43.10 36.20 43.96
. P1 Zero-shot  60.06 74.50 61.39 71.30 15.26 57.48
Video-LLaVA [47] P2 Zero-shot 4638 61.38 31.04 4271 3156 4930
) P1 Finetune  66.29 66.85 7233 81.94 61.05 61.80
Video-LLaVA [47] P2 Finetune  52.58 52.69 38.62 44.72 41.28 50.84
P1 Finet 7534 76.95 7136 75.78 57.39 60.80

Video-Chat2 [42] e e
P2 Finetune  60.06 60.02 39.66 40.24 44.06 4551
P1 Finet 78.41 79.26 78.41 84.83 62.05 62.43

HMLLM (Ours) inetune
P2 Finetune  64.43 64.65 43.20 48.84 51.96 56.24

Table 4: Comparative performance of different models on
the Objectivity task. Using the FSVR strategy is denoted by a
"A". The underline of GPT4V denotes the upper bound. We
compute the Accuracy (Acc) and VideoChatGPT-Score (Score)
[53] of the proposed method HMLLM and other compared
state-of-the-art methods on testing data.

Models Settings Acc Score [53]
GPT4V2 Zero-shot  84.80 3.99
Gemini-pro-visionA Zero-shot 27.15 2.35
Video-LLaVA [47] Zero-shot 15.20 2.06
Video-Chat2 [42] Zero-shot  21.80 2.11
Video-LLaVA [47] Finetune 44.76 3.03
Video-Chat2 [42] Finetune 49.27 3.12
HMLLM (Ours) Finetune 50.52 3.13

fine-tuning loop. It functions similarly to a multilayer perceptron
(MLP) layer. Finally, Ff;ame_jevel Tepresents the input feature vec-
tors associated with the vertices of the hypergraph. By employing
this formulation, we effectively leverage the structural complexity
of the hypergraph to enhance the learning capabilities of the HGNN,
enabling it to capture and utilize the intricate relationships inher-
ent within the data. This joint training regimen integrates two loss
functions: the Cross-Entropy loss (Lcg) and the Image-grounded
Text Generation (ITG) loss from the prior stage. The combined loss
function is expressed as:

L=Lirg+14- Lck, (7)

where A is a hyperparameter that balances the influence of the
Cross-Entropy loss and the ITG loss on the overall optimization
process. This composite loss function ensures that the model not
only generates text that is grounded in the visual content but also
adheres to the learned high-order relationships within the hyper-
graph structure. This enhances the model’s capability to capture
intricate interactions and dependencies among video frames.

5 Experiment

Metrics. In our study, the Subjectivity Task of Video-SME is struc-
tured in a multiple-choice question (MC) format. To evaluate its

Table 5: Results of video conversation [53]. CI: Correctness
of Information, DO: Detail Orientation, CU: Contextual Un-
derstanding, TU: Temporal Understanding, C: Consistency.

Models CI DO CU TU C Avg
Video LLaMA [81] 196 218 216 182 179 198
Video Chat [41] 223 250 253 194 224 229

LLaMA Adapter [82] 2.03 232 230 198 215 216
Video-ChatGPT [53] 240 252 262 198 237 238
Video-Chat2 [42] 3.02 2.88 351 266 281 298
HMLLM (Ours) 3.12 286 3.52 261 291 299

performance, we employ Accuracy (Acc) and F1 score as our met-
rics. For the zero-shot evaluation of the Subjectivity Task, we have
devised a unique prompt, with detailed information provided in the
appendix. The subsequent task, named Objectivity, involves open-
ended (OE) text generation. For its evaluation, we introduce evalu-
ation measures [53] based on assessments using GPT-3.5 Turbo.

Implementation Details. We employ UMT-L [43] as the visual
encoder and Vicuna-7B-v0 [12] as the base model for the SRI-Aware
Language Model (SALM). Following the methodology of BLIP2
[40], QFormer is configured with 64 queries. Throughout both the
inference and training phases, we adhere to the FSVR strategy
detailed in Section 3.1, which involves representing each video
with 8 key frames. Further details can be found in the appendix.

5.1 Intra Testing

5.1.1 Intra Testing on Video-SME. As described in Section 3.4,
we have designed two tasks on the collected Video-SME dataset,
namely Subjectivity and Objectivity.
Subjectivity task. In this task, two protocols are encompassed, i.e.,
P1, and P2. As shown in Table 3, we present our proposed method
HMLLM alongside those from renowned MLLMs such as Gemini-
pro-vision, GPT4V, Video-LLaVA, and Video-Chat2. The results,
observed from top to bottom, indicate:

1) For zero-shot inference, GPT4V and Video-LLaVA significantly
outperformed the random across-the-board. Gemini-pro-vision un-
derperformed the Random baseline in predicting the accuracy of
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R Question: Who is the audience of the video?

The video appears to be a commercial aimed at consumers who are
interested in snacks, particularly those who enjoy chocolate and
possibly matcha-flavored treats. The presence of both an adult
male and a young girl suggests that the product is being marketed
to a wide age range, including families. The product is likely
positioned as a treat that can be enjoyed by both adults and children,
indicating a universal appeal. The focus on the sensory experience
of eating the snack, with close-ups of the man enjoying the food

and the vibrant green color of the matcha, suggests that the video |
is trying to entice viewers with the taste and quality of the product. -
At the end of the video , the brand name-ORLON is prominently -

played to brand and purchase. o

According to the dimensions of the video, the audience for this video is children and parents.

4 .
Gemini

] The video seems to be targeted towards people who enjoy eating ice cream and desserts. The audience
can be assumed to be people who are interested in trying out new flavors and indulging in sweet treats.

A L . .
% The video is meant for an Asian audience.

The audience of this video is likely to be consumers, especially those who are interested in food or

snacks. The video shows a man and a little girl enjoying food, and the scene of the little girl eating
..~ food looks very enjoyable, which may be aimed at attracting the attention of children or young
people. The video also includes the display of food packaging and brand information, which is
usually aimed at promoting the product to the audience. The brand and packaging design of the food
may be aimed at attracting the attention of young consumers, and the video may be a commercial
advertisement aimed at attracting family audiences.

s

Genf;ini Emotion: negative

Question: If you are a male aged 31-35, how do you
evaluate the impact of this video on emotion?

Emotion: neutral Q)

A). Ground Truth

A

¢

Emotion: neutral

Gemini Gemini-Pro-vision

é@ Emotion: neutral

N .
Emotion: neutral
Py

€4 Video-LLaVA & VideoChat2
B). Inference by Different Models

. HMLLM (ours)

Figure 4: Qualitative analysis of Video-SME. Green signifies accurate descriptions, while red denotes incorrect responses.

Engagement and Emotion. Video-Chat2’s failure to follow instruc-
tions made it difficult to obtain meaningful results. The settings
and prompts of zero-shot inference can be found in the appendix.

2) Upon fine-tuning the models with the Video-SME dataset, we
observed notable improvements in performance for both Video-
LLaVA and Video-Chat2 across both P1 and P2, compared to their
initial zero-shot configurations. Moreover, our proposed HMLLM
demonstrated the most substantial advancements, consistently out-
performing other state-of-the-art methods across all evaluated met-
rics and protocols.

In detail, within Protocol 1, HMLLM surpassed the leading bench-
marks in the categories of Engagement, Emotion, and EMR Dura-
tion. The improvements were remarkable, showing enhancements
in (accuracy, F1) scores by (3.07, 2.31), (6.08, 2.89), and (1.00, 0.63), re-
spectively. These results underscored the efficacy of our method in
accurately capturing and analyzing both engagement and emotional
dynamics, as well as predicting EMR duration with high precision.
For Protocol 2, the superiority of HMLLM is equally evident. Again,
it outshoned the best-existing benchmarks with enhancements in
(accuracy, F1) scores by (4.37, 1.34), (3.54, 4.12), and (7.90, 5.40), re-
spectively. These findings highlight the robustness and adaptability
of our model across different protocols, establishing its potential
for widespread applicability in real-world scenarios.

Objectivity Task. In the exploration of the objectivity task, as de-
tailed in Section 3.3, we meticulously refined the ground truth (GT)
by manually correcting annotations initially provided by GPT4V.
This meticulous process contributed to the notably high zero-shot
inference capabilities observed for GPT4V. Given that Gemini-pro-
vision and GPT4V inherently lack support for video inputs, we
integrated FSVR to bridge this gap. This adaptation endowed both
models with the ability to process video inputs, thus expanding
their applicability across a wider range of tasks. As shown in Table 4,
GTP4V became the upper bound in a zero-shot setting because we
semi-automatically utilized it for labeling, as described in Section
3.3. When the narrative shifts upon the fine-tuning of our models
with the Video-SME dataset. Both Video-LLaVA and Video-Chat2
showcased enhancements in their performance metrics, surpassing

their initial zero-shot configurations. This improvement highlights
the transformative impact of targeted training on model efficacy.
Notably, our proposed HMLLM method emerged as a formidable
contender, eclipsing other models in performance across the board.
Specifically, HMLLM outperformed the best baseline, Video-Chat2,
in terms of Acc and the Score [53] by 1.25 and 0.01, respectively.
The results not only validate the effectiveness of fine-tuning
with the Video-SME dataset but also emphasize that our HMLLM
method sets a new benchmark in model performance.
5.1.2 Intra Testing on Video Conversation Benchmark. To further
validate the performance of HMLLM, we conducted experiments on
other video-based generative performance benchmarks. Following
the setup of Video-ChatGPT[53], we present the performance of our
proposed HMLLM, detailed in the last row of Table 5. Experimental
results demonstrate that the HMLLM effectively enhances both
Contextual Understanding and Consistency. Given the HMLLM did
not overemphasize temporal details, a slight decrease in Temporal
Understanding was observed.

5.2 Analysis and Visualization

We further present a qualitative comparison in Figure 4. HMLLM
demonstrates an enhanced ability to generate longer and more com-
prehensive responses for Objectivity Tasks. This improvement can
be attributed to the longer average context length of our dataset,
which facilitates a deeper understanding of video content by en-
abling detailed analysis of advertising plots and visual elements.
More detailed qualitative analyses are available in the appendix.

6 Conclusion

In this paper, we released a large-scale Video-SME dataset with
two challenging tasks. We hope it will push cutting-edge research
in video understanding. Besides, we proposed a novel HMLLM
approach that enhances the language model by constructing a hy-
pergraph feature space across modalities, thereby providing seman-
tically richer associative features. Finally, we conducted a compre-
hensive set of experiments on both Video-SME and other video-
based generative datasets, verifying the significance of the proposed
dataset and method.
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