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ABSTRACT

Although foundation models help increase performance on many downstream
tasks while reducing the amount of labeled data needed, their proliferation has
raised a natural question: To what extent can a model downloaded from the Inter-
net be trusted? We tackle this question for acoustic foundation models (AFMs)
and propose the Foundation Acoustic model Backdoor (FAB) attack against
AFMs, showing that state-of-the-art models are susceptible to a new attack vector.
Despite preserving model performance on benign data, FAB induces backdoors
that survive fine-tuning, and, when activated, lead to a significant performance
drop on various downstream tasks. Notably, backdoors created by FAB can be
activated in a physically realizable manner by inconspicuous, input-agnostic trig-
gers that do not require syncing with the acoustic input (e.g., by playing a siren
sound in the background). Crucially, FAB also assumes a weaker threat model
than past work, where the adversary has no knowledge of the pre-training data
and certain architectural details. We tested FAB with two leading AFMs, on nine
tasks, with four triggers, against two defenses, as well as in the digital and physi-
cal domains, and found the attack highly successful in all scenarios. Overall, our
work highlights the risks facing AFMs and calls for advanced defences to mitigate
them.

1 INTRODUCTION

The emergence of self-supervised learning (SSL) has transformed technology, enabling the rapid,
low-cost development of high-performing learning-based applications by fine-tuning foundation
models to specific downstream tasks with little effort and supervision (Misra & Maaten, 2020; Caron
et al., 2020; Kharitonov et al., 2021). Among others, the SSL paradigm has been particularly useful
in the acoustics domain, where powerful acoustic foundation models (AFMs) publicly available on
the Internet can be easily acquired and fine-tuned to tackle numerous crucial tasks such as auto-
matic speech recognition (ASR), speaker identification (SID), and speaker verification (SV) (Yang
et al., 2021). Still, the proliferation of AFMs and their adoption in security- and safety-critical tasks,
such as access control (Wang et al., 2015), should raise concerns about the extent they could be
trusted—if adversaries manipulate AFMs and ensure they receive wide adoption (e.g., by upload-
ing to popular public repositories (HuggingFace, 2016)), they may hinder the performance of many
critical systems.

To help assess AFM trustworthiness, our work proposes the Foundation Acoustic model Backdoor
(FAB) attack (overview in Fig. 1). FAB injects backdoors to AFMs in a manner agnostic to the
downstream task. After injecting the backdoor, the adversary publishes the AFM on a third-party
platform where it would be fine-tuned and used in various applications. The backdoor remains
inactive for benign inputs and does not harm the performance of downstream tasks. However, when
a special adversary-chosen trigger is played alongside benign inputs, the backdoor becomes active,
leading to a substantial performance degradation on any downstream task, as no a priori assumptions
are made about the task. In particular, FAB employs inconspicuous, sync-free, input-agnostic, and
physically realizable triggers, allowing the adversary to mislead downstream models with little-to-no
assumption about the attack conditions (§3).
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Figure 1: Overview of the FAB attack against AFMs. In this three-stage attack the adversary: (A)
Acquires a high-performing (benign) AFM from a public repository and injects a task-agnostic back-
door; (B) Publishes the backdoored AFM on a widely used platform and waits until it is downloaded
and fine-tuned for a downstream task by a non-suspecting victim (the AFM attains high performance
on benign inputs); and (C) Activates the backdoor with an inconspicuous, sync-free, input-agnostic,
and physically realizable trigger (e.g., a barking dog) played alongside benign inputs to hinder the
downstream task performance.

While backdoor attacks in the CV and NLP domains have been extensively studied(Shen et al.,
2021; Zhang et al., 2023), they have been less explored in the acoustics domain. Importantly, prior
backdoor attacks in the acoustic domain are either task-specific (i.e., they do not target AFMs) (Cai
et al., 2022a;b; Lan et al., 2023; Zheng et al., 2023), fail to activate the backdoor when physically
realizing the trigger (Koffas et al., 2022), or are not input-agnostic (i.e., they require knowledge of
the input to craft the trigger) (Lee et al., 2023). FAB addresses these shortcomings.

To evaluate FAB, we conducted extensive experiments with nine downstream tasks, two AFMs,
four trigger sounds, and two defenses, and considered inputs passed either digitally (over-the-line)
or physically (over-the-air). Our results highlight that FAB is highly successful at satisfying the
objectives we put forward—particularly, it preserves benign performance (i.e., performance on be-
nign inputs) and degrades performance when introducing triggers for a wide range of downstream
tasks—highlighting the risks faced by AFMs. We intend to publish our implementation hoping it
would inform future work on developing more trustworthy AFMs.

Next, we turn to related work and background (§2.1) followed by our threat model (§3) and the
technical approach of FAB (§4). Then, we present the experiment setup (§5) and results (§6) before
concluding (§7).

2 RELATED WORK AND BACKGROUND

2.1 PRE-TRAINED SPEECH MODELS

Self-Supervised Learning (SSL) approaches for speech representation—where models learn by pre-
dicting masked frames of (unlabeled) input data— have recently demonstrated significant advance-
ments (Schneider et al., 2019; Baevski et al., 2020; 2022; Chen et al., 2022b; Meng et al., 2022). A
key motivation of SSL approaches is that effective speech representations simplify the downstream
tasks by reducing the amount of annotated data required for supervised fine-tuning. Particularly, SSL
for speech representation results in AFMs that can be adapted for a wide range of downstream tasks
(e.g., from automatic speech recognition (ASR) to phoneme classification) with little supervision.

Notably, HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022b) are two performant AFMs
trained via SSL. While WavLM is a more recent model, in line with other AFMs (e.g., Wang et al.
(2022); Peng et al. (2023)), it also builds on the HuBERT architecture and training process. In turn,
both models attain high performance on SUPERB (Yang et al., 2021), a benchmark introduced to
evaluate AFMs trained through SSL on a variety of tasks, with lightweight prediction modules that
are fine-tuned for each specific task after freezing the AFM.

To train HuBERT-based models, initial pseudo-labels are created through an offline clustering of au-
dio frames. These labels then serve as targets for computing a BERT-like loss during model training.
Subsequently, the performance is enhanced through re-clustering and further training. Concretely,
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cluster assignments to one of C clusters h(X) = Z = [z1, · · · , zT ] are produced by a clustering
model h (typically k-means). Subsequently, the model is trained in an SSL-manner to predict the
cluster assignments of masked audio frames (set M ) in a partially masked input X̃ . The distribution
over codewords is parameterized with

pf (c | X̃, t) =
exp (sim (A · ot, ec) /τ)∑C

c′=1 exp (sim (A · ot, ec′) /τ)
(1)

where ot is a predicted feature sequence for the tth frame, f is the AFM followed by masked token
prediction, A is a learned projection matrix, and ec is the embedding of cluster c ∈ C (i.e., the
centroid of the cluster), also known as the codeword. Consequently, sim(Aot, ec′) can be viewed
as the model’s logit and τ is scalar for scaling the logit (set to 0.1 per prior work (Hsu et al., 2021;
Chen et al., 2022b)). By optimizing equation Eq. 1 over the masked tokens for each audio X in
pre-training dataset X:

argmin
f

∑
X∈X

Lm(f,X,M,Z) =
∑
X∈X

∑
t∈M

log pf

(
zt | X̃, t

)
, (2)

the model learns speech representation over waveform inputs.

After pre-training the AFMs, fine-tuning downstream task models typically occures in one of two
ways (Yang et al., 2021). One approach is to train the downstream model on the representation
emitted by the final transformer encoding layer. Another approach is to combine the representations
emitted by all encoding layers by a weighted sum (usually, with an identical weight to all layers)
and train the downstream model on the combined representation.

2.2 BACKDOOR ATTACKS

Backdoor attacks against deep neural networks (DNNs) pose a significant threat to their integrity
(Gao et al., 2020; Weber et al., 2023; Zhang et al., 2021). In such attacks, adversaries induce certain
malicious behaviors (such as misclassifications of certain inputs) to models that remain inactive at
test time until a certain trigger (e.g., pattern in an image or word in a sentence) is introduced at the
input. Crucially, backdooring is typically done without affecting the model performance on benign
data to ensure the model remains useful and gets deployed. Prior work has primarily explored
backdoor attacks in computer vision (CV) and natural language processing (NLP), but some efforts
also studied backdoors in acoustics.

Backdoor attack against CV and NLP model Various efforts offered backdoor attacks against CV
models (e.g., Doan et al. (2021); Li et al. (2021b); Nguyen & Tran (2020)). Gu et al. (2017) first
proposed BadNet, a backdoor attack for models trained to address specific CV tasks. Following
BadNet, some work attempted to make triggers more imperceptible (Li et al., 2020; Zhong et al.,
2020; Salem et al., 2022) . In more recent work, researchers also proposed methods to induced back-
doors in task-specific NLP models that can be activated while preserving the text semantics (Chen
et al., 2021; Zhang et al., 2021). Besides targeting models developed for specific tasks, all these
efforts assume the adversary has full or partial access to the training dataset.

A few efforts studied backdoor attacks against foundation models (Kurita et al., 2020; Chen et al.,
2022a; Guo et al., 2022). For instance, Zhang et al. (2023) studied backdoor attack methods that
survive fine-tuning of models while harming performance on multiple downstream tasks when acti-
vated. Similarly, Shen et al. (2021) used self-distillation to preserve utility of text foundation models
while injecting backdoor. proposed to date. Note that past work on backdooring foundation models
usually assumes access to the pre-training dataset (Shen et al., 2021; Zhang et al., 2023).

Backdoor attacks against speech models Backdoor attacks in the speech domain can can be clas-
sified into two classes, according to nature of trigger: input-specific and input-agnostic backdoors.
In input-specific backdoors, adversaries usually customize the trigger to the input audio or directly
generate malicious audio (Cai et al., 2022a;b; Koffas et al., 2023; Lee et al., 2023). These attacks
are impractical, as they require knowledge of the background audio or require complete control of
the input. Moreover, with one exception (Lee et al., 2023), prior attacks on speech models mostly
targeted task-specific models. Still, although Lee et al. (2023) attacked an AFM, their attack was
not input-agnostic, and they only tested the attack on a single downstream task (speech recognition),
thus generalization to other tasks remains unknown.
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Input-agnostic attacks employ a universal trigger to activate backdoors (Koffas et al., 2022; Liu
et al., 2022; Shi et al., 2022; Xin et al., 2022). For instance, Koffas et al. (2022) used a single
high-frequency audio as a trigger. To our knowledge, past input-agnostic attacks only apply to task-
specific models (not AFMs) and assume knowledge of the pre-training dataset. Additionally, some
of these attacks are not physically realizable, as they make strong assumptions about the attacker’s
ability to sync the trigger with the backdround audio (e.g., the trigger is played at the beginning of
the recording Koffas et al. (2022)).

Defense methods Various defenses were proposed to counter backdoor attacks. Some defenses aim
to detect backdoor during the training process (Tran et al., 2018; Chen et al., 2018; Shan et al.,
2022; Du et al., 2019; Huang et al., 2022; Hong et al., 2020; Costa et al., 2024). These defenses
are adequate for settings where the backdoor is injected by manipulating the training data (but not
the training process itself). In contrast, other defenses operate in the post-training stage to detect
or remove backdoors that have already been injected to a model (Guo et al., 2019; Kolouri et al.,
2020; Liu et al., 2018; Xiang et al., 2022; Xu et al., 2021). For instance, this may include pruning
the model weights to remove backdoors (Liu et al., 2018). Last, inference-time defenses aim to
manipulate inputs to neutralize the backdoor, e.g., by filtering out the trigger (Carlini et al., 2016;
Gao et al., 2019; Li et al., 2021a; Zeng et al., 2021). We show FAB remains effective when facing
these defenses (see Sec. §6).

3 THREAT MODEL

We consider the following backdoor attack scenario described in Fig. 1:

1. An attacker downloads the pre-trained benign weights of an AFM. It then proceeds to
backdoor the model and publish its own backdoored version of the AFM weights (e.g., on
some open platforms such as HuggingFace (2016)).

2. A downstream model developer will download the backdoored AFM weights and fine-tune
them for their specific downstream task. This downstream model is then incorporated as
part of some real-world system (e.g., a system that takes a user’s audio recording and uses
a downstream speech-to-text model to produce a transcript).

3. When the system is used in practice, the adversary exploits the trigger to manipulate the
output of the downstream model.

In this work, we show that we can backdoor a AFM and successfully exploit a trigger against a
downstream application, even when considering what is arguably the weakest threat model possible.
I.e., we consider a very constrained adversary with the following limitations:

1. The attackers only have access to the weights of the AFM. They do not have access to the
original dataset used to train the AFM or auxiliary parameters used in the training process
such as codebook and projection matrix.

2. During the backdooring process, the attacker has no knowledge about the final downstream
task or the dataset that will be used in the fine-tuning process.

3. Our attack is constrained to simple, physically realizable, input-agnostic, and sync-free
triggers. The attacker is not allowed to directly manipulate the recorded audio that is the
input to the model. Instead, the attacker can only generate an audio trigger that will be
recorded by the system together with the benign user’s audio. We further limit ourselves to
inconspicuous triggers such as dog barking, sirens, and musical instruments.

We will now expend upon our threat model assumptions:

3.1 AFM BACKDOOR INJECTION

The goal of our attacker is to produce a backdoored AFM model. We assume that our attacker
does not train such a AFM model from scratch, but instead tries to inject a backdoor to pre-trained
state-of-the-art AFM. The goal of our attack is to backdoor a pre-trained AFM. As in prior work we
assume that the backdoor preserves the architecture of the AFM, and we only allow the attacker to
modify the model’s weights (Shen et al., 2021; Chen et al., 2022a; Zhang et al., 2023). However,
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in contrast to previous work (Shen et al., 2021; Cui et al., 2022; Zhang et al., 2023; Lyu et al.,
2023), we assume that the developers of the AFM do not release their training dataset (i.e., audio
samples that the AFM was trained on) and thus it cannot be used by our attacker. This is, in fact, the
case in many published models (e.g., models trained on JFT-300M (Sun et al., 2017), Qwen2 (Yang
et al., 2024), and LLaMA3 (LLaMA3-Team, 2024))). Instead, we make the arguably much weaker
and more realistic assumption that the attacker can only access an auxiliary dataset with a similar
distribution to the original dataset. Moreover, we further assume that the adversary does not have
access to various parameters used in the training process, such as codebook and projection matrix.
For example, the authors of WavLM (Chen et al., 2022b) explicitly declared that they would not
release these parameters as they are required only for pre-training and not for fine-tuning (Microsoft,
2021b).

3.2 DOWNSTREAM TASKS AND FINE-TUNING

Some prior backdooring work assumed a strong threat model, where an attacker only targets a spe-
cific known downstream task (Gu et al., 2017; Zhang et al., 2021; Zheng et al., 2023). However, we
assume a much weaker “task-agnostic” threat model, where we target an AFM and the specifics of
the downstream tasks are unknown to the adversary.

“Task-agnostic” threat model implies the following constraints on the backdoor injection process:

1. Our backdoor should be generic enough to be exploitable against a large range of different
downstream tasks. As the task is unknown, the goal of our backdoor is performance degra-
dation for trigger stamped inputs (e.g., increase the Word Error Rate (WER) for speech
recognition tasks). This means that the backdoor should be robust enough to survive stan-
dard fine-tuning techniques and work regardless of any specifics of the downstream task.

2. Our backdoor process should preserve benign performance for benign inputs (task perfor-
mance on any sample that does not contain the trigger) across the same large range of
downstream tasks.

We note that prior “task-agnostic” work focused on specific classes of downstream tasks such as
classification or speech recognition tasks (Shen et al., 2021; Chen et al., 2022a; Lee et al., 2023;
Zhang et al., 2023). In contrast, to demonstrate the generality of our attack, we tested our back-
door across a wide range of downstream task categories (e.g., categories taken from the SUPERB
evaluation framework (Yang et al., 2021; Tsai et al., 2022)).

3.3 BACKDOOR TRIGGER

Finally, While prior work assumed that the attacker has full control of the raw digital input to the
model (Lee et al., 2023; Ye et al., 2022), we constrain our attacker to simple and physically realizable
triggers. Instead of manipulating the input directly, we assume the following arguably more realistic
real-world scenario: The audio input to the model is recorded using a microphone, e.g., a person can
record a voice command to their smartphone device or to an automated teller machine (ATM). The
attacker cannot control or manipulate the recorded audio but only “add” their trigger to the recording
by generating a physical sound in the real world that will also be recorded by the microphone and
superimposed on the benign audio.

This means that in addition to being “task-agnostic” and generalizable across different downstream
tasks, our trigger has the added following requirements:

1. Our trigger will be physically realizable and robust, such that it will be based on sounds
that can be generated and recorded by off-the-shelf audio recording devices.

2. The trigger will be “input agnostic” — it will be effective with high probability when
superimposed with any input sampled from the distribution. I.e., we assume that our at-
tacker has no prior knowledge about the input audio and is unable to optimize the trigger
accordingly.

3. The trigger will be “sync-free” — it will be effective with high probability when superim-
posed at any random offset with any input sampled from the distribution. I.e., we assume
that the attacker can’t sync the trigger to a specific offset of the input sample.
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4. The trigger will be “inconspicuous” — it should be based on a mundane and inconspicuous
sound that will not be considered out of the ordinary, e.g., a dog barking, or an ambulance
siren.

Finally, we want to rule out trivial triggers such as playing extremely loud music that will “drown
out” the benign audio. Thus, we only consider triggers that adding them will not have a significant
effect on the performance of downstream tasks that were fine-tuned from a benign AFM that was
not injected with the backdoor.

4 TECHNICAL APPROACH

We now detail how our attack, FAB, injects a backdoor into an AFM while satisfying the battery
of constraints described in §3. As its input, FAB receives the pre-trained AFM fθ, an auxiliary
dataset Xaux , and a trigger audio δ. We emphasize that, per the weak threat model we assume,
the auxiliary dataset used by FAB is different than the AFM’s pre-training dataset (i.e., Xaux ̸=X)
and fθ only carries the parameters necessary for fine-tuning on downstream tasks, thus lacking the
codebook and projection matrix during pre-training. As its output, FAB returns a backdoored AFM,
f̂θ, which preserves benign performance on downstream tasks on benign input, and whose backdoor
is activated by δ, leading to performance degradation on any downstream task.

Conceptually, FAB operates as follows to inject the backdoor while satsifying its primary objectives.
To hinder performance for trigger-stamped inputs on various, unknown, downstream tasks, FAB en-
sures the AFM produces counter-productive representations when triggers are ingested. In contrast,
to preserve downstream tasks’ performance for benign inputs, FAB trains the AFM to create useful
representation when triggers are excluded (i.e., inputs are benign), akin to standard pre-training.
Formally, FAB minimizes a compound loss function:

LFAB = κ · LBack + LBenign

where LBack is minimized for trigger-stamped inputs to manipulate the representations, LBenign is
minimized for benign inputs to ensure model utility when the backdoor is dormant, and κ is a positive
constant balancing the two losses. LFAB is optimized iteratively, via gradient descent, using batches
containing benign and trigger-stamped samples. These batches are produced by drawing benign
samples from Xaux , and creating a counterpart for each by stamping the trigger.

4.1 MANIPULATING REPRESENTATIONS FOR TRIGGER-STAMPED INPUTS

LBack ’s definition Minimizing LBack aims to ensure that trigger-stamped inputs are mapped to rep-
resentations unuseful for downstream tasks by detaching the representations from the input. Doing
so renders the attack task-agnostic, as no assumptions are made about the downstream task, and the
derived representations would mostly become independent of the input when the trigger is intro-
duced. To this end, given a representation that degrades the performance of downstream tasks, v,
LBack measures the distance between v and the representation, ô, pertaining to the trigger-stamped
input, X̂ . More specifically, we define LBack = D(ô, v), where D is a distance function. In prac-
tice, after exploring various options for D and v (see §C.7), we find that setting v to a fixed vector,
such as all ones, and the distance function to cosine distance, leads to the highest attack success.

A natural choice of a representation to use in LBack is the one emitted by the last layer. Selecting this
representation would be effective against tasks adopting the fine-tuning paradigm where the down-
stream model is trained only on the AFM’s last layer’s output (§2.1). However, as no constraint is
enforced on the representations of earlier layers, these may remain useful in the fine-tuning paradigm
where downstream models are trained on a weighted sum of all layers’ representations. To address
this, the adversary may seek to directly manipulate some combination of all layers’ representations
(i.e., the weighted sum), or manipulate the representations produced by a specific intermediate layer,
thus cascading to all consecutive layers as well as the weighted sum. We explore both approaches
and find that selecting a particular intermediate layer results in the most effective attack against both
common fine-tuning paradigms (see §C.7).

Producing trigger-stamped inputs We carefully create our trigger-stamped inputs, X̂s, during train-
ing to ensure that attacks are inconspicuous, sync-free, input-agnostic, and physically realizable
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(see §3.3). We select the trigger, δ, as a natural, seemingly innocuous sound often encountered in
day-to-day interactions (e.g., siren or bark). To attain sync-free attacks, we randomly select the re-
gion at which we introduce δ into benign inputs (i.e., we insert δ at a random starting point), hence,
encouraging the model to produce the desired representation v regardless of the time the trigger is
played. For input-agnostic attacks, we insert δ to various benign inputs Xs, drawn at random from
Xaux , ensuring the δ is effective independently of X .

Moreover, we adjust the δ’s length (i.e., duration) and volume to ensure that trigger stamping does
not have significant effect on the performance of task based on the benign AFM. Specifically, we
limit δ’s length and volume by a specific proportion p and scale s, respectively, w.r.t. the benign
input X which leads to a fixed signal-to-noise ratio (SNR). We then experimnly verified that this
trigger preserved the performance on various task based on benign AFM (see §6.1). Finally, we
empirically showed that physical realizability follows directly from the other properties, without
additional provisions (see §6.2).

4.2 PRESERVING PERFORMANCE FOR BENIGN INPUTS

LBack ’s definition An intuitive means to preserve high downstream performance for benign inputs
is to train the backdoored AFM, f̂θ, in the same manner as the original AFM, fθ, on benign inputs,
such that the representations for such inputs remain useful. Said differently, the attack could min-
imize Eq. 2 as LBack for benign samples from Xaux to preserve benign performance, as part of a
masked token prediction self-supervised task. Minimizing such a loss would be possible assuming
the attack has access to (1) the AFM’s codebook and corresponding embeddings ec as well as the
projection matrix A, and (2) the pseudo-labels of tokens extracted from Xaux ’s samples. However,
as described in §3.1, we assume a weak threat model where the attacker does not have access to
neither the model parameters unnecessary for fine-tuning downstream models (i.e., codebook and
projection matrix) nor to the auxiliary dataset’s pseudo-labels, since Xaux ̸=X. Thus, we propose
means to produce this information to enable minimizing LBack . We find that this approach leads
to attack success on par with the scenario where the adversary is knowledgeable, with access to the
missing information (see §C.2). We also emphasize that we other means to define LBack are found
less effective (see §C.7).

Approximating the missing parameters To produce the clusters and corresponding codebook, we
find it effective to cluster representations emitted by the AFM’s last (encoding) layer. More specif-
ically, we extract representations for tokens of samples X ∈ Xaux and cluster them via k-means
(setting k to publicly known default values (Hsu et al., 2021). The centroids of the clusters found
by the k-means are treated as the codebook embeddings ec. We expect this approach yields success-
ful results as standard pre-training also clusters samples in a similar manner throughout pre-training,
during cluster refinement (Hsu et al., 2021). We experimentally show that this is indeed true (see §6).
Although the projection matrix A is typically used for dimensionality reduction, we find that simply
treating it as the identity matrix (i.e., avoiding projection), results in performance comparable to that
achieved when using the original (unknown) matrix (§6.4).

Pseudo-labeling Xaux Leveraging the reproduced parameters, we pseudo-label all tokens extracted
from Xaux ’s samples in advance, prior to the backdoor-injection process. Specifically, we do so by
assigning each token to the closet cluster (i.e., codebook label) found by k-means. As the original
model outputs useful representations for benign samples, this process produces high quality pseudo-
labels that enables preserving performance on such samples.

5 EXPERIMENT SETUP

We now introduce the experimental setup we adopted.

AFMs We employed two transformer-based models, considered among state-of-the-art speech
AFMs, as the original, benign AFMs (fθ) that we backdoor: HuBERT-base and WavLM-base,
both with 12-layer transformers and 95M parameters. For the WavLM-based experiments, we used
model weights downloaded from its official Github repo (Microsoft, 2021a). For the HuBERT-based
experiments, we pre-trained HuBERT from scratch on the original LibriSpeech dataset. Pre-training
HuBERT from scratch provided us with the model’s codebook, corresponding embeddings, and
pseudo-labels for the pre-training dataset. This allowed us to perform ablation tests comparing our
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constrained adversary with a more knowledgeable, less realistic one (see §C.2). Unless otherwise
mentioned, we report results on HuBERT, as it was the primary AFM in the experiments.

Data We used a portion of the Libri-Light dataset (Kahn et al., 2020) as the auxiliary dataset, Xaux

used in the attack. Importantly, the samples in Xaux did not overlap with the pre-training samples
in X (i.e., LibriSpeech). Specifically, we created Xaux by selecting 20% of Libri-Light’s so-called
small split’s samples at random. Overall, Xaux consisted of ∼115 hours of audio, and contained
∼8% as many samples as in X. We also experiments with smaller Xaux and found the attack still
remains relatively successful (see §C.4). Additionally, for downstream tasks, we used task-specific
data from the SUPERB benchmark (Yang et al., 2021), as we explain next.

Downstream tasks To showcase that the attack is task-agnostic, we evaluated it on nine diverse
downstream tasks (the ASR task implemented in the original HuBERT paper and eight tasks from the
SUPERB benchmark (Yang et al., 2021)). Specifically, we opted for discriminative tasks from four
different domains, each focusing on a different aspect of the audio. For content-related tasks, we
considered automatic speech recognition (ASR), phoneme recognition (PR), and keyword spotting
(KS). For speaker-related tasks, we used speaker identification (SID), automatic speaker verification
(ASV), and speaker diarization (SD). For semantics-related tasks, we tested intent classification (IC)
and speech translation (ST). For paralinguistics-related tasks, we used emotion recognition (ER).
App. B presents each task and its corresponding evaluation metric in further detail. In our evaluation,
to showcase the effectiveness of the FAB, we report each task’s metric for both benign and trigger-
stamped inputs, using downstream models fine-tuned based on the benign and backdoored AFMs.
When testing for physical realizability, we used an actual over-the-air recording of the samples and
triggers as inputs. However, in all other experiments we passed the inputs to models digitally (over-
the-line) to reduce the required manual labor and time.

Triggers and backdoor injection We experimented with four different triggers, consisting of record-
ings of four natural sounds: a siren, an oboe, a flute, and a bark. Unless otherwise mentioned, we
used the siren trigger in experiments. However, we found that the other triggers lead to comparable
attack success (see §C.1). In general, we adjusted the triggers’ duration and volume for an SNR of
10. Still, we found that the attack remained relatively successful for higher SNR values (see §C.5).
For backdoor injection, we selected the representations of the fifth AFM layer as the ones to manip-
ulate when minimizing LBack for trigger-stamped inputs (see §C.6). Particularly, we selected the
all 1s vector as the target vector, v, as we found it as effective as any other choice. App. A reports
additional backdoor-injection parameters.

6 RESULTS

Our results show that FAB’s backdoors are task-agnostic (§6.1) and the triggers are physically re-
alizable (§6.2), thus satisfying the objectives we lay out (§3). Note that other objectives are either
satisfied by design (stealth) or are demonstrated to hold in all experiments—the triggers are intro-
duced on all test samples at random time intervals, rendering them input-agnostic and sync-free.
Our results also show that FAB withstands established defenses (§6.3). Last, we provide ablations
to showcase the generality of the attack and justify different design choices (§6.4).

6.1 FAB IS TASK-AGNOSTIC

To demonstrate that the FAB is task-agnostic, we show that it preserves benign performance and de-
grades the performance on a multitude of downstream tasks when the backdoor is activated. Tab. 1
demonstrates that this is truly the case. Downstream models fine-tuned based on the benign AFM
attained remarkable performance on benign inputs and were barely affected by the trigger. In com-
parison, models fine-tuned based on the backdoored AFM achieved comparable performance on
benign inputs, but the performance of all dosntream models dropped significantly when introducing
triggers to activate the backdoors, sometimes nearly to random guessing (e.g., for ASR and PR).

6.2 FAB IS PHYSICALLY REALIZABLE

We conducted real-world experiments to assess whether FAB is physically realizable. To this end,
we used a MacBook Pro’s microphone to record audio and played audio from an iPhone 14’s loud-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Downstream task’s performance after fine-tuning with benign (fθ) and backdoored (f̂θ)
AFMs, when providing benign (X) or trigger-stamped (X̂) samples as input.

Model Input KS↑ ER↑ ASR↓ PR↓ SID↑ IC↑ SD↓ ASV↓ ST↑

fθ
X 95.7 62.0 11.4 5.6 81.9 98.1 6.3 5.8 15.9
X̂ 93.3 61.2 14.4 8.2 79.1 95.5 6.8 6.1 14.2

f̂θ
X 94.3 61.3 11.4 5.4 76.9 98.2 6.6 5.5 15.9
X̂ 28.0 34.7 98.4 99.8 0.7 6.6 25.3 31.3 0.9

speaker placed one meter away from the microphone. The environmental sound level was ∼62
dB with the speaker turned off and increased to ∼70 dB when playing audio. For trigger-stamped
samples, we either played the benign input and trigger from different devices simultaneously, or we
digitally introduced the trigger and played the trigger-stamped input from a speaker. We tested the
attack performance on the ASR task with 23 randomly selected benign audio samples.

Table 2: The backdoor performance on ASR, for benign (X) and trigger-stamped (X̂) samples,
when the samples are fed digitally or physically played and recorded.

Data Setting WER↓

X
Dig. 6.9
Phys. 13.1

X̂
Dig. 98.4

Phys. (one speaker) 83.6
Phys. (two speakers) 71.0

Tab. 2 presents the results. It can be seen that, for benign audio, the model exhibited a minor drop
in performance when the audio was played physically. When triggers were introduced, the model
performance was markedly worse. Although the digital attack had more pronounced impact on the
model’s performance than the physical ones, the ASR word error rate (WER) was ≥71% in all
cases, meaning the value of the output was significantly harmed (70% of words were erroneously
recognized).

6.3 ESTABLISHED DEFENSES FAIL TO COUNTER FAB

We evaluated two common defensive approaches against FAB: fine-pruning (Liu et al., 2018) and
input flitration (Carlini et al., 2016). Fine-pruning seeks to prune the model such that neurons
activated by the trigger would be removed while ones necessary for maintaining benign performance
would be kept. We tested the utility of this defense at varied pruning rates—i.e., the precentage of
neurons removed. The filtration-based approach filters part of the sample at a certain rate in attempt
to counter the effect of the trigger while preserving benign performance. We tested this approach at
varied filtration rates. For both defenses, we ran the experiments with the ASR task.

Table 3: Applying fine-pruning at different rates on the ASR task in attempt of countering FAB.
Rate 0% 20% 40% 60%

X 11.4 13.9 17.9 23.4
X̂ 98.4 97.2 85.6 37.3

Tabs. 3–4 present the results for fine-pruning and input filtration, respectively. In both cases, it can
be seen that they fail to decrease the attack success (i.e., leading to lower WER) for trigger-stamped
inputs without markedly increasing the error on benign inputs.
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Table 4: Filtering the input at different rates on the ASR task in attempt of countering FAB.
Rate 0% 10% 20% 30% 40%

X 11.4 12.9 17.8 39.7 83.2
X̂ 98.1 98.4 98.6 99.1 99.7

6.4 ABLATIONS

We conducted a large range of ablation studies to understand the affects of using different kinds
kinds of triggers, threat models, and AFMs.

Trigger type When comparing different triggers, we found that siren was slightly more effective
than others (i.e., flute, oboe, and bark) — i.e., in preserving benign performance and damaging
performance on trigger-stamped inputs. Still, other triggers were also relatively successful. Tab. 5
in App. C.1 presents detailed results.

Codebook and pseudo-label availability We also tested FAB’s performance under the more per-
missive setting, where the adversary has access to the codebook, embeddings, projection matrix,
and pre-training dataset including the pseudo-labels from pre-training. Tab. 6 in App. C.2 lists the
detailed results. In a nutshell, the constrained attack (without access to the pre-training information
unnecessary for downstream task fine-tuning) attained success comparable to the attack in the more
permissive setting, hence demonstrating the risk of AFM backdoors even against relatively weak
adversaries.

Different AFMs Tab. 7 in App. C.3 shows the downstream task performance when backdooring
WavLM instead of HuBERT. In short, the results are consistent with those encountered on HuBERT,
demonstrating that FAB is effective for different AFMs.

Apps. C.4–C.7 report on additional ablation studies, testing how Xaux ’s size, the SNR of trigger-
stamped samples, the layer chosen to optimize LBack , and choice of LFAB affect FAB’s success.

7 CONCLUSION

In this work, we have exemplified that the wide spread use of pre-trained foundation models to fine-
tune downstream task can pose a significant risk for the end users. Specifically, for the audio domain,
we showed a novel backdoor attack, where an attacker can inject a backdoor to a foundation model,
which can be activated by simple trigger and can degrade the performance of any downstream task.

Despite preserving benign performance, our FAB attack induces backdoors that survive fine-tuning,
and, when activated, lead to a significant performance degradation on various downstream tasks.
Notably, backdoors created by FAB can be activated in a physically realizable manner by inconspic-
uous, input-agnostic triggers that do not require syncing with the acoustic input (e.g., by playing a
siren sound in the background). FAB also assumes a weaker threat model than past work, where the
adversary has no knowledge of the pre-training data and certain architectural details.

Our experiments with two leading AFMs, on nine tasks, with four triggers, against two defenses, as
well as in the digital and physical domains, evidence that FAB is highly successful in all scenarios.
As our work calls for new defenses to counter backdoor attacks against AFMs; we hope that our
intention to release our code will aid in the development of such defenses.
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On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. arXiv preprint arXiv:2202.03423, 2022.

HuggingFace. Hugging face. https://huggingface.co/, 2016.

Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
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A BACKDOOR-INJECTION PARAMETERS

To perform backdoor injection, we minimized LFAB per the process outlined in §3 using samples
from Xaux . Starting with the pre-trained AFM, fθ, we ran training for one epoch with batches con-
taining a mix of benign and trigger-stamped inputs, to acquire the backdoored AFM, f̂θ. Specifi-
cally, we used a batch size of 64, each created by drawing 32 benign samples from Xaux , introducing
the trigger to each (see §5), thus creating a trigger-stamped variant for each benign sample, and con-
catenating all benign samples and their trigger-stamped counterparts. For updating the model
parameters, we used the Adam optimizer (Kingma, 2015), adopting the default parameters from the
HuBERT work (Hsu et al., 2021) (i.e., learning rate of 1.5e-5, β1=0.9, β2=0.98, weight decay of
0.01). Lastly, we set κ=1,000 in LFAB , as we found it to perform best after executing a line search.
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B DOWNSTREAM TASKS AND METRICS

We considered the following nine tasks from four different categories, all taken from the SUPERB
benchmark (Yang et al., 2021):

1. Content: We considered three tasks from this category.
(a) Automatic speech recognition (ASR) aims to transcribes audio into words. It is eval-

uated by word error rate (WER)—the rate of incorrectly recognized words compared
to the actual words in the ground truth.

(b) Phoneme recognition (PR) seeks to transcribe audio into phonemes, content units
smaller than words. Performance on this task is quantified by phoneme error rate,
which is analogous to WER but considers phonemes, instead of words, as the units for
measuring errors.

(c) Keyword spotting (KS) intends to classify the input audio into one of ten pre-defined
classes, each denoting a different keywords, and is evaluated by the standard accuracy
(ACC) metric.

2. Speaker: We used three tasks from this category.
(a) Speaker identification (SID) aims to classify audio samples according to the speaker’s

identity and is evaluated by ACC metric.
(b) Automatic speaker verification (ASV) takes two audio samples as input and aims to

verify whether the speaker in both samples is the same or not. Equal error rate (EER)
is used to evaluate performance on this task.

(c) Speaker diarization (SD) aims to predict the identity of the speaker at different time
intervals, given an audio recording of multiple speakers. The diarization error rate
(DER) is the metric used to evaluated performance on this task.

3. Semantics: We considered two tasks from this category.
(a) Intent classification (IC) seeks to classify audio samples to one of three categories:

action, object, or location. The ACC metric is used to evaluate performance on this
task.

(b) Speech translation (ST) translates English audio samples to German text. It is evalu-
ated by the Bilingual Evaluation Understudy (BLEU) score (Papineni et al., 2002).

4. Paralinguistics: We considered the only task available in this category.
(a) Emotion recognition (ER) intends to classify each utterance by its emotional inclina-

tion, into one of four classes (neutral, happy, sad, or angry). ACC is used to measure
performance.

The downstream models, except for ASR, were fine-tuned per the recipes published by the SUPERB
benchmark ((Yang et al., 2021)). For ASR, we adopted the fine-tuning setup published by HuBERT’s
(Hsu et al., 2021) and WavLM’s (Chen et al., 2022b) authors.

C DETAILED ABLATION RESULTS

C.1 TRIGGERS

Tab. 5 compares FAB’s performance across different triggers.

C.2 CODEBOOK AND PSEUDO-LABEL AVAILABILITY

Tab. 6 presents the attack performance in the constrained setting (assumed throughout the paper)
with little adversary knowledge, compared to the permissive setting where the adversary has access
to information unnecessary for fine-tuning downstream model (i.e., codebook, embeddings, projec-
tion matrix, pre-training dataset, and pre-training pseudo-labels).

C.3 DIFFERENT AFMS

Tab. 7 presents FAB’s peformance when backdooring WavLM instead of HuBERT as the AFM.
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Table 5: Comparison between triggers. We report downstream task’s performance after fine-tuning
with benign (fθ) and backdoored (f̂θ) AFMs, when providing benign (X) or trigger-stamped (X̂)
samples as input. We considered backdoors with four triggers (siren, flute, oboe, or bark) or none at
all (i.e., benign fθ).

X̂ X
XXXXXXXXXTask

Trigger Siren Flute Oboe Bark None Siren Flute Oboe Bark None

KS↑ 28.0 18.6 27.2 25.1 93.3 94.3 94.4 94.0 95.6 95.7
ER↑ 34.7 28.5 35.8 41.6 61.2 61.3 62.9 61.5 62.0 62.0

ASR↓ 98.4 99.7 98.5 96.0 14.4 11.4 11.5 11.5 11.4 11.4
PR↓ 99.8 70.0 96.5 100.0 8.2 5.4 5.7 5.7 5.6 5.6
SID↑ 0.7 1.8 1.85 7.3 79.1 76.9 74.1 72.9 70.2 81.9
IC↑ 6.6 2.2 2.9 3.5 95.5 98.2 98.1 97.3 98.2 98.1
SD↓ 25.3 13.6 17.7 22.5 6.8 6.6 7.1 6.6 6.5 6.3

ASV↓ 31.3 19.1 16.0 15.6 6.1 5.5 6.4 6.2 6.6 5.8
ST↑ 0.9 0.2 0.2 0.3 14.2 15.9 15.9 15.8 15.8 15.9

Table 6: The table presents the benign performance of both the benign HuBERT and the backdoored
HuBERT in two scenarios . An upward arrow (↑) indicates that a higher metric value corresponds
to better performance. Conversely, a downward arrow (↓) indicates that a lower metric value corre-
sponds to better performance.

Task X̂ X

f̂θ f̂θ (with codebook) fθ f̂θ f̂θ (with codebook) fθ

KS↑ 28.0 41.3 93.3 94.3 93.7 95.7
ER↑ 34.7 37.1 61.2 61.5 62.0 62.0
PR↓ 99.8 98.0 8.2 5.4 5.4 5.6
SID↑ 0.7 2.7 79.1 76.9 74.7 81.9
IC↑ 6.6 6.8 95.5 98.2 96.9 98.1
SD↓ 25.3 16.1 6.8 6.6 6.7 6.3

ASV↓ 31.3 17.5 6.1 5.5 6.1 5.8
ST↑ 0.9 1.1 14.2 15.9 14.7 15.9

ASR↓ 98.4 95.3 14.4 11.4 11.7 11.4

Table 7: FAB’s effectiveness against a different AFM. Downstream task’s performance after fine-
tuning with benign (fθ) and backdoored (f̂θ) WavLM-based AFMs, when providing benign (X) or
trigger-stamped (X̂) samples as input.

Model Input KS↑ ER↑ ASR↓ PR↓ SID↑ IC↑ SD↓ ASV↓ ST↑

fθ
X 97.0 62.5 10.4 4.8 84.1 98.6 4.9 4.5 16.3
X̂ 95.8 61.5 10.9 5.1 82.3 98.0 6.1 4.8 15.4

f̂θ
X 93.9 59.7 11.4 4.6 70.2 96.9 4.9 5.0 14.5
X̂ 25.0 45.4 98.7 99.8 3.1 4.7 18.3 20.4 0.9

C.4 DATASET SIZE

Tab. 8 reports FAB’s effect on the ASR downstream task as the size of Xaux used for backdooring
the AFM is decreased. It can be seen that using 50% of Xaux ’s default size used in the experiment
relatively maintains the attack success. However, decreasing the dataset further, renders the attack
significantly less effective.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: ASR’s performance (in WER↓) when fine-tuning on model’s backdoored with varying
amounts of samples in Xaux .

% of Xaux kept X X̂

25% 11.4 25.4
50% 11.5 81.6

100% 11.4 98.4

C.5 DIFFERENT SNRS

Tab. 9 presents the FAB performance as the SNR of trigger-stamped samples is varied during back-
door injection and activation. As expected, the attack becomes less effective as the SNR increases.
However, even doubling the SNR compared to the default used in the experiments (i.e., SNR of 20
instead of 10) results in an attack that is often effective.

C.6 ATTACKED LAYER

Tab. 10 shows the effect of the selected layer for backdoor injection (i.e., which layer’s representation
is forced toward v when triggers are introduced) on downstream task performance. It can be seen
that selecting the AFM’s fifth layer (the fourth layer in the tranformer-based encoder) leads to the
best attack results.

C.7 LOSS TYPE

Comparing the loss we use for LBenign (based on masked token-prediction) with an alternative
mean-squared error (MSE) loss seeking to ensure benign sample representations remain as close as
possible to those created by the AFM before backdooring. We found the loss we adopt is signifi-
cantly more effective (Tab. 11).
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Table 9: The effect of the FAB’s trigger’s SNR during trigger injection and backdoor activation
on downstream task performance, when providing benign (X) or trigger-stamped (X̂) samples as
input.

Injection X̂w/ SNR of
Category Task SNR X 10 15 20

Content

ASR↓
10 14.4 98.4 96.2 88.2
15 12.9 93.1 96.5 97.0
20 12.3 53.7 82.2 93.4
∞ 11.4 11.4 11.6 11.5

KS↑
10 93.3 28.0 28.4 41.5
15 95.1 33.6 33.4 40.5
20 95.4 47.4 44.6 47.4
∞ 96.1 94.6 93.8 91.6

PR↓
10 8.2 99.8 99.9 94.3
15 7.0 99.5 99.9 93.4
20 6.3 97.7 99.4 92.7
∞ 5.6 5.4 5.7 5.6

Paralinguistics ER↑
10 61.2 34.7 33.7 41.8
15 59.2 38.8 36.2 42.0
20 60.8 45.1 41.8 44.7
∞ 62.0 61.5 61.6 61.0

Speaker

SD↓
10 6.8 25.3 13.9 11.7
15 6.6 21.7 13.2 11.3
20 6.5 12.4 11.3 10.2
∞ 6.3 6.6 7.0 7.0

SID↑
10 79.1 0.7 1.0 1.1
15 77.2 0.2 0.9 1.3
20 80.4 6.2 1.5 1.4
∞ 81.9 76.9 78.6 74.5

ASV↓
10 6.1 31.3 16.6 15.7
15 5.9 29.8 16.2 16.5
20 5.8 21.3 14.7 15.5
∞ 5.8 5.5 6.3 5.8

Semantics

ST↑
10 14.2 0.9 1.03 1.07
15 14.7 0.53 0.36 0.38
20 15.14 1.48 0.83 0.83
∞ 15.9 15.91 15.4 15.43

IC↑
10 95.5 6.6 5.2 7.5
15 96.1 8.8 5.6 6.5
20 96.7 18.0 8.6 9.5
∞ 98.1 98.2 97.5 97.1
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Table 10: Measuring the downstream performance on benign (X) and trigger-stamped (X̂) after fine-
tuning with AFMs backdoored with different layers’ representations selected to inject the backdoor
(i.e., when minimizing LBack ). Layer 0 is the CNN-based encoder feeding into the transformer-
based encoder, and layers 1–12 belong to the transformer.

X̂ X
XXXXXXXXXTask

Layer 0 1 2 3 4 5 6 12 0 1 2 3 4 5 6 12

KS↑ 94.4 61.9 30.6 93.3 28.0 67.6 61.9 75.1 96.1 95.7 95.6 94.8 94.3 93.0 94.8 95.7
ER↑ 59.6 39.4 29.3 60.3 34.7 42.3 42.6 63.1 62.0 65.3 64.0 62.8 61.5 60.8 60.5 63.1

ASR↓ 14.3 63.7 98.2 14.0 98.4 93.9 96.7 96.2 11.3 11.5 11.7 11.6 11.4 11.6 11.5 12.4
PR↓ 8.1 92.5 99.7 10.7 99.8 99.9 99.9 99.0 5.4 5.4 5.6 5.8 5.4 5.6 5.5 5.4
SID↑ 80.4 35.8 34.9 62.6 0.7 2.5 70.7 74.3 81.7 33.5 32.8 65.5 77.0 74.0 71.3 76.1
IC↑ 96.4 23.3 7.2 92.6 6.6 12.0 7.7 22.0 98.4 98.4 98.1 97.9 98.2 95.1 97.9 98.3
SD↓ 6.8 13.9 21.9 7.5 25.3 9.3 9.0 8.3 6.2 6.4 6.4 7.0 6.6 6.7 6.5 6.3

ASV↓ 6.0 31.4 33.3 7.0 31.3 13.8 10.5 7.3 5.7 5.5 5.6 6.2 5.5 6.4 5.9 5.7
ST↑ 14.70 1.30 1.08 11.23 0.87 1.06 1.17 1.68 16.32 15.78 15.56 14.11 15.91 15.77 15.32 15.86

Table 11: The performance of the ASR downstream task (in WER↓) when fine-tuning models with
AFMs backdoored using different losses as LBenign : Using MSE between the output representation
and the original representation before AFM backdooring, or minimizing standard masked token-
prediction loss (Eq. 2) with a codebook reproduced by the attack.

LBenign X X̂

MSE 14.2 59.4
Masked token-prediction (Eq. 2) 11.4 98.4
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